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Problem statement

I Mobile devices extremely widespread
I . . . containing ever more personal data
I Untrusted applications have access
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Some perspective

An improvement!
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What does this application do?
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And these ones?

[Wei et al., 2012]
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Remark: why focus on privacy?

I Methodology is not limited to privacy preservation
I Previously shown to work for QoS, simulation, etc.

[Gatti, 2014, Bruneau and Consel, 2013]
I Privacy is a relatable motivation, highlighting consequences of design decisions
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Running example: EvilCam!

Running example application.

Supposedly:
I Takes a picture

→ camera permission

I Applies sepia filter
I Displays it to user

I . . . and shows an advert

→ network permission
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Potential data flow

What one hopes:
I camera → screen
I internet → fetch advert
I nothing more.

Reality:
I image → stalker.net and nsa.gov

[Do et al., 2015, Stevens et al., 2012,
Felt et al., 2012]

−̈©
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Challenges

Guarantees:
I Transparency, empowering the end-user
I Containment of data flow
I Conformance of behaviour to specification

Guidance:
I Support for the developer with framework

[Balland and Consel, 2010]
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Related Work

Static program analysis [Liu and Milanova, 2008, Elish et al., 2013, Xiao et al., 2012]
I Prefer to avoid inspecting source code (invasive, copyright)
I Frequently inaccurate, difficult problem [Rountev et al., 2004]
I Limited user transparency
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Related Work

Real-time (remote) taint analysis [Enck et al., 2014]
I Not desirable on mobile devices (limited computational power)
I Lack of developer support
I Privacy concerns!
I Will not scale
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Related Work

Operating system security (capability-based systems)
[Watson et al., 2010, Shapiro et al., 1999, Shapiro et al., 2004]
I Data-flow capabilities only enforced at run-time
I Major changes to existing infrastructure
I Potentially not fine-grained enough (per-app, e.g., Android)
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Related Work

Language-level restrictions

ELib, W7 [Rees, 1995, Miller, 2006]
I Powerful approach, permissions per component baked into language
I Again, low adoption,
I major changes required

DiaSuite [Cassou et al., 2012], created in research team
I Specify app → generate framework
I Minimal infrastructure modification
I Previously mainly for assisted living / home automation
I Only in the context of Java!
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Improving on DiaSuite

I Work builds upon DiaSuite methodology
I No infrastructure changes required
I Promising tailored framework approach

I Rethink the approach, without assumptions
I Delineate then explore the design space
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Major thesis contributions

I Formalisation of key phases of existing DiaSuite methodology
I To reveal design choices
I . . . and design decisions influence behaviour (example is privacy: consequences)
I Identify key concepts. How do they map into PL concepts?

I Generalisation to language-independent methodology
I Explore spectrum of programming languages

I Application to mobile computing domain
I Prototype implementations
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The problem with current declaration approaches

The Android model: permissions

Main ??

Uses
Camera

?

?

?

?

Uses
Network

?

Even with conservative permissions,
behaviour is unpredictable.

The DiaSuite approach:
decomposition+permissions

Camera

Filter picture

WWW access

Fetch
Advert

Compose 
Picture + Advert

Screen

Platform
AppDisplay

(SCC) [Taylor et al., 2009]
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How (existing) DiaSuite methodology works

Application
architect

Tailored
programming

framework

class .... {
..................
..................
..................
} 

Application
developer

DiaSpec
Compiler

<specifies>

<extends>

DiaSpec specification

<implements>

class .... {
..................
..................
..................
} 

<produces>

1

2

3

4

5

Host
Language
Compiler

<produces>

Application

End user
<executes>

[Cassou et al., 2011]
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type system

denotational semantics
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Example of types

Example:
1 (source Camera as PicPic)

2 (context Filter as PicPic

3 [when provided Camera

4 (get nothingnothing)

5 always-publish])

should result in:

1 Camera :: PicPic

2 Filter :: PicPic -> ()() -> PicPic

Camera

Filter picture

WWW access

Fetch
Advert

Compose 
Picture + Advert

Screen

Platform
AppDisplay

Done using PLT Redex [Felleisen et al., 2009]
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DiaSpec recap, types

specification ::= (declaration ...)
declaration ::= (source     X as τ)

 | (action     X as τ)
 | (context    X as τ ctxt-interact)
 | (controller X      ctrl-interact)

