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Abstract

The long time behavior of an absorbed Markov process is well described by the
limiting distribution of the process conditioned to not be killed when it is observed.
Our aim is to give an approximation’s method of this limit, when the process is a 1-
dimensional It6 diffusion whose drift is allowed to explode at the boundary. In a first
step, we show how to restrict the study to the case of a diffusion with values in a bounded
interval and whose drift is bounded. In a second step, we show an approximation
method of the limiting conditional distribution of such diffusions, based on a Fleming-
Viot type interacting particle system. We end the paper with two numerical applications
: to the logistic Feller diffusion and to the Wright-Fisher diffusion with values in ]0,1]
conditioned to be killed at 0.
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1 Introduction
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Let (X}) be a killed Markov process with law P, taking its values in E'U {0}, where 0 is a
cemetery point. We denote by 75 = inf{t > 0, X; = 9} the killing time of (X;). A probability
measure v on F is called a quasi-stationary distribution (QSD) if, for all ¢ > 0, the
distribution of the process X, initially distributed with respect to v and conditioned to be
not killed before time ¢, is still v at time ¢, that is P, (X; € A|my > t) = v(A) for every
A C E and t > 0. Without loss of generality, we suppose that 0 is an absorbing point, so
that {9 >t} = {X; # 0}.

Let u be a probability measure on E. If it exists and provided it is a probability, the
limiting conditional distribution
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is called the Yaglom limit for u, from the Russian Mathematician A.M. Yaglom. He showed
in [27] that the limiting conditional distribution of the number of descendants in the n"
generation of a Galton-Watson process always exists in the subcritical case.

The existence or uniqueness of such invariant conditional distributions have been proved
in a host of contexts. When E is finite, it is proved in [7] that there exists a unique QSD
v and that the Yaglom limit converges to v independently of the initial distribution. In [4],
the case of a birth and death process on N is studied. For this process, the set of QSDs is
either empty, or a singleton, or a continuum indexed by a real parameter and given by an
explicit recursive formula. This is an exception : most of the known results on QSDs are
related with existence or uniqueness problems. In [11], the existence of a quasi-stationary
distribution for a continuous time Markov chain on N Kkilled at 0 is proved under conditions
on moments of the killing time, using an original renewal dynamical approach. In [6], the
case of 1-dimensional diffusion on [0, 4 oo with C* drift and killed at 0 are studied, with the
assumption that +oo is a natural boundary. The dependence between the initial measure
and the Yaglom limit is explored in [19] (for a Brownian motion with constant drift killed at
0) and [18] (for the Orstein-Uhlenbeck process killed at 0). In |26], the case of 1-dimensional
diffusions with general killing on the interior of a given interval is investigated. In [3], the
authors study the existence and uniqueness of the QSD for 1-dimensional diffusions killed at
0 and whose drift is allowed to explode at the boundary, which is the case under study in the
present paper. See [23] for a regularly updated extensive bibliography on QSD.

In this paper we are concerned with 1-dimensional It6 diffusions with values in ]0, +
oo[U{d} killed at 0 and defined by the stochastic differential equation

dXt = dBt — (J(Xt)dt, XQ =T > O,

where B is a standard 1-dimensional Brownian motion and ¢ € C*(]0, + oo[). In [3], the
Yaglom limit of this process is studied and the authors give some conditions on the drift ¢,
which are sufficient for the existence and the uniqueness of the QSD. In particular, they allow
the drift to explode at the origin. As explained in the paper, this diffusion is closely related
with some Markov mortality models. Such applications need the computation of the process
QSD, but the tools used in [3] are based on spectral theory’s arguments and don’t allow us
to get explicit values. Our aim is to give an easily simulable approximation’s method of this
QSD.

The problem of QSD’s approximation has been already explored in [2], |12] when E is
a bounded open set of R? and X is a Brownian motion killed at the boundary of E. The
authors proved an approximation’s method exposed in [1], which is based on a Fleming-
Viot type system of interacting particles whose number is going to infinity. In [10], it is
proved that this method works well for a continuous time Markov chain in a countable
state space under suitable assumption on the transition’s rates (moreover, the existence of
a QSD is a consequence of the approximation’s method). New difficulties arise from our
case with unbounded drift. For instance, the interacting particle process introduced in [1]
isn’t necessarily well defined. To avoid this difficulty, we begin by proving that one can
approximate our QSD by the QSD’s of diffusions with bounded drifts.



Let us denote by P¢ the law of a diffusion with values in Je,1/¢[, defined by the stochastic
differential equation dX; = dB; — q(X;)dt and killed when it hits € or 1/e. In [22], it is proved
that the Yaglom limit associated with [P¢ exists and is its unique QSD. We will denote it by
ve. In the first part of this paper, we give some conditions on ¢ € C'(]0, + oo[) for the family
(1/6)0<6§1/2 to be tight and to converge, when ¢ — 0, to a QSD for the law P°. We point
out the fact that this result remains valid in the case of an unbounded drift diffusion with
values in a bounded interval. In a second part, we prove an approximation method for each
probability measure v, based on the interacting process introduced in [1]. Fix € > 0 and let
us describe the interacting particle process of size N > 2: each particle moves independently
in Je,1/¢[, each one with law P until one of them hits the boundary. At this time, the killed
particle jumps on the position of an other particle, chosen uniformly between the N — 1
remaining one. Then the particles evolve independently, until one of them is killed and so on
(see Figure[l). One has to prove that the particles don’t degenerate at the boundary. In |2],

T1 T2 T3 T4

Figure 1: The interacting particle system (X!, X?)

the authors prove a non-degeneracy result with arguments based on a construction of the d-
dimensional Brownian motion due to Ito, where d > 2. It seems that this tool can’t be easily
generalized to other diffusions. To prove such results under our settings, we build an original
coupling between the interacting particle process and an independent particle system of the
same size. This coupling is valid for all drifted Brownian motions with continuous bounded
drift, killed at the boundary of a bounded interval of R,. It will be used in each step of the
proof.

We conclude the paper by two numerical applications. At first, we treat the case of the
logistic Feller diffusion introduced in [17] and studied in [3] with values in ]0, + oo[, driven
by the stochastic differential equation

dZ, = \/Z:dB, + (rZ, — cZ2)dt, Zy = z > 0,
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where B is a 1-dimensional Brownian motion and r, ¢ are two positive constants. Clearly, 0
is an absorbing state for this diffusion. In a second time we study in detail the case of the
Wright-Fisher diffusion on ]0,1[ conditioned to be killed at 1 (see [13]). This diffusion takes
values in |0,1[, and is defined by

dZt = 1/ Zt(l — Zt)dBt + (1 — Zt)dt, Z() =z 6]0,1[,

where B is a 1-dimensional Brownian motion. This diffusion is absorbed at 1.

