
L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

Algorithms for High-Performance Computing
Platforms (2020-2021)

Course 2: Tasks

Laércio LIMA PILLA
pilla@lri.fr

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

Agenda

What is a task?
Parallel Patterns

Algorithmic Structures
Implementation Concepts

2

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

But first...

3

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

But first...

• Introduction to Parallel Computing by Allen Malony et al. from the
University of Oregon: https://ipcc.cs.uoregon.edu/curriculum.html

• Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP) 2007.
(Massachusetts Institute of Technology: MIT OpenCourseWare).
http://ocw.mit.edu (accessed Oct 02, 2020). License: Creative Commons
Attribution-Noncommercial-Share Alike.

• "HPC - from applications to tasks" by Francieli Zanon Boito.
• Bull, J. Mark. "A hierarchical classification of overheads in parallel

programs." In Software Engineering for Parallel and Distributed Systems,
pp. 208-219. Springer, Boston, MA, 1996.
https://link.springer.com/content/pdf/10.1007/978-0-387-34984-8_18.pdf

• Parallel Program Engineering by Michael Gerndt et al.,
http://wwwi10.lrr.in.tum.de/~gerndt/home/Teaching/PPE/PPE.html

4

https://ipcc.cs.uoregon.edu/curriculum.html
http://ocw.mit.edu
https://link.springer.com/content/pdf/10.1007/978-0-387-34984-8_18.pdf
http://wwwi10.lrr.in.tum.de/~gerndt/home/Teaching/PPE/PPE.html

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

What is a task?

5

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

What is a task?
Loose definition:

Concurrent/parallel unit of work.

The meaning of a "task" is

context-dependent.

We can have tasks within tasks

within tasks…
 « des tortues jusqu'en bas »

6

By Pelf at en.wikipedia - Originally from
en.wikipedia; description page is/was here.,

Public Domain,
https://commons.wikimedia.org/w/index.php?cu

rid=2747463

https://commons.wikimedia.org/w/index.php?curid=2747463
https://commons.wikimedia.org/w/index.php?curid=2747463

4 Common Steps to
Creating a Parallel Program

Partitioning

P0 P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

d
e
c
o
m
p
o
s
i
t
i
o
n

a
s
s
i
g
n
m
e
n
t

o
r
c
h
e
s
t
r
a
t
i
o
n

m
a
p
p
i
n
g

Sequential Tasks Processes Parallel Processors computation program

 2 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Lecture 12 – Introduction to Parallel Algorithms

Methodological Design
q  Partition
❍ Task/data

decomposition
q  Communication
❍ Task execution

coordination
q  Agglomeration
❍ Evaluation of the

structure
q  Mapping
❍ Resource assignment

2

I. Foster, “Designing and Building
Parallel Programs,” Addison-Wesley,
1995. Book is online, see webpage.

Introduction to Parallel Computing, University of Oregon, IPCC

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

What is a task?
Examples of what a task means for parallelism/scheduling

7

For ... … tasks are/can be thought as ...

A Supercomputer/Cluster Jobs (application instances)

An Operating System Threads, Processes

A Processor Instructions

A Game AI for NPCs, rendering, physics simulation

Finances A Model with different inputs

Distributed Machine Learning Mini-batches

A Scientific Workflow Applications or scripts

A Climate Model An Atmospheric Model, Ocean Model, ...

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

What is a task?

Parallelism means tasks.

Tasks mean we have to manage tasks.

How difficult can it be?

8

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

What is a task?

9

Bull, J. Mark.

"A hierarchical
classification of

overheads in parallel
programs."

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

What is a task?

10

Bull, J. Mark.

"A hierarchical
classification of

overheads in parallel
programs."

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

What is a task?
Representation of tasks as a Direct Acyclic Graph (DAG)

• Tasks with dependencies

• Embarrassingly parallel (EP) problems

11

Lecture 5 – Parallel Programming Patterns - Map

Directed Acyclic Graphs (DAG)
q  Captures data flow parallelism
q  Nodes represent operations to be performed
❍  Inputs are nodes with no incoming arcs
❍ Output are nodes with no outgoing arcs
❍ Think of nodes as tasks

q  Arcs are paths for flow of data results
q  DAG represents the operations of the algorithm

and implies precedent constraints on their order
 for (i=1; i<100; i++)
 a[i] = a[i-1] + 100; a[0]	
 a[1]	
 a[99]	
 …	

4 Introduction to Parallel Computing, University of Oregon, IPCC

Dependence Analysis

● Given two tasks how to determine if they can safely
run in parallel?

4 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Bernstein’s Condition

● Ri: set of memory locations read (input) by task Ti

● Wj: set of memory locations written (output) by task Tj

● Two tasks T1 and T2 are parallel if
� input to T1 is not part of output from T2

� input to T2 is not part of output from T1

� outputs from T1 and T2 do not overlap

5 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Example

T1

a = x + y

T2

b = x + z

R1 = { x, y }
W1 = { a }

R2 = { x, z }
W2 = { b }

R1 IW2 =φ

R2 IW1 =φ

W1 IW2 =φ

6 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Lecture 5 – Parallel Programming Patterns - Map

Independent versus Dependent
q  In other words the execution of

 statement1;
 statement2;
must be equivalent to
 statement2;
 statement1;

q  Their order of execution must not matter!
q  If true, the statements are independent of each other
q  Two statements are dependent when the order of their

execution affects the computation outcome

14 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Examples
q  Example 1

S1: a=1;
S2: b=1;

q  Example 2
S1: a=1;
S2: b=a;

q  Example 3
S1: a=f(x);
S2: a=b;

q  Example 4
S1: a=b;
S2: b=1;

r  Statements are independent

r  Dependent (true (flow) dependence)
¦  Second is dependent on first
¦  Can you remove dependency?

r  Dependent (output dependence)
¦  Second is dependent on first
¦  Can you remove dependency? How?

r  Dependent (anti-dependence)
¦  First is dependent on second
¦  Can you remove dependency? How?

