RLPark 1.0.0
Reinforcement Learning Framework in Java
|
00001 package rlpark.plugin.rltoys.experiments.parametersweep.offpolicy.evaluation; 00002 00003 import rlpark.plugin.rltoys.experiments.helpers.ExperimentCounter; 00004 import rlpark.plugin.rltoys.experiments.parametersweep.reinforcementlearning.OffPolicyProblemFactory; 00005 import rlpark.plugin.rltoys.problems.RLProblem; 00006 00007 public abstract class AbstractOffPolicyEvaluation implements OffPolicyEvaluation { 00008 private static final long serialVersionUID = -4691992115680346327L; 00009 protected final int nbRewardCheckpoint; 00010 00011 protected AbstractOffPolicyEvaluation(int nbRewardCheckpoint) { 00012 this.nbRewardCheckpoint = nbRewardCheckpoint; 00013 } 00014 00015 protected RLProblem createEvaluationProblem(int counter, OffPolicyProblemFactory problemFactory) { 00016 return problemFactory.createEvaluationEnvironment(ExperimentCounter.newRandom(counter)); 00017 } 00018 00019 @Override 00020 public int nbRewardCheckpoint() { 00021 return nbRewardCheckpoint; 00022 } 00023 }