2 From unbounded drift to bounded drift

Let P2 be the law of a diffusion process taking its values in ]0, + oo[U{0}, killed when it hits
0 and defined by the stochastic differential equation (SDE)

dXt = dBt — (J(Xt)dt, XQ =T > O,

where B is a 1-dimensional Brownian motion. The drift ¢ is taken in the set of real valued
continuously differentiable functions C*(]0,+o00[). We denote by L° the infinitesimal generator
associated with PO,

We define, Va €]0, + oo,

Qr) = / ")y,

dp(z) = e 29@ g,
and
W(z) = q(z)* — ¢'(2).
For all € €]0,1/2[, we define P¢ as the law of the diffusion taking its values in |e,1/€],

defined by the SDE
dX; = dB; — q(X;)dt, Xo = x €]e,1 /€]

and killed when it hits the boundary {€,1/€}. Let L€ be the infinitesimal generator 1/2A —¢V
with the Dirichlet boundary condition on {¢,1/€}. —L¢ has a simple real eigenvalue \. (see
[22, Theorem KR]) at the bottom of its spectrum. The corresponding eigenfunction 7. is
positive and belongs to C?([¢,1/€]). We choose it so that

1/e
/ ne(e)dp(a) = 1. 1)

Let us recall some results of [22]:

Theorem (Pinsky (1985)) The Yaglom limit associated with P exists for all initial dis-
tributions 0., x €le,1/€[, and doesn’t depend on x. This limit is a QSD, which we denote by
Ve. Furthermore, we have

ne(z)du(x)

dve(z) = —7- )
o JY ne(@)dux)

(2)



In fact, v, is the unique QSD of the process, as proved in Lemma [I9 below, but we won'’t use
it in this section. The aim of this section is to study the asymptotic behaviour of (v.) when
e goes to 0.

From now, M;(]0, + oo|) denotes the space of probability measures on |0, + o[ equipped
with the weak topology. The following hypotheses arise naturally in the proof of Theorem [I],
which is based on a compactness-uniqueness method.

Hypothesis 1 (H1) W is bounded below by —C, where C' is a positive constant. Moreover,
W(x) — 400 when & — oo.

Hypothesis 2 (H2)

400 1 1
—20@) gy < d/ dx) < 400.
/1 e r < +o00 an i W(x)+C’+1’u( r) < 400

Hypothesis 3 (H3)

+00 1
/ e 2@y < 400 and / e 9@ dr < +oo.
1 0

Theorem 1 Assume that hypotheses (H1) and (H2 or H3) are satisfied. Then

ve—v € M;(]0, + o<f),

e—0

where v is a QSD for P°, which is equal to the Yaglom limit lim;_ . P2(X; € .|t < 75),
Vz €0, + oof.

Remark 1 The hypotheses (H1) and (H2 or H3) are the assumptions that are made in [3]
to prove the existence of the Yaglom limit.

Remark 2 If a process satisfies the hypotheses of Theorem [I], then it is killed in finite time
a.s or it is never killed a.s. Indeed, assume that the process can be killed in finite time with a
positive probability. Then flo Q@) ([ e~ QW dy) do < +oo (see [14]) and [;™ e¥@dr = +o00
(as a consequence of (H1) and (H2 or H3)). But this two conditions are fulfilled if and only
if the process is killed in finite time almost surely (see |14, Theorem 3.2 p.450]).

Remark 3 The existence of a QSD for P can be seen as a consequence of Theorem [Il The
existence of the Yaglom limit is proved in |3, Theorem 5.2].

Remark 4 In Part 2.3 we give the counterpart of Theorem [ for diffusions with values in a
bounded interval.

The end of the section is devoted to the proof of Theorem [I]



2.1 Tightness of the family (v)o<c<1/2

This part is devoted to the proof of the following result,

Proposition 2 Assume that the hypotheses (H1) and (H2 or HS3) are satisfied. Then the
Jamily (ve)o<e<1/2 is tight. Moreover, every limit point is absolutely continuous with respect
to the Lebesgue measure.

We know that Ln. = —Am., n. € C*([e,1/¢]), and . satisfies the differential equation

1/2n¢(z) = q(@)e(x) = =Acne(x)

with the boundary conditions
ne(€) = ne(1/e) =0.
Define v, = n.e~?. By (@), we know that:

1/e
/ ve(x)dr = 1.

We have
ve(2)W () — vl (2) = 2Acve(),

with the boundary conditions
ve(e) = v(1/€) = 0. (3)

Lemma 3 Assume that the hypothesis (H1) is fulfilled. Then (ve)o<e<1/2 is uniformly bounded
above and the family (vZ(x)dx)ocecr /2 is tight.

Proof of Lemmald : From the differential equation satisfied by v,, we have
ve(2)*W (2) — v (2)ve() = 2A v (2)2

€

Integrating by parts and looking at the boundary conditions (3]),

1/e 1/e
/ v (x)ve(x)dr = —/ v (7)*dz,

where v, is normalized in L?(dx). That implies

1/e 1/e
/ v (x)?dx —I—/ ve(x)*W(2)dr = 2.
The eigenvalue A, of —L¢ is given by (see for instance [28, chapter XI, part 8))

A\ = inf L. 0),,
¢€Cé’°(]6,1/e[)( a2l
= inf : (L°3,0),, (4)

1
¢eC5° (Je,1/€]

6



where C§° (Je,1/¢[) is the vector space of infinitely differentiable functions with compact sup-
port in ]e 1/€[ and (f,9), = +°° f(u)g(u)dp(u). We deduce from it that A, increases with e
and is uniformly bounded above by Ai/s.

We have then

1/e 1/e
0< / ol (2)2d +/ 0 (£) (W () + C + Dda < 20 o+ C + 1. (5)
Looking at the boundary conditions (B]), we obtain, for all x €le,1/¢|,

1/e
) = 2 / o () ve()dy

2 €
< - vl (y)ve W(y) + C + 1dy.
S /IOl (y)ve(y) VW (y) y

Then, applying the Cauchy-Schwarz inequality to the right term above,

2 < / y)2d / y)+C+1
UE(x) B mlnxl/e[m\/ y\/ )

From (&), the integral product is bounded by 2X;/, + C' + 1, thus 3A > 0, independent from
€, such that

A
min[x,l/e[ \/ W+C+1

< 6
T MmN 4o \/W+C'+ ()

where W(z) + C + 1 > 1 for all x €]0, 4+ oo[, thanks to Hypothesis (H1). That implies the
first part of Lemma [3
Let us prove that the family (v2dx)o<c<1/2 s tight. Fix § > 0. We have to find a compact

subset K3 in |0, + oo[ such that
/ v (x)dr < 6, (7)
J0,4+00[\K5
for all € €]0,1/2[. Thanks to (@), we have v? < A, then

§/(2A)
/ v? < §/2.
0

From the second part of Hypothesis (H1), 3M;s > 0 such that W(z)+C+1 > 22A+C+1)/¢
for all x > Mjs. That implies

oo, Ve o L6(W(x)+C+1)
AL; ve(x)*dx < /6 ve(x) 2T CTD) dx

vi(z) <

< 4/2,
where the last inequality is due to (B). Finally, the compact set Ks = [0/(2A),Ms] satisfies

@. o



Lemma 4 Assume that (H1) is satisfied. Then f Ne(y)du(y) is uniformly bounded below
by a constant B > 0.

