### Hierarchical Algorithms for Computational Linear Algebra

Yuval HARNESS - INRIA Team HiePACS



Joint work of the FastLA Associate Team members

The 6th annual Inria@SiliconValley workshop with California partners: Paris June 8-10, 2016

#### The FastLA Associate Team

Fast and Scalable Hierarchical Algorithms for Computational Linear Algebra

#### Collaboration

- INRIA project-team HiePacs.
- Scientific Computing Group, LBNL.
- Mechanics and Computation Group, Stanford.

#### Theme

- Study & design hierarchical parallel & scalable numerical techniques.
- Applications: N-body interaction calculations and the solution of large sparse linear systems.
- Implementation: heterogeneous manycore platforms by using task based runtime systems.



#### Outline

- Hierarchical Numerical Techniques
- 2 Fast Hierarchical Methods for Geostatistics
- 3 Hierarchical Matrices in Sparse Direct Solvers
- 4 Hierarchical Multilevel Preconditioning

# Hierarchical Numerical Techniques

The Basics



#### Introduction

#### Motivation

■ Problem: solution/factorization of extremeley large dense linear systems:

$$Ax = b$$

■ Consider a matrix of dimesnion  $n \times n$ :

Sparse 
$$\Rightarrow$$
  $\mathcal{O}(n)$  storage units  
Dense  $\Rightarrow$   $\mathcal{O}(n^2)$  storage units

Memory consumption in the dense case is a major bottleneck in extending our capability to handle larger and more challenging linear systems.

#### Introduction

#### Motivation

■ Problem: solution/factorization of extremeley large dense linear systems:

$$Ax = b$$

■ Consider a matrix of dimesnion  $n \times n$ :

Sparse 
$$\Rightarrow$$
  $\mathcal{O}(n)$  storage units  
Dense  $\Rightarrow$   $\mathcal{O}(n^2)$  storage units

Memory consumption in the dense case is a major bottleneck in extending our capability to handle larger and more challenging linear systems.

#### Remarks

- $\blacksquare$  In typical applications, forming A explicitly is prohibitive.
- Such matrices also emerege while solving large sparse systems.



#### Hierarchical Matrices

#### Hierarchical Matrix

■ Hierarchical matrix (H-matrix) is a data sparse approximation of a non-sparse matrix.



#### Hierarchical Matrices

#### Hierarchical Matrix

- Hierarchical matrix (H-matrix) is a data sparse approximation of a non-sparse matrix.
- **■** Basic principles
  - 1. perform rows and columns permutations
  - 2. replace sub-blocks by low-rank factorizations.



 $A_{\hat{t} \times \hat{s}}$  is a sub-block of  $A \in \mathbb{F}^{N \times N}$ ,  $\hat{s}, \hat{t} \subset \mathcal{I} = \{1, 2, ..., N\}$ .

3. Hierarchical partitioning ⇒ almost linear complexity.





























































### Compression, Complexity and Challenges

#### Matrix Compression

- Essentially H-matrix approximation is a matrix compression method.
- Works well for discretizations of Integral equations and elliptic PDEs.





## Compression, Complexity and Challenges

#### Matrix Compression

- Essentially H-matrix approximation is a matrix compression method.
- Works well for discretizations of Integral equations and elliptic PDEs.

#### Complexity of operations

■ Complexity of obtaining the hierarchical matrix should be almost linear:

$$\mathcal{O}(N\log^{\alpha}N)$$
,  $\alpha$  is 'small'

- Arithmetics  $(+, -, \cdot, inv)$  should be possible in almost linear complexity.
- Hierarchical techniques a.k.a. Fast hierarchical methods.

## Compression, Complexity and Challenges

#### Matrix Compression

- Essentially H-matrix approximation is a matrix compression method.
- Works well for discretizations of Integral equations and elliptic PDEs.

