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The FastLA Associate Team

Fast and Scalable Hierarchical Algorithms for Computational Linear Algebra

Collaboration
B INRIA project-team HiePacs.
B Scientific Computing Group, LBNL.
B Mechanics and Computation Group, Stanford.

Theme
B Study & design hierarchical parallel & scalable numerical techniques.

B Applications: N-body interaction calculations and the solution of large
sparse linear systems.

B Implementation: heterogeneous manycore platforms by using task based
runtime systems.
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Hierarchical Numerical Techniques

Introduction

Motivation

B Problem: solution/factorization of extremeley large dense linear systems:
Ax=0b

B Consider a matrix of dimesnion n x n:
Sparse = O(n) storage units
Dense =  O(n?) storage units

B Memory consumption in the dense case is a major bottleneck in extending
our capability to handle larger and more challenging linear systems.
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Hierarchical Numerical Techniques

Introduction

Motivation

B Problem: solution/factorization of extremeley large dense linear systems:
Ax=0b

B Consider a matrix of dimesnion n x n:
Sparse = O(n) storage units
Dense =  O(n?) storage units

B Memory consumption in the dense case is a major bottleneck in extending
our capability to handle larger and more challenging linear systems.

v

B In typical applications, forming A explicitly is prohibitive.

B Such matrices also emerege while solving large sparse systems.

g
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Hierarchical Numerical Techniques

Hierarchical Matrices

Hierarchical Matrix

B Hierarchical matrix (H-matrix) is a data sparse approximation of a
non-sparse matrix.
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Hierarchical Numerical Techniques

Hierarchical Matrices

Hierarchical Matrix

B Hierarchical matrix (H-matrix) is a data sparse approximation of a
non-sparse matrix.

B Basic principles

1. perform rows and columns permutations

2. replace sub-blocks by low-rank factorizations.
An ~ B A% T k = effective
txs rank
Anterpolation Operator Uis mxk
an mxn sub-block

Vis kxn
m-n > (m+n) k

Interpolation Operator

Ajys is a sub-block of A€ FNXN 3 2 Cc T ={1,2,..., N}.

3. Hierarchical partitioning = almost linear complexity.
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Hierarchical Numerical Techniques

Hierarchical Partitioning

Strong Hierarchical Partitioning

Start Level:
Input Matrix
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Hierarchical Numerical Techniques

chical Partitioning

Strong Hierarchical Partitioning

Level 1:
Partition
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Hierarchical Numerical Techniques

Hierarchical Partitioning

Strong Hierarchical Partitioning

Level 1:
Low-rank
Factorization
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Hierarchical Numerical Techniques

Hierarchical Partitioning

Strong Hierarchical Partitioning

Level 2:
Partition
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Hierarchical Partitioning

Strong Hierarchical Partitioning

Level 2:
Low-rank
Factorization
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Hierarchical Partitioning

Strong Hierarchical Partitioning

Level 3:
Partition
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Hierarchical Partitioning

Strong Hierarchical Partitioning

Level 3:
Low-rank
Factorization
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Hierarchical Numerical Techniques

Hierarchical Partitioning

Strong Hierarchical Partitioning

1 Level 4:
Partition
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Hierarchical Numerical Techniques

Hierarchical Partitioning

Strong Hierarchical Partitioning

1 Level 4:
Low-rank
1 Factorization
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Hierarchical Numerical Techniques

Hierarchical Partitioning

Strong Hierarchical Partitioning

. Level 5:
i Stop
4 Remaining blocks

4 4+ are small enough
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Hierarchical Numerical Techniques

Hierarchical Partitioning

Weak Hierarchical Partitioning

Start Level:
Input Matrix
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Hierarchical Numerical Techniques

Hierarchical Partitioning

Weak Hierarchical Partitioning

Level 1:
Partition

Off-diagonal
blocks are
not low—-rank

= > <

Hierarchical Algorithms for Computational Linear Algebra



Hierarchical Numerical Techniques

Hierarchical Partitioning

Weak Hierarchical Partitioning

Level 2:
Partition

Partition
off-diagonal
blocks of
Level 1
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Hierarchical Partitioning

Weak Hierarchical Partitioning

Level 2:
Low-rank
Factorization
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Hierarchical Partitioning

Weak Hierarchical Partitioning

Level 3:
Partition
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Hierarchical Partitioning

Weak Hierarchical Partitioning

Level 3:
Low-rank
Factorization
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Hierarchical Partitioning

Weak Hierarchical Partitioning

Level 4:
Partition
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Hierarchical Numerical Techniques

Hierarchical Partitioning

Weak Hierarchical Partitioning

Level 4:
low-rank
Factorization
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Hierarchical Numerical Techniques

Hierarchical Partitioning

Weak Hierarchical Partitioning
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Hierarchical Numerical Techniques

Compression, Complexity and Challenges

Matrix Compression
B Essentially H-matrix approximation is a matrix compression method.

