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Agenda

What is a task?
Parallel Patterns

Algorithmic Structures
Implementation Concepts
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But first...
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But first...

• Introduction to Parallel Computing by Allen Malony et al. from the 
University of Oregon: https://ipcc.cs.uoregon.edu/curriculum.html

• Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP) 2007. 
(Massachusetts Institute of Technology: MIT OpenCourseWare). 
http://ocw.mit.edu  (accessed Oct 02, 2020). License: Creative Commons 
Attribution-Noncommercial-Share Alike.

• "HPC - from applications to tasks" by Francieli Zanon Boito. 
• Bull, J. Mark. "A hierarchical classification of overheads in parallel 

programs." In Software Engineering for Parallel and Distributed Systems, 
pp. 208-219. Springer, Boston, MA, 1996. 
https://link.springer.com/content/pdf/10.1007/978-0-387-34984-8_18.pdf 

• Parallel Program Engineering by Michael Gerndt et al., 
http://wwwi10.lrr.in.tum.de/~gerndt/home/Teaching/PPE/PPE.html 
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https://ipcc.cs.uoregon.edu/curriculum.html
http://ocw.mit.edu
https://link.springer.com/content/pdf/10.1007/978-0-387-34984-8_18.pdf
http://wwwi10.lrr.in.tum.de/~gerndt/home/Teaching/PPE/PPE.html
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What is a task?
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What is a task?
Loose definition: 

Concurrent/parallel unit of work.

The meaning of a "task" is 

context-dependent.

We can have tasks within tasks 

within tasks…
 « des tortues jusqu'en bas »

6

By Pelf at en.wikipedia - Originally from 
en.wikipedia; description page is/was here., 

Public Domain, 
https://commons.wikimedia.org/w/index.php?cu

rid=2747463

https://commons.wikimedia.org/w/index.php?curid=2747463
https://commons.wikimedia.org/w/index.php?curid=2747463


4 Common Steps to 
Creating a Parallel Program 

Partitioning 
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Sequential Tasks Processes Parallel Processors computation program 
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Lecture 12 – Introduction to Parallel Algorithms 

Methodological Design 
q  Partition 
❍ Task/data 

decomposition 
q  Communication 
❍ Task execution 

coordination 
q  Agglomeration 
❍ Evaluation of the 

structure 
q  Mapping 
❍ Resource assignment 

2 

I. Foster, “Designing and Building 
Parallel Programs,” Addison-Wesley, 
1995.  Book is online, see webpage. 

Introduction to Parallel Computing, University of Oregon, IPCC 
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What is a task?
Examples of what a task means for parallelism/scheduling

7

For ... … tasks are/can be thought as ...

A Supercomputer/Cluster Jobs (application instances)

An Operating System Threads, Processes

A Processor Instructions

A Game AI for NPCs, rendering, physics simulation

Finances A Model with different inputs

Distributed Machine Learning Mini-batches

A Scientific Workflow Applications or scripts

A Climate Model An Atmospheric Model, Ocean Model, ...
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What is a task?

Parallelism means tasks.

Tasks mean we have to manage tasks.

How difficult can it be?
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What is a task?

9

Bull, J. Mark. 

"A hierarchical 
classification of 

overheads in parallel 
programs."
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What is a task?

10

Bull, J. Mark. 

"A hierarchical 
classification of 

overheads in parallel 
programs."
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What is a task?
Representation of tasks as a Direct Acyclic Graph (DAG)

• Tasks with dependencies

• Embarrassingly parallel (EP) problems

11



Lecture 5 – Parallel Programming Patterns - Map 

Directed Acyclic Graphs (DAG) 
q  Captures data flow parallelism 
q  Nodes represent operations to be performed 
❍  Inputs are nodes with no incoming arcs 
❍ Output are nodes with no outgoing arcs 
❍ Think of nodes as tasks 

q  Arcs are paths for flow of data results 
q  DAG represents the operations of the algorithm 

and implies precedent constraints on their order 
  for (i=1; i<100; i++) 
      a[i] = a[i-1] + 100; a[0]	
   a[1]	
   a[99]	
  …	
  

4 Introduction to Parallel Computing, University of Oregon, IPCC 



Dependence Analysis


● Given two tasks how to determine if they can safely 
run in parallel? 

4 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Bernstein’s Condition


● Ri: set of memory locations read (input) by task Ti 

● Wj: set of memory locations written (output) by task Tj 

● Two tasks T1 and T2 are parallel if 
� input to T1 is not part of output from T2 

� input to T2 is not part of output from T1


� outputs from T1 and T2 do not overlap


5 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Example


T1 

a = x + y 

T2 

b = x + z 

R1 = { x, y } 
W1 = { a } 

R2 = { x, z } 
W2 = { b } 

R1 IW2 =φ 

R2 IW1 =φ 

W1 IW2 =φ 

6 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Lecture 5 – Parallel Programming Patterns - Map 

Independent versus Dependent 
q  In other words the execution of 

     statement1; 
     statement2; 
must be equivalent to 
     statement2; 
     statement1; 
 

q  Their order of execution must not matter! 
q  If true, the statements are independent of each other 
q  Two statements are dependent when the order of their 

execution affects the computation outcome 

14 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 5 – Parallel Programming Patterns - Map 

Examples 
q  Example 1 

S1: a=1; 
S2: b=1; 

q  Example 2 
S1: a=1; 
S2: b=a; 

q  Example 3 
S1: a=f(x); 
S2: a=b; 

q  Example 4 
S1: a=b; 
S2: b=1; 

r  Statements are independent 
 
 

r  Dependent (true (flow) dependence) 
¦  Second is dependent on first 
¦  Can you remove dependency? 

r  Dependent (output dependence) 
¦  Second is dependent on first 
¦  Can you remove dependency? How? 

r  Dependent (anti-dependence) 
¦  First is dependent on second 
¦  Can you remove dependency? How? 