#### Complexity of operations

■ Complexity of obtaining the hierarchical matrix should be almost linear:

$$\mathcal{O}(N\log^{\alpha}N)$$
,  $\alpha$  is 'small'

- Arithmetics  $(+, -, \cdot, inv)$  should be possible in almost linear complexity.
- Hierarchical techniques a.k.a. Fast hierarchical methods.

#### Challenges

- Fast identification & factorization of low-rank structures.
- Prohibitively expensive to form the large dense blocks.



Fast Methods for Geostatistics

H-matrix accelerated Randomized SVD



#### Introduction

#### Collaborators

Pierre Blanchard, Olivier Coulaud (INRIA) & Eric Darve (Stanford)

#### Problem: Generation of Gaussian Random Fields

- **Y**  $\sim \mu(\mathbf{0}, \mathbf{C})$  is a multivariate Gaussian random field (GRF).
- The covariance  $\mathbf{C} \in \mathbb{R}^{N \times N}$  can be prescribed as a kernel matrix

$$\mathbf{C} = \{k(\|\mathbf{x}_i - \mathbf{x}_j\|_2)\}_{i,j=1...N}$$

- x: large and highly heterogenous 3D grid
- k: correlation kernel such as

$$k_{1/2}(r) = e^{-r/\ell}$$
 or  $k_{\infty}(r) = e^{-r^2/(2\ell^2)}$ 

■ Generating Y requires computing a square root A

$$C = AA^T \rightarrow Y = A \cdot X : X \sim \mu(0, I_N)$$



#### H-matrix accelerated Randomized SVD

Standard Methods: (Often become computationally prohibitive for large N)

- Cholesky  $(\mathcal{O}(N^3))$ .
- $\blacksquare$  circulant embedding  $(\mathcal{O}(N \log N))$  for equispaced grids)
- turning bands method (approximate).



#### H-matrix accelerated Randomized SVD

#### Standard Methods: (Often become computationally prohibitive for large N)

- Cholesky  $(\mathcal{O}(N^3))$ .
- $\blacksquare$  circulant embedding  $(\mathcal{O}(N \log N))$  for equispaced grids)
- turning bands method (approximate).

#### Solution: H-matrix accelerated Randomized SVD

■ Randomized range evaluation:

$$\mathbf{Z} = \mathbf{C} \cdot \mathbf{\Omega}$$
 :  $\mathbf{\Omega} \in \mathbb{R}^{N \times r}$  is a random Gaussian matrix.

■ Approximate Square root:

$$Z = QR \rightarrow A = QU\Sigma^{1/2} : U\Sigma U^T = Q^TCQ \in \mathbb{R}^{r \times r}$$
.

- lacktriangle H-matrix matrix product acceleration: lacktriangle lacktriangle lacktriangle
  - ▶ Approximating A in  $\mathcal{O}(r^2 \times N)$  operations.
  - ▶ Matrix-free method with  $\mathcal{O}(r \times N)$  memory footprint.
  - ▶ Handles highly heterogeneous grids more efficiently than standard methods.



### H-matrix accelerated Randomized SVD: time=f(n)





H-Matrices in Sparse Direct Solvers

Low-rank Operations in a Supernodal Solver



## Introduction

#### Collaborators

Gregoire Pichon, Mathieu Faverge, Pierre Ramet, Jean Roman (INRIA) & Eric Darve (Stanford)

Problem: Solve Ax = b where  $A = A^T$  is large and sparse

- Cholesky: factorize  $A = LL^T$  (symmetric pattern for LU)
- Solve Ly = b
- $\blacksquare \text{ Solve } L^T x = y$



### Introduction

#### Collaborators

Gregoire Pichon, Mathieu Faverge, Pierre Ramet, Jean Roman (INRIA) & Eric Darve (Stanford)

## Problem: Solve Ax = b where $A = A^T$ is large and sparse

- Cholesky: factorize  $A = LL^T$  (symmetric pattern for LU)
- Solve Ly = b
- $\blacksquare \text{ Solve } L^T x = y$

#### Solution: Direct Solver

- Expensive with respect to iterative solvers.
- More robust, and allow to tackle hard problems.
- "Fill-ins"  $\Rightarrow$  dense blocks  $\Rightarrow$  high memory consumption.