τ ::= Bool
 | Int
 | String
 | Picture

ctxt-interact ::= [when provided Y getresource pub]
 | [when required   getresource]

ctrl-interact ::= [when provided Y do Z]
getresource ::= (get nothing)

 | (get Z)
pub ::= always-publish

 | maybe-publish
X, Y, Z ::= variable-not-otherwise-mentioned

Camera

Filter picture

WWW access

Fetch
Advert

Compose 
Picture + Advert

Screen

Platform
AppDisplay

Γ ::= ((X : t) ...)
t ::= (ACT τ)

 | (SRC τ)
 | (CTX-req τ)
 | (CTX-prov τ)
 | (CTRL)

22 / 43
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Type system

I Type system encodes constraints of SCC

unique?⟦X, Γ⟧

⊢⟦Γ, (source X as τ), (SRC τ)⟧
 [intro-src]

unique?⟦X, Γ⟧

⊢⟦Γ, (action X as τ), (ACT τ)⟧
 [intro-act]

Camera

Filter picture

WWW access

Fetch
Advert

Compose 
Picture + Advert

Screen

Platform
AppDisplay

(SRC τ2) = lookup⟦Γ, X2⟧

unique?⟦X1, Γ⟧

⊢⟦Γ, (context X1 as τ1 [when provided X2 (get nothing) _]), (CTX-prov τ1)⟧
 [ctx-onSrc-get-ø]

(CTX-prov τ2) = lookup⟦Γ, X2⟧

(CTX-req τ3) = lookup⟦Γ, X3⟧

unique?⟦X1, Γ⟧

⊢⟦Γ, (context X1 as τ1 [when provided X2 (get X3) _]), (CTX-prov τ1)⟧
 [ctx-onCtx-get-ctx]
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A note on stages

Practical question: when do we implement checks?

Publication and types Resource access
Compile-time static fn types no invalid-access crash

(no examples!)
Run-time contracts, guards more accuracy: e.g., address book

entries (Android, iOS, . . . )
both feasible depends!

Note: choice need not be global.

Especially resource access is an important decision. See Ch. 7.2.
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Semantics

I Requirement: Decouple approach from Java implementation
I Requirement: Clarify where choice can be made for static/dynamic checks
I Translation from DiaSpec → simply-typed lambda calculus
I Using STLC, encode the shape of the framework (intermediate language for

compiler back-end)

25 / 43
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Semantics

J(source X as τ)Keval  (λ() { }? ) :: JτKtype

J(context X as τ [when provided X2 get pub])Keval
 

(λ(x2 :: JX2Ktype , x3 :: JgetKget) { }? ) :: Jpub, τKpub

J(get nothing)Kget  NULL

J(get Y )Kget  (NULL→ JY Ktype)
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Example for Camera and Filter

J(source Camera as Pic)Keval  (λ() { }? ) :: JPicKtype

J(context Filter as Pic
[when provided Camera
(get nothing) always-publish])Keval
 

(λ(x2 :: JPicKtype , x3 :: ()) { }? ) :: JPicKtype

Note: important choice here regarding static/dynamic enforcing!
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Implementation

I We want to explore the spectrum of programming paradigms
I Investigate checks at different stages (compile-time, run-time, . . . )
I Statically typed, dynamically typed

I Racket is a good language-experimentation tool
I DSL experimentation
I contract library
I advanced module system
I versatile: static/dynamic typing, OO, FP, . . .
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Contributions in this section

I Showing that methodology generalises; discovering design possibilities
I Framework design as language generation (#lang)

I An aside: frameworks need not only be an OO phenomenon
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Racket prototype architecture

31 / 43



Introduction Methodology Formalisation Implementation Conclusions

Racket prototype architecture

31 / 43



Introduction Methodology Formalisation Implementation Conclusions

Racket prototype architecture

31 / 43



Introduction Methodology Formalisation Implementation Conclusions

Application specification

I Example from the point of view of the application developer

1 #lang s-exp "framework.rkt"

2 ;;; Specifications file, webcamspec.rkt

3

4 (define-source Camera Picture) ; built-in

5

6 (define-context Filter ; name

7 Picture ; return type

8 [when-provided Camera]) ; subscribed to

9 ;; ...