15 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

True Dependence and Anti-Dependence
q  Given statements S1 and S2,

 S1;
 S2;

q  S2 has a true (flow) dependence on S1
 if and only if
S2 reads a value written by S1

q  S2 has a anti-dependence on S1
 if and only if
S2 writes a value read by S1

X	
 =	

	

	
 	
 	
 	
 =	
 X	

...	
 δ	

	
 	
 	
 	
 =	
 X	

	

X	
 =	

...	
 δ-­‐1	

16 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Output Dependence
q  Given statements S1 and S2,

 S1;
 S2;

q  S2 has an output dependence on S1
 if and only if
S2 writes a variable written by S1

q  Anti- and output dependences are “name”
dependencies
❍  Are they “true” dependences?

q  How can you get rid of output dependences?
❍  Are there cases where you can not?

X	
 =	

	

X	
 =	
 	

...	
 δ0	

17 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Statement Dependency Graphs
q  Can use graphs to show dependence relationships
q  Example

S1: a=1;
S2: b=a;
S3: a=b+1;
S4: c=a;

q  S2 δ S3 : S3 is flow-dependent on S2
q  S1 δ0 S3 : S3 is output-dependent on S1
q  S2 δ-1 S3 : S3 is anti-dependent on S2

S1	

S2	

S3	

S4	

flow	

an0	

output	

18 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

When can two statements execute in parallel?
q  Statements S1 and S2 can execute in parallel if and

only if there are no dependences between S1 and
S2
❍ True dependences
❍ Anti-dependences
❍ Output dependences

q  Some dependences can be remove by modifying
the program
❍ Rearranging statements
❍ Eliminating statements

19 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

How do you compute dependence?
q  Data dependence relations can be found by

comparing the IN and OUT sets of each node
q  The IN and OUT sets of a statement S are defined

as:
❍  IN(S) : set of memory locations (variables) that may be

used in S
❍ OUT(S) : set of memory locations (variables) that may

be modified by S
q  Note that these sets include all memory locations

that may be fetched or modified
q  As such, the sets can be conservatively large

20 Introduction to Parallel Computing, University of Oregon, IPCC

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

Parallel Patterns

12

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

Parallel Patterns
Two main ways to think about partitioning an application

- Task decomposition
- Also known as Functional decomposition
- Different computations -> different tasks

- Data decomposition
- Also known as Domain decomposition
- Same computation applied to different data
- Different parts of the data -> different tasks

13

4 Common Steps to
Creating a Parallel Program

Partitioning

P0 P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

d
e
c
o
m
p
o
s
i
t
i
o
n

a
s
s
i
g
n
m
e
n
t

o
r
c
h
e
s
t
r
a
t
i
o
n

m
a
p
p
i
n
g

Sequential Tasks Processes Parallel Processors computation program

 2 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Decomposition (Amdahl’s Law)

● Identify concurrency and decide at what level to
exploit it

● Break up computation into tasks to be divided
among processes
� Tasks may become available dynamically
� Number of tasks may vary with time

●	 Enough tasks to keep processors busy
� Number of tasks available at a time is upper bound on

achievable speedup

3	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Assignment (Granularity)

● Specify mechanism to divide work among core
� Balance work and reduce communication

● Structured approaches usually work well
� Code inspection or understanding of application
� Well-known design patterns

● As programmers, we worry about partitioning first

� Independent of architecture or programming model
� But complexity often affect decisions!

4 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Orchestration and Mapping (Locality)

● Computation and communication concurrency

● Preserve locality of data

● Schedule tasks to satisfy dependences early

5 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Parallel Programming by Pattern

●	 Provides a cookbook to systematically guide programmers
� Decompose, Assign, Orchestrate, Map
� Can lead to high quality solutions in some domains

●	 Provide common vocabulary to the programming community

� Each pattern has a name, providing a vocabulary for

discussing solutions

●	 Helps with software reusability, malleability, and modularity
� Written in prescribed format to allow the reader to

quickly understand the solution and its context

●	 Otherwise, too difficult for programmers, and software will not
fully exploit parallel hardware

6	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

History

● Berkeley architecture professor
Christopher Alexander

● In 1977, patterns for city
planning, landscaping, and
architecture in an attempt to
capture principles for “living”
design

7 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Example 167 (p. 783): 6ft Balcony

Whenever you build a balcony, a porch, a gallery, or a
terrace always make it at least six feet deep. If possible,
recess at least a part of it into the building so that it is not
cantilevered out and separated from the building by a simple
line, and enclose it partially.

Therefore:

six feet deep

Image by MIT OpenCourseWare.