B Works well for discretizations of Integral equations and elliptic PDEs.
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Hierarchical Numerical Techniques

Compression, Complexity and Challenges

Matrix Compression
B Essentially H-matrix approximation is a matrix compression method.

B Works well for discretizations of Integral equations and elliptic PDEs.

Complexity of operations

B Complexity of obtaining the hierarchical matrix should be almost linear:
O(Nlog™ N), «ais 'small’

B Arithmetics (+, —, -, inv) should be possible in almost linear complexity.

B Hierarchical techniques a.k.a. Fast hierarchical methods.

l{,m’a_.
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Hierarchical Numerical Techniques

Compression, Complexity and Challenges

Matrix Compression
B Essentially H-matrix approximation is a matrix compression method.

B Works well for discretizations of Integral equations and elliptic PDEs.

Complexity of operations

B Complexity of obtaining the hierarchical matrix should be almost linear:
O(Nlog™ N), «ais 'small’

B Arithmetics (+, —, -, inv) should be possible in almost linear complexity.

B Hierarchical techniques a.k.a. Fast hierarchical methods.

Challenges

B Fast identification & factorization of low-rank structures.

B Prohibitively expensive to form the large dense blocks.

I{m;aﬁ
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Fast Methods for Geostatistics
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Fast Hierarchical Methods for Geostatistics

Introduction

Collaborators

Pierre BLANCHARD, Olivier COULAUD (INRIA) & Eric DARVE (Stanford)

Problem: Generation of Gaussian Random Fields
B Y ~ ;(0,C) is a multivariate Gaussian random field (GRF).

B The covariance C € RM*N can be prescribed as a kernel matrix

C = {k(llxi — Xj||2)}i,j:1...N

» x: large and highly heterogenous 3D grid
» k: correlation kernel such as

kija(r) = et or keo(r) = o2/ (26

B Generating Y requires computing a square root A

C=AA"T = Y=A-X : X~pu(0,ly)
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Fast Hierarchical Methods for Geostatistics

H-matrix accelerated Randomized SVD

Standard Methods: (Often become computationally prohibitive for large N)

B Cholesky (O(N?)).
B circulant embedding (O(N log N) for equispaced grids)
B turning bands method (approximate).
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Fast Hierarchical Methods for Geostatistics

H-matrix accelerated Randomized SVD

Standard Methods: (Often become computationally prohibitive for large N)

B Cholesky (O(N?)).
B circulant embedding (O(N log N) for equispaced grids)

B turning bands method (approximate).

Solution: H-matrix accelerated Randomized SVD

B Randomized range evaluation:

Z=C-Q Q € RV*" is a random Gaussian matrix.

B Approximate Square root:

Z=QR — A=QUXY?.UuUzU"'=Q'cQeR™.

B H-matrix matrix product acceleration: C — C*

» Approximating A in O(r? x N) operations.

» Matrix-free method with O(r x N) memory footprint.

» Handles highly heterogeneous grids more efficiently than standard methods.
.
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Fast Hierarchical Methods for Geostatistics

H-matrix accelerated Randomized SVD: time=f(n)
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Hierarchical Matrices in Sparse Direct Solvers

H-Matrices in Sparse Direct Solvers
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Hierarchical Matrices in Sparse Direct Solvers

Introduction

Collaborators

Gregoire PICHON, Mathieu FAVERGE, Pierre RAMET, Jean ROMAN (INRIA) &
Eric DARVE (Stanford)

Problem: Solve Ax = b where A= AT is large and sparse

B Cholesky: factorize A= LL" (symmetric pattern for LU)
B Solve Ly = b
B Solve L'x=y
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Hierarchical Matrices in Sparse Direct Solvers

Introduction

Collaborators

Gregoire PICHON, Mathieu FAVERGE, Pierre RAMET, Jean ROMAN (INRIA) &
Eric DARVE (Stanford)

Problem: Solve Ax = b where A= AT is large and sparse
B Cholesky: factorize A= LL" (symmetric pattern for LU)
B Solve Ly = b
B Solve L'x=y

Solution: Direct Solver
B Expensive with respect to iterative solvers.
B More robust, and allow to tackle hard problems.

