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Abstract. sdyna is a framework able to address large, discrete and
stochastic reinforcement learning problems. It incrementally learns a
fmdp representing the problem to solve while using fmdp planning tech-
niques to build an efficient policy. spiti, an instantiation of sdyna, uses
a planning method based on dynamic programming which cannot ex-
ploit the additive structure of a fmdp. In this paper, we present two new
instantiations of sdyna, namely ulp and unatlp, using a linear program-
ming based planning method that can exploit the additive structure of
a fmdp and address problems out of reach of spiti.

1 Introduction

Markov Decision Processes (mdps) are a fundamental framework to model plan-
ning under uncertainty problems as well as Reinforcement Learning (rl) prob-
lems. Standard exact solution methods for both problems are known to work
well but are inappropriate for large problems because they require explicit state
space enumerations. Among different approximation techniques, factored mdps
(fmdps), first proposed by [1], assume the decomposition of the state space with
random variables. fmdps utilize dependencies between variables, defined using
Dynamic Bayesian Networks (dbns) [2], to compactly represent the transition
and reward functions of structured mdps.

When the structure of the transition and reward functions are fully known,
solution methods may be used to compute optimal (or near optimal) value func-
tions and policies of the fmdp. These solution methods are based on two different
classical techniques, namely Dynamic Programming (dp) and Linear Program-
ming (lp). First, algorithms such as Structured Policy Iteration (spi), Structured
Value Iteration (svi) and Stochastic Planning Using Decision Diagrams (spudd)
are based on dp [3,4] and mainly exploit context specific independence by using
structured representations (i.e. decision trees or decision diagrams) to manipu-
late the functions of the fmdps. Second, [5] proposes different algorithms based
on lp that can exploit additional regularities such as the additive decomposition
of the reward function and an additive approximation of the value function. We
name such regularities as additive structure of the problem.

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 15–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



16 T. Degris, O. Sigaud, and P.-H. Wuillemin

When the structure of the transition and reward functions are unknown, [6]
has proposed Structured dyna (sdyna). sdyna is a general framework combin-
ing supervised learning algorithms with planning methods to solve large, discrete
and stochastic rl problems. spiti is an instance of sdyna that uses an incremen-
tal decision tree induction algorithm combined with an incremental version of
svi. Consequently, spiti is not able to exploit additive structure of fmdps and is
very limited to represent and solve problems such as the SysAdmin problem [5].

In this paper, we describe two new instances of sdyna, namely ulp and
unatlp. Both instances use lp based planning method to exploit the additive
structure of the problem. Moreover, we propose in unatlp a different represen-
tation of the transition function in the fmdp that is learned. First, we show that
both ulp and unatlp are able to exploit the additive structure of a problem
without knowing its structure in advance, allowing these instances to address a
rl problem with 4 ·1013 state/action pairs. At this time, we are not aware of any
model-based rl algorithm able to solve such large problems without assuming
the knowledge of its structure. Second, we show that the new representation
of the fmdp in unatlp outperforms the one used in spiti and ulp on such
problems.

The remainder of this paper is organized as follows: in Section 2, we introduce
fmdps, the planning method based on lp proposed by [5] and sdyna. In Sec-
tion 3, we describe ulp and unatlp. Section 4 describes and discusses empirical
results of these instances on the SysAdmin problem.

2 Background

We first introduce some definitions used in this paper. A mdp is defined by a
tuple 〈S, A, R, P 〉 where S is a finite set of states, A is a finite set of actions, R
is the immediate reward function with R : S × A → IR and P is the Markovian
transition function P (s′|s, a) with P : S × A× S → [0, 1]. A stationary policy π
is a mapping S → A with π(s) defining the action to be taken in state s.

We evaluate a policy π in state s, considering an infinite horizon, with the
value function Vπ(s) defined using the discounted reward criterion: Vπ(s) =
Eπ[

∑∞
t=0 γt · rt|s0 = s], with 0 ≤ γ < 1 the discount factor and rt the reward

obtained at time t. A policy π is optimal if ∀s ∈ S, ∀π′ : Vπ(s) > Vπ′(s). The
value function of an optimal policy π∗ is called optimal value function and is
noted V ∗.

