RLPark 1.0.0
Reinforcement Learning Framework in Java

AbstractOffPolicyEvaluation.java

Go to the documentation of this file.
00001 package rlpark.plugin.rltoys.experiments.parametersweep.offpolicy.evaluation;
00002 
00003 import rlpark.plugin.rltoys.experiments.helpers.ExperimentCounter;
00004 import rlpark.plugin.rltoys.experiments.parametersweep.reinforcementlearning.OffPolicyProblemFactory;
00005 import rlpark.plugin.rltoys.problems.RLProblem;
00006 
00007 public abstract class AbstractOffPolicyEvaluation implements OffPolicyEvaluation {
00008   private static final long serialVersionUID = -4691992115680346327L;
00009   protected final int nbRewardCheckpoint;
00010 
00011   protected AbstractOffPolicyEvaluation(int nbRewardCheckpoint) {
00012     this.nbRewardCheckpoint = nbRewardCheckpoint;
00013   }
00014 
00015   protected RLProblem createEvaluationProblem(int counter, OffPolicyProblemFactory problemFactory) {
00016     return problemFactory.createEvaluationEnvironment(ExperimentCounter.newRandom(counter));
00017   }
00018 
00019   @Override
00020   public int nbRewardCheckpoint() {
00021     return nbRewardCheckpoint;
00022   }
00023 }
 All Classes Namespaces Files Functions Variables Enumerations
Zephyr
RLPark