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Abstract

We study the existence and the exponential ergodicity of a general interacting parti-

cle system, whose components are driven by independent diffusion processes with values

in a bounded open subset of Rd, d ≥ 1. The interaction occurs when a particle hits

the boundary: it jumps to a position chosen with respect to a probability measure

depending on the position of the whole system.

Then we study the behavior of such a system when the number of particles goes

to infinity. This leads us to an approximation method for the Yaglom limit of multi-

dimensional diffusion processes with unbounded drift defined on an unbounded open set.

While most of known results on such limits are obtained by spectral theory arguments

and are concerned with existence and uniqueness problems, our approximation method

allows us to get quantitative information on quasi-stationary distributions, which find

applications to many disciplines. We end the paper with numerical illustrations of our

approximation method for stochastic processes related to biological populations models.

Key words : diffusion process, interacting particle system, empirical process, quasi-stationary
distribution, Yaglom limit.
MSC 2000 subject : Primary 82C22, 65C50, 60K35; secondary 60J60

1 Introduction

Let D ⊂ Rd be a bounded open set whose boundary is of class C2. The first part of this
paper is devoted to the study of interacting particle systems (X1,...,XN), whose components
X i evolve in D as diffusion processes and jump when they hit the boundary ∂D. More
precisely, let N ≥ 2 be the number of particles in our system. Let us consider N independent
d-dimensional Brownian motions B1,...,BN and a jump measure J (N) : ∂(DN ) 7→ M1(D

N),
where M1(D

N) denotes the set of probability measures on DN . We build the interacting
particle system (X1,...,XN) with values in DN as follows. At the beginning, the particles X i

evolve as independent diffusion processes with values in D defined by

dX
(i)
t = dBi

t + q
(N)
i (X

(i)
t )dt, X

(i)
0 ∈ D, (1)
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where q(N)
i is continuous and bounded on D. When a particle hits the boundary, say at

time τ1, it jumps to a position chosen with respect to J (N)(X1
τ1-,...,X

N
τn-). Then the particles

evolve independently with respect to (1) until one of them hits the boundary and so on. In
the whole study, we require the jumping particle to be, in some sense, attracted away from
the boundary by the other ones during the jump (see Hypothesis 1 on J (N) in Section 2.2).
We emphasize the fact that the jumping position is allowed to be located strictly closer to the
boundary than all other particles and that the diffusion processes which drive the particles
between the jumps can depend on the particles. As a consequence, this construction is a
generalization of the Fleming-Viot type model introduced in [4] for Brownian particles and
in [18] for diffusion particles.

The first step of the study consists in proving that the interacting particle system is
well defined for all t ≥ 0, which means that there is no accumulation of jumps in finite time
almost surely. In a second step, we prove that the system is exponentially ergodic. The whole
study is made possible by a coupling between (X1,...,XN ) and a system of N independent
1-dimensional reflected diffusion processes, that we build in Section 2.3.

Assume now that, for all N ≥ 2, we’re given a jump measure J (N) and a family of drifts
(q

(N)
i )1≤i≤N which is uniformly bounded by a constant Q > 0 that doesn’t depend on N .

Assume that the conditions for existence and ergodicity of the associated interacting process
are fulfilled for all N ≥ 2, and let MN be its stationary distribution. We denote by XN the
associated empirical stationary distribution, which is defined by XN = 1

N

∑N
i=1 δxi

, where
(x1,...,xN ) ∈ DN is distributed following MN . We prove in Section 2.4 that the family of
random measures XN is uniformly tight.

In Section 3, we consider the following particular case: q(N)
i = q doesn’t depend on i,N

and

J (N)(x1,...,xN ) =
1

N − 1

∑

j 6=i

δxj
, xi ∈ ∂D. (2)

It means that at each jump time, the jumping particle is sent to the position of a particle
chosen uniformly between the N − 1 remaining ones. In that case, we’re able to identify the
limit of the family of empirical stationary distributions (XN)N≥2. This leads us to an ap-
proximation method of the limiting conditional distributions of diffusion processes absorbed
at the boundary of an open set of Rd studied by Cattiaux and Méléard in [6] and defined as
follows. Let D0 ⊂ Rd be an open set and P0 be the law of the diffusion process defined by
the SDE

dX0
t = dBt +∇V (X0

t )dt, X
0 ∈ D0 (3)

and absorbed at the boundary ∂D0. Here B is a d-dimensional Brownian motion and V ∈
C2(D,R). We denote by τ∂ the absorption time of the diffusion process (3). As proved in [6],
the limiting conditional distribution

ν0 = lim
t→∞

P0
x

(

X0
t ∈ .|t < τ∂

)

(4)

exists and doesn’t depend on x ∈ D, under suitable conditions which allow the drift ∇V
and the set D to be unbounded (see Hypothesis 2 in Section 3). This probability is called
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the Yaglom limit associated with P0 and it is a quasi-stationary distribution for the diffusion
process (3), which means that P0

ν0(Xt ∈ dx|t < τ∂) = ν0 for all t ≥ 0. We refer to [5, 21,
23] and references therein for existence or uniqueness results on such invariant conditional
distributions in other settings (and to [27] for an extensive bibliography on quasi-stationary
distributions).

Such distributions are an important tool in the theory of Markov processes with absorbing
states, which are commonly used in stochastic models of biological populations, epidemics,
chemical reactions and market dynamics (see the bibliography [27, Applications]). Indeed,
while the long time behavior of a recurrent Markov process is well described by its stationary
distribution, the stationary distribution of an absorbed Markov process is concentrated on
the absorbing states, which is of poor interest. In contrast, the limiting distribution of the
process conditioned to not being absorbed when it is observed can explain some complex
behavior, as the mortality plateau at advanced ages (see [1] and [29]), which leads to new
applications of Markov processes with absorbing states in biology (see [22]). As stressed in
[26], such distributions are in most cases not explicitly computable. In our case, the existence
of the Yaglom limit is proved in [6] by spectral theory arguments, which doesn’t allow us to
get its explicit value. The main motivation of Section 3 is to prove an approximation method
of ν0, even when the drift ∇V and the domain D0 are unbounded and the boundary ∂D0

isn’t of class C2.
The approximation method is based on a sequence of interacting particle systems with

jumps from the boundary defined with the jump measures (2), for all N ≥ 2. In the case of
a Brownian motion killed at the boundary of a bounded open set (i.e. q = 0), Burdzy et al.
conjectured in [3] that the unique limit measure of the sequence (XN)N∈N is the Yaglom limit
ν0. This has been confirmed in the Brownian motion case (see [4], [17] and [24]) and proved
in [15] for some Markov processes defined on discrete spaces. New difficulties arise from our
case with unbounded drift and unbounded domain D0. For instance, the interacting particle
process introduced above isn’t necessarily well defined, since it doesn’t fulfill the conditions
of Section 2. To avoid this difficulty, we introduce a cut-off of D0 near its boundary. More
precisely, let (Dǫ)ǫ>0 be a decreasing family of regular bounded subsets of D0, such that ∇V
is bounded on each Dǫ and such that D0 =

⋃

ǫ>0Dǫ. We define an interacting particle process

(Xǫ,1,...,Xǫ,N) on each subset DN
ǫ , by setting q(N)

i = ∇V and D = Dǫ in (1). For all ǫ > 0
and N ≥ 2, (Xǫ,1,...,Xǫ,N) is well defined and exponentially ergodic. Denoting by XN,ǫ its
empirical stationary distribution, we prove that

lim
ǫ→0

lim
N→∞

XN,ǫ = ν0.