8 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Patterns in Object-Oriented Programming

● Design Patterns: Elements of Reusable Object-
Oriented Software (1995)
� Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides
� Catalogue of patterns
� Creation, structural, behavioral

9 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression	 Software Construction

● Finding Concurrency ●	 Supporting Structures
� Expose concurrent tasks � Code and data structuring

patterns

● Algorithm Structure	 ● Implementation Mechanisms

� Map tasks to processes to � Low level mechanisms used

exploit parallel architecture to write parallel programs

Patterns for Parallel
Programming. Mattson,
Sanders, and Massingill
(2005).

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 10

Here’s my algorithm.
Where’s the concurrency?

MPEG bit stream
MPEG Decoder

VLD
macroblocks, motion vectors

split
frequency encoded
macroblocks differentially coded

motion vectors
ZigZag

IQuantization Motion Vector Decode

Picture Reorder

join

IDCT

motion vectors spatially encoded macroblocks

recovered picture

Saturation

Repeat

Motion
Compensation

Color Conversion

Display

11 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Here’s my algorithm.
Where’s the concurrency?

MPEG bit stream
MPEG Decoder

VLD
macroblocks, motion vectors

split
frequency encoded
macroblocks differentially coded

motion vectors

spatially encoded macroblocks	 motion vectors

IDCT

IQuantization

ZigZag

Saturation

Motion Vector Decode

Repeat

join

Motion
Compensation

recovered picture

Picture Reorder

Color Conversion

Display

●	 Task decomposition
� Independent coarse-grained

computation
� Inherent to algorithm

●	 Sequence of statements
(instructions) that operate
together as a group
� Corresponds to some logical

part of program
� Usually follows from the way

programmer thinks about a
problem

2	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 1

Here’s my algorithm.
Where’s the concurrency?

MPEG bit stream
MPEG Decoder

VLD
macroblocks, motion vectors

split
frequency encoded
macroblocks differentially coded

motion vectors

spatially encoded macroblocks	 motion vectors

join

IDCT

IQuantization

ZigZag

Saturation

Motion Vector Decode

Repeat

Motion
Compensation

recovered picture

Picture Reorder

Color Conversion

Display

●	 Task decomposition
� Parallelism in the application

●	 Data decomposition
� Same computation is applied

to small data chunks derived
from large data set

13	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Here’s my algorithm.
Where’s the concurrency?

MPEG bit stream
MPEG Decoder

VLD
macroblocks, motion vectors

split
frequency encoded
macroblocks differentially coded

motion vectors

spatially encoded macroblocks motion vectors

join

IDCT

IQuantization

ZigZag

Saturation

Motion Vector Decode

Repeat

Motion
Compensation

recovered picture

Picture Reorder

Color Conversion

Display

● Task decomposition
� Parallelism in the application

● Data decomposition
� Same computation many data

● Pipeline decomposition
� Data assembly lines
� Producer-consumer chains

14 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Guidelines for Task Decomposition

● Algorithms start with a good understanding of the
problem being solved

● Programs often naturally decompose into tasks
� Two common decompositions are

– Function calls and
– Distinct loop iterations

● Easier to start with many tasks and later fuse them,

rather than too few tasks and later try to split them

15 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Guidelines for Task Decomposition

●	 Flexibility
� Program design should afford flexibility in the number and

size of tasks generated
–	 Tasks should not tied to a specific architecture
–	 Fixed tasks vs. Parameterized tasks

●	 Efficiency
� Tasks should have enough work to amortize the cost of

creating and managing them
� Tasks should be sufficiently independent so that managing

dependencies doesn’t become the bottleneck

●	 Simplicity
� The code has to remain readable and easy to understand,

and debug

16	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Guidelines for Data Decomposition

● Data decomposition is often implied by task
decomposition

● Programmers need to address task and data

decomposition to create a parallel program

� Which decomposition to start with?

●	 Data decomposition is a good starting point when
� Main computation is organized around manipulation of a

large data structure
� Similar operations are applied to different parts of the

data structure

DDr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 17	 6.189 IAP 2007 MIT

Common Data Decompositions

● Array data structures
� Decomposition of arrays along rows, columns, blocks

● Recursive data structures
� Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

18 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Guidelines for Data Decomposition

●	 Flexibility
� Size and number of data chunks should support a wide

range of executions

●	 Efficiency
� Data chunks should generate comparable amounts of

work (for load balancing)

●	 Simplicity
� Complex data compositions can get difficult to manage

and debug

19	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Lecture 12 – Introduction to Parallel Algorithms

Methodological Design
q  Partition
❍ Task/data

decomposition
q  Communication
❍ Task execution

coordination
q  Agglomeration
❍ Evaluation of the

structure
q  Mapping
❍ Resource assignment

2

I. Foster, “Designing and Building
Parallel Programs,” Addison-Wesley,
1995. Book is online, see webpage.

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Partitioning
q  Partitioning stage is intended to expose

opportunities for parallel execution
q  Focus on defining large number of

small task to yield a fine-grained
decomposition of the problem

q  A good partition divides into small pieces
both the computational tasks associated with a
problem and the data on which the tasks operates

q  Domain decomposition focuses on computation data
q  Functional decomposition focuses on computation

tasks
q  Mixing domain/functional decomposition is possible

3 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Domain and Functional Decomposition
q  Domain decomposition of 2D / 3D grid

q  Functional decomposition of a climate model

4 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Partitioning Checklist
q  Does your partition define at least an order of

magnitude more tasks than there are processors in
your target computer? If not, may loose design
flexibility.