Proof of Lemma [ : Assume that f Ne(y)dp(y) isn’t uniformly bounded below : one can
find a sub-sequence Lk/ " e, (y)e CWdy = fl/e" Ne,(y)du(y), where € — 0, which tends to

0. From Lemma B (v¢)o<e<i/2 is uniformly bounded, so that fei/g’“ v, ()2 CWdy — 0. The
family (v (z)?dz) being tight, one can find (after extracting a sub-sequence) a positive map
m such that, for all continuous and bounded ¢ : R, — R,

1/ex +o0
[ vatwotay / m(y)o(y)dy. ®)

Indeed, (v?) being uniformly bounded, all limit measure is absolutely continuous with respect
to the Lebesgue measure. In particular,

1/ek +o0
/ v, () min (e~ dyH/ )min (e~%®) 1)dy,

€k
then
+oo
/ m(y) min (e"9W 1)dy = 0.
0

But min (e‘Q('),l) is continuous and positive on R, , so that m vanishes almost every where.
Finally, by the convergence property (8) applied to ¢ equal to 1 almost everywhere, we have

l/ek
1= / U?kdx — 0,

€k
what is absurd. Thus, one can define B = inf, f:/e ne(y)du(y)/A > 0. O

Lemma 5 Assume that (H1) and (H2) are satisfied. Then the family (ne(x)dp(x))oce<t /2 S
tight.

Proof of Lemmal[d : By (Bl), we have

1/e 1/e
[ @@ e ndut) = [ R0V )+ C+ 1)y

For all 9, M > 0, using Cauchy-Schwarz inequality, we get on one hand

[t < ([ nwrove + e+ i) ) ([ o raryin >)é )

(A1/2+C+1%( md ())2. (10)

IA
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On the other hand,

/]\;wm(y)du(y) < (/A;mnf(y)du(y))%(/A:mdu(y))% (11)
< ([ aw) az

Thanks to (H2), both terms are going to 0 uniformly in €, when ¢ and M tend respectively
to 0 and 4-00. As a consequence, the family (1.(x)dpu(x))oce</2 is tight. O

Lemma 6 Assume that (H1) and (H3) hold. Then the family (ne(z)dp(x))oce<1/2 is tight.

Proof of Lemmal@ : The first part of the hypothesis (H3) is the same as (H2)’s one, then

+oo
/ ne(y)duly) — 0
M
when M goes to infinity, uniformly in e.

Moreover, there exists a constant K > 0 such that, for any x €]0,1] and any € €]0,1/2],

ne(z) < KzeQ®.

This is a consequence of [3, Proposition 4.3] whose proof is still available under our settings.
This inequality allows us to conclude the proof of Lemma [6. O

Thanks to equality ([2) and Lemmas @l [ and [6, the first part of Proposition [2]is proved.
Moreover, v, has a density with respect to the Lebesgue measure which is bounded on every
compact set, uniformly in € > 0. Thus every limit point is absolutely continuous with respect
to the Lebesgue measure.

2.2 The limit points of the family (v)j<c<1/2

Proposition 7 Assume that Hypotheses (H1) and (H2 or H3) are fulfilled and let v be a
probability measure which is the limit of a sub-sequence (v, )ren, where € — 0 when k — o0.
Then v is a QSD with respect to P°.

Proof of Proposition [ : From Proposition [, the family (v¢)oceci1/2 is tight. Let v be a
limit point of the family (v¢)o<e<1/2. There exists a sub-sequence (v, ), which converges to v,
where (€ )ren is a decreasing sequence which tends to 0. We already know that v is absolutely
continuous with respect to the Lebesgue measure. That implies that, for all open intervals
D =|c,d[C Ry,

v (D) = (D), (13)

and, for all bounded maps ¢ continuous on R, ,
¢(x)dve,(x) — | p(x)dv(z). (14)
R, R,
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Let v (resp. ve;) be the distribution at time ¢ of a diffusion with law P9 (resp. P, ),
conditioned to be not killed until time ¢, that is

vi(dx) = PO(w; € dx|Ts > t)
and
Ver(da) =P, (wy € da|mg > 1)

The probability measure v, being a QSD for P, we have v.; = v, for all £ > 0. We want to
show that v = 1, for all ¢ > 0, we have then to prove the following convergence result:

¥t > 0, VD =]e,d[C Ry, ve, (D) — (D). (15)

k—-+o0

Indeed, suppose that (I5]) holds, then on the one hand, v, (D) = v, +(D) — 14(D). In the
other hand v, (D) — v(D). We have then 14(]c,d[) = v(Jc,d]), V]e,d[C Ry and this conclude
the proof of Proposition [7

Let us prove (IH). By definition,

‘/ifkvl/Ek[P;k (we € D)dyfk (z)
Jiﬁk,l/ék[ng(Ta > t)dVEk (SL’) .

Vet (D) =
The numerator is equal to

/ Pk (wy € D)dve, () = / PO (w, € D)dv,, (x)
lews1/ex]

lek,1/ex[

+/ [P (w; € D) — PY(w; € D)] due, (2)
lew,1/exl

For all ¢t > 0, the map x — P%(w; € D) is continuous and bounded, then, by the convergence
property (I4),

/ PY(w; € D)dv,, (x) — PY(w; € D)dv(x),
lew,1/ex]

]0,00]

Assume that (H2) is fulfilled, then, similarly to (@) and (II), we have, for all bounded
continuous functions f :]0, + oo[— R and all M > 0,

+oo

M M

()1, () dpi(z) < ( / @) du(fﬂ))% |

and, for all m > 0,

Jun

/Om F(@)ne, (@)dp(z) < (M2 +C+ 1)% (/Om W(xU)C(_f)(‘j n 1d,u(:c)> :
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Replacing f(z) by P(w; € D) — P%*(w; € D), which is decreasing to 0 when k& — oo, and by
monotone convergence theorem, we have

/]O [ [P (wy € D) — P)(w; € D)] dve,(z) — 0

k—+4o00

and
/ [P (wy € D) — PY(w; € D)) dve, (x) — 0.
| M ,+o0]

k—-+o00

Finally, the density of v,, being bounded above in every compact set [m,M], uniformly in e,
the same argument of monotone convergence gives us

k—+o00

/ [P (w;, € D) — P*(w; € D)] dve, () — O.
lew,1/ €kl
With similar arguments, the same holds under (H3). Finally, we obtain

/ P*(w; € D)dve, (x) — P%(w; € D)dv(x).
lew,1/ex[ 10,+00]

Thanks to [3, Lemma 5.3 and Theorem 2.3], the map x — P%(15 > t) = PY(w; €]0, + 00])
is continuous, and P%(ry > t) — P% (75 > t) is increasing to 0 when & — oo. Thus the
denominator can be treated in the same way. O

We can now conclude the proof of Theorem [Ik

Proposition 8 Assume that (H1) and (H2 or H3) hold. The limit measure v in the state-
ment of Proposition[7 is unique. Moreover v is the Yaglom limit associated with P2, Vx €
0, + oof.

Proof of Proposition[§ : The proof of Proposition [7l implies that
P (15 > t):;PS(Ta > ), Vt > 0.
The probability measure v, being a QSD for P, we have
P (19 > t) = e, Vit > 0.

Thanks to ), A is decreasing to Ao = infyeceo o, 100]) (L°,¢), when e goes to 0. As a
consequence,
PO (19 > t) = e Vit > 0.