We conclude in Section 3.3 by some numerical illustrations of our method applied to the
1-dimensional Wright-Fisher diffusion conditionned to be killed at 0, to the Logistic Feller
diffusion and to the 2-dimensional stochastic Lotka-Volterra diffusion.
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2 A general interacting particle process with jumps from

the boundary

2.1 Construction of the interacting process

Let D be a bounded open subset of Rd, d ≥ 1, with a boundary of class C2. Let N ≥ 2
be fixed. In what follows, we build a system of particles (X1,...,XN ) with values in DN ,
which is càdlàg and whose components jump from the boundary ∂D. Between the jumps,
each particle evolves independently of the other ones and follows the law Pi of the diffusion
process defined on D by

dX
(i)
t = dBi

t − q
(N)
i (X

(i)
t )dt, X

(i)
0 = xi ∈ D (5)

and absorbed at the boundary ∂D. Here B1,...,BN are N independent d-dimensional Brow-
nian motions and q

(N)
i = (q

(N)
i,1 ,...,q

(N)
i,d ) ∈ C(D,Rd) is bounded. The infinitesimal generator

associated with the diffusion process (5) will be denoted by Li, with

Li =
1

2

d
∑

j=1

∂2

∂x2j
− q

(N)
i,j

∂

∂xj
(6)

on its domain DLi.
For each i ∈ {1,...,N}, we set

Di = {(x1,...,xN ) ∈ ∂(DN ), such that xi ∈ ∂D, and, ∀j 6= i, xj ∈ D}.

Let J (N) :
⋃N

i=0Di → M1(D) be the jump measure, which associates a probability measure
J (N)(x1,...,xN ) on D to each point (x1,...,xN ) ∈ ⋃N

i=1Di. Let (X1
0 ,...,X

N
0 ) ∈ DN be the

starting point of the interacting particle process (X1,...,XN ), which is built as follows:

• Each particle evolves following the SDE (5) independently of the other ones, until one
particle, say X i1 , hits the boundary at a time which is denoted by τ1. In the one hand,
we have τ1 > 0 almost surely, because each particle starts in D. In the other hand, the
particle which hits the boundary at time τ1 is unique, because the particles evolves as
independent Itô’s diffusion processes in D. It follows that (X1

τ1-,...,X
N
τ1-) belongs to Di1.

• The position of X i1 at time τ1 is then chosen with respect to the probability measure
J (N)(X1

τ1-,...,X
N
τ1-).

• At time τ1 and after proceeding to the jump, all the particles are in D. Then the
particles evolve with respect to (5) and independently of each other, until one of them,
say X i2 , hits the boundary, at a time which is denoted by τ2. For the same reason as
above, we have τ1 < τ2 and (X1

τ2-
,...,XN

τ2-
) ∈ Di2 .

• The position of X i2 at time τ2 is then chosen with respect to the probability measure
J (N)(X1

τ2-
,...,XN

τ2-
).
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• Then the particles evolve with law Pi and independently of each other, and so on.

The law of the interacting particle process with initial distribution m ∈ M1(D
N) will be

denoted by PN
m , or by PN

x if m = δx, with x ∈ DN . The associated expectation will be
denoted by EN

m , or by Ex if m = δx.
The sequence of successive jumping particles is denoted by (in)n≥1, and

0 < τ1 < τ2 < ...

denotes the strictly increasing sequence of jumping times. We set τ∞ = limn→∞ τn. The
process described above isn’t necessarily well defined for all t ∈ [0, +∞[, and we need more
assumptions on the jump measure J (N) to conclude that τ∞ = ∞ almost surely.

In the sequel, we denote by φD(x) the Euclidean distance from x to the boundary ∂D,
which means that, for all x ∈ D,

φD(x) = inf
y∈∂D

‖y − x‖2.

Hypothesis 1. There exists p
(N)
0 > 0 such that, ∀i ∈ {1,...,N},

inf
(x1,...,xN)∈Di

J (N)(x1,...,xN )({y ∈ D, φD(y) ≥ min
j 6=i

φD(xj)}) ≥ p
(N)
0

Informally, we assume that at each jump time τn, the probability that the jump position
X in

τn is chosen further from the boundary than at least one another particle is bounded below

by a positive constant p(N)
0 . This assumption ensures that, at each jump, the jumping particle

is attracted away from the boundary by the other ones.

Remark 1. Hypothesis 1 is very general and allows a lot of choices for J (N)(x1,...,xN ). For
instance, for any choice of σ(N) :

⋃N
i=0Di → M1(D), the jump measure

J (N)(x1,...,xN ) =
N − 1

N
σ(N)(x1,...,xN ) +

1

N(N − 1)

∑

j=1,...,N, j 6=i

δxj
, ∀(x1,...,xN ) ∈ Di,

fulfills the assumption with p(N)
0 = 1/N .

Hypothesis 1 also includes the case studied by Grigorescu and Kang in [18], where

J (N)(x1,...,xN ) =
∑

j 6=i

pij(xi)δxj
, ∀(x1,...,xN ) ∈ Di.

with
∑

j 6=i pij(xi) = 1 and inf i∈{1,...,N},j 6=i,xi∈∂D pij(xi) > 0, so that the particle on the bound-
ary jumps to one of the other ones, with positive weights. In that case, Hypothesis 1 is
fulfilled with p(N)

0 = 1. In Section 3, we will focus on the particular case

J (N)(x1,...,xN ) =
1

N − 1

∑

j=1,...,N, j 6=i

δxj
, ∀(x1,...,xN ) ∈ Di.

That will lead us to an approximation method of the Yaglom limit (4).

5



Theorem 2.1. Assume that Hypothesis 1 is fulfilled. Then

1. The process (X1,...,XN) is well defined, which means that τ∞ = +∞ almost surely.

2. Moreover, the process (X1,...,XN ) is exponentially ergodic, which means that there exists
a probability measure MN on DN such that,

||PN
x ((X1

t ,...,X
N
t ) ∈ .)−MN ||TV ≤ C(N)(x)

(

ρ(N)
)t
, ∀x ∈]0,1[N , ∀t ∈ R+,

where C(N)(x) is finite, ρ(N) < 1 and ||.||TV is the total variation norm. In particular,
MN is a stationary measure for the process (X1,...,XN ).

The main tool of the proof is a coupling between (X1,...,XN) and a system of N in-
dependent one-dimensional diffusion processes (Y 1,...,Y N). The system is built in order to
satisfy

0 ≤ Y i
t ≤ φD(X

i
t) ∧ α a.s.

for all t ≥ 0 and each i ∈ {1,...,N}. We build this coupling in Subsection 2.2 and we conclude
the proof of Theorem 2.1 in Subsection 2.3 .

In Subsection 2.4, we assume that, for all N ≥ 2, we’re given J (N) which fulfills Hypoth-
esis 1 and a family of drifts (q

(N)
i )1≤i≤N which is uniformly bounded above by a constant

that doesn’t depend on N . We prove that the family of empirical distributions (XN)N≥2 is
uniformly tight.

2.2 Coupling’s construction

Proposition 2.2. There exists a N-dimensional Brownian motion (W 1,...,WN) and positive
constants α,Q > 0 such that, for each i ∈ {1,...,N}, the reflected diffusion process with values
in [0,α] defined by

Y i
t = Y i

0 +W i
t −Qt + Li,0

t − Li,α
t , Y i

0 = min(α,φD(X
i
0)) (7)

satisfies
0 ≤ Y i

t ≤ φD(X
i
t) ∧ α a.s. (8)

for all t ∈ [0,τ∞[ (see Figure 1). In (7), Li,0 (resp. Li,α) denotes the local time due to the
reflecting property of the boundary {0} (resp. {α}), (cf. [8]).