The action-value function QV
a (s) for an action a and a value function V (s) is

defined as QV
a (s) = R(s, a)+ γ

∑
s′∈S P (s′|s, a)V (s′). For a given value function

V , it is possible to define a greedy policy relative to V , noted GreedyV , by taking
for each state s the action with the best action-value:

GreedyV (s) = arg max
a

[R(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′)] (1)

The greedy policy relative to V ∗ is an optimal policy π∗(s) = GreedyV ∗(s).
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We now assume that states are composed of a set of random variables X =
{X1, . . . , Xn}. A state is then defined by a vector s = (x1, . . . , xn) with ∀i, xi ∈
Dom(Xi). fmdps are a framework exploiting the structure of the problem to
represent compactly large mdps [1]. For each action a, the transition model of
the fmdp is defined by a separate dbn model Ta = 〈Ga, {P a

X1
, . . . , P a

Xn
}〉. Ga is

a two-layer directed acyclic graph whose nodes are {X1, . . . , Xn, X ′
1, . . . , X

′
n}

with Xi a variable at time t and X ′
i the same variable at time t + 1. The

parents of X ′
i are noted Parentsa(X ′

i) with Parentsa(X ′
i) ⊆ X . The transition

model Ta is quantified by Conditional Probability Distributions (cpds), noted
P a

Xi
(X ′

i|Parentsa(X ′
i)), associated to each node X ′

i ∈ Ga.
A similar decomposition provides a compact representation of the reward

function. First, we formalize the concept of localized function [5]: a function f
has a scope Scope(f) = Y ⊆ X if f : Dom(Y ) 	→ IR. We use f(x) as shorthand
for f(y) where y is the part of the instantiation x corresponding to variables in
Y . The reward function may now be defined as the sum

∑r
j=1 Rj(s) ∈ IR where

each function Rj is a localized function with Scope(Rj) restricted to a small set
of variables. There may be a different decomposition Ra

j for each action a.

2.1 Linear Programming Based Approximation in MDPs

Different approaches may be used to compute the optimal policy in a mdp. One
approach is to represent the mdp as a linear program (lp) [7]. Such lp is defined
as:

For variables: V (s), ∀s ∈ S
Minimize:

∑
s α(s)V (s)

Subject to: V (s) ≥ R(s, a) + γ
∑

s′ P (s′|s, a)V (s′)∀s ∈ S, ∀a ∈ A (lp 1)

where α(s) are the state relevance weights (α(s) > 0 for each state s). One major
issue that prevents this lp from being applied to real problems is that it uses ex-
plicit enumerations of the state space which is usually very large. The remaining
of this section presents previous work from [5] to avoid such enumerations.

One approach to address large state space is to approximate value functions
with linear value function

∑k
i=1 wihi(s) for some coefficients (w1, . . . , wk). The

set {h1, . . . , hk} is a set of basis functions where each hi is a localized function,
defining the space H of allowable value functions. We discuss the choice of such
functions in section 5. Replacing explicit state value function V (s) by the ap-
proximation, (lp 1) is rewritten to produce an approximation of the optimal
value function of the mdp in H [8]:

For variables: w1, . . . , wk

Minimize:
∑

s α(s)
∑k

i=1 wihi(s)
Subject to:

∑k
i=1 wihi(s) ≥ R(s, a)+

γ
∑

s′ P (s′|s, a)
∑k

i=1 wihi(s′)∀s ∈ S, ∀a ∈ A (lp 2)

This linear program is guaranteed to be feasible if a constant function h0 is
included in the set of basis functions. We assume that this is the case in the
remaining of the paper.
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(lp 2) reduces the number of free variables from |S| to k. However, the
number of constraints remains |S|×|A|, each constraint is potentially a sum of |S|
terms, and the objective function is still a sum of |S| terms. We now describe an
outline of the method proposed by [5] to represent this linear program compactly,
exploiting the structure of the problem.

2.2 Linear Programming Based Approximation in Factored MDPs

The compact representation of (lp 2) is based on a factored linear value function
representation [9], that is a linear value function over the basis h1, . . . , hk where
each localized function hi is restricted to a small number of state variables. The
different restricted domain functions defined in the fmdp result in efficient com-
putations on compact representations over large state spaces. The first operation
is to compute the backprojection ga

i (s) =
∑

s′ P (s′|s, a)hi(s′) of a basis function
hi for an action a and given the graph Ga. Recalling that the scope of a basis
function hi is small, the backprojection may be simplified, as shown in [9]. The
scope of ga

i (s) is Scope(ga
i ) = ∪X′

j∈Scope(hi)
Parentsa(X ′

j). Consequently, the cost
of the computation depends linearly on |Dom(Scope(ga

i ))|, which depends on the
scope of hi and the complexity of the graph Ga.