32 / 43
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Application implementation

The developer does the following:
1 ;;; Implementation file, webcamimpl.rkt

2 #lang s-exp "webcamspec.rkt"

3 (implement Filter

4 (lambda (pic)

5 (let* ([canvas (make-bitmap pic ..)])

6 ; ... process the picture

7 canvas)))

8 ;; ...

But what about conformance? Are other components in scope? Are the types correct?
When should we actually check?

33 / 43
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Separation into submodules

Compartmentalise with lexical scoping: C and D cannot communicate.

webcamimpl.rkt

#lang "webcamspec.rkt"
(implement C f)
(implement D g)
...

[webcamimpl.rkt]

(module C-module 
  (define C-impl f)
  (provide C-impl))
(module D-module
  (define D-impl g)
  (provide D-impl))
...

{evaluated}

34 / 43
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Implementation

So, the implement transformer expands to:

1 (module webcamimpl "webcamspec.rkt"

2 (module Filter-module racket/guiracket/gui

3 (define/contract Filter-impl

4 (-> bitmap%? bitmap%?)(-> bitmap%? bitmap%?)

5 ;; lambda-term from previous step

6 )

7 (provide Filter-impl))

8 ...)

1 (module webcamimpl "webcamspec.rkt"

2 (module Filter-module typed/rackettyped/racket

3 (: Filter-impl (-> Bitmap Bitmap)(-> Bitmap Bitmap))

4 (define Filter-impl

5 ;; lambda-term from previous step

6 )

7 (provide Filter-impl))

8 ...)

The generated webcamspec language also
I checks that all defines have implements
I and provides run

35 / 43
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Evaluation

I Transparency: allow end-user to make an informed decision
I Finer-grained specifications

I Containment: predict where data can end up, what it will be used for
I Framework controls data flow and separates into submodules

I Conformance: ensure that the behaviour of the application corresponds to the
specification (Ch. 4.4)

I Developer can only provide a valid snippet of code (contract or type checking)
I Support: help the developer as much as possible

I Warnings given if application does not conform
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Limitations: Reflection

I Reflection (and eval in Racket) would allow circumventing access control

I Example:
1 (eval ’(begin (require net/http-client)

2 (define-values (status header response)

3 (http-sendrecv "www.google.com" "/" #:ssl? ’tls))

4 ...))

I Luckily, easy to disable
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Limitations: safe module import

Lack of safe module importing
I Importing common module would allow communication
I E.g., context A and B import M, then write to M.var1
I Must be solved by run-time / OS (see ELib [Miller, 2006])

38 / 43



Introduction Methodology Formalisation Implementation Conclusions

Lessons learnt

I Static types are unnecessary [Cassou, 2011]
I E.g., compile-time resource management in dynamic language is feasible

I In fact, methodology is paradigm-independent [van der Walt et al., 2015]
I Only requirement is pre-run-time stage (Ch. 7.2 §3)

I Examples include type system, macro stage, external compiler, . . .
I Choosing the right stage to implement a check is crucial (Ch. 7.2 §2)
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Summary

I Open platforms are in widespread use
I Concerning privacy, current approaches fall short

I Require major infrastructure changes
I Do not provide insight to end-user

I Methodology is applicable to wide spectrum of programming languages
I Rich specifications enable improved guarantees and guidance

(illustrated with privacy)
I Methodology is applicable to diverse application domains

(not only home automation w/ sensors)
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Major thesis contributions

I Formalisation of key phases of existing DiaSuite methodology
I Requirements for open platforms
I Type system for specifications
I Denotational semantics for specification terms

I Generalisation to wide spectrum of languages
I Only pre-run-time stage necessary [van der Walt et al., 2015]

I Prototype implementations [van der Walt, 2015]
I Qualitative evaluation according to Requirements

I Application to mobile computing domain
I Addressing major, widespread privacy concern
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Perspectives

I User acceptability study [Felt et al., 2012]
I Improved run-time support (borrow from capability-based systems)
I Specifications drive static analysis [Hallett and Aspinall, 2014]
I Fully formally verified implementation (Coq, Agda, . . . )
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