Proof of Proposition 2.2 : The boundary of D is assumed to be of class C2, which implies by
[11, Theorem 4.3] that there exists a positive constant r1 > 0, such that

φD is of class C2 on Dc
r1
, (9)

where Dr = {x ∈ D, φD(x) ≥ r}. Moreover, we have

‖∇φD(x)‖2 = 1, ∀x ∈ Dc
r1
. (10)
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Figure 1: The particle X1 and its coupled reflected diffusion process Y 1

We set α = r1/2.
Fix i ∈ {1,...,N}. We define a sequence of stopping times (tin)n such that X i

t ∈ Dc
r1

for
all t ∈ [ti2n,t

i
2n+1[ and X i

t ∈ Dα for all t ∈ [ti2n+1,t
i
2n+2[. More precisely, we set (see Figure 2)

ti0 = inf {t ∈ [0,+∞], X i
t ∈ Dc

α},
ti1 = inf {t ∈ [t0,+∞], X i

t ∈ Dr1},

and, for n ≥ 1,

ti2n = inf {t ∈ [ti2n−1,+∞], X i
t ∈ Dc

α},
ti2n+1 = inf {t ∈ [ti2n,+∞], X i

t ∈ Dr1}.

Let γi be a 1-dimensional Brownian motion independent of the process (X1,...,XN ). We
set

W i
t = γit, for t ∈ [0,t0[, (11)

and, for all n ≥ 0,

W i
t = W i

t2n
+

∫ t

t2n

∇φD(X
i
s-) · dBi

s for t ∈ [t2n,t2n+1],

W i
t = W i

t2n+1
+ (γit − γit2n+1

) for t ∈ [t2n+1,t2n+2],

where
∫ t

t2n
∇φD(X

i
s-) · dBi

s has the law of a Brownian motion between times t2n and t2n+1,
thanks to (10). It can be obviously proved that (W 1,...,WN) is a N -dimensional Brownian
motion.
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Figure 2: Definition of the sequence of stopping times (tn)n≥0

Fix i ∈ {1,...,N}. Let us now prove that the process Y i defined by (7) with a constant Q
which satisfies

max
i=1,...,N

‖LiφD‖∞ < Q (12)

fulfills the inequality (8). We define the time ζ = inf {0 ≤ t < τ∞, Y
i
t > φD(X

i
t)} and we

work conditionally to ζ < ∞. By right continuity of the two processes, Y i
ζ ≥ φD(X

i
ζ) a.s. If

ζ = 0, then Y i
ζ ≤ φD(X

i
ζ) by definition of Y i

0 . If ζ > 0, then, by left continuity of Y i and by
the definition of ζ , Y i

ζ ≤ φD(X
i
ζ-). But φD(X

i
ζ-) ≤ φD(X

i
ζ), then Y i

ζ ≤ φD(X
i
ζ) almost surely.

Finally, we get
Y i
ζ = φD(X

i
ζ) a.s. (13)

We deduce from it that φD(X
i
ζ) ≤ α, then there exists n ≥ 0, such that ζ ∈ [t2n,t2n+1[. In

particular, we can apply Itô’s formula to (φD(X
i
t))t∈[ζ,t2n+1[, thanks to the regularity of φD

on Dc
r1

(9), and we get

φD(X
i
t) = φD(X

i
t2n

) +

∫ t

t2n

∇φD(X
i
s) · dBi

s +

∫ t

t2n

LiφD(X
i
s)ds

for all stopping time t ∈ [ζ,t2n+1 ∧ τ (ζ)[, where τ (ζ) denotes the first jumping time of i after
ζ , which means τ (ζ) = minn≥1 {τn, τn > ζ}. We deduce from (13) that Y i

ζ > 0 almost surely.
Let h > 0 be a positive random variable, such that ζ + h < t2n+1 ∧ τ (ζ) and Y i

t > 0 for all
t ∈ [ζ,ζ + h[ almost surely. Then, for all t ∈ [ζ,ζ + h], we have, by the Itô’s formula,

φD(X
i
t)− Y i

t =

∫ t

ζ

(Q− LiφD(X
i
s))ds− Li,0

t + Li,0
ζ + Li,α

t − Li,α
ζ ,

where Q−LiφD(X
i
s) ≥ 0, (Li,α

s )s≥0 is increasing and Li,0
t = L0

ζ , since Y i doesn’t hit 0 between
times ζ and t (see [8]). Then φD(X

i) − Y i stays non-negative between times ζ and ζ + h,
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what contradicts the definition of ζ . Finally, ζ = ∞ almost surely, which means that the
coupling inequality (8) remains true for all t ∈ [0,τ∞[.

2.3 Proof of Theorem 2.1

Proof that (X1,...,XN ) is well defined. Let N ≥ 2 be the size of the interacting particle sys-
tem and fix arbitrarily its starting point x ∈ DN . We define the event C = {τ∞ < +∞}.
Conditionally to C, the total number of jumps is equal to +∞ before the finite time τ∞.
There is a finite number of particles, then at least one particle makes an infinite number of
jumps before τ∞. We denote it by i0 (which is a random index).

For each jumping time τn, we denote by σi0
n the next jumping time of i0, with τn <

σi0
n < τ∞. Conditionally to C, we get σi0

n − τn → 0 when n → ∞. The process X i0 being a
continuous diffusion process with bounded drift between τn and σi0

n -, we get

φD(X
i0
τn)− φD(X

i0

σ
i0
n -
) −−−→

n→∞
0, a.s.

But φD(X
i0

σ
i0
n -
) = 0 by definition, then

lim
n→∞

φD(X
i0
τn) = 0, a.s. (14)

Let us denote by (τ i0n )n the sequence of jumping times of the particle i0. We denote by
An the event

An =
{

∃i 6= i0 | φD(X
i

τ
i0
n

) ≤ φD(X
i0

τ
i0
n

)
}

.

We have, for all 1 ≤ k ≤ l,

P

(

l+1
⋂

n=k

Ac
n

)

= E

(

E

(

l+1
∏

n=k

1Ac
n
| (X1

t ,...X
N
t )

0≤t<τ
i0
l+1

))

= E

(

l
∏

n=k

1Ac
n
E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

)

,

where, by definition of the jump mechanism of the interacting particle system,

E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

= J (N)(X1

τ
i0
l+1

,...,XN

τ
i0
l+1

)
(

Ac
l+1

)

≤ 1− p
(N)
0 ,

by Hypothesis 1. By induction on l, we get

P

(

l
⋂

n=k

Ac
n

)

≤ (1− p
(N)
0 )l−k, ∀1 ≤ k ≤ l.

9



Since p(N)
0 > 0, it yields that

P

(

⋃

k≥1

∞
⋂

n=k

Ac
n

)

= 0.

It means that, for infinitely many jumps τn almost surely, one can find a particle j such that
φD(X

j
τn) ≤ φD(X

i0
τn). Because there is only a finite number of other particles, one can find a

particle, say j0 (which is a random variable), such that

φD(X
j0
τn) ≤ φD(X

i0
τn), for infinitely many n ≥ 1.

In particular, we get from (14) that

lim
n→∞

(

φD(X
i0
τn),φD(X

j0
τn)
)

= (0,0) a.s.

Using the coupling inequality of Proposition 2.2, we deduce that

C ⊂
{

lim
t→τ∞

(Y i0
t ,Y

j0
t ) = (0,0)

}

.