15 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 5 – Parallel Programming Patterns - Map 

True Dependence and Anti-Dependence 
q  Given statements S1 and S2, 

  S1; 
  S2; 
 

q  S2 has a true (flow) dependence on S1 
    if and only if 
S2 reads a value written by S1 

q  S2 has a anti-dependence on S1 
    if and only if 
S2 writes a value read by S1 

X	
  =	
  
	
  
	
  	
  	
  	
  =	
  X	
  

...	
   δ	
  

	
  	
  	
  	
  =	
  X	
  
	
  
X	
  =	
  

...	
   δ-­‐1	
  

16 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 5 – Parallel Programming Patterns - Map 

Output Dependence 
q  Given statements S1 and S2, 

  S1; 
  S2; 

q  S2 has an output dependence on S1 
    if and only if 
S2 writes a variable written by S1 
 

q  Anti- and output dependences are “name” 
dependencies 
❍  Are they “true” dependences? 

q  How can you get rid of output dependences? 
❍  Are there cases where you can not? 

X	
  =	
  
	
  
X	
  =	
  	
  

...	
   δ0	
  

17 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 5 – Parallel Programming Patterns - Map 

Statement Dependency Graphs 
q  Can use graphs to show dependence relationships 
q  Example 

S1: a=1; 
S2: b=a; 
S3: a=b+1; 
S4: c=a; 

q  S2  δ   S3   : S3 is flow-dependent on S2 
q  S1  δ0  S3  : S3 is output-dependent on S1 
q  S2  δ-1 S3  : S3 is anti-dependent on S2 

S1	
  

S2	
  

S3	
  

S4	
  

flow	
  

an0	
  
output	
  

18 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 5 – Parallel Programming Patterns - Map 

When can two statements execute in parallel? 
q  Statements S1 and S2 can execute in parallel if and 

only if there are no dependences between S1 and 
S2 
❍ True dependences 
❍ Anti-dependences 
❍ Output dependences 

q  Some dependences can be remove by modifying 
the program 
❍ Rearranging statements 
❍ Eliminating statements 

19 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 5 – Parallel Programming Patterns - Map 

How do you compute dependence? 
q  Data dependence relations can be found by 

comparing the IN and OUT sets of each node 
q  The IN and OUT sets of a statement S are defined 

as: 
❍  IN(S) : set of memory locations (variables) that may be 

used in S 
❍ OUT(S) : set of memory locations (variables) that may 

be modified by S 
q  Note that these sets include all memory locations 

that may be fetched or modified 
q  As such, the sets can be conservatively large 

20 Introduction to Parallel Computing, University of Oregon, IPCC 
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Parallel Patterns
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Parallel Patterns
Two main ways to think about partitioning an application

- Task decomposition
- Also known as Functional decomposition
- Different computations -> different tasks

- Data decomposition
- Also known as Domain decomposition
- Same computation applied to different data
- Different parts of the data -> different tasks

13



4 Common Steps to 
Creating a Parallel Program 

Partitioning 
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Sequential Tasks Processes Parallel Processors computation program 
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Decomposition (Amdahl’s Law)


● Identify concurrency and decide at what level to 
exploit it 

● Break up computation into tasks to be divided 
among processes 
� Tasks may become available dynamically 
� Number of tasks may vary with time 

●	 Enough tasks to keep processors busy 
� Number of tasks available at a time is upper bound on 

achievable speedup 

3	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Assignment (Granularity)


● Specify mechanism to divide work among core 
� Balance work and reduce communication 

● Structured approaches usually work well 
� Code inspection or understanding of application 
� Well-known design patterns 

● As programmers, we worry about partitioning first

� Independent of architecture or programming model 
� But complexity often affect decisions! 

4 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Orchestration and Mapping (Locality) 

● Computation and communication concurrency 

● Preserve locality of data 

● Schedule tasks to satisfy dependences early 

5 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Parallel Programming by Pattern


●	 Provides a cookbook to systematically guide programmers 
� Decompose, Assign, Orchestrate, Map 
� Can lead to high quality solutions in some domains 

●	 Provide common vocabulary to the programming community

� Each pattern has a name, providing a vocabulary for

discussing solutions 

●	 Helps with software reusability, malleability, and modularity 
� Written in prescribed format to allow the reader to


quickly understand the solution and its context


●	 Otherwise, too difficult for programmers, and software will not
fully exploit parallel hardware 

6	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



History


● Berkeley architecture professor 
Christopher Alexander 

● In 1977, patterns for city 
planning, landscaping, and 
architecture in an attempt to 
capture principles for “living” 
design 

7 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Example 167 (p. 783): 6ft Balcony


Whenever you build a balcony, a porch, a gallery, or a
terrace always make it at least six feet deep. If possible,
recess at least a part of it into the building so that it is not
cantilevered out and separated from the building by a simple
line, and enclose it partially.

Therefore:

six feet deep

Image by MIT OpenCourseWare.

8 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Patterns in Object-Oriented Programming


● Design Patterns: Elements of Reusable Object-
Oriented Software (1995) 
� Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides 
� Catalogue of patterns 
� Creation, structural, behavioral 

9 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Patterns for Parallelizing Programs


4 Design Spaces


Algorithm Expression	 Software Construction


● Finding Concurrency ●	 Supporting Structures 
� Expose concurrent tasks � Code and data structuring 

patterns 

● Algorithm Structure	 ● Implementation Mechanisms

� Map tasks to processes to � Low level mechanisms used 

exploit parallel architecture to write parallel programs 

Patterns for Parallel 
Programming. Mattson, 
Sanders, and Massingill 
(2005). 