In this case, the density of v with respect to du is an eigenfunction of L° with eigenvalue
—Xo < 0, where (L°)* is the adjoint operator of LY (this is a consequence of the spectral
decomposition proved in [3, Theorem 3.2]). As defined, —\¢ is at the bottom of the spectrum
of (L°)*. Thanks to [3, Theorem 3.2], this eigenvalue is simple. Moreover, [3, Theorem 5.2]
states that this QSD is equal to lim, ., P%(X; € .|79 > t), what concludes the proof. O
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2.3 Diffusions with values in a bounded interval

Theorem [l is stated for 1-dimensional diffusions with values in |0, + co[. However, most of
the proofs can be easily adapted to diffusions with values in a bounded interval |a,b[, where
—00 < a < b < +00, defined by the SDE

dX; = dB; — q(X3)dt, Xo = x €]a,b|,

and killed when it hits a or b. Here B is a standard Brownian motion and q € C*(Ja,b|).
More precisely, let us denote by P° the law of such a diffusion. For each ¢ > 0, define P¢
as the law of a diffusion with values in ]Ja + €,b — €[, driven by the SDE

dXt = dBt — q(Xt)dt, X() =X G]a + E,b - E[,

and killed when it hits a+¢€ or b—e. As proved in [22], there exists a unique QSD v, associated
with Pe.

We define Q(x) = f(i+b)/2 q(y)dy and W (z) = q(z)? — ¢'(z). The counterpart of Theorem
[ under these settings is

Theorem 9 Assume that the following hypotheses are fulfilled:

Hypothesis 4 (HH1) W is uniformly bounded below by —C', where C' is a positive con-
stant.

Hypothesis 5 (HH2) z+— e 2@ or 1+ (z —a)e”9® is integrable on a neigh-

1
(x)+C+1
bourhood of a.

Hypothesis 6 (HH3) x — me_w(w) or x +— (b—x)e” @ s integrable on a neigh-
bourhood of b.

Then the family of QSD (v.) is tight as family of measures on |a,b[. Moreover, every limit
point of the family (Ve)o<e<i/2 s a QSD for PP.

Remark 5 Our aim isn’t to develop this part, but we point out that to show that Proposition
remains valid, most of the arguments used to prove the key results |3, Theorem 3.2] and
[3, Theorem 5.2] can be adapted to these settings.

3 Approximation of v., QSD for P*

We are interested in proving an approximation method for the QSD associated with P¢. It
will be sufficient to prove it for any diffusion (X}) taking its values in |0,1[ in place of ]e,1 /€],
defined by the stochastic differential equation (SDE)

dXt = dBt — Q(Xt)dt, X() =T > 0, (16)
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and killed when X; hits the boundary {0,1}. Here B is a real Brownian motion and ¢ €
C*(]0,1]). The law of X will be denoted by P.

From [22], the QSD of X is unique and equals the Yaglom limit. It will be denoted by v.
For notational convenience, new notations have been defined for this section, which is totally
independent of the previous one.

Fix N > 2 and let us define formally the interacting particle process with N parti-
cles described in the introduction. Let B',....BY be N independent Brownian motions and
(X¢,...,.XY) €]0,1[Y be the starting point of the process.

e Foreach i € {1,...,N}, the particle X evolves in |0,1[ and satisfies the SDE d X} = dB; —
q(X})dt (and then it is independent of the others) until 7{ = inf{t > 0, X =0 or 1}.

e At time 7, = min{7},...,75 }, the path of a particle, denoted by 7; (it is unique), has a
left limit equal to 0 or 1.

e A particle j; is chosen in {1,....N} \ {i;}. The particle ¢; jumps on the position of the
particle ji: we set X! 1= XJ1.

e After time 71, each particle X’ evolves in ]0,1[ with respect to the SDE dX} = dB;} —
q(X})dt until 75 = inf{t > 7, X;_ = 0or 1}. At time 7, all the particles are in |0,1],
so that we have 73 > 7 for all i € {1,...,N} almost surely.

e At time 7, = min{7},....,7" } (which is then strictly bigger than 7;), a unique particle i,
has a path whose left limit is equal to 0 or 1.

e A particle j5 is chosen in {1,...,N} \ {i2}. The particle i3 jumps on the position of the
particle jo: we set X2 := X72.

e After time 75, the particles evolve independently from each other and so on.

Following this way, we define the strictly increasing sequence of stopping times 0 < 7 <
Ty < T3 < ..., the time 7., = lim,, ., 7, and the interacting particle system (X},... X}) for
all t € [0,7o]. The law of (X'....X") will be denoted by P?P.

We can now state the main result of this section:

Theorem 10 (X1!,... XN) is well defined, that means 7., = +oo almost surely. It is geomet-
rically ergodic, with unique stationary distribution MY .

Let XN be the empirical stationary measure of the interacting particle process with N
particles, that is the empirical measure of a random vector (x',....z™) €]0,1[~ distributed with
respect to the stationary measure MY of the process (X*,..,X"N). The sequence of random
measures (X™V) sy converges in law to the deterministic measure v, QSD of the process X.

Subsection B.1] is devoted to prove a coupling which ensures the non-degeneracy of the
particles at the boundary. A consequence will be that 7., = +00 almost surely. In Subsection
8.2 the process is studied in finite time. We prove that the empirical measure of the process
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(X1,..., XN) at time ¢ converges, when N goes to infinity, to the distribution of X; conditioned
to not be killed until time ¢, which is P, (X; € .| X} # 0) (no denotes the limit of the empirical
measure of the process at time 0). We prove in Subsection 3.3 that the interacting particle
system (X1,....X") is geometrically ergodic. We conclude by showing the convergence of the
empirical stationary measure to the QSD v.

3.1 Existence and non-degeneracy at the boundary

One of the most important fact when studying the interacting particle system is that the
particles don’t degenerate at the boundary. This is an evidence if the particles are inde-
pendent. In our case, we will prove a coupling between (X1!,..., X") and an other process
(Y., YY) whose components are independent identically distributed and don’t degenerate
at the boundary and such that, for all i € {1,....N},

0<Y'<X'<1-Y'<1 as. (17)

With this construction, the process (X1!,..., XV) doesn’t degenerate at the boundary, because
each of its particles X" is contained in [Y*,1 — Y?]. This coupling will be useful in each step
of the proof.

3.1.1 Coupling’s construction

Define @) = sup,¢p1;|¢(7)| (we have () < +oo by hypothesis) and fix i € {1,..,N}. The
process Y is defined with values in [0,1/3] by the SDE

dY; = dW; — Qdt, Y'(0) = min { X*(0),1 — X*(0),1/3},

with 0 and 1/3 as reflecting boundary (see 3] for the definition of a reflected diffusion). The
coupling inequality (7)) is fulfilled at time ¢ = 0. The Brownian motion W* will depend on
B* and on the position of X".

If X} belongs to [0,1/3], then X < 1/3 and the second part of the coupling inequality
is satisfied, independently of the choice of W*. We only need to ensure that X! stays bigger
than Y;. If X} belongs to [2/3,1], we only need to ensure that it is smaller than 1 — Y}". If it
belongs to |1/3,2/3|, the coupling inequality is obviously fulfilled, thanks to the reflection of
Y% on 1/3.