Then, conditionally to C, Y i0 and Y j0 are independent reflected diffusion processes with
bounded drift, which hit 0 at the same time. This occurs for two independent reflected
Brownian motions with probability 0, and then for Y i0 and Y j0 too, by the Girsanov’s
Theorem. That implies Px(C) = 0. Finally, we have τ∞ = +∞ almost surely.

Proof of the exponential ergodicity. It is sufficient to prove that there exists n ≥ 1, ǫ > 0 and
a non-trivial probability ϑ on DN such that

Px((X
1
n,...,X

N
n ) ∈ A) ≥ ǫϑ(A), ∀x ∈ Dα

N
, A ∈ B(DN ) (15)

and that

sup
x∈Dα

N

Ex(κ
τ ′) <∞, (16)

where κ is a positive constant and τ ′ is the return time to Dα
N

of the Markov chain
(X1

n,...,X
N
n )n∈N. Indeed, Down and Meyn proved in [12, Theorem 2.1 p.1673] that if the

Markov chain (X1
n,...,X

N
n )n∈N is aperiodic (which is obvious in our case) and fulfills (15) and

(16), then it is geometrically ergodic. But, thanks to [12, Theorem 5.3 p.1681], the geometric
ergodicity of this Markov chain is a sufficient condition for (X1,...,XN) to be exponentially
ergodic.

Let us first prove that (15) is fulfilled. Let F be the event “the process (X1,...,XN ) has
no jump between times 0 and 1”. Conditionally to F , the process X i doesn’t depend on the
other particles before time 1. Then the law of X i conditionally to F is the same as the law
of the diffusion process X(i) defined by (5) at time 1 and conditioned to not be killed. It
yields that

P(x1,...,xN)(X
i
1 ∈ dx|F) = Pi

xi
(X

(i)
1 ∈ dx|1 < τ∂) ≥ Pi

xi
(X1 ∈ dx). (17)

10



The law of X(i)
1 has a density pi1(xi,y) with respect to the Lebesgue’s measure and pi1(xi,y)

depends continuously on xi and y. It only vanishes when y = 0 or 1. Then

ǫi = inf
(xi,y)∈Dα×Dα

pi1(xi,y) > 0,

since Dα ×Dα is compact. We get from (17) that

P(x1,...,xN)(X
i
1 ∈ dx|F) ≥ ǫi1Dα

(x)dx, ∀(x1,...,xN ) ∈ Dα
N
.

Conditionally to F , the particles are independent from each other, so that

P(x1,...,xN)((X
1
1 ,...,X

N
1 ) ∈ dy1...dyN |F) =

N
∏

i=1

P(x1,...,xN)(X
i
1 ∈ dyi|F)

≥
(

N
∏

i=1

ǫi

)

1
Dα

N (y1,...,yN)dy1...dyN .

Define p = inf
x∈Dα

N Px(F). Thanks to the coupling with (Y 1,...,Y N), we have p > 0. It

yields that (15) is satisfied with ϑ(dx) = p
(

∏N
i=1 ǫi

)

1
Dα

N (x)dx.

Now we prove that ∃κ > 0 such that (16) holds. Let p′ > 0 be the probability for

(Y 1,...,Y N) to enter Dα
N

at time n + 1, starting from 0 at time n. For all x ∈ DN and all

n ≥ 1, the probability for (X1,...,XN ) to be in Dα
N

at time n+ 1 starting from x at time n
is bounded below by the probability p′. Hence, at each time n ≥ 1, (X1,...,XN) returns to

Dα
N

at time n+ 1 with a probability greater than p′ > 0. It implies that the return time to
Dα

N
for (X1

n,...X
N
n )n∈N is bounded above by a time of geometrical law, independent of the

starting point x ∈ DN . Then condition (16) is fulfilled.

2.4 Uniform tightness of the empirical stationary distributions

Assume that a jump measure J (N) is given for each N ≥ 2 and that Hypothesis 1 is fulfilled
for all N ≥ 2. Assume that we’re given a family of drifts (q(N)

i )i=1,...,N for each N ≥ 2 which
is uniformly bounded, which means that there exists a constant Q′ > 0 such that

‖q(N)
i ‖∞ < Q′, ∀ i,N. (18)

We denote byMN ∈ M1(D
N) the stationary distribution of theN -particles process described

above. The empirical stationary distribution XN denotes the random probability on D
defined by

XN =
1

N

N
∑

i=1

δxi

where (x1,...,xN ) is a random vector in DN distributed following MN .

11



Theorem 2.3. The family of empirical stationary distributions
(

XN
)

N≥2
is uniformly tight.

Proof. Let us consider the process (X1,...,XN ) starting with a distributionmN and its coupled
process (Y 1,...,Y N). For all t ∈ [0,τ∞[, we denote by µN(t,dx) (resp. µ′N(t,dx)) the empirical
measure of the process (X1,...,XN ) (resp. (Y 1,...,Y N)) at time t:

µN(t,dx) =
1

N

N
∑

i=1

δXi
t
(dx) and µ′N(t,dx) =

1

N

N
∑

i=1

δY i
t
(dx).

By the coupling inequality (8), we get

µN(t,Dc
r) ≤ µ′N(t,[0,r]), ∀r ∈ [0,α].

As a consequence,

EmN

(

µN(t,Dc
r)
)

≤ EmN

(

µ′N(t,[0,r])
)

, ∀r ∈ [0,α].

The family
(

EmN

(

µ′N(t,.)
))

N≥2
is uniformly tight for any arbitrarily chosen t > 0, since

one can choose the constant Q in (7) equal to Q′ for all N ≥ 2, by (12) and (18). Then
the family

(

EmN

(

µN(t,.)
))

N≥2
is also uniformly tight for any given t > 0. This implies the

uniform tightness of the family of random measures (µN(t,dx))N≥2 (see [20]). If we set mN

equal to the stationary distribution MN , then we get by stationarity that XN is distributed
as µN(t,.), for all N ≥ 2 and t > 0. Finally, the family of empirical stationary distributions
(XN)N≥2 is uniformly tight.

3 Yaglom limit’s approximation

We consider now the particular case J (N)(x1,...,xN ) =
1

N−1

∑N
k=1,k 6=i δxk

: at each jump time,
the particle which hits the boundary jumps to the position of a particle chosen uniformly
between the N−1 remaining ones. We assume moreover that q(N)

i = q doesn’t depend on i,N .
In this framework, we are able to identify the limit of the empirical stationary distribution
sequence, when the number of particles tends to infinity. This leads us to an approximation
method of the Yaglom limits (4), including cases where the drift of the diffusion process isn’t
bounded and where the boundary ∂D0 is neither of class C2 nor bounded.

Let D0 be an open domain of Rd, with d ≥ 1. We denote by P0 the law of the diffusion
process defined on D0 by

dXt = dBt −∇V (Xt)dt, X0 = x ∈ D0 (19)

and absorbed at the boundary ∂D0. Here B is a d-dimensional Brownian motion and V ∈
C2(D0,R). We assume that Hypothesis 2 below is fulfilled, so that the Yaglom limit

ν0 = lim
t→+∞

P0
x (Xt ∈ .|t ≤ τ∂) , ∀x ∈ D0 (20)

12



exists and doesn’t depend on x, as proved by Cattiaux and Méléard in [6, Theorem B.2]. We
emphasize the fact that this hypothesis allows the drift ∇V of the diffusion process (19) to
be unbounded and the boundary ∂D0 to be neither of class C2 nor bounded. In particular,
the results of the previous section aren’t available in all generality for diffusion processes with
law P0.