The state relevance weights α(s) in the objective function of (lp 2) may
be considered as distribution over states, so that α(s) > 0 and

∑
s α(s) = 1.

As suggested by [5], we use uniform state relevance weights defined as α(s) =
1
|S| . Using a different reorganisation of the set of constraints and the objective
function, a new linear program may be formulated [5]:

For variables: w1, . . . , wk

Minimize:
∑k

i=1 wiαi

Subject to: 0 ≥ ∑k
i=1 wi[γga

i (s) − hi(s)] +
∑r

j=1 Ra
j (s) ∀s ∈ S, ∀a ∈ A (lp 3)

where αi =
∑

ci∈Dom(Ci)
α(ci)hi(ci) with Ci = Scope(hi) and α(ci) the marginal

of the state relevance weights α over Ci.
(lp 3) has now only k free variables, k terms in the objective function and

each constraint may be computed on a restricted scope. However, the number of
constraints is still exponential. As described by [5], these constraints may be rep-
resented compactly using a variable elimination algorithm. We note FactoredALP

the algorithm building (lp 3) and returning the solution. We refer to [5] for a
comprehensive description of this algorithm.

2.3 Context-Specific Independence

Similarly to solution methods in fmdp such as spi, svi and spudd [3,4], [5]
exploits context-specific independence, using a rule-based representation [10], to
compute the backprojections and to reduce the number of constraints in (lp 3).
Entries with the same value of a function are referred to as consistent contexts.
Two contexts c ∈ Dom(C) and b ∈ Dom(B) with C ⊆ {X, X ′} and B ⊆ {X, X ′}
are defined as consistent if they have the same assignment for the variables in
C ∩ B.
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A probability rule η = |c : p| is a function η : {X, X ′
i} 	→ [0, 1], where the

context c ∈ Dom(C), C ⊆ {X, X ′
i} and p ∈ [0, 1] and such that η(x, x′

i) = p if
x and x′

i are consistent with c and η(x, x′
i) = 1 otherwise. A rule-based CPD

is a function Pa : ({X ′
i} ∪ X) 	→ [0, 1] composed of a set of probability rules

{η1, . . . , ηn} whose contexts are mutually exclusive and exhaustive. A value rule
ρ = |c : v| is a function ρ : X → IR such that ρ(s) = v when s is consistent with
c and 0 otherwise. A rule-based function f : X 	→ IR is composed of a set of rules
{ρ1, . . . , ρn} such that f(x) =

∑n
i=1 ρi(x). Both reward and basis functions may

be represented as a rule-based function.
The transition, reward and value functions in a fmdp may be represented

using rule-based representations. [5] utilizes this representation to rewrite the
computation of the backprojections and to represent (lp 3) compactly, ex-
ploiting context-specific independence. We refer to their paper for a complete
description.

2.4 Structured DYNA and Spiti

The solution method based on lp described in the previous section assumes that
the structure of the problem is available, which may not be the case in practice.
Recently, [6] has proposed Structured dyna (sdyna), that is a framework able
to learn the structure of a fmdp from experience. sdyna is described in Figure 1,
where Fact[F ] represents a factored representation of a function F .

Input: Acting, Learn, Plan, Fact Output: ∅
1. Initialize the fmdp F0

2. At each time step t, with s the current (non-terminal) state, do:
(a) a ← Acting(s, {Fact[Qa

t−1],∀a ∈ A})
(b) Execute a; observe s′ and r
(c) Ft ← Learn(Ft−1, 〈s, a, s′, r〉)
(d) {Fact[Vt], {Fact[Qa

t ], ∀a ∈ A}} ← Plan(Ft, Fact[Vt−1])

Fig. 1. The sdyna algorithm

sdyna is decomposed in three phases. First, from its current policy, repre-
sented as the set {Fact[Qa

t−1], ∀a ∈ A} of action-value function, an action is
executed during the acting phase (step 2.a, 2.b and 2.c). Second, from the obser-
vation 〈s, a, s′, r〉, the fmdp F representing a model of the problem is updated
during the learning phase (step 2.d). Finally, the set {Fact[Qa

t−1], ∀a ∈ A} of
action-value functions is updated during the planning phase (step 2.e).

spiti is an instantiation of sdyna, also presented in [6], that incrementally
learns structured representations of the transition and reward functions using
an induction of decision tree algorithm, noted UpdateTree(Tree[F ], x, y) with
Tree[F ] the decision tree representation of the function F to update, x the in-
put of F and y its output. First, for the action a of the observation, each cpd
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Tree[P a
Xi