Assume that X} is in ]0,1/3] and that the coupling inequality is fulfilled at time ¢. We
have d(X} — Y}) = dB! — dW} + (Q — q(X;))dt, with Q — ¢(X;) > 0. If we choose W* so
that dB; — dW; = 0, then d(X; — Y}") = (Q — ¢(X,))dt is increasing with time almost surely
and the coupling inequality remains fulfilled. In a similar way, if X} is in [2/3,1[, we have to
choose W' so that dB} + dW} = 0. We will see in the proof of the coupling inequality that
the jumps of X* and the reflexion of Y on 0 do not play any role in the coupling inequality
(see Figure [2]).

Let us define the Brownian motion W* in an explicit form. First, we build a sequence of
strictly increasing times (t},),> such that, for each n > 0, X} €]0,2/3][ for all t € [t} ¢4, ]

14
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Figure 2: The process Y'!

and X} €]|1/3,1] for all t € [t} ,t5,.,[. Define

to = inf {t € [0, 4 oo}, X} €]0,1/3]},
t = inf {t € [to, + o0], X € [2/3,1]},

and, forn > 1,

ty, = inf {t € [ty,_;, + oo], X} €]0,1/3]},
tyns1 = inf {t € [ty,, + o0], X €]2/3,1]}.

Depending on the position of X*, which is stated by the sequence (t,),>2, we define W* by
W/ = —B! for t € [0,t0),
and, for all n > 0,

th = WtZZn + (Bz - BZZn) for t S [t2n7t2n+1]
VV; = Wt22n+1 — (BZ — B;2n+1) fort € [t2n+1,t2n+2].

If lim,, .o t, < +00, then W can be extended by continuity on [0, + ool, so that Y} is well
defined for all ¢ € [0, 4+ 0.

The sequence (t!)nen is a sequence of stopping times for the natural filtration of the
process (X1,..,X"). Conditionally to the sequence (j,)n>1 (the particles which are chosen
at each successive jump), (X*,...,.X") only depends on (B',...,BY). One can then apply the
strong Markov property to (B',...,BY) at time ¢!, Vi € {1,...,N} and Vn € N.

As a direct consequence of the symmetry of a Brownian motion’s law and of the strong
Markov property applied to the N-dimensional Brownian motion (B!,....B'... BY), W' is a

15



Brownian motion. Note that the sequence of stopping times depends clearly on the position
of other particles and then on the B’’s, for j € {1,...,N}. However, the Brownian motions
{W7},1,_n are independent processes. Indeed, the sequence (t,),>0 doesn’t play any role
in the law of W* and, to be convinced of that, one can compute the covariance matrix of the
Gaussian variables W/, for any ¢ € [0, + oo|, which is clearly a diagonal one.

Proposition 11 The coupling inequality (1) is fulfilled for allt € [0,7].

Proof of Proposition [I1 : Define the time ¢ = inf {0 <t < 7,Y; > X/} and let us work
conditionally to ( < 7, then we have, by right continuity of the two processes, Yg > X é a.s.

We first show that ( is a jump time for the particle ¢. Assume the converse. If ( = 0, then
X{=Y¢ and, if ¢ > 0, then XZ and Y are continuous in a neighbourhood [¢ — h,¢ + h] of ¢,
where h > 0, and we have Y}’ < X, for all t € [ — h,C[, so that, by left continuity Y < X,
and then Y = X!. Therefore, we have X! €]0,1/3] and 3n > 0 such that ¢ € [tan,tant1],
and, for h small enough, one can assume that ( + h < tg,41. Then, for all ¢t € [(,( + A,
d(Xi = Y}) = (Q — q(X))dt + dL}"*, where Q — ¢(X{) > 0 and L;’* is an increasing process
due to the reflecting property of the boundary 1/3 for Y* (note that Yg > 0, so that, for
h > 0 small enough, Y} > 0 for all t € [, + h[). Then X* — Y stays non-negative between
times ¢ and ¢ + h, what contradicts the definition (.

The time ( is then a jump time for the particle 7. If Xé_ = 0, then, by definition of (,
Y =0 and,'by left continuity of the process Y, Y/ = 0, so that X = 0, what is impossible.
Therefore X; =1>1-—Y/ , and, by existence of left limits for the two processes, It < ¢
such that X} > 1 —Y}". Define ¢’ = inf {t > 0,1 — Y < X/}. We have then, conditionally to
( < Tooy (' < (.

By symmetry, conditionally to the event (' < 7., we have ¢ < (', then ( < 7., and
therefore ¢ < (. Finally, ( = (' = 7, almost surely. O

3.1.2 Existence of the interacting particle process

Proposition 12 For all N > 2, the interacting particle system (X',.... XN) is well defined,
that is Too = +00 almost surely.

Proof of Proposition[13 : Let N > 2 be the size of the interacting particle system and fix
arbitrarily its starting point = €]0,1[. We define the event C, = {7, < +o00}.

Conditionally to C,, the total number of jumps is equal to +oc. There is a finite number
of particles, then at least one particle, say ig, makes an infinite number of jump before 7.
At each jump of iy, a particle is uniformly chosen in {1,...,N}. By the law of large numbers,
each particle is chosen infinitely often before 7.,. Assume that a particle, say jy, remains all
the time in |e,1 —¢[, with € > 0. i will jump on the position of jj infinitely often. Then it will
come back from ]e,1 — €[ to the boundary infinitely often in finite time, what is impossible.
We deduce that, conditionally to C',, all particles of the interacting particle system are going
near to the boundary, that is

C, C { lim min (X7,1 — X}) = 0} : (18)

t—Too
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for each particle i € {1,2,...,N}.
Using the coupling inequality of Proposition [[1] we deduce from (I8]) that

C, C {tlim (V.. YY) = 0}

Then, conditionally to C,, Y! and Y? are independent reflected diffusions with bounded
drifts, which hit 0 at the same time. This occurs for two independent reflected Brownian
motions with probability 0, and then for Y! and Y2 too, by the Girsanov’s Theorem. That
implies P(C,) = 0.

Finally, we have 7., = +00 almost surely.

Remark 6 One could hope to apply this method directly to the process with law PV studied
in the first part of this paper. Unfortunately, it can be very difficult to show the existence of
the process or the non-degeneracy at the boundary: the drift being unbounded, the law of
the reflected diffusion used in this proof isn’t absolutely continuous with respect to the law
of the reflected Brownian motion and stay at 0 all the time after hitting it.

3.1.3 Non-degeneracy at the boundary

For all 7 > 0, we define the open set D, =|r,1 —r[. Let u"(t,dx) (vesp. p'™(t,dx)) be the
empirical measure of the system of particles (X});—1. v (vesp. (Y;")i=1.. n), that is

u (t,dx) Zéxl (dz) and ™ (¢,dz) Z(syz (dx).

We will suppose that, at time 0, the sequence of empirical measures (" (0,dz))y>o satisfies
the following non-degeneracy property, which ensures that the mass of p¥(0,dz) doesn’t
degenerate at the boundary, uniformly in N:

Definition 1 The family of random probabilities { ™ (dz)} is said to verify the non-degeneracy
property if, for any € > 0,

lim lim sup P (1 (Df) > €) =0, (19)

=0 Nooco
where DS =]0,r] U [1 —r.1].