Hypothesis 2. We assume that

1. P0
x(τ∂ < +∞) = 1,

2. ∃C > 0 such that G(x) = |∇V |2(x)−∆V (x) ≥ −C > −∞, ∀x ∈ D0,

3. G(R) → +∞ as R → ∞, where

G(R) = inf {G(x); |x| ≥ R and x ∈ D0} ,

4. For all R > 0, one can find an increasing sequence of open bounded sets Kn(R) such
that the boundary of Kn(R) ∩D0 is of class C1 and

⋃

n (Kn(R) ∩D0) = B(0,R) ∩D0,
where B(0,R) is the Euclidean ball of radius R.

5. There exists R > 0 such that
∫

D0∩{d(x,∂D0)>R}

e−2V (x)dx <∞ and

∫

D0∩{d(x,∂D0)≤R}

(
∫

D

pD0

1 (x,y)dy

)

e−V (x)dx <∞.

Here pD0

1 is the transition density of the diffusion process (19) with respect to the
Lebesgue measure.

Remark 2. For example, it is proved in [6] that Hypothesis 2 is fulfilled by the Lotka-Volterra
system studied numerically in Subsection 3.3.3. Up to a change of variable, this system is
defined by the diffusion process with values in D0 = R2

+, which satisfies

dY 1
t = dB1

t +

(

r1Y
1
t

2
− c11γ1 (Y

1
t )

3

8
− c12γ2Y

1
t (Y 2

t )
2

8
− 1

2Y 1
t

)

dt

dY 2
t = dB2

t +

(

r2Y
2
t

2
− c22γ2 (Y

2
t )

3

8
− c21γ1Y

2
t (Y 1

t )
2

8
− 1

2Y 1
t

)

dt

(21)

and is killed at ∂D0. Here B1,B2 are two independent one-dimensional Brownian motions
and the parameters of the diffusion process fulfill condition (46).

In order to define the interacting particle process of the previous section, we introduce
a cut-off of D0 near its boundary. More precisely, let (Dǫ)ǫ≥0 be a family of bounded open
subsets of D0 of class C2, which tends to D0 in the sense that, for all compact subset K ⊂ D0,
∃ǫ > 0 such that K ⊂ Dǫ. For all 0 < ǫ < ǫ′, we assume that d(Dǫ,∂D0) > 0, and Dǫ ( Dǫ′.
For all ǫ > 0, we denote by Pǫ the law of the diffusion process defined on Dǫ by

dXǫ
t = dBt −∇V (Xǫ

t )dt, X
ǫ
0 = x ∈ Dǫ

13



and absorbed at the boundary ∂Dǫ. Here B is a d-dimensional Brownian motion. For all
ǫ > 0, the diffusion process with law Pǫ clearly fulfills the conditions of Section 2 . For all
N ≥ 2, let (Xǫ,1,...,Xǫ,N) be the interacting particle process defined by the law Pǫ between
the jumps and by the jump measure J (ǫ,N)(x1,...,xN ) =

1
N−1

∑N
k=1,k 6=i δxk

. By Theorem 2.1,
this process is well defined and exponentially ergodic.

For all ǫ > 0 and allN ≥ 2, we denote byM ǫ,N the stationary distribution of (Xǫ,1,...,Xǫ,N)
and by X ǫ,N the associated empirical stationary distribution.

We are now able to state the main result of this section.

Theorem 3.1. Assume that Hypothesis 2 is satisfied. Then

lim
ǫ→0

lim
N→∞

X ǫ,N = ν0, (22)

in the weak topology of random measures.

In Section 3.1, we fix ǫ > 0 and we prove that the sequence (X ǫ,N)N≥2 converges to a
probability νǫ when N goes to infinity. In particular, we prove that νǫ is the Yaglom limit
associated with Pǫ, which exists by [16]. In Section 3.2, we conclude the proof, proceeding by
a compactness/uniqueness argument: we prove that (νǫ)0<ǫ<1/2 is a uniformly tight family
and we show that each limiting probability of the family (νǫ)0<ǫ<1/2 is equal to the Yaglom
limit ν0. The last Section 3.3.3 is devoted to numerical illustrations of Theorem 3.1.

3.1 Convergence of (X ǫ,N)N≥2, when ǫ > 0 is fixed

Proposition 3.2. Let ǫ > 0 be fixed. The sequence of empirical stationary distributions
(X ǫ,N)N≥2 converges to νǫ in the weak topology of random measures when N goes to infinity,
where νǫ is the Yaglom limit associated with Pǫ.

Remark 3. The Yaglom limit νǫ exists and is the unique quasi-stationary distribution asso-
ciated with Pǫ. Moreover it satisfies

νǫ = lim
t→∞

Pǫ
m (Xǫ

t ∈ .|Xǫ
t ∈ Dǫ) , ∀m ∈ M1(Dǫ), (23)

by [6, Proposition B.12].

Proof of Proposition 3.2. The initial distribution of the process (Xǫ,1,...,Xǫ,N) is chosen equal
to its stationary distribution M ǫ,N . For all t ≥ 0, we denote by µǫ,N(t,dx) its empirical
measure at time t (by stationarity, µǫ,N(t,dx) and X ǫ,N have the same law). We set

νǫ,N(t,dx) =

(

N − 1

N

)AN
t

µǫ,N(t,dx),

where AN
t =

∑∞
n=1 1τn≤t denotes the number of jumps before time t. Intuitively, we introduce

a loss of 1/N of the total mass at each jump, in order to approximate the distribution of the
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diffusion process (19) without conditioning. We will come back to the study of µǫ,N and the
conditioned diffusion process by normalizing νǫ,N .

For all ǫ ≥ 0, we denote by Lǫ the infinitesimal generator of the diffusion process with
law Pǫ. From the Itô’s formula applied to the semimartingale µǫ,N(t,ψ) = 1

N

∑N
i=1 ψ(X

ǫ,i
t ),

where ψ ∈ C2(Dǫ,R
d), we get

µǫ,N(t,ψ) = µǫ,N(0,ψ) +

∫ t

0

µǫ,N(s,Lǫψ)ds+Mc,ǫ,N(t,ψ) +Mj,ǫ,N(t,ψ)

+
1

N − 1

∑

0≤τn≤t

µǫ,N(τn-,ψ), (24)

where Mc,ǫ,N(t,ψ) is the continuous martingale

1

N

N
∑

i=1

d
∑

j=1

∫ t

0

∂ψ

∂xj
(Xǫ,i

s )dBi,j
s

and Mj,ǫ,N(t,ψ) is the pure jump martingale

1

N

N
∑

i=1

∑

0≤τ in≤t

(

ψ(Xǫ,i
τ in
)− N

N − 1
µǫ,N(τ in-,ψ)

)

.

Applying the Itô’s formula to the semimartingale νǫ,N(t,ψ), we deduce from (24) that

νǫ,N(t,ψ) = νǫ,N(0,ψ) +

∫ t

0

νǫ,N(s,Lǫψ)ds+

∫ t

0

(

N − 1

N

)AN
s

dMc,ǫ,N(s,ψ)

+
∑

0≤τn≤t

(νǫ,N(τn,ψ)− νǫ,N(τn-,ψ)).

Where we have

νǫ,N(τn,ψ)− νǫ,N(τn-,ψ) =

(

N − 1

N

)AN
τn
(

µǫ,N(τn,ψ)− µǫ,N(τn-,ψ)
)

+ µǫ,N(τn-,ψ)

(

(

N − 1

N

)AN
τn

−
(

N − 1

N

)AN
τn-

)

.

But

µǫ,N(τn,ψ)− µǫ,N(τn-,ψ) =
1

N − 1
µǫ,N(τn-,ψ) +Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)

and
(

N − 1

N

)AN
τn

−
(

N − 1

N

)AN
τn-

= − 1

N − 1

(

N − 1

N

)AN
τn

.

