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Abstract— A general problem for human-machine interaction
occurs when a machine’s controllable dimensions outnumber
the control channels available to its human user. In this work,
we examine one prominent example of this problem: amputee
switching between the multiple functions of a powered artificial
limb. We propose a dynamic switching approach that learns
during ongoing interaction to anticipate user behaviour, thereby
presenting the most effective control option for a given context
or task. Switching predictions are learned in real time using
temporal difference methods and reinforcement learning, and
demonstrated within the context of a robotic arm and a multi-
function myoelectric controller. We find that a learned, dynamic
switching order is able to out-perform the best fixed (non-
adaptive) switching regime on a standard prosthetic proficiency
task, increasing the number of optimal switching suggestions
by 23%, and decreasing the expected transition time between
degrees of freedom by more than 14%. These preliminary
results indicate that real-time machine learning, specifically
online prediction and anticipation, may be an important tool
for developing more robust and intuitive controllers for assistive
biomedical robots. We expect these techniques will transfer well
to near-term use by patients. Future work will describe clinical
testing of this approach with a population of amputee patients.

I. INTRODUCTION

Within the context of human-robot interaction, it is often
the case that the number of controllable degrees of freedom
within a robot will dramatically exceed the number of control
channels that can be easily manipulated by a human user.
In such situations, it is challenging to form a link between
the human and the robot that enables high levels of robot
functionality while simultaneously providing an intuitive,
learnable control scheme for the human user. In other words,
effective control is frequently confounded by a disparity
between the size or nature of the signal space on both sides
of the human-machine interface.

This issue is especially prominent within the domain of
assistive biomedical robots and rehabilitation robotics. In
these systems, the human user is often tightly coupled to
the robotic device by way of sensors or switches affixed
directly to the subject’s body. Approaches include internal or
surface electromyography (EMG), Electroencephalography
(EEG), force measurement, and direct neural recording. In
each case, activity from the human body results in a set of
electrical signals which can be processed and directed toward
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the control of an electromechanical assistive device. The
more reduced the functioning of the user, the more limited
are the possible sites to record these signals and the greater
the required functionality for the assistive robot.

Powered myoelectric prostheses are a prototypical exam-
ple of this situation [1]–[3]. In a myoelectric prosthesis,
surface EMG signals are recorded from muscle tissue in
an amputee’s residual limb. These signals are interpreted to
form control commands for a robotic appendage with one or
more degrees of freedom (DoF). In some cases, information
about the activity of the limb is also returned to the user by
way of auditory, visual, or tactile feedback [3]. Despite many
advances in novel pattern-recognition-based control schemes
(e.g., see reviews by Oskoei and Hu [4] and Scheme and
Englehart [5]), conventional myoelectric controllers typically
control a single degree of freedom with a single residual mus-
cle pair [5]. Unfortunately, as the amputation level increases,
the number of muscle sites available for use as input signals
to control schemes decreases [1], [2], [5].

In order to increase the number of DoF that an amputee
can control, conventional controllers are often extended using
a voluntary switch that allows the user to cycle their control
through the available degrees of freedom on the prosthesis
[1], [5]. For example, an upper-arm (transhumeral) amputee
may need to shift their control between the wrist, elbow,
or hand joints of their prosthesis; a lower-arm amputee
might choose between the different grip styles available via
their dexterous hand prosthesis. Switching of this kind may
be implemented using mechanical toggles, linear displace-
ment transducers, force sensitive resistors, co-contraction
of two EMG channels, or a third dedicated EMG chan-
nel [2], [3]. Examples of commercial systems that employ
switching-based control options include the bebionic hand
(RSLSteeper), the Boston Digital Arm System (Liberating
Technologies, Inc.), the UtahArm3+ (Motion Control, Inc.),
the DynamicArm and ErgoArm (Otto Bock HealthCare), and
the i-limb (Touch Bionics, Inc.).