From definition of (Y{)ieq1,... vy, the non-degeneracy of wN(0,dr) is the consequence of the
non-degeneracy of u™ (0,dz). The end of the section is devoted to prove the following Propo-
sition, which states that the non-degeneracy property is maintained over time:

Proposition 13 Assume that (u (0,dx))n>o satisfies the non-degeneracy property, then, for
all T >0 and all e > 0,

hm limsup P( sup p(¢,D¢) > €) = 0.
=0 Nooo te[0,7)
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Proof of Proposition[I3 : Fix T' > 0 and € > 0. Because of the non-degeneracy of p/%(0,dx),
one can find a > 0 such that

N
1
P (N ; lyicq > e/2> -0 (20)

when N goes to oco.

We want to apply a law of large numbers, but the Y aren’t independent and depend on
the number of particles N. Let us define the diffusion Z with values in [0,1/3], defined by
the SDE

dZi = dW!' — Qdt, Zi(0) = a,

with 0 and 1/3 as reflecting boundary. Here the W’ are independent Brownian motions. The
random processes 1zicpe are independent, identically distributed with values in D([0,T],R).
One can apply to them the following law of large numbers, proved in [24]:

Prob
sup E 1ZZEDC — 1Z;’€D$) — 0.
te[0,T) N—oo

We have E (1zicpe) = P (Z' € Df), which tends uniformly to 0 when r — 0. We deduce
from it that

lim lim P | sup — lyicpe >€/2 | =0. 21
o (tem Z Zieps /) (21)

For each number of particles N > 2, one can easily find a coupling between Z* and Y,
where Z} <Yy implies Z; <Y} for all ¢t € [0,7]. With such a coupling, we have

1 & 1Y
2 Wenplyza < 5 ) 1zen;
=1 i=1

By adding the contribution of the Y which starts in ]0,a[, we get

1w 1w 1w

T2 Lviens < D Lgien: + 5 D Lyjear

N N N
The limits (20) and (21]) allow us to conclude the proof.

3.2 Convergence in finite time

Fix T > 0. This section is devoted to the proof of the following proposition, which states that
the empirical measure process converges to the distribution of the process X conditioned to
not be Kkilled.
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Proposition 14 Assume that (u~(0,dx))nen converges in law to the random probability
measure (1(0,dx) with respect to the weak topology and satisfies the non-degeneracy property.

Then, VT > 0, the measure processes (™ (t,dx))sejo.r) converge in law to (P(X,; € dx| X, #
9))tepo,r) in the Skorokhod space D([0,T],M;(]0,1[)) when N — oo. Here M;(]0,1]) denotes
the space of probability measures on |0,1 equipped with the weak topology.

Proof of Proposition[T7) : For all maps ¢ € C2(]0,1]) vanishing on {0,1}, one can apply the
It0’s formula to the semimartingale 1 (X}) (see [21, Theorem 27.1]), whose number of jumps
in [0,77] is finite almost surely :

v = v+ [ wxnas+ [ (w%xz-)q(X;-)+§¢”<X§L>) ds
£ 30 U (X @2

0<s<t

Let us denote by (7)1<, the increasing sequence of jump times of the particle i. We have

(XD - (X)) = > (X)) — (X)) (23)

0<s<t 0< i<t
= > (X)), (24)
0<ri <t

because X’, € {0,1} and #(0) = ¢(1) = 0. That implies

PIRICORICAEDY (@D(Xi;;) - Z@b(Xﬁ,g-)) (25)

0<s<t 0<Ti<t

By summing over i € {1,...,N}, we obtain

() = i (0.0) + /0 N (=g + %wds + M) + M (1)
1
TN_1 Z N (=), (27)

0<m <t

where M¢(i,t) is the continuous martingale + SN fo (XL )dB: and M (1,t) is the pure

jump martingale

=+ (wxﬁp - waﬁg-)). (28)

i=1 0<ri<t
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Now, we interpret each jump as a killing. Then we introduce a loss of 1/N of the total
mass at each jump: we look at the measure process " decreased by a factor % at each
jump. More precisely, we set

AN
DN () — (%) WX (1),

where AN (t) = # Ufil{ﬁi, 0 < 7' <t} denotes the total number of jumps before time t.

Lemma 15 The sequence of measure processes (v (.,dx)) , converges in law to P, (X. € dx)
in the Skorokhod topology D([0,T],M(]0,1])).

Proof of Lemma I3 : Applying the It6’s formula to the semimartingale v (¢,1), we deduce
from (27)) that

N _ ., N ! N / " "(N-1 A c
v (Uﬂ) =v (Oaw)+/0 v (5'>¢C]+¢ )d5+A (T) dM (was)

+ Z (VN(TH7¢) - VN(TH_7¢))7

0<mn <t

Where we have

N (1) — N (e = (E) " () — 1 (1)

N N N
T 1 (7 ) ((%)A - (%)A> ,

with
WY ) = 1 ) = g () + MOGT) = MW7)
and
N-1\" /N-1\" 1 (N-1\"
() () s ()
then
N N N -1\ ; j
v (Tnﬂvb)_y (Tn'ﬂvb) = (T) (M](waTn)_M](¢aTn'))'
N—1/N-1\*% |
- 2 () M) - M)
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That implies

t t /N — AN
N (1) — N (0,00) — /0 VN(S—,¢'q+%¢")ds: /0 (Tl) AME(1.5)

N -1 N -1 A j J
+ N 0<rn <t (T) (M (¢,10) — M (¢’Tn_))

We deduce that for all smooth functions W(¢,x) vanishing at the boundary

_ /Ot (%)AN AME(D(5,.).5)

+ % 0<Tn <t (¥) N (Mj(‘I’(Tm-)aTn) - Mj(\I](T”_”)’Tn_)) (29)

N—-1 Aé\-f Yoy 1 :
Because (T) < 1 a.s. and by the Doob’s inequality , we have

/ot (NJ; I)AQY dME(U(t,.),5) 2

E | sup
te[0,7T

1,0V
< =T|—|2. 30
) < STISC I (30)
Note that the jumps of the martingale M/ are smaller than 2||¥||., then

N -1

Bl Y (T)QAT"'(MJ‘@(T,@,.),T,@)—Mj<\lf<m—,->,m->)2]

0<m, <T
4 N — 1\ %4
< wlvee| ¥ (YY) ]
o<, <T
4
< —[|Wl?
< 5115

By the Doob’s inequality, we have then

2

E | sup 0<2<t (N]; 1) - (M (¥(70,.),70) = M (O (Tm,.) ") )

te[0,7

4
< —[|¥|? 1
< I, (1)

Define ¥(s,z) = P,_sf(x), where f € C*°([0,1]) vanishes on {0,1}, and (F;) is the semi-
group associated with the diffusion X defined by (I6]). From Kolmogorov’s equation (see [9,
Proposition 1.5 p.9]),

%\If(s,x) + %A\If(s,x) +q(x)VU(s,x) = 0.
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We deduce from (29)), (B0) and (3T)), that

E | sup
te€[0,T

where C(f) is a positive constant, which only depends on f. For each map g € C*°([0,1]),
one can set f.(z) = v.(x)g(x), with r > 0, where ~, € C*°([0,1]) is equal to 1 on |2r,1 — 2r]
and vanishes on ]0,r[U]1 — r,1]. Then