q  Does your partition avoid redundant computation and
storage requirements? If not, may not be scalable.

q  Are tasks of comparable size? If not, it may be hard to
allocate each processor equal amounts of work.

q  Does the number of tasks scale with problem size? If
not may not be able to solve larger problems with
more processors

q  Have you identified several alternative partitions?
5 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Communication (Interaction)
q  Tasks generated by a partition must

interact to allow the computation
to proceed
❍  Information flow: data and control

q  Types of communication
❍  Local vs. Global: locality of communication
❍  Structured vs. Unstructured: communication patterns
❍  Static vs. Dynamic: determined by runtime conditions
❍  Synchronous vs. Asynchronous: coordination degree

q  Granularity and frequency of communication
❍  Size of data exchange

q  Think of communication as interaction and control
❍  Applicable to both shared and distributed memory parallelism

6 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Types of Communication
q  Point-to-point
q  Group-based
q  Hierachical
q  Collective

7 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Communication Design Checklist
q  Is the distribution of communications equal?

❍  Unbalanced communication may limit scalability
q  What is the communication locality?

❍  Wider communication locales are more expensive

q  What is the degree of communication concurrency?
❍  Communication operations may be parallelized

q  Is computation associated with different tasks able to
proceed concurrently? Can communication be
overlapped with computation?
❍  Try to reorder computation and communication to expose

opportunities for parallelism
8 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Agglomeration
q  Move from parallel abstractions

to real implementation
q  Revisit partitioning and communication

❍  View to efficient algorithm execution
q  Is it useful to agglomerate?

❍  What happens when tasks are combined?
q  Is it useful to replicate data and/or computation?
q  Changes important algorithm and performance ratios

❍  Surface-to-volume: reduction in communication at the
expense of decreasing parallelism

❍  Communication/computation: which cost dominates
q  Replication may allow reduction in communication
q  Maintain flexibility to allow overlap

9 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Types of Agglomeration
q  Element to column

q  Element to block
❍ Better surface to volume

q  Task merging

q  Task reduction
❍ Reduces communication

10 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Agglomeration Design Checklist
q  Has increased locality reduced communication

costs?
q  Is replicated computation worth it?
q  Does data replication compromise scalability?
q  Is the computation still balanced?
q  Is scalability in problem size still possible?
q  Is there still sufficient concurrency?
q  Is there room for more agglomeration?
q  Fine-grained vs. coarse-grained?

11 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Mapping
q  Specify where each task is to execute

❍  Less of a concern on shared-memory
systems

q  Attempt to minimize execution time
❍  Place concurrent tasks on different

processors to enhance physical concurrency
❍  Place communicating tasks on same processor, or on

processors close to each other, to increase locality
❍  Strategies can conflict!

q  Mapping problem is NP-complete
❍  Use problem classifications and heuristics

q  Static and dynamic load balancing

12 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Mapping Algorithms
q  Load balancing (partitioning) algorithms
q  Data-based algorithms

❍  Think of computational load with respect to amount of data
being operated on

❍  Assign data (i.e., work) in some known manner to balance
❍  Take into account data interactions

q  Task-based (task scheduling) algorithms
❍  Used when functional decomposition yields many tasks

with weak locality requirements
❍  Use task assignment to keep processors busy computing
❍  Consider centralized and decentralize schemes

13 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Mapping Design Checklist
q  Is static mapping too restrictive and non-

responsive?
q  Is dynamic mapping too costly in overhead?
q  Does centralized scheduling lead to bottlenecks?
q  Do dynamic load-balancing schemes require too

much coordination to re-balance the load?
q  What is the tradeoff of dynamic scheduling

complexity versus performance improvement?
q  Are there enough tasks to achieve high levels of

concurrency? If not, processors may idle.
14 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Parallel Patterns
q  Parallel Patterns: A recurring combination of task

distribution and data access that solves a specific
problem in parallel algorithm design.

q  Patterns provide us with a “vocabulary” for
algorithm design

q  It can be useful to compare parallel patterns with
serial patterns

q  Patterns are universal – they can be used in any
parallel programming system

34 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Nesting Pattern
q  Nesting is the ability to hierarchically compose

patterns
q  This pattern appears in both serial and parallel

algorithms
q  “Pattern diagrams” are used to visually show the

pattern idea where each “task block” is a location
of general code in an algorithm

q  Each “task block” can in turn be another pattern in
the nesting pattern

36 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Nesting Pattern

37

Nes4ng	
 Pa8ern:	
 A	
 composi0onal	
 paFern.	
 Nes0ng	
 allows	

other	
 paFerns	
 to	
 be	
 composed	
 in	
 a	
 hierarchy	
 so	
 that	
 any	

task	
 block	
 in	
 the	
 above	
 diagram	
 can	
 be	
 replaced	
 with	
 a	

paFern	
 with	
 the	
 same	
 input/output	
 and	
 dependencies.	