15



Then

νǫ,N(τn,ψ)− νǫ,N(τn-,ψ) =

(

N − 1

N

)AN
τn
(

Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)
)

.

=
N − 1

N

(

N − 1

N

)AN
τn-
(

Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)
)

.

That implies

νǫ,N(t,ψ)− νǫ,N(0,ψ) =

∫ t

0

νǫ,N(s,Lǫψ)ds+

∫ t

0

(

N − 1

N

)AN
s

dMc,ǫ,N(s,ψ)

+
N − 1

N

∑

0≤τn≤t

(

N − 1

N

)AN
τn-
(

Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)
)

.

It yields that, for all smooth functions Ψ(t,x) vanishing at the boundary of Dǫ,

νǫ,N(t,Ψ(t,.))− νǫ,N(0,Ψ(0,.)) =

∫ t

0

νǫ,N(s,
∂Ψ(s,.)

∂s
+
∂Ψ(s,.)

∂x
q +

1

2

∂2Ψ(s,.)

∂x2
)ds

+N c,ǫ,N(t,Ψ) +N j,ǫ,N(t,Ψ),

(25)

where N c,ǫ,N(t,Ψ) is the continuous martingale

1

N

N
∑

i=1

d
∑

j=1

∫ t

0

(

N − 1

N

)AN
s ∂Ψ

∂xj
(s,Xǫ,i

s )dBi,j
s

and N j,ǫ,N(t,Ψ) is the pure jump martingale

1

N

N
∑

i=1

∑

0≤τ in≤t

(

N − 1

N

)AN

τin-

(

Ψ(τ in,X
ǫ,i
τ in
)− N

N − 1
µǫ,N(τ in-,Ψ(τ in-,.))

)

.

For all δ > 0, define Ψδ(t,x) = P ǫ
T−tP

ǫ
δ f(x), where f ∈ C2(D) vanishes on ∂D, and (P ǫ

t )
is the semigroup associated with Pǫ. From Kolmogorov’s equation (see [13, Proposition 1.5
p.9]),

∂

∂s
Ψδ(s,x) +

1

2
∆Ψδ(s,x) + q(x)∇Ψδ(s,x) = 0.

It yields that

νǫ,N(t,Ψδ(t,.))− νǫ,N(0,Ψδ(0,.)) = N c,ǫ,N(t,Ψδ) +N j,ǫ,N(t,Ψδ). (26)

Since
(

N−1
N

)AN
s ≤ 1 a.s., we get

E
(

N c,ǫ,N(T,Ψδ)2
)

≤ T

N
‖∇Ψδ‖2∞

≤ T

N

cǫ
√

(T − t+ δ) ∧ 1
‖f‖∞

(27)
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where cǫ > 0 is a positive constant. The last inequality comes from [28, Theorem 4.5] on
gradient estimates in regular domains of Rd. The jumps of the martingale Mj,ǫ,N(t,Ψδ) are
smaller than 2

N
‖Ψδ‖∞, then

E

[

∑

0≤τn≤T

(

N − 1

N

)2Aτn-
(

Mj,ǫ,N(τn,Ψ
δ(τn,.))−Mj,ǫ,N(τn-,Ψ

δ(τn-,.))
)2

]

≤ 4

N2
‖Ψδ‖2∞E

[

∑

0≤τn≤T

(

N − 1

N

)2Aτn-

]

≤ 4

N
‖Ψδ‖2∞.

Then

E
(

N j,N(Ψ,T )2
)

≤ 4

N
‖Ψ‖2∞ ≤ 4

N
‖f‖2∞. (28)

We get from (26), (27) and (28) that
√

E
(

∣

∣νN (t,P ǫ
T−t+δf)− νN(0, P ǫ

T+δf)
∣

∣

2
)

≤ Cǫ,δ√
N
‖f‖∞

where Cǫ,δ is a positive constant which does not depend on f . In particular, one can find a
strictly decreasing sequence (δN )N which converges to 0 and such that

√

E
(

∣

∣νǫ,N(T,P ǫ
δN
f)− νǫ,N(0, P ǫ

T+δN
f)
∣

∣

2
)

≤ ‖f‖∞o(N).

But ‖P ǫ
δN
f − f‖∞ tends to 0 when δN goes to 0, then

√

E
(

|νǫ,N(T,f)− νǫ,N(0, P ǫ
Tf)|2

)

→ 0. (29)

The family of random probabilities (X ǫ,N)N≥0 is uniformly tight, by Theorem 2.3. Let
X ǫ be one of its limit probabilities. By definition, there exists a strictly increasing map
ϕ : N 7→ N, such that X ǫ,ϕ(N) converges in law to X ǫ when N → ∞. Since νǫ,N(0,.) = µǫ,N(0,.)
has the same law as X ǫ,N , we deduce from (29) that

E
(

νǫ,ϕ(N)(T,f)
)

−−−→
N→∞

E (X ǫ(P ǫ
Tf)) (30)

for all continuous function f which vanishes at the boundary ofDǫ. But the family
(

µǫ,ϕ(N)(T,.)
)

N

is uniformly tight, then
(

νǫ,ϕ(N)(T,.)
)

N
is also uniformly tight. By (30), its unique limit is

then the measure X ǫ(P ǫ
T .) defined by f 7→ X ǫ(P ǫ

Tf). We finally get

νǫ,ϕ(N)(T,.)
law−−−→

N→∞
X ǫ(P ǫ

T .). (31)

In particular,
(

νǫ,ϕ(N)(T,Dǫ),ν
ǫ,ϕ(N)(T,.)

) law−−−→
N→∞

(X ǫ(P ǫ
T1Dǫ

),X ǫ(P ǫ
T .)) .
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But X ǫ(P ǫ
T1Dǫ

) never vanishes almost surely, so that

µǫ,ϕ(N)(T,.) =
νǫ,ϕ(N)(T,.)

νǫ,ϕ(N)(T,Dǫ)

law−−−→
N→∞

X ǫ(P ǫ
T .)

X ǫ(P ǫ
T1Dǫ

)
= Pǫ

X ǫ(Xǫ
T ∈ .|Xǫ

T ∈ Dǫ)

By stationarity, µǫ,ϕ(N)(T,.) and X ǫ,N have the same law, and converge in law to X ǫ when
N → ∞. It yields that X ǫ and Pǫ

X ǫ(Xǫ
T ∈ .|Xǫ

T ∈ Dǫ) have the same law. But Pǫ
X ǫ(Xǫ

T ∈
.|Xǫ

T ∈ Dǫ) converges almost surely to νǫ when T → ∞, by (23). We deduce from it that
X ǫ has the same law as νǫ. As a consequence, the unique limit probability of the uniformly
tight family (X ǫ,N)N is νǫ, which allows us to conclude the proof of Proposition 3.2.

3.2 Convergence of the family (νǫ)0<ǫ<1

We show in Subsection 3.2.1 that the family (νǫ)0<ǫ<1 is uniformly tight. In Subsection 3.2.2,
we prove that its unique probability limit is ν0, which concludes the proof of Theorem 3.1.

3.2.1 Uniform tightness of the family (νǫ)0<ǫ<1

Proposition 3.3. Assume that hypothesis 2 is fulfilled. Then the family (νǫ)0<ǫ<1 is uni-
formly tight. Moreover, every limit point is absolutely continuous with respect to the Lebesgue
measure, with a density bounded by ce−V , where c is a positive constant.