## Reducing Fill-ins with Nested Dissection

## Objective

■ Reorder *A* to reduce Fill-ins.

#### **Nested Dissection**

■ Associate A as a graph:  $G = (V, E, \sigma_p)$ 

V: vertices, E: edges,  $\sigma_p$ : unknowns permutation

- The Algorithm: (computing  $\sigma_p$ )
  - 1. Partition  $V = A \cup B \cup C$
  - 2. Order C with larger numbers:  $V_A < V_C$  and  $V_B < V_C$
  - 3. Apply the process recursively on A and B



Figure: Three-levels of nested dissection on a regular cube



## Reducing Fill-ins with Nested Dissection

## Symbolic Factorization

- 1. Build a partition with the nested dissection process.
- 2. Compute block elimination tree thanks to the block quotient graph.





## Block-Low-Rank Compression

#### Definition

Block-Low-Rank (BLR) compression of a dense block:

- dividing the block into equally sized sub-blocks.
- replacing each sub-block by a low-rank factorization.

### Current Implementation

- Use BLR representation for large off-diagonal blocks
- Ordering strategy and kernels will form the foundation for future extensions.





## Memory Consumption depending on Tolerance





## Accuracy depending on Tolerance, Blocksize=128





Hierarchical Numerical Techniques Fast Hierarchical Methods for Geostatistics Hierarchical Matrices in Sparse Direct Solvers Hierarchical Multilevel Preconditioning

Hierarchical Multilevel Preconditioning

Spectral Analysis



### Introduction

#### Collaborators

Yuval HARNESS, Emanuel AGULLO, Luc GIRAUD (INRIA) & Eric DARVE (Stanford)

Problem: Solve Ax = b where  $A = A^T > 0$  is **extremely** large and sparse

■ The problem is too big for a direct solver.



#### Introduction

#### Collaborators

Yuval HARNESS, Emanuel AGULLO, Luc GIRAUD (INRIA) & Eric DARVE (Stanford)

Problem: Solve Ax = b where  $A = A^T > 0$  is **extremely** large and sparse

■ The problem is too big for a direct solver.

#### Solution: Algebraic Domain Decomposition

$$A = \begin{pmatrix} A_{l_{1}l_{1}} & & & & A_{l_{1}\Gamma} \\ & A_{l_{2}l_{2}} & & & A_{l_{2}\Gamma} \\ & & \ddots & & \vdots \\ & & & A_{l_{p}l_{p}} & A_{l_{p}\Gamma} \\ \hline A_{\Gamma l_{1}} & A_{\Gamma l_{2}} & \cdots & A_{\Gamma l_{p}} & A_{\Gamma \Gamma} \end{pmatrix}$$

■ Each  $A_{l_i l_i}$  can be inverted in parallel by a direct solver.



## The Schur System

### The (Global) Schur System

$$Ax = \begin{pmatrix} A_{II} & A_{I\Gamma} \\ A_{\Gamma I} & A_{\Gamma\Gamma} \end{pmatrix} \begin{pmatrix} x_I \\ x_{\Gamma} \end{pmatrix} = \begin{pmatrix} b_I \\ b_{\Gamma} \end{pmatrix}$$

- $A_{II} \leftrightarrow$  interior subdomains,  $A_{\Gamma\Gamma} \leftrightarrow$  separators.
- If  $x_{\Gamma}$  is known  $\Rightarrow x_{I} = A_{II}^{-1} (b_{I} A_{I\Gamma} x_{\Gamma})$ .
- The dense Schur system:  $Sx_{\Gamma} = b_{\Gamma}$ ,  $S = A_{\Gamma\Gamma} A_{\Gamma I}A_{II}^{-1}A_{I\Gamma}$ .

