RLPark 1.0.0
Reinforcement Learning Framework in Java
|
00001 package rlpark.plugin.rltoys.experiments.parametersweep.reinforcementlearning; 00002 00003 import rlpark.plugin.rltoys.experiments.parametersweep.parameters.AbstractParameters; 00004 import rlpark.plugin.rltoys.experiments.parametersweep.prediction.PredictionParameters; 00005 00006 public class RLParameters { 00007 public static final String OnPolicyTimeStepsEvaluationFlag = "onPolicyTimeStepsEvaluationFlag"; 00008 public static final String MaxEpisodeTimeSteps = "maxEpisodeTimeSteps"; 00009 public static final String NbEpisode = "nbEpisode"; 00010 public static final String AverageReward = "averageReward"; 00011 public static final String AveRewardStepSize = "AveRewardStepSize"; 00012 00013 public static final String ActorPrefix = "Actor"; 00014 public static final String CriticPrefix = "Critic"; 00015 00016 public static final String ActorStepSize = ActorPrefix + PredictionParameters.StepSize; 00017 public static final String CriticStepSize = CriticPrefix + PredictionParameters.StepSize; 00018 00019 public static final String ValueFunctionSecondStepSize = "ValueFunctionSecondStepSize"; 00020 public static final String Temperature = "Temperature"; 00021 public static final String Epsilon = "Epsilon"; 00022 00023 final static public double[] getSoftmaxValues() { 00024 return new double[] { 100.0, 50.0, 10.0, 5.0, 1.0, .5, .1, .05, .01 }; 00025 } 00026 00027 static public int maxEpisodeTimeSteps(AbstractParameters parameters) { 00028 return (int) parameters.get(MaxEpisodeTimeSteps); 00029 } 00030 00031 static public int nbEpisode(AbstractParameters parameters) { 00032 return (int) parameters.get(NbEpisode); 00033 } 00034 }