Proof of Proposition 3.3. Let us recall some results from [16] and [6] on the spectral theory of
Lǫ. It has a simple eigenvalue λǫ > 0 with minimal real part. The corresponding normalized
eigenfunction ηǫ is strictly positive on Dǫ, belongs to C2(Dǫ,R) and fulfills

Lǫηǫ = −λǫηǫ and
∫

Dǫ

ηǫ(x)
2σ(dx) = 1, (32)

where
σ(dx) = e−2V (x)dx.

Moreover, we have

dνǫ =
ηǫdσ

∫

Dǫ
ηǫ(x)dσ(x)

, ∀ǫ ≥ 0. (33)

In order to prove that (νǫ)0<ǫ<1 is uniformly tight, we show that
(

∫

Dǫ
ηǫ(x)dσ(x)

)

0<ǫ<1
is

uniformly bounded below by a positive constant A > 0, and we conclude by proving that the
family (ηǫdσ)0<ǫ<1 is uniformly tight.

Let us prove that

A = inf
0<ǫ<1

∫

Dǫ

ηǫ(x)dσ(x) > 0. (34)

In order to achieve this goal, assume the converse: one can find a sequence of positive numbers
(ǫk)k∈N which converges to 0 and such that

∫

Dǫk

vǫk(x)e
−V (x)dx =

∫

Dǫk

ηǫk(x)dσ(x) −−−→
k→∞

0,

where we set vǫ = ηǫe
−V . Thanks to [6], there exists a constant κ > 0 such that

vǫ(x) < κ, ∀ǫ ≥ 0, ∀x ∈ Dǫ. (35)
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In particular, we have
∫

Dǫk

vǫk(x)
2e−V (x)dx ≤ κ

∫

Dǫk

vǫk(x)e
−V (x)dx −−−→

k→∞
0. (36)

Let us show that (vǫ(x)
2dx)ǫ>0 is uniformly tight. If D0 is bounded, it is a direct conse-

quence of the uniform bound (35) . Assume that D0 isn’t bounded, then
∫

Dǫ∩|x|≥R

v2ǫ (x)dx ≤ 1

G(R)

∫

Dǫ∩|x|≥R

v2ǫ (x)G(x)dx, (37)

where G(R) → +∞ when R → +∞ (see Hypothesis 2). For all x ∈ Dǫ, (32) leads to

1

2
∆vǫ −

1

2
G(x)vǫ(x) = −λǫvǫ(x) and

∫

Dǫ

vǫ(x)
2dx = 1.

Then
∫

Dǫ

v2ǫ (x)G(x)dx = λǫ

∫

Dǫ

vǫ(x)
2dx+

∫

Dǫ

vǫ(x)∆vǫ(x)dx

= λǫ −
∫

Dǫ

|∇vǫ(x)|2dx

≤ λǫ, (38)

where the second equality is a consequence of the Green’s formula (see [2, Corollary 3.2.4]).
But the eigenvalue λǫ of −Lǫ is given by (see for instance [31, chapter XI, part 8])

λǫ = inf
φ∈C∞

0
(Dǫ), 〈φ,φ〉σ=1

〈Lǫφ,φ〉σ,

= inf
φ∈C∞

0
(Dǫ), 〈φ,φ〉σ=1

〈

L0φ,φ
〉

σ
,

(39)

where C∞
0 (Dǫ) is the vector space of infinitely differentiable functions with compact support

in Dǫ and 〈f,g〉σ =
∫

D0
f(u)g(u)dσ(u). We deduce from it that λǫ increases with ǫ and is

uniformly bounded above by λ1. The uniform bound (38) and the inequality (37) allow us
to conclude that the family (vǫ(x)

2dx)ǫ>0 is uniformly tight.
As a consequence, one can find (after extracting a sub-sequence) a non-negative map

m : D0 → R+ such that, for all continuous and bounded function φ : D0 → R,
∫

Dǫk

vǫk(y)
2φ(y)dy −−−→

k→∞

∫

D0

m(y)φ(y)dy. (40)

Indeed, (v2ǫ ) being uniformly bounded, all limit measures are absolutely continuous with
respect to the Lebesgue measure. In particular,

∫

Dǫk

vǫk(x)
2 min (e−V (x),1)dx −−−→

k→∞

∫

D0

m(x)min (e−V (x),1)dx.
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We deduce from (36) that
∫

D0

m(x)min (e−V (x),1)dx = 0.

But min (e−V (.),1) is continuous and positive on D0, so that m vanishes almost every where.
Finally, by the convergence property (40) applied to φ = 1 almost everywhere, we have

1 =

∫

Dǫk

vǫk(x)
2dx −−−→

k→∞
0,

which is absurd. Finally A is strictly positive.
Fix an arbitrary positive constant α > 0 and let us prove that one can find a compact set

Kα ⊂ D0 such that
∫

Kc
α

ηǫ(x)dσ(x) ≤ α, ∀ǫ ∈]0,1[. (41)

Let R be the positive constant of the fifth part of Hypothesis 2. For all compact set K, we
have

∫

Kc

ηǫ(x)dσ(x) =

∫

Kc∩{d(x,∂D0)>R}

ηǫ(x)dσ(x) +

∫

Kc∩{d(x,∂D0)≤R}

ηǫ(x)dσ(x). (42)

But, from the proof of [6, Proposition B.6],

∫

Kc∩{d(x,∂D0)>R}

ηǫ(x)dσ(x) ≤
√

∫

Kc∩{d(x,∂D0)>R}

e−2V (x)dx (43)

and
∫

Kc∩{d(x,∂D0)≤R}

ηǫ(x)dσ(x) ≤ eC/2eλǫ‖vǫ‖∞
∫

Kc∩{d(x,∂D0)≤R}

(
∫

D

pD0

1 (x,y)dy

)

dx. (44)

On the one hand, eλǫ‖vǫ‖∞ is uniformly bounded above by eλ1κ. On the other hand, both
integrals on the right hand side are well defined, thanks to Hypothesis 2. Finally, one can find
a compact set Kα such that (43) and (44) are both bounded by α/2. Since (41) is fulfilled
for all α > 0, the family (ηǫdσ)0<ǫ<1 is uniformly tight.

Finally, it yields from equality (33) and the uniform bound A, that the family (νǫ)ǫ>0

is uniformly tight. Moreover, νǫ has a density which is bounded by κe−V /A, uniformly in
ǫ > 0. Then it is uniformly bounded on every compact set, so that every limiting distribution
is absolutely continuous with respect to the Lebesgue measure, with a density bounded by
κe−V /A.

3.2.2 Uniqueness of the limiting probability

Proposition 3.4. Assume that Hypothesis 2 holds. Let ν be a probability measure which is
the limit of a sub-sequence (νǫk)k∈N, where ǫk → 0 when k → ∞. Then ν is the Yaglom limit
ν0 associated with P0.
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Proof of Proposition 3.4. Thanks to Proposition 3.2, ν has a density η with respect to σ,
and η ≤ κeV /A. Let us prove that η belongs to L2(dσ). Since νǫk → ν, we have, for all
f ∈ C0(D0,R) (which denotes the set of continuous real functions with compact support on
D0),

∫

D0

f(x)η(x)2dσ(x) =

∫

D0

f(x)η(x)dν(x) = lim
k→∞

∫

D0

f(x)η(x)dνǫk(x)

= lim
k→∞

∫

D0

f(x)
ηǫ(x)

〈ηǫk ,1Dǫ
〉dν(x)

since
ηǫk (x)

〈ηǫk ,1Dǫ〉 is the density of νǫk with respect to σ, by (33). For the same reasons,

∫

D0

f(x)η(x)2dσ(x) = lim
k→∞

lim
k′→∞

∫

D0

f(x)
ηǫk(x)ηǫk′ (x)

〈

ηǫk ,1Dǫk

〉

σ

〈

ηǫk′ ,1Dǫ
k′

〉

σ

dσ(x).