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 10 



Here’s my algorithm. 
Where’s the concurrency? 

MPEG bit stream 
MPEG Decoder 

VLD 
macroblocks, motion vectors 

split
frequency encoded
macroblocks differentially coded

motion vectors 
ZigZag 

IQuantization Motion Vector Decode 

Picture Reorder 

join 

IDCT 

motion vectors spatially encoded macroblocks 

recovered picture 

Saturation 

Repeat 

Motion 
Compensation 

Color Conversion 

Display 

11 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Here’s my algorithm. 
Where’s the concurrency? 

MPEG bit stream 
MPEG Decoder 

VLD 
macroblocks, motion vectors 

split
frequency encoded
macroblocks differentially coded

motion vectors 

spatially encoded macroblocks	 motion vectors 

IDCT 

IQuantization 

ZigZag 

Saturation 

Motion Vector Decode 

Repeat 

join 

Motion 
Compensation 

recovered picture 

Picture Reorder 

Color Conversion 

Display 

●	 Task decomposition 
� Independent coarse-grained 

computation 
� Inherent to algorithm 

●	 Sequence of statements 
(instructions) that operate 
together as a group 
� Corresponds to some logical 

part of program 
� Usually follows from the way 

programmer thinks about a 
problem 

2	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 1



Here’s my algorithm. 
Where’s the concurrency? 

MPEG bit stream 
MPEG Decoder 

VLD 
macroblocks, motion vectors 

split
frequency encoded
macroblocks differentially coded

motion vectors 

spatially encoded macroblocks	 motion vectors 

join 

IDCT 

IQuantization 

ZigZag 

Saturation 

Motion Vector Decode 

Repeat 

Motion 
Compensation 

recovered picture 

Picture Reorder 

Color Conversion 

Display 

●	 Task decomposition 
� Parallelism in the application 

●	 Data decomposition 
� Same computation is applied 

to small data chunks derived 
from large data set 

13	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Here’s my algorithm. 
Where’s the concurrency? 

MPEG bit stream 
MPEG Decoder 

VLD 
macroblocks, motion vectors 

split
frequency encoded
macroblocks differentially coded

motion vectors 

spatially encoded macroblocks motion vectors 

join 

IDCT 

IQuantization 

ZigZag 

Saturation 

Motion Vector Decode 

Repeat 

Motion 
Compensation 

recovered picture 

Picture Reorder 

Color Conversion 

Display 

● Task decomposition 
� Parallelism in the application 

● Data decomposition 
� Same computation many data 

● Pipeline decomposition 
� Data assembly lines 
� Producer-consumer chains 

14 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Guidelines for Task Decomposition


● Algorithms start with a good understanding of the 
problem being solved 

● Programs often naturally decompose into tasks 
� Two common decompositions are 

– Function calls and 
– Distinct loop iterations 

● Easier to start with many tasks and later fuse them, 

rather than too few tasks and later try to split them


15 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Guidelines for Task Decomposition


●	 Flexibility 
� Program design should afford flexibility in the number and

size of tasks generated 
–	 Tasks should not tied to a specific architecture 
–	 Fixed tasks vs. Parameterized tasks 

●	 Efficiency 
� Tasks should have enough work to amortize the cost of

creating and managing them 
� Tasks should be sufficiently independent so that managing 

dependencies doesn’t become the bottleneck 

●	 Simplicity 
� The code has to remain readable and easy to understand,

and debug 

16	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Guidelines for Data Decomposition


● Data decomposition is often implied by task
decomposition 

● Programmers need to address task and data

decomposition to create a parallel program

� Which decomposition to start with? 

●	 Data decomposition is a good starting point when 
� Main computation is organized around manipulation of a

large data structure 
� Similar operations are applied to different parts of the

data structure 

DDr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 17	 6.189 IAP 2007 MIT 



Common Data Decompositions


● Array data structures 
� Decomposition of arrays along rows, columns, blocks 

● Recursive data structures 
� Example: decomposition of trees into sub-trees 

problem 

subproblem subproblem 

compute 
subproblem 

compute 
subproblem 

compute 
subproblem 

compute 
subproblem 

subproblem subproblem 

solution 

merge merge 

merge 

split split 

split 

18 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Guidelines for Data Decomposition


●	 Flexibility 
� Size and number of data chunks should support a wide 

range of executions 

●	 Efficiency 
� Data chunks should generate comparable amounts of 

work (for load balancing) 

●	 Simplicity 
� Complex data compositions can get difficult to manage 

and debug 

19	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007



Lecture 12 – Introduction to Parallel Algorithms 

Methodological Design 
q  Partition 
❍ Task/data 

decomposition 
q  Communication 
❍ Task execution 

coordination 
q  Agglomeration 
❍ Evaluation of the 

structure 
q  Mapping 
❍ Resource assignment 

2 

I. Foster, “Designing and Building 
Parallel Programs,” Addison-Wesley, 
1995.  Book is online, see webpage. 

Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Partitioning 
q  Partitioning stage is intended to expose 

opportunities for parallel execution 
q  Focus on defining large number of 

small task to yield a fine-grained 
decomposition of the problem 

q  A good partition divides into small pieces 
both the computational tasks associated with a 
problem and the data on which the tasks operates 

q  Domain decomposition focuses on computation data 
q  Functional decomposition focuses on computation 

tasks 
q  Mixing domain/functional decomposition is possible 

3 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Domain and Functional Decomposition 
q  Domain decomposition of 2D / 3D grid 

q  Functional decomposition of a climate model 

4 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Partitioning Checklist 
q  Does your partition define at least an order of 

magnitude more tasks than there are processors in 
your target computer?  If not, may loose design 
flexibility. 