B "Fill-ins”" = dense blocks = high memory consumption.

I brerin—
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Hierarchical Matrices in Sparse Direct Solvers

Reducing Fill-ins with Nested Dissection

Objective
B Reorder A to reduce Fill-ins.

Nested Dissection
B Associate A as a graph: G = (V, E,0p)
V: vertices, E: edges, g,: unknowns permutation

B The Algorithm: (computing o)

1. Partition V=AUBUC
2. Order C with larger numbers: V4 < V¢ and Vg < V¢
3. Apply the process recursively on A and B

|

Figure : Three-levels of nested dissection on a regular cube
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Hierarchical Matrices in Sparse Direct Solvers

Reducing Fill-ins with Nested Dissection

Symbolic Factorization
1. Build a partition with the nested dissection process.

2. Compute block elimination tree thanks to the block quotient graph.

> 5
“Adjacency graph (G):

@
@ ®
@000
(T)

Quotient graph (G*/P)  Elimination tree (T). Factorized matrix (L).
= (@/py
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Hierarchical Matrices in Sparse Direct Solvers

Block-Low-Rank Compression

Definition
Block-Low-Rank (BLR)
compression of a dense block:

B dividing the block into equally
sized sub-blocks.

B replacing each sub-block by a
low-rank factorization.

Current Implementation

B Use BLR representation for
large off-diagonal blocks

B Ordering strategy and kernels
will form the foundation for
future extensions.
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Hierarchical Matrices in Sparse Direct Solvers

Memory Consumption depending on Tolerance

T T T
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Hierarchical Matrices in Sparse Direct Solvers

Accuracy depending on Tolerance, Blocksize=128
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Hierarchical Multilevel Preconditioning
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Hierarchical Multilevel Preconditioning

Introduction

Collaborators

Yuval HARNESS, Emanuel AGULLO, Luc GIRAUD (INRIA) &
Eric DARVE (Stanford)

Problem: Solve Ax = b where A= A" > 0 is extremely large and sparse

B The problem is too big for a direct solver.
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Hierarchical Multilevel Preconditioning

Introduction

Collaborators

Yuval HARNESS, Emanuel AGULLO, Luc GIRAUD (INRIA) &
Eric DARVE (Stanford)

Problem: Solve Ax = b where A= A" > 0 is extremely large and sparse

B The problem is too big for a direct solver.

Solution: Algebraic Domain Decomposition

A’l’l A11F
Apl Apr
A= :
A, | Ar
Ay Ar, oo Arg, ‘ Arr

W Each A;; can be inverted in parallel by a direct solver.

I ézu’a——
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Hierarchical Multilevel Preconditioning

The Schur System

The (Global) Schur System

Ax — A Arr X\ _ by
Ar; Arr Xr br
B A, < interior subdomains, Arr <> separators.

B If xr is known = x; = A,71 (br — Airxr).
B The dense Schur system: Sxr = br, S = Arr — Ar,A,le,r.
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Hierarchical Multilevel Preconditioning

The Schur System

The (Global) Schur System

Ax — A Arr i\ _( b
Ari Arr Xr br
B A < interior subdomains, Arr <> separators.

B If xr is known = x; = A,71 (br — Airxr).
B The dense Schur system: Sxr = br, S = Arr — Ar,AﬁlA,r.

Iterative Solution
B Sxr = br is solved iteratively.
B «(S) < k(A).

B S is never formed, but assembled at each iteration:

S =" R'SiRx : R:R"'—R"

B All the local components, {S;}, are computed in parallel.
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Hierarchical Multilevel Preconditioning

Hierarchical Matrix Preconditioning

Motivation
B Schur system ~ preconditioning.

B Further preconditioning for Krylov iterations.
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Hierarchical Multilevel Preconditioning

Hierarchical Matrix Preconditioning

Motivation
B Schur system ~ preconditioning.

B Further preconditioning for Krylov iterations.