For all ǫ > 0, we have
∫

D0
η2ǫ dσ(x) = 1 by (32), and 〈ηǫ,1Dǫ

〉σ > A by (34). Then, by the
Cauchy-Schwarz inequality, we get

∫

D0

f(x)η(x)2dσ(x) ≤ ‖f‖∞/A2.

It yields that η ∈ L2(dσ).
We denote by E0 the orthogonal space of η0 in L2(dσ). We prove that η is proportional to

η0 by showing that η is orthogonal to E0 ∩ C0(D0). For all f ∈ E0 ∩ C0(D0) and all x ∈ D0,
P ǫk
t f(x) converges to P 0

t f(x) when k → ∞. But νǫk → ν when k → ∞, then we have

〈

P 0
t f,η

〉

σ
=

∫

D0

P 0
t f(x)dν(x)

= lim
k→∞

∫

D0

P ǫk
t f(x)dνǫk(x)

= lim
k→∞

e−λǫk
t

∫

D0

f(x)dνǫk(x),

where the last equality comes from [16]. But λk → λ0 by (39) and
∫

D0
f(x)dνǫk(x) →

∫

D0
f(x)dν(x) when k → ∞. As a consequence,

〈

η, P 0
t f
〉

σ
= e−λ0t 〈η, f〉σ , ∀f ∈ E0 ∩ C0(D0), ∀t ≥ 0.

But η belongs to L2(dσ), then we have by [6, Theorem A.4]

lim
t→∞

eλ0t
〈

η,P 0
t f
〉

= 0, ∀f ∈ E0 ∩ C0(D0).

We deduce that 〈η, f〉σ = 0 for all f ∈ E0 ∩ C0(D0). This allows us to conclude that η is
proportional to η0. Finally, ν and ν0 are two proportional probabilities, then ν = ν0.
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3.3 Numerical simulations

3.3.1 The Wright-Fisher case

The Wright-Fisher with values in ]0,1[ conditioned to be killed at 0 is the diffusion process
driven by the SDE

dZt =
√

Zt(1− Zt)dBt − Ztdt, Z0 = z ∈]0,1[,
and killed when it hits 0 (1 is never reached). Huillet proved in [19] that the Yaglom limit
of this process exists and has the density 2 − 2x with respect to the Lebesgue measure. In
order to apply Theorem 3.1, we define P0 as the law of X. = arccos(1− 2Z.). Then P0 is the
law of the diffusion process with values in ]0,π[, driven by the SDE

dXt = dBt −
1− 2 cosXt

2 sinXt

dt, X0 = x ∈]0,π[,

killed when it hits 0 (π is never reached). One can easily check that this diffusion process
fulfills Hypothesis 2. We denote by ν0 its Yaglom limit.

For all ǫ ∈]0,π/2[, we define Dǫ =]ǫ,π−ǫ[. Let Pǫ and νǫ be as in Section 3. We proceed to
the numerical simulation of the N -interacting particle system (Xǫ,1,...,Xǫ,N) with ǫ = 0.001
and N = 1000. This leads us to the computation of E(XN,ǫ), which is an approximation of
ν0. After the change of variable Z. = 2 cos(X.), we see on Figure 3 that the simulation is
very close to the expected result (2− 2x)dx, which shows the efficiency of the method.

 0
 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 2

 1

Figure 3: E(X ǫ,N) in the Wright-Fisher case
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3.3.2 The logistic case

The logistic Feller diffusion with values in ]0, + ∞[ is defined by the stochastic differential
equation

dZt =
√

ZtdBt + (rZt − cZ2
t )dt, Z0 = z > 0, (45)

and killed when it hits 0. Here B is a 1-dimensional Brownian motion and r,c are two positive
constants. In order to use Theorem 3.1, we make the change of variable X. = 2

√
Z.. This

leads us to the study of the diffusion process with values in D0 =]0,+∞[, which is killed at
0 and satisfies the SDE

dXt = dBt −
(

1

2Xt
− rXt

2
+
cX3

t

4

)

dt, X0 = x ∈]0,+∞[.

We denote by P0 its law. Cattiaux et al. proved in [5] that Hypothesis 2 is fulfilled in this
case. Then the Yaglom limit ν0 associated with P0 exists and one can apply Theorem 3.1
with Dǫ =]1/ǫ,ǫ[ for all ǫ ∈]0,1/2[. As above and for all N ≥ 2, we denote by Pǫ the law
of the diffusion process restricted to Dǫ and by X ǫ,N the empirical stationary distribution of
the N -interacting particle process associated with Pǫ.

We’ve proceeded to the numerical simulation of the interacting particle process for a large
number of particles and a small value of ǫ. This allows us to compute E(X ǫ,N), which gives
us a numerical approximation of ν0, thanks to Theorem 3.1.

In the numerical simulations below, we set ǫ equal to 0.0001 and N = 10000. We compute
E(X ǫ,N) for different values of the parameters r and c in (45). The results are grahically
represented in Figure 4. As it could be wanted for, greater is c, closer is the support of the
QSD to 0. We thus numerically describe the impact of the linear and quadratic terms on the
Yaglom limit.

3.3.3 Stochastic Lotka-Volterra Model

We apply our results to the stochastic Lotka-Volterra system with values in D = R2
+ studied

in [6], which is defined by the following stochastic differential system

dZ1
t =

√

γ1Z1
t dB

1
t +

(

r1Z
1
t − c11(Z

1
t )

2 − c12Z
1
t Z

2
t

)

dt,

dZ2
t =

√

γ2Z2
t dB

2
t +

(

r2Z
2
t − c21Z

1
t Z

2
t − c22(Z

2
t )

2
)

dt,

where (B1,B2) is a bi-dimensional Brownian motion. We are interested in the process ab-
sorbed at ∂D.

More precisely, we study the process (X1,X2) = (2
√

Z1
t /γ1,2

√

Z2
t /γ2), with values in

D0 = R2
+, which satisfies the SDE (21) and is killed at ∂D0. We denote its law by P0. The

coefficients are supposed to satisfy

c11,c21 > 0, c12γ2 = c21γ1 < 0 and c11c22 − c12c21 > 0. (46)

In [6], this case was called the weak cooperative case and the authors proved that it is a suffi-
cient condition for Hypothesis 2 to be fulfilled. Then the Yaglom limit ν0 = limt→+∞ P0

x ((Y
1
t ,Y

2
t ) ∈ .|t < τ∂)
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Figure 4: E(X ǫ,N) for the diffusion process (45), with different values of r and c

is well defined and we are able to apply Theorem 3.1. For each ǫ > 0, we define Dǫ as it is
described on Figure 5. With this definition, it is clear that all conditions of Theorems 2.1
and 3.1 are fulfilled.

We choose ǫ = 0.0001 and we simulate the long time behavior of the interacting particle
process with N = 10000 particles for different values of c12 and c21. The values of the other
parameters are r1 = 1 = r2 = 1, c11 = c22 = 1, γ1 = γ2 = 1. The results are illustrated on
Figure 6. One can observe that a greater value of the cooperating coefficients −c12 = −c21
leads to a Yaglom limit whose support is further from the boundary and covers a smaller area.
In other words, the more the two populations cooperate, the bigger the surviving populations
are.
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Figure 5: Definition of Dǫ
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Figure 6: Empirical stationary distribution of the interacting particle process for different
values of c12 = c21
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