q  Does your partition avoid redundant computation and 
storage requirements? If not, may not be scalable. 

q  Are tasks of comparable size? If not, it may be hard to 
allocate each processor equal amounts of work.  

q  Does the number of tasks scale with problem size? If 
not may not be able to solve larger problems with 
more processors  

q  Have you identified several alternative partitions? 
5 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Communication (Interaction) 
q  Tasks generated by a partition must 

interact to allow the computation 
to proceed 
❍  Information flow: data and control 

q  Types of communication 
❍  Local vs. Global: locality of communication 
❍  Structured vs. Unstructured: communication patterns 
❍  Static vs. Dynamic: determined by runtime conditions 
❍  Synchronous vs. Asynchronous: coordination degree 

q  Granularity and frequency of communication 
❍  Size of data exchange 

q  Think of communication as interaction and control 
❍  Applicable to both shared and distributed memory parallelism 

6 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Types of Communication 
q  Point-to-point 
q  Group-based 
q  Hierachical 
q  Collective 

7 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Communication Design Checklist 
q  Is the distribution of communications equal? 

❍  Unbalanced communication may limit scalability 
q  What is the communication locality? 

❍  Wider communication locales are more expensive 

q  What is the degree of communication concurrency? 
❍  Communication operations may be parallelized 

q  Is computation associated with different tasks able to 
proceed concurrently?  Can communication be 
overlapped with computation? 
❍  Try to reorder computation and communication to expose 

opportunities for parallelism 
8 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Agglomeration 
q  Move from parallel abstractions 

to real implementation 
q  Revisit partitioning and communication 

❍  View to efficient algorithm execution 
q  Is it useful to agglomerate? 

❍  What happens when tasks are combined? 
q  Is it useful to replicate data  and/or computation? 
q  Changes important algorithm and performance ratios 

❍  Surface-to-volume: reduction in communication at the 
expense of decreasing parallelism 

❍  Communication/computation: which cost dominates 
q  Replication may allow reduction in communication 
q  Maintain flexibility to allow overlap 

9 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Types of Agglomeration 
q  Element to column 

q  Element to block 
❍ Better surface to volume 

q  Task merging 

q  Task reduction 
❍ Reduces communication 

10 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Agglomeration Design Checklist 
q  Has increased locality reduced communication 

costs? 
q  Is replicated computation worth it? 
q  Does data replication compromise scalability? 
q  Is the computation still balanced? 
q  Is scalability in problem size still possible? 
q  Is there still sufficient concurrency? 
q  Is there room for more agglomeration? 
q  Fine-grained vs. coarse-grained? 

11 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Mapping 
q  Specify where each task is to execute 

❍  Less of a concern on shared-memory 
systems 

q  Attempt to minimize execution time 
❍  Place concurrent tasks on different 

processors to enhance physical concurrency 
❍  Place communicating tasks on same processor, or on 

processors close to each other, to increase locality 
❍  Strategies can conflict! 

q  Mapping problem is NP-complete 
❍  Use problem classifications and heuristics 

q  Static and dynamic load balancing 

12 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Mapping Algorithms 
q  Load balancing (partitioning) algorithms 
q  Data-based algorithms 

❍  Think of computational load with respect to amount of data 
being operated on 

❍  Assign data (i.e., work) in some known manner to balance 
❍  Take into account data interactions 

q  Task-based (task scheduling) algorithms 
❍  Used when functional decomposition yields many tasks 

with weak locality requirements 
❍  Use task assignment to keep processors busy computing 
❍  Consider centralized and decentralize schemes 

13 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Mapping Design Checklist 
q  Is static mapping too restrictive and non-

responsive? 
q  Is dynamic mapping too costly in overhead? 
q  Does centralized scheduling lead to bottlenecks? 
q  Do dynamic load-balancing schemes require too 

much coordination to re-balance the load? 
q  What is the tradeoff of dynamic scheduling 

complexity versus performance improvement? 
q  Are there enough tasks to achieve high levels of 

concurrency?  If not, processors may idle. 
14 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 5 – Parallel Programming Patterns - Map 

Parallel Patterns 
q  Parallel Patterns: A recurring combination of task 

distribution and data access that solves a specific 
problem in parallel algorithm design. 

q  Patterns provide us with a “vocabulary” for 
algorithm design 

q  It can be useful to compare parallel patterns with 
serial patterns 

q  Patterns are universal – they can be used in any 
parallel programming system 

34 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 5 – Parallel Programming Patterns - Map 

Nesting Pattern 
q  Nesting is the ability to hierarchically compose 

patterns 
q  This pattern appears in both serial and parallel 

algorithms 
q  “Pattern diagrams” are used to visually show the 

pattern idea where each “task block” is a location 
of general code in an algorithm 

q  Each “task block” can in turn be another pattern in 
the nesting pattern 
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Lecture 5 – Parallel Programming Patterns - Map 

Nesting Pattern 

37 

Nes4ng	
  Pa8ern:	
  A	
  composi0onal	
  paFern.	
  Nes0ng	
  allows	
  
other	
  paFerns	
  to	
  be	
  composed	
  in	
  a	
  hierarchy	
  so	
  that	
  any	
  
task	
  block	
  in	
  the	
  above	
  diagram	
  can	
  be	
  replaced	
  with	
  a	
  
paFern	
  with	
  the	
  same	
  input/output	
  and	
  dependencies.	
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Lecture 5 – Parallel Programming Patterns - Map 