Hierarchical Matrix Preconditioning

B Let S be an H-matrix approximation of S = ST > 0.
B The preconditioned system: 3_1/25§_1/2y =5 1/2p,

B How do we guarantee S is SPD as well?

B Can we estimate/control the condition number?
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Hierarchical Multilevel Preconditioning

Hierarchical Matrix Preconditioning

Motivation
B Schur system ~ preconditioning.

B Further preconditioning for Krylov iterations.

Hierarchical Matrix Preconditioning

B Let S be an H-matrix approximation of S = ST > 0.
B The preconditioned system: 5_1/25§_1/2y =5 1/2p,
B How do we guarantee S is SPD as well?

B Can we estimate/control the condition number?

4

B Consider S be close to singularity: ||S]| < e.

B If |S— S| >e= S can be arbitrarily close to singularity.

B We want S to be inaccurate as possible.

I lrezia—
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Hierarchical Multilevel Preconditioning

Two-Level Analysis

Objective: estimation of spectral bounds

W o>04 SisSPD.
B 3/« is the spectral condition number, k(S~Y/25571/?).
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Hierarchical Multilevel Preconditioning

Two-Level Analysis

Objective: estimation of spectral bounds

xTSx 8 xTSx
o= in = sup ——— .
x#0 XTSx ’ #’3 xT Sx

W o>04 SisSPD.
B (/a is the spectral condition number, 5(5’1/255’1/2).

The Two-Level Problem

S | m ~ S | M
S: A:
(M 52>’ (MT 52>’

M The matrices S, S; and S, are SPD.

B The matrices S; and S, are symmetric as well, and satisfy:

X,-TS,'X,' =

<pBi & oS <S5 <GS

Vx 0<a;<
! "= XI-TS,'X,'

I Crzia—
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Hierarchical Multilevel Preconditioning

Two-Level Analysis

Assumptions

Let M be a GSVD truncation of M,

M=3"2M5Y? + M=uUx,V] ~ M=5"2M5?,

d that S L§1 M >0
and assume a = .
- mMT %52
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Hierarchical Multilevel Preconditi

Two-Level Analysis

Assumptions

Let M be a GSVD truncation of M,

M=3"2M5Y? + M=uUx,V] ~ M=5"2M5?,

15| M
and assume that S = = i > 0.
M ESQ

Main Result

=
XTSX £ e { Bmax — v/ P15201 ’ Brmax } > Bunax
xT Sx 1—/B1B201 1—+/p1B20p11

T
x'Sx > min Qmin — /1201 Qlmin < am

iy = min
xTSx 1— /arazor 1+ Jo1020p41

The singular value of M: g1 > 02 > .. ..
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Hierarchical Multilevel Preconditioning

Multi-Level Implementation

The Multi-Level case

“© _ - (€+1) l+1 _ (€+1) pe+1)
where Qg min — MIN {04, & Bkmax max sz 15 P2k -
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Hierarchical Numerical Techniques
Fast Hierarchical Methods for Geostatistics

Hierarchical Matrices in Sparse Direct Solvers
Hierarchical Multilevel Preconditioning

Summary, Conclusions and Future Study
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Concluding Remarks

Summary
B Hierarchical Matrices.

B Applications & Challenges in Computational Linear Algebra.
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Concluding Remarks

Summary
B Hierarchical Matrices.

B Applications & Challenges in Computational Linear Algebra.

Current Challenges
B Direct Solvers: move from BLR to better compression schemes.

B Preconditioning: Optimal (adaptive) H-matrix preconditioner.

B Main difficulty is to do it in a 'reasonable’ complexity.
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Concluding Remarks

Summary
B Hierarchical Matrices.

B Applications & Challenges in Computational Linear Algebra.

Current Challenges
B Direct Solvers: move from BLR to better compression schemes.
B Preconditioning: Optimal (adaptive) H-matrix preconditioner.

B Main difficulty is to do it in a 'reasonable’ complexity.

Future Plans
B Exascale simulations.

B More realistic/industrial problems.
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Concluding Remarks

Summary
B Hierarchical Matrices.

B Applications & Challenges in Computational Linear Algebra.

Current Challenges
B Direct Solvers: move from BLR to better compression schemes.
B Preconditioning: Optimal (adaptive) H-matrix preconditioner.

B Main difficulty is to do it in a 'reasonable’ complexity.

Future Plans

B Exascale simulations.

B More realistic/industrial problems.

Thank You
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