Despite the promise of increased functionality, standard
switching-based methods are acknowledged to be unaccept-
ably slow and difficult to use [5]; patients have reported a
number of barriers to their uptake of commercially available
multifunction prostheses. As reported in a recent needs
assessment study (Peerdeman et al., 2011), these concerns
include the lack of functionality and non-intuitive nature of
most conventional control schemes [6]. Ease of selecting dif-
ferent limb movements and grasp types has been identified as
an important functional requirement for patient acceptance.

While new surgeries like targeted reinnervation are ex-
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panding the potential for intuitive multi-function control
through the creation of new physiologically mapped EMG
recording sites [7], the majority of amputees still require
some form of manual or multi-state switching to control
the different degrees of freedom or grip styles of their
artificial limb or hand [3], [5]. Even in the case of expert-
designed switching schemes, switching patterns are nor-
mally set in-clinic and do not adapt to ongoing changes
in the lifestyle, use patterns, or physiology of the amputee.
Standard switching-based methods are acknowledged to be
unacceptably slow and difficult to use [5]. In light of these
limitations, more natural, adaptive approaches are now seen
as a requirement for effective multifunction control [5].

With this in mind, the present work employs real-time
pattern recognition and machine learning techniques to help
remove switching-related barriers to patient acceptance and
control. In order to reduce the switching time and number of
switching actions required to actuate and smoothly control
a multifunction prosthesis, we propose the use of online
machine learning to anticipate and predict human control
signals during their interaction with a myoelectric device. A
key intuition is that there is a great degree of regularity in the
movements that comprise many daily tasks; we demonstrate
how it is possible to learn these regularities in terms of the
control actions a user deploys during task completion. By
accurately predicting the next DoF or mode to be actuated
by a user in any given context, it is possible to present these
functions as first choices to the user at the point of manual
switching. This will enable control systems that move be-
yond fixed switching patterns to adaptively prioritize control
options in terms of their immediate utility, streamlining the
interface between a human and their assistive robot.

II. REAL-TIME PREDICTION

Prediction is a key component of most advanced pattern
recognition systems intended for use in myoelectric control
[4], [5]. Being able to accurately predict limb movements,
user intent, or grip type from an ongoing stream of patient
control signals is integral to the classifications made by most
pattern recognition approaches. Notable examples include
linear discriminant analysis (LDA), support vector machines
(SVM), artificial neural networks (ANN), and principal com-
ponent analysis (PCA). Scheme and Englehart provide a
comprehensive review of the state of the art in this domain
[5]. However, while most myoelectric pattern recognition
systems are capable of providing control decisions for re-
alistic online operation (e.g., every 250ms or less), very few
have the ability to continue to learn online—i.e., to adapt
their predictions during ongoing, real-time operation. Online
adaptation is closely tied to the idea of robustness, and is a
central unmet requirement for future progress in the domain
of myoelectric control [5], [8].

One machine learning approach that has demonstrated its
practical applicability in an ongoing, incremental prediction
and control setting is reinforcement learning (RL) [9]. In
RL, a learning system uses samples of interactions with its
environments to build up expectations about future values of

a scalar feedback signal termed reward. These expectations
are represented using a value function that maps observations
in the environment to predictions about future reward.

Recently, Sutton et al. proposed the idea of a general
value function (GVF) [10]. This construct retains the key
properties of RL, but extends the idea of the value function
to represent predictive knowledge about arbitrary (i.e., non-
reward) signals and observations. In essence, these GVFs
and their associated learning techniques can be thought of
as a method for asking and answering predictive questions
about future sensorimotor signals. Moreover, GVFs can be
learned in an incremental fashion using standard RL methods
[9], with linear per-time-step complexity in both memory
and computation. They are therefore well suited to real-
time anticipatory predictions about user control signals and
function switching behaviour.