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Parallel Control Patterns
q  Parallel control patterns extend serial control

patterns
q  Each parallel control pattern is related to at least

one serial control pattern, but relaxes assumptions
of serial control patterns

q  Parallel control patterns: fork-join, map, stencil,
reduction, scan, recurrence

43 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Parallel Control Patterns: Fork-Join
q  Fork-join: allows control flow to fork into

multiple parallel flows, then rejoin later
q  Cilk Plus implements this with spawn and sync
❍ The call tree is a parallel call tree and functions are

spawned instead of called
❍ Functions that spawn another function call will

continue to execute
❍ Caller syncs with the spawned function to join the two

q  A “join” is different than a “barrier
❍ Sync – only one thread continues
❍ Barrier – all threads continue

44 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Parallel Control Patterns: Map
q  Map: performs a function over every element of a collection
q  Map replicates a serial iteration pattern where each iteration is

independent of the others, the number of iterations is known in
advance, and computation only depends on the iteration count and
data from the input collection

q  The replicated function is referred to as an “elemental function”

45

Input	

Elemental	
 Func0on	

Output	

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Parallel Control Patterns: Stencil
q  Stencil: Elemental function accesses a set of

“neighbors”, stencil is a generalization of map
q  Often combined with iteration – used with iterative

solvers or to evolve a system through time

46

q  Boundary conditions must
be handled carefully in the
stencil pattern

q  See stencil lecture…

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 8 – Stencil Pattern

Stencil Pattern
q  A stencil pattern is a map where each output

depends on a “neighborhood” of inputs
q  These inputs are a set of fixed offsets relative to

the output position
q  A stencil output is a function of a “neighborhood”

of elements in an input collection
❍ Applies the stencil to select the inputs

q  Data access patterns of stencils are regular
❍ Stencil is the “shape” of “neighborhood”
❍ Stencil remains the same

6 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 8 – Stencil Pattern

Stencil Patterns
q  Stencils can operate on one dimensional and

multidimensional data
q  Stencil neighborhoods can range from compact to

sparse, square to cube, and anything else!
q  It is the pattern of the stencil that determines how

the stencil operates in an application

16 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 8 – Stencil Pattern 17

2-Dimensional Stencils

5-point stencil

Source:	
 h.p://en.wikipedia.org/wiki/Stencil_code	

9-point stencil 4-point stencil

Center cell (P)
is used as well

Center cell (C)
is used as well

Center cell (P)
is not used

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 8 – Stencil Pattern 18

3-Dimensional Stencils

Source:	
 h.p://en.wikipedia.org/wiki/Stencil_code	

6-point stencil
(7-point stencil)

24-point stencil
(25-point stencil)

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Parallel Control Patterns: Reduction
q  Reduction: Combines every element in a

collection using an associative “combiner
function”

q  Because of the associativity of the combiner
function, different orderings of the reduction are
possible

q  Examples of combiner functions: addition,
multiplication, maximum, minimum, and Boolean
AND, OR, and XOR

47 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Parallel Control Patterns: Reduction

48

Serial	
 Reduc0on	
 Parallel	
 Reduc0on	

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Parallel Control Patterns: Scan
q  Scan: computes all partial reduction of a collection
q  For every output in a collection, a reduction of the

input up to that point is computed
q  If the function being used is associative, the scan

can be parallelized
q  Parallelizing a scan is not obvious at first, because

of dependencies to previous iterations in the serial
loop

q  A parallel scan will require more operations than a
serial version

49 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 5 – Parallel Programming Patterns - Map

Parallel Control Patterns: Scan

50

Serial	
 Scan	
 Parallel	
 Scan	

Introduction to Parallel Computing, University of Oregon, IPCC

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

Algorithmic Structures

14

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

Algorithmic Structures
Organized by task, data, or dataflow

- By tasks: Independent Task Execution, Aggregation of
Tasks, Recursive Tasks, Static Task Scheduling, Dynamic
Task Scheduling, Dataflow Task Scheduling ...

- By data decomposition: Static distribution pattern,
Redistribution pattern, Irregular Distribution Pattern,
Oversubscription pattern ...

- By dataflow: Pipeline pattern, Event-based coordination
pattern

15

Algorithm Structure Design Space

● Given a collection of concurrent tasks, what’s the
next step?

●	 Map tasks to units of execution (e.g., threads)

●	 Important considerations
� Magnitude of number of execution units platform will

support
� Cost of sharing information among execution units
� Avoid tendency to over constrain the implementation

–	 Work well on the intended platform
–	 Flexible enough to easily adapt to different architectures

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 8	

Major Organizing Principle

● How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

● Concurrency usually implies major organizing
principle
� Organize by tasks
� Organize by data decomposition
� Organize by flow of data

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 9

Organize by Tasks?

Recursive?

Task
Parallelism

yes

no

Divide and Conquer

0 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 1

Task Parallelism

● Ray tracing
� Computation for each ray is a separate and independent

● Molecular dynamics
� Non-bonded force calculations, some dependencies

● Common factors
� Tasks are associated with iterations of a loop
� Tasks largely known at the start of the computation
� All tasks may not need to complete to arrive at a solution

11 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Divide and Conquer

● For recursive programs: divide and conquer

� Subproblems may not be uniform
� May require dynamic load balancing

subproblem

compute
subproblem

compute
subproblem

subproblem

join

split

split subproblem

compute
subproblem

compute
subproblem

subproblem

join

split

problem

join

solution

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 12

Organize by Data?

● Operations on a central data structure

� Arrays and linear data structures
� Recursive data structures

Recursive?