Parallel Control Patterns 
q  Parallel control patterns extend serial control 

patterns 
q  Each parallel control pattern is related to at least 

one serial control pattern, but relaxes assumptions 
of serial control patterns 

q  Parallel control patterns: fork-join, map, stencil, 
reduction, scan, recurrence  
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Lecture 5 – Parallel Programming Patterns - Map 

Parallel Control Patterns: Fork-Join 
q  Fork-join: allows control flow to fork into 

multiple parallel flows, then rejoin later 
q  Cilk Plus implements this with spawn and sync 
❍ The call tree is a parallel call tree and functions are 

spawned instead of called 
❍ Functions that spawn another function call will 

continue to execute 
❍ Caller syncs with the spawned function to join the two 

q  A “join” is different than a “barrier 
❍ Sync – only one thread continues 
❍ Barrier – all threads continue 
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Lecture 5 – Parallel Programming Patterns - Map 

Parallel Control Patterns: Map 
q  Map: performs a function over every element of a collection 
q  Map replicates a serial iteration pattern where each iteration is 

independent of the others, the number of iterations is known in 
advance, and computation only depends on the iteration count and 
data from the input collection 

q  The replicated function is referred to as an “elemental function” 

45 
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Lecture 5 – Parallel Programming Patterns - Map 

Parallel Control Patterns: Stencil 
q  Stencil: Elemental function accesses a set of 

“neighbors”, stencil is a generalization of map 
q  Often combined with iteration – used with iterative 

solvers or to evolve a system through time 

46 

q  Boundary conditions must 
be handled carefully in the 
stencil pattern 

q  See stencil lecture… 
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Lecture 8 – Stencil Pattern 

Stencil Pattern 
q  A stencil pattern is a map where each output 

depends on a “neighborhood” of inputs 
q  These inputs are a set of fixed offsets relative to 

the output position 
q  A stencil output is a function of a “neighborhood” 

of elements in an input collection 
❍ Applies the stencil to select the inputs 

q  Data access patterns of stencils are regular 
❍ Stencil is the “shape” of “neighborhood” 
❍ Stencil remains the same 
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Lecture 8 – Stencil Pattern 

Stencil Patterns 
q  Stencils can operate on one dimensional and 

multidimensional data 
q  Stencil neighborhoods can range from compact to 

sparse, square to cube, and anything else! 
q  It is the pattern of the stencil that determines how 

the stencil operates in an application 
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Lecture 8 – Stencil Pattern 17 

2-Dimensional Stencils 

5-point stencil 

Source:	
  h.p://en.wikipedia.org/wiki/Stencil_code	
  

9-point stencil 4-point stencil 

Center cell (P) 
is used as well 

Center cell (C) 
is used as well 

Center cell (P) 
is not used 
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Lecture 8 – Stencil Pattern 18 

3-Dimensional Stencils 

Source:	
  h.p://en.wikipedia.org/wiki/Stencil_code	
  

6-point stencil 
(7-point stencil) 

24-point stencil 
(25-point stencil) 

Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 5 – Parallel Programming Patterns - Map 

Parallel Control Patterns: Reduction 
q  Reduction: Combines every element in a 

collection using an associative “combiner 
function” 

q  Because of the associativity of the combiner 
function, different orderings of the reduction are 
possible 

q  Examples of combiner functions: addition, 
multiplication, maximum, minimum, and Boolean 
AND, OR, and XOR 
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Lecture 5 – Parallel Programming Patterns - Map 

Parallel Control Patterns: Reduction 

48 

Serial	
  Reduc0on	
   Parallel	
  Reduc0on	
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Lecture 5 – Parallel Programming Patterns - Map 

Parallel Control Patterns: Scan 
q  Scan: computes all partial reduction of a collection 
q  For every output in a collection, a reduction of the 

input up to that point is computed 
q  If the function being used is associative, the scan 

can be parallelized 
q  Parallelizing a scan is not obvious at first, because 

of dependencies to previous iterations in the serial 
loop 

q  A parallel scan will require more operations than a 
serial version 
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Lecture 5 – Parallel Programming Patterns - Map 

Parallel Control Patterns: Scan 

50 

Serial	
  Scan	
   Parallel	
  Scan	
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L.L.Pilla - AlgoHPC 2020-2021 - Course 2 - Tasks

Algorithmic Structures
Organized by task, data, or dataflow

- By tasks: Independent Task Execution, Aggregation of 
Tasks, Recursive Tasks, Static Task Scheduling, Dynamic 
Task Scheduling, Dataflow Task Scheduling ...

- By data decomposition: Static distribution pattern, 
Redistribution pattern, Irregular Distribution Pattern, 
Oversubscription pattern ...

- By dataflow: Pipeline pattern, Event-based coordination 
pattern

15



Algorithm Structure Design Space


● Given a collection of concurrent tasks, what’s the 
next step? 

●	 Map tasks to units of execution (e.g., threads) 

●	 Important considerations 
� Magnitude of number of execution units platform will 

support 
� Cost of sharing information among execution units 
� Avoid tendency to over constrain the implementation 

–	 Work well on the intended platform 
–	 Flexible enough to easily adapt to different architectures 

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 8	



Major Organizing Principle


● How to determine the algorithm structure that 
represents the mapping of tasks to units of 
execution? 

● Concurrency usually implies major organizing 
principle 
� Organize by tasks 
� Organize by data decomposition 
� Organize by flow of data 

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 9 



Organize by Tasks?


Recursive? 