Specific uses for GVFs include learning to predict the
ongoing magnitude of a signal given the current state of the
system (e.g., “what will be the average value of a particular
sensor during the next two minutes”) or predicting the
magnitude of a sensor reading conditional on some distinct
event (e.g., “given my current state, what will be the value of
a particular sensor in exactly thirty seconds”). The questions
posed by GVFs can also be temporally extended; that is,
they can be predicted outcome measures with different time
scales (e.g., milliseconds, seconds, minutes, hours) and with
different ways of weighting the importance of future signals.
Predictions can also depend on different policies or strategies
for choosing control actions [10].

In the work that follows, we describe the application of
GVFs to the problem of anticipating control switching events
that occur during interactions between a human user and a
biomedical assistive robot.

III. EXPERIMENTAL SETUP

A. Robotic Platform

The robotics platform used in this work was the Myo-
electric Training Tool (MTT, shown in Fig. 1), a multi-
function robot arm designed to prepare new amputees for
the control of a commercial powered prosthesis [11]. Based
on the AX-12 Smart Arm (Crustcrawler, Inc.), the MTT
includes five degrees of freedom that mimic the functionality
of commercial myoelectric prostheses. For this work, we
used four of these actuators: hand open/close, wrist flex-
ion/extension, elbow flexion/extension, and shoulder rotation.
Feedback signals from the robotic arm were sampled at a rate
of 50Hz, and consisted of the load (current), angular position,
temperature, voltage, and angular velocity of each AX-12+
servomotor. The following information was also recorded for
each actuator: an on/off signal indicating whether or not the
joint was currently controlled by the user (joint control state),
an on/off signal indicating whether or not the actuator was
currently in motion (joint activity), and a time-decayed trace
of the joint activity signal (joint activity trace; decay constant
τ = 0.01). Grip strength was measured via a force sensitive
resistor bonded to the tip of the gripping device.
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Fig. 1. Able-bodied subject interacting interacting with the Myoelectric
Training Tool (MTT); experimental setup also includes a Bagnoli 8-
channel EMG system, real-time control computer, and task workspace.

B. Myoelectric Signal Acquisition and Control

EMG signals were acquired at 2kHz via a Bagnoli 8-
Channel EMG system (DelSys, Inc.). Signals were digitized
into a real-time control computer using a national instruments
PCI-6259 data acquisition card. The EMG electrodes for the
control channel were affixed over the left forearm extensors
and flexors of an able-bodied subject, while the electrode for
the EMG switching channel was placed over the subject’s
right forearm extensor; a reference electrode was affixed to
the bone of the subject’s left wrist. The hardware gain for
all three channels was set to 1000 and the software gains
for the hand open and close channels were 250 and 400
respectively. Mean absolute values (MAV) for all three EMG
signals were recorded alongside the MTT data at every 50Hz
robot sampling interval. A linear-proportional mapping, as
used in conventional myoelectric controllers (see Parker et
al., [2]), was then used to map the signal strength of the two
control EMG signals to the angular velocity of a controlled
servomotor on the MTT. The activity of the third EMG
channel was used as a binary switch to manually cycle
control between the four degrees of freedom on the MTT.

C. The Modified Box & Blocks Task

To provide a rich stream of interactive data, we enlisted
an able-bodied subject in a modified version of the stan-
dard clinical prosthesis proficiency test known as “box and
blocks” [11], [12]. As shown in Figs. 1 and 2, the task
environment consisted of a divided box with five coloured
balls pre-located on the left side of a central barrier. The
subject’s objective on each trial was to move all five balls
from the left box compartment to the right box compartment
in as little time as possible. This requires the subject to
repeatedly switch their control between the MTT’s different
actuators (Fig. 3). The subject controlled the robotic arm us-
ing the conventional EMG controller described above, where
the signal strength of the left forearm extensor and flexor
muscles were used to proportionally control the angular
velocity of a given joint on the robotic arm. In order to

Fig. 2. Schematic of the MTT and modified “box and blocks” test
area. Each trial involves controlling the MTT to transfer the five balls from
the left compartment to the right compartment as quickly as possible.