Geometric
Decomposition

yes

no

Recursive Data

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 13

Geometric Decomposition

simulator
● Gravitational body

VEC3D acc[NUM_BODIES] = 0;

for (i = 0; i < NUM_BODIES - 1; i++) {
� Calculate force for (j = i + 1; j < NUM_BODIES; j++) {

// Displacement vector
between pairs of VEC3D d = pos[j] – pos[i];

// Force
t = 1 / sqr(length(d));objects and update
// Components of force along displacementaccelerations d = t * (d / length(d));

acc[i] += d * mass[j];
acc[j] += -d * mass[i];

}
}

pos

vel

pos

14 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Recursive Data

●	 Computation on a list, tree, or graph
� Often appears the only way to solve a problem is to

sequentially move through the data structure

● There are however opportunities to reshape the

operations in a way that exposes concurrency

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 15	

Recursive Data Example: Find the Root

● Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node
� Parallel approach: for each node, find its successor’s

successor, repeat until no changes
–	 O(log n) vs. O(n)

4

3

2

1 6

5 7

4

3

2

1 6

5 7

4

3

2

1 6

5 7

Step 1	 Step 2 Step 3

16	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Work vs. Concurrency Tradeoff

● Parallel restructuring of find the root algorithm leads
to O(n log n) work vs. O(n) with sequential approach

● Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

17 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Organize by Flow of Data?

● In some application domains, the flow of data
imposes ordering on the tasks
� Regular, one-way, mostly stable data flow
� Irregular, dynamic, or unpredictable data flow

Regular?

Event-based
Coordination

yes

no

Pipeline

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 18

Pipeline Throughput vs. Latency

● Amount of concurrency in a pipeline is limited by the
number of stages

● Works best if the time to fill and drain the pipeline is
small compared to overall running time

●	 Performance metric is usually the throughput
� Rate at which data appear at the end of the pipeline per

time unit (e.g., frames per second)

● Pipeline latency is important for real-time
applications
� Time interval from data input to pipeline, to data output

9	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 1

Event-Based Coordination

● In this pattern, interaction of tasks to process data
can vary over unpredictable intervals

● Deadlocks are likely for applications that use this
pattern

20 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

Implementation Concepts

16

SPMD Pattern

● Single Program Multiple Data: create a single
source-code image that runs on each processor
� Initialize
� Obtain a unique identifier
� Run the same program each processor

– Identifier and input data differentiate behavior
� Distribute data
� Finalize

22 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Example: Parallel Numerical Integration

4.0

2.0

4.0
(1+x2)

f(x) =
static long num_steps = 100000;

void main()
{

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;
for (i = 0; i < num_steps; i++){

x = (i + 0.5) ∗ step;
sum = sum + 4.0 / (1.0 + x∗x);

}

pi = step ∗ sum;
0.0 X 1.0 printf(“Pi = %f\n”, pi);

}}

23 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Computing Pi With Integration (MPI)

static long num_steps = 100000;

void main(int argc, char* argv[])
{	

int i_start, i_end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD);

i_start = my_id ∗ (num_steps/numprocs)

i_end = i_start + (num_steps/numprocs)

step = 1.0 / (double) num_steps;

for (i = i_start; i < i_end; i++) {

x = (i + 0.5) ∗ step

}
sum = sum + 4.0 / (1.0 + x∗x);

mypi = step * sum;

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0)

printf(“Pi = %f\n”, pi);

MPI_Finalize();
}

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 24	

Block vs. Cyclic Work Distribution

static long num_steps = 100000;

void main(int argc, char* argv[])
{	

int i_start, i_end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD);

i_start = my_id ∗ (num_steps/numprocs)

i_end = i_start + (num_steps/numprocs)

step = 1.0 / (double) num_steps;

for (i = myid; i < num_steps; i += numprocs) {

x = (i + 0.5) ∗ step

}
sum = sum + 4.0 / (1.0 + x∗x);

mypi = step * sum;

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0)

printf(“Pi = %f\n”, pi);

MPI_Finalize();
}

25	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SPMD Challenges

● Split data correctly

● Correctly combine the results

● Achieve an even distribution of the work

● For programs that need dynamic load balancing, an
alternative pattern is more suitable

26 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Loop Parallelism Pattern

● Many programs are expressed using iterative
constructs
� Programming models like OpenMP provide directives to

automatically assign loop iteration to execution units
� Especially good when code cannot be massively

restructured

#pragma omp parallel for
for(i = 0; i < 12; i++)

C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

27	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Master/Worker Pattern

master
 A
B D E

Independent Tasks

C

A
B

C

E
D

worker worker worker worker

28 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Master/Worker Pattern

● Particularly relevant for problems using task
parallelism pattern where task have no
dependencies
� Embarrassingly parallel problems

● Main challenge in determining when the entire
problem is complete

29 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Fork/Join Pattern

● Tasks are created dynamically
� Tasks can create more tasks

● Manages tasks according to their relationship

● Parent task creates new tasks (fork) then waits until
they complete (join) before continuing on with the
computation

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 30

Lecture 12 – Introduction to Parallel Algorithms

Types of Parallel Programs
q  Flavors of parallelism
❍ Data parallelism

◆ all processors do same thing on different data
❍ Task parallelism

◆ processors are assigned tasks that do different things

q  Parallel execution models
❍ Data parallel
❍ Pipelining (Producer-Consumer)
❍ Task graph
❍ Work pool
❍ Master-Worker