(L) - / Pof ()™ (0,2)

2 1
) SNC(f),

< Vg - / ot (2)du™ (0.2)
N (41 = 7)9)| (32)

/0 P (1= 7)) (2)du® (0.5)|

VN (tg) - / Pog(x)d™ (0.2)

+ (33)

where (B2)) (see Proposition [[3]) and (33) are going to 0 when r tends to 0, uniformly in N,
and f,. € C*([0,1]) vanishes on {0,1}. Then

1
sup |1 (t,g) — / Pug(a)di™(0.2)] £ 0.
t€[0,T 0 N—oo

In particular, vV (.,dz) converges in law to P, (X. € dz). O

Let us conclude the proof of Proposition [I4l From Lemma [15],

law

(W (10,1007 (8 dx) ietom) 7 (Puco ey (X1 €)0,1]) Pro.am) (X € d))icpo,m

in the Skorokhod topology D([0,7],R x M;(]0,1[)). That means

N - ]- Aév aw
((T) ,VN(t’d,I‘)> Nl:;o(PM(O’dx) (Xt 6]071[)7]P)u(0,d:c) (Xt - dx))te[O,T]-
te[0,T

The process Py0,4z)(X. €]0,1[) never vanishing almost surely and the limit process being
continuous almost surely, we have

N -1 Ai\f law
((T) I/N(t,dl')) — (]P)M(de) (Xt € dZL")/PM(de) (Xt E]O’l[»te[O,T}

N—oo
t€[0,T]

in the Skorokhod topology D([0,7],M;(]0,1])). That means

(1N (t.d2) ieio = (Buo.an(Xe € d2l X # 0)ieom

in the Skorokhod topology D([0,7],,M;(]0,1[)). The proof of Proposition [I4lis then complete.
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3.3 Existence and convergence of the empirical stationary mea-
sures XV

For each N > 2, we say that the interacting particle process (X!,.... XV) is exponentially
ergodic, if there exists a probability measure M” on ]0,1[" such that,

1P,(X},.. . X)) € ) — MYN||pv < O(a)p', Vo €]0,1[N, vt € Ry, (34)

where C(z) is finite, p < 1 and ||.||7v is the total variation norm. In particular, M" is a
stationary measure for the process (X!,....X"). When M?" exists, we denote by XV the
empirical stationary measure associated with M¥, that is a random probability which is
distributed as % SN 8a,, where (z',..,2"V) is a random vector in ]0,1[N distributed with
respect to M.

In a first time, we prove that for all N > 2, the interacting particle process with N
particles (X!,..., X¥) associated with X is exponentially ergodic. We conclude by proving
that (X")y converges in law to the unique QSD of X.

3.3.1 Exponential ergodicity

Here N > 2 is fixed. We are interested in proving the following result, which is the first part
of Theorem [10]

Proposition 16 The interacting particle process (X1,.... XN) with law PP is exponentially
ergodic.

Proof of Proposition[1d : We focus on the 1-skeleton of the interacting particle process with
N particles, which is the Markov chain (X!.... X"),cy. Thanks to |8, Theorem 5.3 p.1681],
exponential ergodicity of (X!,...,X") will be obtained as soon as the associated 1-skeleton
is geometrically ergodic, which means that it exists a probability measure 7™ on ]0,1[" such
that

||PSC((Xr1w’X7]LV) € ) - 7TN||TV < C()(l’)pg, Vo G]Oal[Na Vn € N7

where Cy(x) is finite and py < 1.
To prove the geometrical ergodicity of the 1-skeleton, let us introduce the following defi-
nition:

Definition 2 C CJ0,1[" is said to be a small set for the Markov chain (X},... XY )nen

n
if, for some nontrivial probability measure ¥ and some n > 1, € > 0, the n-step transition

probability kernel P"(x,A) :=PPP((X},...XN) € A) satisfies, for all x € C,
P"(z,A) > e¥(A), A€ B(J0,1[").

Lemma 17 All compact set C = [r,1 —r]N (with r > 0) is a small set for the 1-skeleton.
Moreover, 3k > 0 so that

sup E, (K7€) < o0, (35)
zeC

where T/, is the return time to C.
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Proof of Lemma [T7: Fix r > 0 and let F be the event “the process (X!,...,.X") has no
jumps between times 0 and 1”. Define p = inf [, 1_,x P#P(F). Thanks to the coupling with
(Y1...YN) we have p > 0. Conditionally to the event F, the particles of the interacting
particle process are independent from each other.

Let us study 9! (dz) = IP”('Z?___@N)(X% € dz and F). The law of X' conditionally to F
is the same as the law of X conditioned to not jump, because, given this last event, the
process X' doesn’t depend on the other particles. Thus the probability of “X| € dz and F”
is P, (X; € dx). The law of X; has a density p;(x1,y) with respect to the Lebesgue’s measure

and p(x1,y) depends continuously on x; and y. It only vanishes when y = 0 or 1. Then

inf x1,y) >0
(wl,y)e[r,l—r}X[r,l—r]pl( ! y>
Denoting this minimum by ¢, we have, for all z; € [r,1 — 7], 9'(dz) > €'1j1_(z)dx.
Conditionally to JF, the particles are independent from each other, so that

N
PP (X1 X)) € dyrdyy| F) = [P, (X] € dyl F),

T1,e T N)
=1

where Pé’;ll’sz)(X{' € dy;|F) is greater than IP’E'Z’;MIN)(X{ € dy; and F) and then greater
than 9! (dy;). Finally, we have
pirp

(1,007 N)

((Xllj---,XfV) € dy,...dyn|F) > EINl[r,l—r}N(y1>~'>yN)dyl---dyNa

so that [r,1 —r]" is a small set.

For all z €]0,1[", and all n > 1, the probability of being in C at time n + 1 starting from
x at time n is bounded below by the probability pc > 0 for (Y1,...,Y") to enter C at time
n+ 1, starting from 0 at time n. Hence, at each time n > 1, (X*,..., X)) returns to C at time
n+ 1 with a probability greater than pc > 0. That implies that the return time to C' for the
1-skeleton of the interacting particle process with N particles is bounded above by a time
of geometrical law, independent of the starting point z €]0,1[V, and then satisfies condition

@B3). O

The chain (X!,...XY),cy is aperiodic. Moreover, if the Lebesgue measure of a subset
A C]0,1[N is strictly positive, then PPP(14 < oo) > 0 for all z €]0,1[V, where 74 is the first
hitting time on A for the chain (X}!,... X¥), cn. Thanks to [8, Theorem 2.1 p.1673], if such
a Markov chain has a small set which satisfies (B5]), then it is geometrically ergodic. As a

consequence, Lemma [I7] allows us to conclude the proof of Proposition [L6l

3.3.2 Convergence to the QSD
We are interested in proving the following result, which is the second part of Theorem [I0]

Proposition 18 The sequence of random measures (XN) converges in law to the deter-

N>2
manistic measure v, QSD of the process X .
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Proof of Proposition : For each r €]0,1/4[, we define ~, as a non-negative continuous
bounded function from |0,1[ to R, equal to 1 on Ds, and equal to 0 on DS. We have

AN(Dy) < XN (1 =), Vr €]0,1/4].