control more than one DoF on the robotic arm, the subject
also had a third electrode placed on the extensor of their
right arm that they could activate in an on/off momentary
fashion. This allowed them to cycle in one direction through
a pre-defined switching list. Each time the subject switched
to the next DoF in the list, an audio chime was sounded and a
visual cue was displayed. This provided feedback to the user
indicating that the switch was successfully activated (audio
cue) and the DoF to which they had switched (visual cue).
The switching order was chosen heuristically to be elbow
flexion/extension, wrist flexion/extension, hand open/close,
and shoulder rotation. As described by Dawson et al., this
order was found to minimize the number of switching actions
required for this particular task [11]. One or more manual
switching actions were needed per change of actuator, result-
ing in a typical switching period between movements that
lasted 1–3 seconds. The subject performed ten trials with
informed consent and ethics approval by the Health Research
Ethics board of the University of Alberta; the typical length
for one trial episode was ∼2 minutes.

IV. MACHINE LEARNING METHODS

A. Online Learning Algorithm

As described above, general value functions are a versatile
computational method for representing predictions about
future signals and observations. For this work, we utilized
GVFs to anticipate the control switching events that occur
during interactions between the MTT and its human user.
GVFs were formulated as described by Sutton et al. [10],
and their values were learned in an online fashion following
the temporal difference (TD) learning procedure presented
as Algorithm 1. A step-by-step breakdown of Algorithm 1
follows. For additional detail on TD learning and the TD(λ)
algorithm, please see Sutton and Barto [9].

At the start of the experiment, one GVF weight vector wj

was initialized for each joint j in the target system (i.e., four
GVFs, one for each of the shoulder, elbow, wrist, and hand
servo motors). Over the course of learning, each GVF was
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Fig. 3. A sequence of actions from the modified box and blocks task. For this example, the changes in joint control needed for moving a single ball
to the target region include shoulder rotation (A→B), wrist flexion (B→C), elbow flexion (C→D), hand grip (D→E), elbow extension (E→F), shoulder
rotation (F→G), and hand release (G→H). Manual function switching between each motion typically lasts 1–3 seconds or more.

updated according to the value of an instantaneous signal of
interest rj . Here rj was the joint activity signal indicating
whether the associated actuator j was moving (rj = 1) or
stationary (rj = 0) on the current time step. The learned
GVFs therefore represented a set of temporally extended ex-
pectations of these instantaneous motion signals—in effect,
predictions about the next joint to be moved by the user.

Each step of the learning process proceeded as follows.
On every time step (i.e., approximately every 20ms), the
system received a new set of observations, denoted ‘s’, from
the MTT and associated EMG system, along with the four
signals of interest (rj); s included all 32 signals shown
in Table I. To facilitate efficient computation, s was pro-
cessed using linear function approximation—a mathematical
approach which allows a large, continuous state space or
observation space to be represented in a linear form that can
be readily used in computation and learning [9]. In this case,
an approximation routine x′ ← approx(s) was used to map s
into a binary feature vector x′. For clarity, the details of this
approximation method are presented in Sec. IV-B, below.

The weight vectors wj for each GVF were then updated
using this new information (x′ and rj). For each joint j,
a temporal difference error signal (denoted δ) was formed
using the joint’s current activity signal rj and the difference
between the current and future predicted values for this
signal (computed from the weight vector using the linear
combinations wT

j x and γwT
j x
′, respectively). Next, a trace

ej of the current feature vector was updated in a replacing
fashion, where ej was an eligibility trace vector with λ
as the corresponding eligibility trace decay rate. For more
detail on replacing eligibility traces, please refer to Singh and
Sutton [13] and Sutton and Barto [9]. This trace ej was used
alongside the error signal δ to update the weight vector wj

Algorithm 1 Learning General Value Functions with TD(λ)