15 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Data Parallel
q  Data is decomposed (mapped) onto processors
q  Processors performance similar (identical) tasks on data
q  Tasks are applied concurrently
q  Load balance is obtained through data partitioning

❍  Equal amounts of work assigned
q  Certainly may have interactions between processors
q  Data parallelism scalability

❍  Degree of parallelism tends to increase with problem size
❍  Makes data parallel algorithms more efficient

q  Single Program Multiple Data (SPMD)
❍  Convenient way to implement data parallel computation
❍  More associated with distributed memory parallel execution

16 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Matrix - Vector Multiplication
q  A x b = y
q  Allocate tasks to rows of A

y[i] = ∑A[i,j]*b[j]

q  Dependencies?
q  Speedup?
q  Computing each

element of y can be
done independently

j	

17 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Matrix-Vector Multiplication (Limited Tasks)
q  Suppose we only have 4 tasks
q  Dependencies?
q  Speedup?

18 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Matrix Multiplication
q  A x B = C
q  A[i,:] • B[:,j] = C[i,j]

q  Row partitioning
❍  N tasks

q  Block partitioning
❍  N*N/B tasks

q  Shading shows data
sharing in B matrix

x	
 =	

A	
 B	
 C	

19 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Granularity of Task and Data Decompositions
q  Granularity can be with respect to tasks and data
q  Task granularity

❍  Equivalent to choosing the number of tasks
❍  Fine-grained decomposition results in large # tasks
❍  Large-grained decomposition has smaller # tasks
❍  Translates to data granularity after # tasks chosen

◆ consider matrix multiplication

q  Data granularity
❍  Think of in terms of amount of data needed in operation
❍  Relative to data as a whole
❍  Decomposition decisions based on input, output, input-

output, or intermediate data

20 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Mesh Allocation to Processors
q  Mesh model of Lake Superior
q  How to assign mesh elements

to processors

q  Distribute onto 8 processors
randomly graph partitioning

for minimum
edge cut

21 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Pipeline Model
q  Stream of data operated on by succession of tasks

 Task 1 Task 2 Task 3 Task 4
❍ Tasks are assigned to processors

q  Consider N data units
q  Sequential

q  Parallel (each task assigned to a processor)
	

	

4-­‐way	
 parallel	

4-way parallel, but
for longer time

4	
 data	
 units	
 8	
 data	
 units	

Task	
 1	
 Task	
 2	
 Task	
 3	
 Task	
 4	

P4	
 P3	
 P2	
 P1	
 data	

input	

22 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Pipeline Performance
q  N data and T tasks
q  Each task takes unit time t
q  Sequential time = N*T*t
q  Parallel pipeline time = start + finish + (N-2T)/T * t

 = O(N/T) (for N>>T)
q  Try to find a lot of data to pipeline
q  Try to divide computation in a lot of pipeline tasks

❍  More tasks to do (longer pipelines)
❍  Shorter tasks to do

q  Pipeline computation is a special form of
producer-consumer parallelism
❍  Producer tasks output data input by consumer tasks

23 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Numbers are
time taken to
perform task

Tasks Graphs
q  Computations in any parallel algorithms can be

viewed as a task dependency graph
q  Task dependency graphs can be non-trivial
❍ Pipeline
❍ Arbitrary (represents the algorithm dependencies)

Task	
 1	
 Task	
 2	
 Task	
 3	
 Task	
 4	

24 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Task Graph Performance
q  Determined by the critical path (span)
❍ Sequence of dependent tasks that takes the longest time

❍ Critical path length bounds parallel execution time
Min time = 27 Min time = 34

25 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Task Assignment (Mapping) to Processors
q  Given a set of tasks and number of processors
q  How to assign tasks to processors?
q  Should take dependencies into account
q  Task mapping will determine execution time

Total time = ? Total time = ?

26 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Task Graphs in Action
q  Uintah task graph scheduler
❍ C-SAFE: Center for Simulation of

Accidental Fires and Explosions,
University of Utah

❍ Large granularity tasks

q  PLASMA
❍ DAG-based parallel

linear algebra
❍ DAGuE: A generic

distributed DAG engine
for HPC

Task Graph Based Languages/frameworks
1:
1

1:
2

1:
3

1:
4

2:
2

2:
3

2:
4

2:
2

Charm++: Object-based Virtualization

Intel CnC:
new language for
graph based parallelism

Plasma
(Dongarra):
DAG based
Parallel linear
algebra
software

Uintah Taskgraph
based PDE Solver

V. Sarkar
L. (S). Kale
S Parker
K. Knobe
J. Dongarra
And many others

Wasatch Taskgraph

Task graph for
PDE solver

DAG of QR for a
4 × 4 tiles matrix on a
2 × 2 grid of
processors.

27 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Bag o’ Tasks Model and Worker Pool
q  Set of tasks to be performed
q  How do we schedule them?