## The Schur System

### The (Global) Schur System

$$Ax = \left(\begin{array}{cc} A_{II} & A_{I\Gamma} \\ A_{\Gamma I} & A_{\Gamma \Gamma} \end{array}\right) \left(\begin{array}{c} x_I \\ x_{\Gamma} \end{array}\right) = \left(\begin{array}{c} b_I \\ b_{\Gamma} \end{array}\right)$$

- $A_{II}$   $\leftrightarrow$  interior subdomains,  $A_{\Gamma\Gamma}$   $\leftrightarrow$  separators.
- If  $x_{\Gamma}$  is known  $\Rightarrow x_{I} = A_{II}^{-1} (b_{I} A_{I\Gamma} x_{\Gamma})$ .
- The dense Schur system:  $Sx_{\Gamma} = b_{\Gamma}$ ,  $S = A_{\Gamma\Gamma} A_{\Gamma I}A_{II}^{-1}A_{I\Gamma}$ .

#### Iterative Solution

- $Sx_{\Gamma} = b_{\Gamma}$  is solved iteratively.
- $\blacksquare$   $\kappa(S) < \kappa(A)$ .
- $\blacksquare$  S is never formed, but assembled at each iteration:

$$Sx_{\Gamma} = \sum_{i=1}^{N} R_i^{\mathsf{T}} S_i R_i x_{\Gamma} : R_i : \mathbb{R}^N \to \mathbb{R}^{n_i}$$

■ All the local components,  $\{S_i\}$ , are computed in parallel.



## Hierarchical Matrix Preconditioning

#### Motivation

- Schur system  $\sim$  preconditioning.
- Further preconditioning for Krylov iterations.



## Hierarchical Matrix Preconditioning

#### Motivation

- Schur system  $\sim$  preconditioning.
- Further preconditioning for Krylov iterations.

### Hierarchical Matrix Preconditioning

- Let  $\widehat{S}$  be an H-matrix approximation of  $S = S^T > 0$ .
- The preconditioned system:  $\widehat{S}^{-1/2}S\widehat{S}^{-1/2}y = \widehat{S}^{-1/2}b$ .
- How do we guarantee  $\hat{S}$  is SPD as well?
- Can we estimate/control the condition number?



## Hierarchical Matrix Preconditioning

#### Motivation

- Schur system  $\sim$  preconditioning.
- Further preconditioning for Krylov iterations.

### Hierarchical Matrix Preconditioning

- Let  $\hat{S}$  be an H-matrix approximation of  $S = S^T > 0$ .
- The preconditioned system:  $\widehat{S}^{-1/2}S\widehat{S}^{-1/2}y = \widehat{S}^{-1/2}b$ .
- How do we guarantee  $\hat{S}$  is SPD as well?
- Can we estimate/control the condition number?

#### Notes

- Consider *S* be close to singularity:  $||S|| < \epsilon$ .
- If  $||S \widehat{S}|| \ge \epsilon \Rightarrow \widehat{S}$  can be arbitrarily close to singularity.
- We want  $\hat{S}$  to be inaccurate as possible.



## Objective: estimation of spectral bounds

$$\alpha := \inf_{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^T \widehat{\mathbf{S}} \mathbf{x}}{\mathbf{x}^T \mathbf{S} \mathbf{x}} \,, \quad \beta := \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^T \widehat{\mathbf{S}} \mathbf{x}}{\mathbf{x}^T \mathbf{S} \mathbf{x}} \,.$$

- $\blacksquare \ \alpha > 0 \Leftrightarrow \widehat{S} \text{ is SPD.}$
- $\blacksquare$   $\beta/\alpha$  is the spectral condition number,  $\kappa(\widehat{S}^{-1/2}S\widehat{S}^{-1/2})$ .