1: initialize: w, e, s,x
2: repeat:
3: observe s
4: x′ ← approx(s)
5: for all joints j do
6: observe joint activity signal rj
7: δ ← rj + γwT

j x
′ −wT

j x
8: ej ← min(λej + x, 1)
9: wj ← wj + αδej

10: x← x′

The prediction of future joint activity pj at any given time is sampled
using the linear combination: pj ← wT

j x

for each GVF. Here α > 0 was a scalar step-size parameter.
Learned predictions pj for each given signal rj were

sampled from the weight vector wj and current feature vector
x according to pj = wT

j x. Ranking the magnitude of these
predictions at a given instant produced a context-dependent
(dynamic) switching order.

A discounting factor of γ = 0.992 was used to compute
δ; each prediction pj therefore represented a summed ex-
ponentially decayed outcome with a half-life of ∼ 125 time
steps, or roughly 2.5s of data. Parameters used in the learning
process were λ = 0.999 and α = 0.3/n, where n is the
number of active features in the state approximation vector
x; vectors ej and wj were all initialized to 0.

B. Function Approximation

The linear approximation method approx(s) was imple-
mented using a tile coding function, as per Sutton and
Barto [9]. This mapped the 32-dimensional real-valued signal
space s into multiple five-dimensional binary arrays with
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TABLE I
FIVE-DIMENSIONAL SIGNAL COMBINATIONS USED IN FUNCTION

APPROXIMATION

(A) Array Dimensions 1 through 4

Shoulder Servo Position Elbow Servo Position

Wrist Servo Position Hand Servo Position

(B) Array Dimension 5

One of:

ShoulderServoVelocity ShoulderServoLoad
ShoulderServoVoltage ShoulderServoTemperature
ElbowServoVelocity ElbowServoLoad
ElbowServoVoltage ElbowServoTemperature
WristServoVelocity WristServoLoad
WristServoVoltage WristServoTemperature
HandServoVelocity HandServoLoad
HandServoVoltage HandServoTemperature
HandForceSensor EmgSwitchMav
Emg1Mav Emg2Mav
HandControlState WristControlState
ElbowControlState ShoulderControlState
HandActivityTrace WristActivityTrace
ElbowActivityTrace ShoulderActivityTrace

a discretization level of six bins per array axis. As shown
in Table IA, the four primary axes of each array were the
position of the shoulder, elbow, wrist, and hand servo; the
fifth axis of each array was one of the remaining 28 signals in
Table IB. One array was constructed for each signal in Table
IB, leading to a total of a total of 28 arrays. This process was
done for six overlapping tilings, each shifted from the origin
by a random amount. The result was concatenated with one
active baseline unit into a single binary vector consisting of
1,306,369 features; exactly n = 169 features were active at
any given time, one for each tiling of each array, and one for
the baseline feature. All signals in Table I were normalized
between 0.0 and 1.0 according to their known ranges.

C. Evaluation Methods

Ten trials of the modified box and blocks task were
recorded, each lasting approximately two minutes (∼6k time
steps). Ten-fold cross-validation was then performed on
the recorded data, with the learning system being trained
incrementally on nine of the trials and then tested for its
prediction accuracy on previously unseen data from the tenth
hold-out trial. This process was repeated with each of the
ten possible hold-out trials. We also assessed the efficacy
of learning from multiple passes through the training data,
whereby prediction accuracy on the testing data was evalu-
ated following two or more iterations though the testing data.
Learning was subject to real-time computation constraints,
with the requirement that all learning and prediction related
computation for each time step be completed in 20ms or
less; in practice, all learning related computation for eight

Fig. 4. Key result: learned predictions correctly anticipate the next
desired DoF to be selected by the user. The dynamic switching order
generated by the machine learning system (blue) is compared to the expert-
designed switching cycle (red) and the best fixed order as computed post-hoc
for this data (green). Bars show the number of instances over all ten testing
periods in which the next DoF moved by the user was ranked first, second,
third in a switching cycle at the termination of the previous movement.

simultaneous predictions was completed within 1–5ms, with
processing being done on a standard MacBook Pro 2.53
GHz Intel Core 2 Duo laptop. For evaluation purposes, true
prediction values p∗j were computed post-hoc by calculating
the return observed by summing the exponentially discounted
signal value rj at each time step in the future. To allow for
visual timestep-by-timestep comparison of predictions and
observed signals on the same vertical axis, predictions were
also evaluated in temporally normalized form, with values
scaled according according to pj/(1− γ).