Thanks to Proposition [I6] the sequence of random measures (1 (¢,dx))n>2 converges in law
to XV when t tends to +0o. That implies

E(p™(t1 =) B (XN (1 =,)), Vr €]0,1/4].

We denote by u'™(t,dx) the empirical measure of (Y;',...,Y;"). Let us choose v, monotone on
Jr,2r[ and |1 — 2r,1 — r[. From the coupling inequality,

PV (1 =) < (8 =)
for all t € R, and r > 0. Then

E (/J’N(t71 - 77“)) S E (,U//N(tvl - 77‘)) )
which tends to 0 when t tends to 400 and r to 0, uniformly in N. As a consequence,
E(X™)(1 = 7,)—0,

where E(X) is the deterministic measure defined by E(X)(A4) = E(&XN(A)), for all mea-
surable set A. That yields
B(AY)(D5)—0,

uniformly in V. The family of intensity measures (E(X?))y is then tight. This is a sufficient
condition for the family of random variables (X") to be tight, as shown in [16, Corollary
2.2]. We conclude that it exists a sub-sequence (X)) which converges in law to a random
probability measure X.

Choose pV(0,dz) = XN (dx). The non-degeneracy property is fulfilled. Thanks to Propo-
sition [I4]

(W)t )iy 2 (Bxe(X, € dol X, # 0oy, VT > 0

in the Skorokhod topology D([0,7],M;(]0,1[)). The limiting process (Px(X; € dx|X; #
0))iejo,r) being almost surely continuous,

p™) (tadﬂﬁ)Nlﬂ Px(X; € do|X; # ), Vt > 0,

with respect to the weak topology of M;(]0,1[). By stationarity, the random probability
measures p*N)(t,dr) and X?™) have the same law. Making N tend to oo, we deduce that
Px(X; € dz|X; # 0) and X have the same law too. This looks like a QSD, but X is a priori
a random measure and we need the following result to conclude.

Lemma 19 For all m € M;(]0,1]),
thm Pm(Xt € AlT > t) - V(A)a

where T is the killing time of the process X and v its unique QSD.
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Proof of Lemmall9 : Let m be a probability measure on |0,1[. I\g > 0, ¢y and 50 two con-
tinuous maps vanishing on 0 and 1 such that, for all = €]0,1[ (see R.G. Pinsky’s explanations
[22, Hypotheses 2 and 3]):

lim P (1 > t) = Croo (), (36)
thm P(X, € A, T > t) = Cogo(z) / do(y)dy. (37)
— 00 A

Here ! P, (T > t) is uniformly bounded above in the variables ¢ and z (see [3, Proof of the

equality 7.2, p27]), then, by dominated convergence, one can integrate with respect to m
under the limit in (36]),

lim M P, (1 > t) / bo(x
The same holds for (37):
tlim P (X, €A T >t) / ooz / oo(y)dy m(dx).

Then, by Fubini’s Theorem,

. P(Xt€A7'>t
B

that is, from (86) and (37) with A =]0,1],

o Pa(Xi€ A >0 [y doly)dy
m - -~
=00 Pu(T > 1) I do(y)dy

which is nothing else but v(A) (see [22, Proposition 1.10]). O

Thanks to Lemma [[9, Py (X; € dx|X; # 0) converges almost surely to the Yaglom limit
when t — 400, and so do X. Finally, X is the unique QSD of the process and the proof is
complete. O

4 Numerical applications

4.1 The logistic case

We apply our result to the logistic Feller diffusion with values in ]0, + oco[, driven by the
stochastic differential equation

dZt = 1/ thBt —I— (TZt — CZE)dt, ZO =z > 0, (38)
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and killed when it hits 0. Here B is a 1-dimensional Brownian motion and r,c are two positive
constants.
We define P° as the law of 2¢/Z., which is killed at 0 and satisfies the SDE

1 rX; N X3
2X, 2 4

dX, =dB; — ( )dt, Xo =z €0, + 0.
For each ¢ > 0, we define the law P¢ and denote its QSD by v..

As proved in [3], (H1) and (H3) are fulfilled in this case. Thanks to Theorem [l and
denoting by v the Yaglom limit associated with P°, we have

law
Ve— .
e—0
In the numerical simulations below, we set € equal to 0.001.
By Theorem [0, we have

N —
N—+o0
where XV is the empirical measure of the system studied in Section Bl In the numerical

simulations, we set N = 1000 and, because of the randomness of X'V, we approximate

E(XN) using the Ergodic theorem: we compute —— 31 v (t.dx). The graphic below

10000 2t=1
(see Figure [3)) shows this approximation for different values of r and c.
As it could be wanted for, greater is ¢, closer is the support of the QSD to 0. We thus

numerically describe the impact of the linear and quadratic terms on the QSD.

2

T T
r=1,c=10 —

Figure 3: E(XY) for the diffusion (B8], with different values of r and ¢
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4.2 The Wright-Fisher case

We illustrate the result of Section 2.3 by an application to the Wright-Fisher diffusion with
values in |0,1] conditioned to be killed at 0. This diffusion is driven by the SDE

dZt = Zt(l — Zt)dBt — tht, Z(] =z 6]0,1[,

and killed when it hits 0 (1 is never reached). In [13], the author proves that the QSD of this
process exists and has the density 2 — 2x with respect to the Lebesgue measure.

Define P° as the law of X, = arccos(1 — 2Z7)), where Z is defined as above. PV is the law
of the diffusion with values in 0,7, driven by the SDE

1 —2cos X,
X, =dB, — — =Py X, =
d t d t 9 sin Xt dt, 0 Xz E]O,ﬂ'[,

killed when it hits 0 (7 is never reached). For all € €]0,7/2|, define P¢ and v, as in Section
2.3

The drift of the diffusion is ¢(z) = %‘iﬁgt, Va €]0,7[. Let us show that it satisfies the
hypotheses of Theorem

We have, Va €]0,7],

8cos’x +2cosx + 2cosx + 1
oef ~ (@) s +1
sin?

which is positive and tends to +0o both in 0+ and 7—. It implies that hypothesis (HH1) is
fulfilled.
For all z €]0,7],

Qr) = /x q(y)dy

/2
4 ‘t x‘+1 lsin z|
= 3 n an2 nlsinx
T\ T\ 3
= n(2(sng)" (con3)”).
n( sm2 0082
That implies
_O(x 1
Q) _ . ]
2 (sin %)2 (cos§)2
then
pe Q) 2
0 xT
and
T—21x

_ —Q(z)
(m—x)e ~ 5

Finally, hypotheses (HH2) and (HH3) are satisfied and Theorem [0 can be applied.
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0 ! ! ! ! ! ! ! ! !
0 01 02 03 04 05 06 07 08 09 1

Figure 4: Wright Fisher case, ¢ = 0.001 and N = 1000

In the following numerical simulation (see Figured]), we set ¢ = 0.001 and N = 1000. We
compute E(X?), which is an approximation of v, and then of v, with the method used in
the logistic case (see Part [A.T]).

The simulation is very close to the QSD (2 — 2z)dz, which shows the efficiency of the
method.

Remark 7 In the simulations, we have chosen to simulate a system with N = 1000 particles,
because of empirical consideration. The question of convergence speed will be studied in
further works.
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