] is updated with UpdateTree(Tree[P a
Xi

], (x1, . . . , xn), x′
i) using the state

s = (x1, . . . , xn) as the set of inputs and the value of the variable Xi in s′ as
output. Second, the reward function Tree[R] is updated using the current state
and action as input and the reward observed as output. spiti uses χ2 as its
information-theoric metric. Moreover, a decision node in a tree Tree[P a

Xi
] is in-

stalled only if the χ2 value for the variable is above a threshold τχ2 [11]. spiti
uses an incremental version of the svi algorithm [3] during the planning phase to
update the set {Tree[Qa

t−1], ∀a ∈ A} of action-value functions. All the functions
of a fmdp, that is the cpds in the transition function, the reward function and
the value function, are represented with decision trees in spiti, as in svi.

3 Exploiting Additive Structure in SDYNA

spiti suffers from two strong limitations to be able to exploit the additive struc-
ture of a rl problem. First, the reward function is represented with one tree
Tree[R] which is not adapted to represent functions with an additive structure.
Second, it plans with an incremental version of svi, which is not able to exploit
the additive structure of a problem and performs very poorly on such problems
[3,5]. We address both issues in the remaining of this section by describing two
new instances of sdyna, namely ulp and unatlp.

3.1 Learning the Structure

To be able to learn additively decomposed reward functions, we assume that the
reward received by the agent from the environment is not a single real number
r ∈ IR but a vector r = (r1, . . . , rr) ∈ IRr where each rj is the reward associated
to the localized Rj function. Consequently, we assume neither the knowledge of
the scope nor the structure of context independencies of the localized functions.
Figure 2 shows the Learn(F , 〈s, a, s′, r〉) algorithm for both ulp and unatlp,
adapted from spiti, to learn additively decomposed reward functions.

The transition function in ulp is updated in the same way as the transition
function in spiti (step 1). However, because the reward r observed by the agent
is now decomposed as a vector of reward r = (r1, . . . , rr), a different tree Tree[Rj ]
corresponding to a localized function Rj in R(s) =

∑r
j=1 Rj(s) is updated using

the current state as input and the reward rj in r as output (step 2).

Input: a fmdp F , an observation 〈s, a, s′, r〉 Output: ∅
1. For all Xi ∈ X:

In ulp: UpdateTree(Tree[P a
Xi

], 〈(x1, . . . , xn), x′
i〉)

In unatlp: UpdateTree(Tree[PXi ], 〈(x1, . . . , xn), a, x′
i〉)

2. For all Rj ∈ R:
UpdateTree(Tree[Rj ], 〈(x1, . . . , xn), a, rj〉)

Fig. 2. The Learn(F , 〈s, a, s′, r〉) algorithm in ulp and unatlp
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Both spiti and ulp use one tree Tree[P a
Xi

] for each variable and each action
to represent the cpd P a

Xi
in a fmdp F . It is also possible to represent the

transition function with the action as a variable [12] with only one cpd PXi for
each variable Xi of the problem to quantify only one graph G (with an action
node) specifying variable dependencies in the transition function.

One drawback of this representation is that it is not possible to specify a de-
pendency between two variables for only one action in the graph G. For instance,
it is not possible to specify that X ′

i depends on Xj for the action ak, but not for
the other actions of the mdp. However, this drawback may be counterbalanced
by using structured representation of the cpds to exploit context specific inde-
pendence because probability distributions that do not depend on the action
executed by the agent can be aggregated.

unatlp uses such representation of the transition function. The difference
between ulp and unatlp to learn the fmdp is in step 1 (Figure 2) where each
cpd Tree[PXi ], that is the tree representing PXi with the action considered as a
variable, is updated for each variable Xi using the current state and the action
executed by the agent as the set of attributes and the value of the variable Xi

in s′ as input.

3.2 Acting and Planning

sdyna does not need an explicit representation of the policy for the agent to
act. However, it requires a set of action-value functions to select an action
with the best action-value. We note Rules[F ] a function F represented as a
rule-based function. Recalling equation 1 and using the factored linear value
function Rules[V ], we can obtain the best action by computing GreedyV(s) =
argmaxa[

∑r
j=1 Rules[ra

j ](s) + γ
∑k

i=1 wiRules[ga
i ](s)]. Both ulp and unatlp in-

stances use GreedyV(s) combined with ε-greedy as exploration policy, which ex-
ecutes the best action most of the time, and, with a small probability ε, selects
uniformly at random an action. When different actions are considered as best,
one of them is selected uniformly at random.