V. RESULTS & DISCUSSION

A key result for this work is that the learning system was
able to correctly learn in real time to anticipate the next
joint to be actuated by the human subject. This result is
shown in Fig. 4. Here vertical blue bars show the number of
instances over all ten testing periods in which the next DoF
moved by the user was ranked first, second, third by the
machine learning system in terms of the absolute magnitude
of predictions at the moment the user’s previous movement
was terminated, with the currently activated DoF being
placed last in the ranking. In effect, at the termination of each
movement, the system formed a new, dynamic switching
order based on the current information being observed from
the experimental environment and its predictions about the
next function to be used by the subject.

In 70% of the 386 total switching cases recorded during
the ten testing trials, the DoF selected by the user was ranked
first in the dynamic switching order generated by the machine
learning system; this is 23% higher than was observed for
the fixed, expert-designed switching scheme described in
Sec. III-C. The average switching time observed during
this experiment was 1.09s, 1.75s, and 2.21s for transitions
involving one, two and three switching actions respectively.
Using these values as a measure of switching cost gives an
expected transition time of 1.32s for the adaptive switching
order, as compared to 1.57s for the fixed, expert-designed
switching order (Fig. 4, red bars), and 1.55s for the best
possible fixed order, as computed post-hoc for this data (Fig.
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Fig. 5. Example of learned joint activity predictions as compared to
actual joint activity on previously unseen testing data. Solid lines indicate
the normalized magnitude of the predictions pj for the future movement of
each joint, and filled curves show the joint activity signal rj being predicted
by the learning system. Arrows indicate the dominant predictions at the
termination of each movement; dominant predictions accurately anticipate
the future joint actuation. Shown for elbow (blue), shoulder (green), wrist
(red), and hand (black) activity.

4, green bars). In terms of its potential for decreasing DoF
transition times, the dynamic switching order produced a
cumulative transition cost decrease of 1.49min as compared
to the cost of the best computed switching order—a potential
savings of 7.2% with respect to the total experiment time
(20.7min), or 14.3% of the total transition time (10.4min).
When compared to the expert-designed approach, dynamic
ordering led to a potential decrease of 16.0% (1.67min) in
total transition time. This advantage is expected to increase
as the number of DoF in the switching order increases.

Figure 5 presents an example of the learning system’s
predictions for a subset of the testing data after five learning
iterations. Solid lines indicate the normalized magnitude of
the predictions pj for the future movement of each joint, and
filled curves show the joint activity signal rj being predicted
by the learning system. As shown in Fig. 5, predictions for
the next joint to be actuated increase sharply at, or just prior
to, the termination of the previous movement. Arrows show
the dominant prediction in the dynamic switching list at the
termination of each user movement. For reference, images
from a similar sequence of user actions are shown in Fig. 6.

Of additional note in Fig. 5, predictions for subsequent
future DoF can also be seen to rise in magnitude prior to
actuation. This promises to help optimize user switching in
the case of shifted intent or task changes. For example, a user
would normally switch to elbow control after gripping a ball
(Fig. 5, step 2000, and Fig. 6C→D); however, if the middle
barrier between compartments was suddenly removed, the
system’s increased prediction for shoulder activity would al-
low them to skip to shoulder control with only one additional
switching action. The learning system predicts correctly that
shoulder activity will follow elbow activity in this context.