Task 
Parallelism 

yes 

no 

Divide and Conquer
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Task Parallelism


● Ray tracing 
� Computation for each ray is a separate and independent 

● Molecular dynamics 
� Non-bonded force calculations, some dependencies 

● Common factors 
� Tasks are associated with iterations of a loop 
� Tasks largely known at the start of the computation 
� All tasks may not need to complete to arrive at a solution 
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Divide and Conquer


● For recursive programs: divide and conquer

� Subproblems may not be uniform 
� May require dynamic load balancing 

subproblem 

compute 
subproblem 

compute 
subproblem 

subproblem 

join 

split 

split subproblem 

compute 
subproblem 

compute 
subproblem 

subproblem 

join 

split 

problem 

join 

solution 
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Organize by Data?


● Operations on a central data structure

� Arrays and linear data structures 
� Recursive data structures 

Recursive? 

Geometric 
Decomposition 

yes 

no 

Recursive Data
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Geometric Decomposition


simulator 
● Gravitational body 


VEC3D acc[NUM_BODIES] = 0;


for (i = 0; i < NUM_BODIES - 1; i++) {
� Calculate force for (j = i + 1; j < NUM_BODIES; j++) {

// Displacement vector
between pairs of VEC3D d = pos[j] – pos[i];

// Force
t = 1 / sqr(length(d));objects and update 
// Components of force along displacementaccelerations d = t * (d / length(d)); 

acc[i] += d * mass[j];
acc[j] += -d * mass[i];

}
} 

pos 

vel 

pos 
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Recursive Data


●	 Computation on a list, tree, or graph 
� Often appears the only way to solve a problem is to 

sequentially move through the data structure 

● There are however opportunities to reshape the 

operations in a way that exposes concurrency
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Recursive Data Example: Find the Root 

● Given a forest of rooted directed trees, for each 
node, find the root of the tree containing the node 
� Parallel approach: for each node, find its successor’s 

successor, repeat until no changes 
–	 O(log n) vs. O(n) 

4 

3 

2 

1 6 

5 7 

4 

3 

2 

1 6 

5 7 

4 

3 

2 

1 6 

5 7 

Step 1	 Step 2 Step 3 
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Work vs. Concurrency Tradeoff


● Parallel restructuring of find the root algorithm leads 
to O(n log n) work vs. O(n) with sequential approach 

● Most strategies based on this pattern similarly trade 
off increase in total work for decrease in execution 
time due to concurrency 
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Organize by Flow of Data?


● In some application domains, the flow of data 
imposes ordering on the tasks 
� Regular, one-way, mostly stable data flow 
� Irregular, dynamic, or unpredictable data flow 

Regular? 

Event-based 
Coordination 

yes 

no 

Pipeline
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Pipeline Throughput vs. Latency


● Amount of concurrency in a pipeline is limited by the 
number of stages 

● Works best if the time to fill and drain the pipeline is 
small compared to overall running time 

●	 Performance metric is usually the throughput 
� Rate at which data appear at the end of the pipeline per 

time unit (e.g., frames per second) 

● Pipeline latency is important for real-time 
applications 
� Time interval from data input to pipeline, to data output 
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Event-Based Coordination


● In this pattern, interaction of tasks to process data 
can vary over unpredictable intervals 

● Deadlocks are likely for applications that use this 
pattern 
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SPMD Pattern


● Single Program Multiple Data: create a single 
source-code image that runs on each processor 
� Initialize 
� Obtain a unique identifier 
� Run the same program each processor 

– Identifier and input data differentiate behavior 
� Distribute data 
� Finalize 
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Example: Parallel Numerical Integration 

4.0 

2.0 

4.0 
(1+x2)

f(x) = 
static long num_steps = 100000; 

void main()
{ 

int i;
double pi, x, step, sum = 0.0; 

step = 1.0 / (double) num_steps;
for (i = 0; i < num_steps; i++){

x = (i + 0.5) ∗ step;
sum = sum + 4.0 / (1.0 + x∗x);

} 

pi = step ∗ sum;
0.0 X 1.0 printf(“Pi = %f\n”, pi);

}}
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Computing Pi With Integration (MPI)

static long num_steps = 100000; 

void main(int argc, char* argv[])
{	

int i_start, i_end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0; 

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);


MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD);

i_start = my_id ∗ (num_steps/numprocs)

i_end = i_start + (num_steps/numprocs)


step = 1.0 / (double) num_steps;

for (i = i_start; i < i_end; i++) {

x = (i + 0.5) ∗ step


}
sum = sum + 4.0 / (1.0 + x∗x);


mypi = step * sum; 

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); 

if (myid == 0)

printf(“Pi = %f\n”, pi);


MPI_Finalize();
}
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Block vs. Cyclic Work Distribution

static long num_steps = 100000; 

void main(int argc, char* argv[])
{	

int i_start, i_end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0; 

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);


MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD); 

i_start = my_id ∗ (num_steps/numprocs)

i_end = i_start + (num_steps/numprocs)


step = 1.0 / (double) num_steps;

for (i = myid; i < num_steps; i += numprocs) {

x = (i + 0.5) ∗ step


}
sum = sum + 4.0 / (1.0 + x∗x);


mypi = step * sum; 

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); 

if (myid == 0)

printf(“Pi = %f\n”, pi);


MPI_Finalize();
}
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SPMD Challenges


● Split data correctly 

● Correctly combine the results 

● Achieve an even distribution of the work 

● For programs that need dynamic load balancing, an 
alternative pattern is more suitable 
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Loop Parallelism Pattern


● Many programs are expressed using iterative 
constructs 
� Programming models like OpenMP provide directives to 

automatically assign loop iteration to execution units 
� Especially good when code cannot be massively 


restructured


#pragma omp parallel for
for(i = 0; i < 12; i++) 