## Objective: estimation of spectral bounds

$$\alpha := \inf_{x \neq 0} \frac{x^T \widehat{S} x}{x^T S x} \,, \quad \beta := \sup_{x \neq 0} \frac{x^T \widehat{S} x}{x^T S x} \,.$$

- $\blacksquare \ \alpha > 0 \Leftrightarrow \widehat{S} \text{ is SPD.}$
- $\blacksquare$   $\beta/\alpha$  is the spectral condition number,  $\kappa(\widehat{S}^{-1/2}S\widehat{S}^{-1/2})$ .

#### The Two-Level Problem

$$S = \begin{pmatrix} S_1 & M \\ \hline M^T & S_2 \end{pmatrix}, \quad \widehat{A} = \begin{pmatrix} \widehat{S}_1 & \widehat{M} \\ \hline \widehat{M}^T & \widehat{S}_2 \end{pmatrix},$$

- The matrices S, S<sub>1</sub> and S<sub>2</sub> are SPD.
- The matrices  $\widehat{S}_1$  and  $\widehat{S}_2$  are symmetric as well, and satisfy:

$$\forall x_i \ 0 < \alpha_i \leq \frac{x_i^T \widehat{S}_i x_i}{x_i^T S_i x_i} \leq \beta_i \quad \Leftrightarrow \quad \alpha_i S_i \leq \widehat{S}_i \leq \beta_i S_i.$$



### Assumptions

Let  $\widehat{M}$  be a GSVD truncation of M,

$$\widehat{M} = \widehat{S}_1^{1/2} \widehat{\mathcal{M}} \widehat{S}_2^{1/2} \ : \ \widehat{\mathcal{M}} = \mathcal{U}_{\rho} \Sigma_{\rho} \mathcal{V}_{\rho}^{\mathcal{T}} \approx \mathcal{M} = \widehat{S}_1^{-1/2} M \widehat{S}_2^{-1/2} \,,$$

and assume that 
$$\underline{S} = \left(\begin{array}{c|c} \frac{1}{\beta_1}\widehat{S}_1 & M \\ \hline M^T & \frac{1}{\beta_2}\widehat{S}_2 \end{array}\right) > 0.$$

## Assumptions

Let  $\widehat{M}$  be a GSVD truncation of M,

$$\widehat{M} = \widehat{S}_1^{1/2} \widehat{\mathcal{M}} \widehat{S}_2^{1/2} \ : \ \widehat{\mathcal{M}} = \mathcal{U}_\rho \Sigma_\rho \mathcal{V}_\rho^\mathsf{T} \approx \mathcal{M} = \widehat{S}_1^{-1/2} M \widehat{S}_2^{-1/2} \,,$$

and assume that 
$$\underline{S} = \begin{pmatrix} \frac{1}{\beta_1} \widehat{S}_1 & M \\ M^T & \frac{1}{\beta_2} \widehat{S}_2 \end{pmatrix} > 0.$$

#### Main Result

$$\frac{x^T \widehat{\mathsf{S}} x}{x^T \mathsf{S} x} \leq \max \left\{ \frac{\beta_{\max} - \sqrt{\beta_1 \beta_2} \sigma_1}{1 - \sqrt{\beta_1 \beta_2} \sigma_1} \,,\, \frac{\beta_{\max}}{1 - \sqrt{\beta_1 \beta_2} \sigma_{p+1}} \right\} \geq \beta_{\max} \,,$$

$$\frac{x^T \widehat{\mathsf{S}} x}{x^T \mathsf{S} x} \geq \min \left\{ \frac{\alpha_{\min} - \sqrt{\alpha_1 \alpha_2} \sigma_1}{1 - \sqrt{\alpha_1 \alpha_2} \sigma_1} \,, \, \frac{\alpha_{\min}}{1 + \sqrt{\alpha_1 \alpha_2} \sigma_{p+1}} \right\} \leq \alpha_{\min} \,.$$