❍  Find independent tasks
❍  Assign tasks to available processors

q  Bag o’ Tasks approach
❍  Tasks are stored in

a bag waiting to run
❍  If all dependencies

are satisified, it is
moved to a ready to run queue

❍  Scheduler assigns a task to a free processor
q  Dynamic approach that is effective for load balancing

Bag o‘
tasks independent tasks

ready to run …	

Processors

28 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Master-Worker Parallelism
q  One or more master processes generate work
q  Masters allocate work to worker processes
q  Workers idle if have nothing to do
q  Workers are mostly stupid and must be told what to do

❍  Execute independently
❍  May need to synchronize, but most be told to do so

q  Master may become the bottleneck if not careful
q  What are the performance factors and expected

performance behavior
❍  Consider task granularity and asynchrony
❍  How do they interact?

29 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Master-Worker Execution Model (Li Li)

Li Li, “Model-based Automatics Performance Diagnosis of Parallel Computations,” Ph.D. thesis, 2007.

30 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

M-W Execution Trace (Li Li)

31 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Search-Based (Exploratory) Decomposition
q  15-puzzle problem
q  15 tiles numbered 1 through 15 placed in 4x4 grid

❍  Blank tile located somewhere in grid
❍  Initial configuration is out of order
❍  Find shortest sequence of moves to put in order

q  Sequential search across space of solutions
❍  May involve some heuristics

32 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Big-Data and Map-Reduce
q  Big-data deals with processing large data sets
q  Nature of data processing problem makes it amenable

to parallelism
❍  Looking for features in the data
❍  Extracting certain characteristics
❍  Analyzing properties with complex data mining algorithms

q  Data size makes it opportunistic for partitioning into
large # of sub-sets and processing these in parallel

q  We need new algorithms, data structures, and
programming models to deal with problems

84 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

A Simple Big-Data Problem
q  Consider a large data collection of text documents
q  Suppose we want to find how often a particular

word occurs and determine a probability
distribution for all word occurrences

85

Data	

collecHon	

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Find	
 and	

count	
 words	

Get next
document

Count words and
update statistics

Check if more
documents

Generate	

probability	

distribuHons	

Sequential algorithm

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Parallelization Approach
q  Map: partition the data collection into subsets of

documents and process each subset in parallel
q  Reduce: assemble the partial frequency tables to

derive final probability distribution

86

Data	

collecHon	

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Find	
 and	

count	
 words	

Get next
document

Count words and
update statistics

Check if more
documents

Generate	

probability	

distribuHons	

Parallel algorithm

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Parallelization Approach
q  Map: partition the data collection into subsets of

documents and process each subset in parallel
q  Reduce: assemble the partial frequency tables to

derive final probability distribution

87

Data	

collecHon	

Find	
 and	

count	
 words	

Get next
document

Count words and
update statistics

Check if more
documents

Generate	

probability	

distribuHons	

Parallel algorithm web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Actually, it is not easy to parallel….

88

Fundamental issues	

Scheduling, data distribution, synchronization, inter-
process communication, robustness, fault tolerance,
…

Different programming models	

Message Passing Shared Memory

Architectural issues	

Flynn’s taxonomy (SIMD, MIMD, etc.), network
topology, bisection bandwidth, cache coherence, …

Common problems	

Livelock, deadlock, data starvation, priority inversion,
…dining philosophers, sleeping barbers, cigarette
smokers, …

Different programming constructs 	

Mutexes, conditional variables, barriers, …	

masters/slaves, producers/consumers, work queues,. …

Actually, Programmer’s Nightmare….

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Map-Reduce Parallel Programming
q  Become an important distributed parallel

programming paradigm for large-scale applications
❍ Also applies to shared-memory parallelism
❍ Becomes one of the core technologies powering big IT

companies, like Google, IBM, Yahoo and Facebook.
q  Framework runs on a cluster of machines and

automatically partitions jobs into number of small
tasks and processes them in parallel

q  Can capture in combining Map and Reduce parallel
patterns

89 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

Map-Reduce Example

90

MAP: Input data è <key, value> pair

Data	

CollecHon:	

split1	

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

Split the data to
Supply multiple
processors

Data	

CollecHon:	

split	
 2	

Data	

CollecHon:	

split	
 n	

Map	

…
…

 Map

web	
 1	

weed	
 1	

green	
 1	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

web	
 1	

green	
 1	

…	
 1	

KEY	
 VALUE	

web	
 1	

weed	
 1	

green	
 1	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

web	
 1	

green	
 1	

…	
 1	

KEY	
 VALUE	

web	
 1	

weed	
 1	

green	
 1	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

web	
 1	

green	
 1	

…	
 1	

KEY	
 VALUE	

web	
 1	

weed	
 1	

green	
 1	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

web	
 1	

green	
 1	

…	
 1	

KEY	
 VALUE	

…

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 12 – Introduction to Parallel Algorithms

MapReduce

91

Reduce	

Reduce	

Reduce	

MAP: Input data è <key, value> pair
REDUCE: <key, value> pair è <result>

Data	

CollecHon:	

split1	

Split the data to
Supply multiple
processors

Data	

CollecHon:	

split	
 2	

Data	

CollecHon:	

split	
 n	
 Map	

Map	

…
…

Map

…

Introduction to Parallel Computing, University of Oregon, IPCC

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

Agenda

What is a task? - unit of parallelism
Parallel Patterns - decompose parallelism

Algorithmic Structures - organize parallelism
Implementation Concepts - code parallelism

17

L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

Algorithms for High-Performance Computing
Platforms (2020-2021)

Course 2: Tasks

Laércio LIMA PILLA
pilla@lri.fr