C[i] = A[i] + B[i]; 

i = 0 

i = 1 

i = 2 

i = 3 

i = 4 

i = 5 

i = 6 

i = 7 

i = 8 

i = 9 

i = 10 

i = 11 
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Master/Worker Pattern


master
 A 
B D E 

Independent Tasks 

C 

A 
B 

C 

E 
D 

worker worker worker worker
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Master/Worker Pattern


● Particularly relevant for problems using task 
parallelism pattern where task have no 
dependencies 
� Embarrassingly parallel problems 

● Main challenge in determining when the entire 
problem is complete 
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Fork/Join Pattern


● Tasks are created dynamically 
� Tasks can create more tasks 

● Manages tasks according to their relationship 

● Parent task creates new tasks (fork) then waits until 
they complete (join) before continuing on with the 
computation 
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Lecture 12 – Introduction to Parallel Algorithms 

Types of Parallel Programs 
q  Flavors of parallelism 
❍ Data parallelism 

◆ all processors do same thing on different data 
❍ Task parallelism 

◆ processors are assigned tasks that do different things 

q  Parallel execution models 
❍ Data parallel 
❍ Pipelining (Producer-Consumer) 
❍ Task graph 
❍ Work pool 
❍ Master-Worker 
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Lecture 12 – Introduction to Parallel Algorithms 

Data Parallel 
q  Data is decomposed (mapped) onto processors 
q  Processors performance similar (identical) tasks on data 
q  Tasks are applied concurrently 
q  Load balance is obtained through data partitioning 

❍  Equal amounts of work assigned 
q  Certainly may have interactions between processors 
q  Data parallelism scalability 

❍  Degree of parallelism tends to increase with problem size 
❍  Makes data parallel algorithms more efficient 

q  Single Program Multiple Data (SPMD) 
❍  Convenient way to implement data parallel computation 
❍  More associated with distributed memory parallel execution 
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Lecture 12 – Introduction to Parallel Algorithms 

Matrix - Vector Multiplication 
q  A x b = y 
q  Allocate tasks to rows of A 

y[i] = ∑A[i,j]*b[j] 
 

q  Dependencies? 
q  Speedup? 
q  Computing each 

element of y can be 
done independently 

j	
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Lecture 12 – Introduction to Parallel Algorithms 

Matrix-Vector Multiplication (Limited Tasks) 
q  Suppose we only have 4 tasks 
q  Dependencies? 
q  Speedup? 
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Lecture 12 – Introduction to Parallel Algorithms 

Matrix Multiplication 
q  A x B = C 
q  A[i,:] • B[:,j] = C[i,j] 

q  Row partitioning 
❍  N tasks 

q  Block partitioning 
❍  N*N/B tasks  

q  Shading shows data 
sharing in B matrix 

x	
   =	
  

A	
   B	
   C	
  

19 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 12 – Introduction to Parallel Algorithms 

Granularity of Task and Data Decompositions 
q  Granularity can be with respect to tasks and data 
q  Task granularity 

❍  Equivalent to choosing the number of tasks 
❍  Fine-grained decomposition results in large # tasks 
❍  Large-grained decomposition has smaller # tasks 
❍  Translates to data granularity after # tasks chosen 

◆ consider matrix multiplication 

q  Data granularity 
❍  Think of in terms of amount of data needed in operation 
❍  Relative to data as a whole 
❍  Decomposition decisions based on input, output, input-

output, or intermediate data 
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Lecture 12 – Introduction to Parallel Algorithms 

Mesh Allocation to Processors 
q  Mesh model of Lake Superior 
q  How to assign mesh elements 

to processors 

q  Distribute onto 8 processors 
randomly graph partitioning 

for minimum 
edge cut 
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Lecture 12 – Introduction to Parallel Algorithms 

Pipeline Model 
q  Stream of data operated on by succession of tasks 

     Task 1          Task 2          Task 3          Task 4 
❍ Tasks are assigned to processors 

q  Consider N data units 
q  Sequential 

q  Parallel (each task assigned to a processor) 
	
  

	
  
4-­‐way	
  parallel	
  

4-way parallel, but 
for longer time 

4	
  data	
  units	
   8	
  data	
  units	
  

Task	
  1	
   Task	
  2	
   Task	
  3	
   Task	
  4	
  

P4	
  P3	
  P2	
  P1	
  data	
  
input	
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Lecture 12 – Introduction to Parallel Algorithms 

Pipeline Performance 
q  N data and T tasks 
q  Each task takes unit time t 
q  Sequential time = N*T*t 
q  Parallel pipeline time = start + finish + (N-2T)/T * t 

  = O(N/T)      (for N>>T) 
q  Try to find a lot of data to pipeline 
q  Try to divide computation in a lot of pipeline tasks 

❍  More tasks to do (longer pipelines) 
❍  Shorter tasks to do 

q  Pipeline computation is a special form of 
producer-consumer parallelism 
❍  Producer tasks output data input by consumer tasks 
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Lecture 12 – Introduction to Parallel Algorithms 

Numbers are 
time taken to 
perform task 

Tasks Graphs 
q  Computations in any parallel algorithms can be 

viewed as a task dependency graph 
q  Task dependency graphs can be non-trivial 
❍ Pipeline 
❍ Arbitrary (represents the algorithm dependencies) 

Task	
  1	
   Task	
  2	
   Task	
  3	
   Task	
  4	
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Lecture 12 – Introduction to Parallel Algorithms 

Task Graph Performance 
q  Determined by the critical path (span) 
❍ Sequence of dependent tasks that takes the longest time 

❍ Critical path length bounds parallel execution time 
Min time = 27 Min time = 34 
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Lecture 12 – Introduction to Parallel Algorithms 