The singular value of  $\mathcal{M}$ :  $\sigma_1 \geq \sigma_2 \geq \dots$ 



## Multi-Level Implementation

#### The Multi-Level case

$$\begin{split} \widehat{S} &= \widehat{S}_{1}^{(0)} \,, \quad \widehat{S}_{k}^{(\ell)} &= \left( \begin{array}{c|c} \widehat{S}_{2k-1}^{(\ell+1)} & \widehat{M}_{k}^{(\ell)} \\ \hline \widehat{M}_{k}^{(\ell)^{T}} & \widehat{S}_{2k}^{(\ell+1)} \end{array} \right) \in \mathbb{R}^{n_{k}^{(\ell)} \times n_{k}^{(\ell)}} \,, \\ S &= S_{1}^{(0)} \,, \quad S_{k}^{(\ell)} &= \left( \begin{array}{c|c} S_{2k-1}^{(\ell+1)} & M_{k}^{(\ell)} \\ \hline M_{k}^{(\ell)^{T}} & S_{2k}^{(\ell+1)} \end{array} \right) \in \mathbb{R}^{n_{k}^{(\ell)} \times n_{k}^{(\ell)}} \,, \end{split}$$

#### Recursive Estimation

$$\alpha_k^{(\ell)} = \frac{1 - \sqrt{\frac{\alpha_{k,\max}^{(\ell)}}{\alpha_{k,\min}^{(\ell)}}} \sigma_{k,1}^{(\ell)}}{\frac{1}{\alpha_{k,\min}^{(\ell)}} - \sqrt{\frac{\alpha_{k,\min}^{(\ell)}}{\alpha_{k,\min}^{(\ell)}}} \sigma_{k,1}^{(\ell)}} \leq \frac{1 - \sqrt{\frac{\beta_{k,\min}^{(\ell)}}{\beta_{k,\max}^{(\ell)}}} \sigma_{k,1}^{(\ell)}}{\frac{1}{\beta_{k,\max}^{(\ell)}} - \sqrt{\frac{\beta_{k,\min}^{(\ell)}}{\beta_{k,\max}^{(\ell)}}} \sigma_{k,1}^{(\ell)}} = \beta_k^{(\ell)} \,,$$

 $\text{where } \alpha_{k,\min}^{(\ell)} = \min \Big\{ \alpha_{2k-1}^{(\ell+1)}, \alpha_{2k}^{(\ell+1)} \Big\}, \ \beta_{k,\max}^{(\ell)} = \max \Big\{ \beta_{2k-1}^{(\ell+1)}, \beta_{2k}^{(\ell+1)} \Big\}.$ 



Summary, Conclusions and Future Study



## Summary

- Hierarchical Matrices.
- Applications & Challenges in Computational Linear Algebra.



## Summary

- Hierarchical Matrices.
- Applications & Challenges in Computational Linear Algebra.

### Current Challenges

- Direct Solvers: move from BLR to better compression schemes.
- Preconditioning: Optimal (adaptive) H-matrix preconditioner.
- Main difficulty is to do it in a 'reasonable' complexity.



### Summary

- Hierarchical Matrices.
- Applications & Challenges in Computational Linear Algebra.

### Current Challenges

- Direct Solvers: move from BLR to better compression schemes.
- Preconditioning: Optimal (adaptive) H-matrix preconditioner.
- Main difficulty is to do it in a 'reasonable' complexity.

#### Future Plans

- Exascale simulations.
- More realistic/industrial problems.



### Summary

- Hierarchical Matrices.
- Applications & Challenges in Computational Linear Algebra.

### Current Challenges

- Direct Solvers: move from BLR to better compression schemes.
- Preconditioning: Optimal (adaptive) H-matrix preconditioner.
- Main difficulty is to do it in a 'reasonable' complexity.

#### Future Plans

- Exascale simulations.
- More realistic/industrial problems.

# Thank You