The lp based method, as described in section 2.1, uses rule-based represen-
tations to exploit context-specific structure whereas both ulp and unatlp use
tree representations of cpds. Nevertheless, from Tree[P ](X ′|s), we can build the
corresponding rule-based representation Rules[P ](X ′|s) by composing the set of
probability rules such that: Rules[P ](X ′|s) = {|ci ∧ X ′ = x : pi| such that x ∈
Dom(X), pi(X ′ = x|s) �= 0, ∀li ∈ Tree[P ](X ′|s)} with ci the context of the leaf li
and pi the probability P (X ′ = x|s) in li. A similar conversion is used to obtain
rule-based value functions from decision trees.

By using such conversions, the fmdp incrementally learned may be used with
linear programming based planning method. We propose, in Figure 3, an incre-
mental planning algorithm able to exploit the additive structure of a problem
for both ulp and unatlp.

The main idea is to re-use the previous solution of the lp when it is available
and to avoid to solve the full lp at each time step. First, the Plan(Ft, Rules[Vt−1])
algorithm checks if the structure of the fmdp has changed (such information is
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Input: Ft, Rules[Vt−1] Output: Rules[Vt], {Rules[QVt
a ], ∀a ∈ A}, Parameters:

TP , TM , TMIN

1. If (Structure of Ft �= Structure of Ft−1) then:
(a) lastModif ← t
(b) Reinitialize the solution of the last linear program

2. If ((t−lastModif > TM ) or (t−lastPlanning < TP )) and (t−lastPlanning > TMIN )
then:
(a) lastPlanning← t
(b) {Rules[Vt], {Rules[QVt

a ], ∀a ∈ A}} ← FactoredALP(Ft) using the solution of
the last linear program if it has not been reinitialized.

else: {Rules[Vt], {Rules[QVt
a ],∀a ∈ A}} ← {Rules[Vt−1], {Rules[Q

Vt−1
a ], ∀a ∈ A}}

3. Return Rules[Vt] and {Rules[QVt
a ],∀a ∈ A}

Fig. 3. The Plan(Ft, Rules[Vt−1]) algorithm in ulp and unatlp instances of sdyna

maintained by the UpdateTree algorithm for each tree of the fmdp). When the
structure does not change, then the constraints of the lp have the same structure
using the same free variables. Consequently, we use the solution of the last linear
program as a feasible solution (step 2b).

When the structure has changed, then we cannot re-use the solution of the last
linear program which is reinitialized (step 1). Then, during step 2, if the structure
has not changed for TM time step, or if the last time a linear program has been
solved is under TP and over TMIN , then the current solution is updated. When
the solution of the linear program has not been updated, then the algorithm
returns the last computed solution.

Note that to use the representation of the transition function of unatlp,
an additional step is required: it is necessary to build the cpd Tree[P a

Xi
] for

each action a from the cpd Tree[PXi ]. If the action is not tested in Tree[PXi ],
then Tree[P a

Xi
] = Tree[PXi ] for all a, else Tree[P a

Xi
] is extracted from Tree[PXi ]

by replacing each decision node testing the action in Tree[PXi ] by the sub-tree
corresponding to a.

4 Results

We now present an empirical evaluation of both ulp and unatlp. We use the
SysAdmin benchmark problem, strictly following the specification given in [5]
using the unidirectional ring network architecture with N = 40 machines. This
problem exhibits a very symmetric model and has been used by [5] to show
the performance of FactoredALP. But, unlike the results presented below, the
structure of the model was assumed to be fully known. Moreover, [3,4,5] show
that spiti is unsuitable for this problem because of the decision trees used to
represent the reward and value functions.



Exploiting Additive Structure in Factored MDPs for Reinforcement Learning 23

Fig. 4. Discounted reward obtained on the SysAdmin problem. Both ulp and unatlp
are able to improve their policy, despite the large size of the problem. Error bars are
present, but hardly visible because of a very low standard deviation.

