RLPark 1.0.0
Reinforcement Learning Framework in Java

RLParameters.java

Go to the documentation of this file.
00001 package rlpark.plugin.rltoys.experiments.parametersweep.reinforcementlearning;
00002 
00003 import rlpark.plugin.rltoys.experiments.parametersweep.parameters.AbstractParameters;
00004 import rlpark.plugin.rltoys.experiments.parametersweep.prediction.PredictionParameters;
00005 
00006 public class RLParameters {
00007   public static final String OnPolicyTimeStepsEvaluationFlag = "onPolicyTimeStepsEvaluationFlag";
00008   public static final String MaxEpisodeTimeSteps = "maxEpisodeTimeSteps";
00009   public static final String NbEpisode = "nbEpisode";
00010   public static final String AverageReward = "averageReward";
00011   public static final String AveRewardStepSize = "AveRewardStepSize";
00012 
00013   public static final String ActorPrefix = "Actor";
00014   public static final String CriticPrefix = "Critic";
00015 
00016   public static final String ActorStepSize = ActorPrefix + PredictionParameters.StepSize;
00017   public static final String CriticStepSize = CriticPrefix + PredictionParameters.StepSize;
00018 
00019   public static final String ValueFunctionSecondStepSize = "ValueFunctionSecondStepSize";
00020   public static final String Temperature = "Temperature";
00021   public static final String Epsilon = "Epsilon";
00022 
00023   final static public double[] getSoftmaxValues() {
00024     return new double[] { 100.0, 50.0, 10.0, 5.0, 1.0, .5, .1, .05, .01 };
00025   }
00026 
00027   static public int maxEpisodeTimeSteps(AbstractParameters parameters) {
00028     return (int) parameters.get(MaxEpisodeTimeSteps);
00029   }
00030 
00031   static public int nbEpisode(AbstractParameters parameters) {
00032     return (int) parameters.get(NbEpisode);
00033   }
00034 }
 All Classes Namespaces Files Functions Variables Enumerations
Zephyr
RLPark