Task Assignment (Mapping) to Processors 
q  Given a set of tasks and number of processors 
q  How to assign tasks to processors? 
q  Should take dependencies into account 
q  Task mapping will determine execution time 

Total time = ? Total time = ? 
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Lecture 12 – Introduction to Parallel Algorithms 

Task Graphs in Action 
q  Uintah task graph scheduler 
❍ C-SAFE: Center for Simulation of 

Accidental Fires and Explosions, 
University of Utah 

❍ Large granularity tasks 

q  PLASMA 
❍ DAG-based parallel 

linear algebra 
❍ DAGuE: A generic 

distributed DAG engine 
for HPC 

Task Graph Based Languages/frameworks 
1:
1 

1:
2 

1:
3 

1:
4 

2:
2 

2:
3 

2:
4 

2:
2 

Charm++: Object-based Virtualization   

Intel CnC: 
new language for  
graph based parallelism 
 

Plasma 
(Dongarra): 
DAG based  
Parallel linear  
algebra  
software 
 

Uintah Taskgraph 
based PDE Solver 

V. Sarkar 
L. (S). Kale 
S Parker 
K. Knobe  
J. Dongarra 
And many others 

Wasatch Taskgraph  

Task graph for 
PDE solver 

DAG of QR for a 
4 × 4 tiles matrix on a 
2 × 2 grid of 
processors. 
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Lecture 12 – Introduction to Parallel Algorithms 

Bag o’ Tasks Model and Worker Pool 
q  Set of tasks to be performed 
q  How do we schedule them? 

❍  Find independent tasks 
❍  Assign tasks to available processors 

q  Bag o’ Tasks approach 
❍  Tasks are stored in 

a bag waiting to run 
❍  If all dependencies 

are satisified, it is 
moved to a ready to run queue 

❍  Scheduler assigns a task to a free processor 
q  Dynamic approach that is effective for load balancing 

Bag o‘ 
tasks independent tasks 

ready to run …	
  

Processors 
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Lecture 12 – Introduction to Parallel Algorithms 

Master-Worker Parallelism 
q  One or more master processes generate work 
q  Masters allocate work to worker processes 
q  Workers idle if have nothing to do 
q  Workers are mostly stupid and must be told what to do 

❍  Execute independently 
❍  May need to synchronize, but most be told to do so 

q  Master may become the bottleneck if not careful 
q  What are the performance factors and expected 

performance behavior 
❍  Consider task granularity and asynchrony 
❍  How do they interact? 
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Lecture 12 – Introduction to Parallel Algorithms 

Master-Worker Execution Model (Li Li) 

Li Li, “Model-based Automatics Performance Diagnosis of Parallel Computations,” Ph.D. thesis, 2007. 
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M-W Execution Trace (Li Li) 
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Search-Based (Exploratory) Decomposition 
q  15-puzzle problem 
q  15 tiles numbered 1 through 15 placed in 4x4 grid 

❍  Blank tile located somewhere in grid 
❍  Initial  configuration is out of order 
❍  Find shortest sequence of moves to put in order 

q  Sequential search across space of solutions 
❍  May involve some heuristics 
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Big-Data and Map-Reduce 
q  Big-data deals with processing large data sets 
q  Nature of data processing problem makes it amenable 

to parallelism 
❍  Looking for features in the data 
❍  Extracting certain characteristics 
❍  Analyzing properties with complex data mining algorithms 

q  Data size makes it opportunistic for partitioning into 
large # of sub-sets and processing these in parallel 

q  We need new algorithms, data structures, and 
programming models to deal with problems 
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A Simple Big-Data Problem 
q  Consider a large data collection of text documents 
q  Suppose we want to find how often a particular 

word occurs and determine a probability 
distribution for all word occurrences 
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web 2 

weed 1 

green 2 

sun 1 

moon 1 

land 1 

part 1 

web 2 

weed 1 

green 2 

sun 1 

moon 1 

land 1 

part 1 

Parallelization Approach 
q  Map: partition the data collection into subsets of 

documents and process each subset in parallel 
q  Reduce: assemble the partial frequency tables to 

derive final probability distribution 
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Parallelization Approach 
q  Map: partition the data collection into subsets of 

documents and process each subset in parallel 
q  Reduce: assemble the partial frequency tables to 

derive final probability distribution 
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Actually, it is not easy to parallel…. 

88 

Fundamental issues	
  
Scheduling, data distribution, synchronization, inter-
process communication, robustness, fault tolerance, 
… 

Different programming models	
  
Message Passing   Shared Memory 

Architectural issues	
  
Flynn’s taxonomy (SIMD, MIMD, etc.), network 
topology, bisection bandwidth, cache coherence, … 

Common problems	
  
Livelock, deadlock, data starvation, priority inversion, 
…dining philosophers, sleeping barbers, cigarette 
smokers, … 

Different programming constructs 	
  
Mutexes, conditional variables, barriers, …	
  
masters/slaves, producers/consumers, work queues,. … 

Actually, Programmer’s Nightmare…. 
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Map-Reduce Parallel Programming 
q  Become an important distributed parallel 

programming paradigm for large-scale applications 
❍ Also applies to shared-memory parallelism 
❍ Becomes one of the core technologies powering big IT 

companies, like Google, IBM, Yahoo and Facebook. 
q  Framework runs on a cluster of machines and 

automatically partitions jobs into number of small 
tasks and processes them in parallel  

q  Can capture in combining Map and Reduce parallel 
patterns 
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Map-Reduce Example 

90 
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MapReduce 
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Agenda

What is a task? - unit of parallelism
Parallel Patterns - decompose parallelism

Algorithmic Structures - organize parallelism
Implementation Concepts - code parallelism
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