The size of the problem is 240 × 41 ≈ 4 · 1013 state/action pairs. A each time
step, a SysAdmin may go to one machine to reboot it, making it work for the next
time step with a high probability. The SysAdmin receives a reward of 1 for each
running machine (except for one machine for which it receives 2 to introduce an
asymmetry in the problem). We use N basis functions hi corresponding to each
machine represented by the Xi variable and defined such as {|Xi−1 = 0 ∧ Xi =

0 : 0.05|, |Xi−1 = 1∧Xi = 0 : 0.09|, |Xi−1 = 0∧Xi = 1 : 0.5|, |Xi−1 = 1∧Xi = 1 : 0.9|}
and a constant basis function.

We use glpsol1 as lp solver, ε = 0.1 in ε-greedy exploration policy, a dis-
count factor γ = 0.99, τχ2 = 30 in the UpdateTree induction tree algorithm and
TM = 100, TP = 1500 and TMIN = 50 in the Plan algorithm (Figure 3). We
ran 10 experiments of 20,000 time steps. We use the tree induction algorithm
id4 [13]. For implementation reasons, the backprojections ga

i (s) are computed
using decision trees as representations [3]. We refer to the respective papers for
respective descriptions. Moreover, we use the least-square criterion [14] to learn
reward functions in the UpdateTree algorithm. We ran two more agents, noted
random and optimal, executing at each time step, respectively, a random ac-
tion and the best action. The policy of optimal has been computed off-line,
using FactoredALP with the same basis functions as defined below.

Figure 4 shows the discounted reward, defined as Rdisc
t = rt + γRdisc

t−1 with
rt the reward received by the agent, obtained by each agent over the time (in
time steps). Both ulp and unatlp are able to substantially improve their pol-
icy, compared to random. Moreover, unatlp improves fairly quickly its policy
compared to ulp and considering the size and the stochasticity of the problem.

1 http://www.gnu.org/software/glpk/glpk.html
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Fig. 5. Size of the transition function of the fmdp learned in ulp and unatlp. Erros
bars are present, but hardly visible because of a very low standard deviation.

Figure 5 compares the different size of the transition function (in nodes, in-
cluding decision nodes and leaves) learned by ulp and unatlp. Both build a
transition function with a similar size of approximately 4500 nodes (compared
to the size of 41 × 40 × 7 = 11480 nodes of the full transition function with
perfect knowledge using the ulp representation). We observe that, for a similar
size, unatlp obtains better results than ulp. Moreover, the transition function
built by unatlp grows quicker than the transition function in ulp.

5 Discussion

These results show that ulp and unatlp are able to quickly learn an accurate
fmdp representing the rl problem to solve with few assumptions on this prob-
lem. They are able to exploit the additive structure of a problem even when
its structure is not known in advance. Thus, by combining lp based planning
methods with supervised learning methods such as decision tree induction, ulp
and unatlp are able to address very large problems by exploiting a strong gen-
eralisation property. Note however that the size of the model stabilizes in both
cases below the size of the perfect model, which suggests that the perfect rep-
resentation will not be learned. This is mainly due to the ε-greedy exploration
policy we use, which drives the agent to explore only paths near the greedy pol-
icy. However, despite an imperfect representation, these results clearly show that
the policy is still improved. Including better exploration policy than ε-greedy is
still work in progress.

Moreover, these results illustrate the difference between representations of
the transition function in ulp and unatlp. Figure 4 shows that unatlp learns
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quicker than ulp. The main reason is that new examples only update the cpd
of the last action executed in ulp, whereas they update all the trees of the
transition function in unatlp. [12] suggests that the second representation may
be more compact when the value of a variable persists for all actions. However,
such a property could not be observed in this problem because each variable
depends on one action. Despite the fact that the ulp representation is usually
used in fmdp planning algorithms, these results suggest that the representation
used in unatlp is an interesting alternative to solve rl problems.

Future works include a method for building automatically a good set of basis
functions, such as the work of [15]. To our knowledge, ulp and unatlp are the
first algorithms to learn and to exploit a fmdp with a factored transition function
and an additively decomposed reward function. Such fmdp can directly be used
to construct a set of localized basis functions adapted to fmdp planning methods.
Thus, such approach would be very promising, combining the generality of the
representations used in ulp and unatlp with the automation of spiti to solve
large rl problems.

Our first contribution in this paper was to show that lp planning methods
may be combined with decision tree induction to address very large rl problems,
exploiting additive structure, even when the structure is unknown. Our second
contribution is to show that a different representation of the transition function
in fmdps may speed up the learning process, particularly in large rl problems,
with no loss on the size of the transition function. To conclude, approaches such
as ulp and unatlp can address rl problems that were out of reach with previous
model based methods, as far as no information at all about the structure of the
problem is given to the system.
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