Performance did not rely on the user performing a per-

A B

C D

E F

Fig. 6. Example of a user-directed control sequence corresponding to
the joint activity progression presented in Fig. 5. However, in this sequence,
the subject chooses to use the elbow actuator (A→B) instead of the wrist
actuator (Fig. 5, step 1800) when approaching the yellow ball.

fectly repetitive task; the learning system was able to utilize
regularities in the task environment while remaining robust
to novel deviations. For example, we consider the case of
a dropped (fumbled) ball, or a user’s choice of an alternate
approach to achieve their task—e.g., the difference between
using the wrist joint (Fig. 5, step 1800) or elbow joint (Fig.
6A→B) prior to gripper actuation. These cases were common
in the testing data; experience with these situations and new
information from the environment (e.g., grip force) allowed
the system to re-order its predictions, and thus the suggested
switching order, to help match the user’s new goals.

Generalization and learned adaptation was enabled in part
by the use of function approximation to create the feature
vector x. By expanding the initial set of 32 observations into
a well structured approximation space, the system was able to
represent rich interconnections and non-linear relationships
between observed signals. This approximation could then be
used to learn good state-related predictions. These results
hold with our recent work on function approximation for
simultaneous multi-joint myoelectric control [14].

Figure 7 shows the improvement in mean absolute error
gained by iterating over the training data. The normalized
error on testing data after one iteration (online operation)
was smaller than the typical difference between dominant
predictions and the next largest prediction—accurate pre-
dictions were achieved after only a single iteration through

6



Fig. 7. Improvement in prediction error after multiple learning
iterations over the training data, in terms of the mean absolute normalized
error between learned predictions and the true, post-hoc predictions.

the training data. Further improvement occurred with added
online data or additional passes through the training data.

Taken as a whole, the techniques described in this work
enable a control approach that automatically adjusts switch-
ing order to offer a user the most useful DoF for a given
context and task. The results presented above suggest that
this dynamic switching approach will substantially reduce
the delay and cognitive load required to use a switching-
based controller. While clinical proficiency tests such as
the box and blocks task are not a replacement for out-of-
clinic user testing, this preliminary study indicates that a
dynamic switching approach may extend well to common
daily tasks. However, since the patient will no longer be able
to memorize a fixed switching order, an adaptive controller
must also be combined with a feedback system to relay
switching outcomes and options to the user. We are currently
working on tactile, vibratory, and audio feedback devices to
achieve this functionality. Intuitive feedback to the user is
expected to further decrease the number of switching errors
and thus minimize switching related delays. Future work will
describe comprehensive testing with a population of amputee
patients, and the use of real-time prediction to augment other
aspects of myoelectric control.

VI. CONCLUSIONS
In this work we discussed the problem of controlling an

assistive biomedical device with fewer control channels than
available degrees of freedom. Specifically, we demonstrated
a real-time machine learning approach to help support a user
in manually switching between the joints of a multi-function
myoelectric training prosthesis. The presented learning sys-
tem was capable of accurately predicting and anticipating
future control activity and control signals to be executed by
a user, and using these predictions to generate an adaptive
switching order that greatly improved upon a fixed, expert-
designed switching scheme. This approach promises to op-
timize patient-prosthesis interaction, reduce delays related
to manual function switching, and increase patient uptake
of conventional multifunction prostheses. Online learning of
this kind also provides a basis for future work on intuitive,
simultaneous control of multiple joints.

While we demonstrated our approach within the context
of myoelectric control, the described techniques are equally
applicable to other domains involving direct human-machine
interaction. Examples include semi-autonomous wheelchair
control, assistive walking, remote microsurgery, and the tele-
operation of autonomous vehicles. There are many situations
where a human must interact with a system using limited
control channels; these channels may be constrained in terms
of the number of concurrent signals or the human’s cognitive
load. We suggest that real-time prediction learning is a
fundamental tool for making control not only faster and more
intuitive, but more powerful in terms of the functionality a
human is able to achieve using an assistive robotic system.
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