
Interating partile proesses and approximation ofMarkov proesses onditioned to not be killed.Denis Villemonais∗June 3, 2011AbstratWe prove an approximation method for general strong Markov proesses ondi-tioned to not be killed. The method is based on a Fleming-Viot type interatingpartile system, whose partiles evolve as independent opies of the original strongMarkov proess and jump onto eah others instead of being killed. We only as-sume that the number of jumps of the Fleming-Viot type system doesn't explode in�nite time almost surely, and that the survival probability at �xed time of the orig-inal proess is positive. We also give a speed of onvergene for the approximationmethod.A riterion for the non-explosion of the number of jumps is then given for generalsystems of time and environment dependent di�usion partiles, whih inludes thease of the Fleming-Viot type system of the approximation method. The proof of theriterion uses an original non-attainability of (0,0) result for a pair of non-negativesemi-martingales with positive jumps.Key words : di�usion proess, interating partile system, empirial proess, quasi-stationary distribution, Yaglom limit.MSC 2000 subjet : Primary 82C22, 65C50, 60K35; seondary 60J601 IntrodutionLet F be a Banah spae and ∂ be a point whih doesn't belong to F . Let P be thesemi-group of a strong Markov proess Z whih evolves in F ∪ {∂} and denote by τ∂the hitting time of {∂}. We assume that ∂ is a emetery point for Z, whih means that
Zt = ∂ for all t ≥ τ∂, and we all τ∂ the killing time of Z.Killed Markov proesses are ommonly used in a large area of appliations in biology,demography, hemistry or �nane, where there is two natural ways of killing a Markovproess, whih orrespond to di�erent interpretations. The �rst way is to kill the proesswhen it reahes a given set. For instane, a demographi's model is stopped when thesize of the population hits 0, sine it orresponds to the extintion of the population. Theseond way of killing a proess is to stop it at an exponential time. For example, a hemial
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partile typially disappears by reating with another one after an exponential time, whoserate depends on the onentration of reatant in the medium. If the killing time τ∂ isgiven by the time at whih the proess reahes a set, we all it a hard killing time. If it isgiven by an exponential lok, we all it a smooth killing time. While the distribution ofthe proess after its killing time is of poor interest, numerous studies onentrate on thebehavior of the proess onditioned to not be killed (see [5℄ and referenes therein). Themain motivation of this paper is to provide an approximation method for the distributionof Markov proesses evolving in a random/time dependent environment and onditionedto not be killed.The main tool of the approximation method is given by a Fleming-Viot type interatingpartile system introdued by Burdzy, Holyst, Ingermann and Marh in [3℄ and [4℄: the
N partiles of the system evolve as independent Brownian motions in an open subset
D of Rd, and, when a partile hits the boundary ∂D, it jumps onto the position of another partile hosen uniformly between the N−1 other ones; then the partiles evolve asindependent partiles and so on. When N goes to in�nity, the empirial measure of theproess onverges to the distribution of a standard multi-dimensional Brownian motiononditioned to not be killed at the urrent time. Suh an approximation method hasbeen proved by Grigoresu and Kang in [11℄ for a standard multi-dimensional Brownianmotion, in [22℄ for Brownian motions with drift and by Del Moral and Milo for smoothlykilled Markov proesses (see [6℄ and referenes therein). Let us also mention the work ofFerrari and Mari� [9℄, whih regards ontinuous time Markov hains in disrete spaes.In Setion 2, we prove that this method works in a very general setting. Namely, let
(ZN)N≥2 be a sequene of strong Markov proesses whih evolve in F ∪ {∂}, where ∂ isthe emetery point for eah ZN . We �x T ≥ 0 and we assume that the sequene (ZN

T )Nonverges to ZT in the sens of Hypothesis 2.1 . For eah N ≥ 2, we build a Fleming-Viot type system of N interating partiles as above: the partiles evolve as independentopies of ZN until one of them is killed; at this time, the killed partile jumps onto theposition of another partile, hosen between the N − 1 remaining ones. We assume thatthe number of jumps in the N partiles system doesn't explode up to time T , and weprove in Theorem 2.1 that the assoiated sequene of empirial stationary distributionsonverges when N → ∞ to the distribution of the proess Z onditioned to not be killedat time T . We also give a speed of onvergene for the method, whih only depends onthe survival probability of the Markov proesses ZN , N ≥ 2.This result omes as an important generalization of the previously ited ones. Firstly,we allow both hard and soft killings, whih is a natural setting in appliations: typially,a speies an disappear beause of a lak of born of new speimens (whih orrespondsto a hard killing at 0) or beause of a brutal natural atastrophe (whih typially hap-pens following an exponential time). Seondly, we impliitly allow time and environmentdependeny, whih is also quite natural in appliations, where individual paths are in-�uened by external stohasti fators (as the weather) whose distribution varies withtime (beause of the seasons by instane). Finally, we allow the proess ZN whih drivesthe partiles to depend on N , and we only require the non-explosion of the number ofjumps of the Fleming-Viot type system build on ZN . As a onsequene, one an applythe approximation method to a proess Z, without requiring that the Fleming-Viot pro-ess based on Z is well de�ned. This is typially the ase for degenerate di�usions, orfor di�usions with hard killing at the boundary of a non-regular domain, or for Markov2



proesses with smooth killing given by an unbounded rate funtion. In our ase, the threeirregularities an be ombined, by suessive approximations of the oe�ients, domainand rate of killing respetively.Sine the method works in a very general setting, it only remains us to prove thenon-explosion of the number of jumps. This problem is studied in Setion 3. Suh non-explosion results have been reently obtained by Löbus in [17℄ and by Bienek, Burdzy andFinh in [2℄ for Brownian partiles killed at the boundary of a given open set, by Grig-oresu and Kang in [13℄ for time-homogeneous partiles driven by a stohasti equationwith regular oe�ients killed at the boundary of a non-smooth domain (a survey of theprevious results is done in the introdution of [13℄) and in [22℄ for Brownian partiles withdrift. Other models of di�usions with jumps from a boundary have been introdued in [1℄,with a ontinuity ondition on the jump measure that isn't ful�lled in our ase, in [12℄,where �ne properties of a Brownian motion with rebirth have been established, and in[15℄, [16℄, where Kolb and Wükber have studied the spetral properties of this model. InSetion 3, we state the non-explosion of an interating partile proess, whose onstru-tion is a generalization of the previous ones. Indeed we onsider partiles whih evolve asIt� di�usion proesses in a random/time dependent environment with both hard and softkillings, with a di�erent spae of values for eah partile. Moreover, at eah killing time,we allow very general jump loations for the killed partile. In partiular, this validatesthe approximation method desribed above for time/environment dependent di�usionswith hard and soft killing.The proof of the non-explosion is based on an original non-attainability of (0,0) resultfor semi-martingales, whih is stated in the last setion of this paper.2 Approximation of a Markov proess onditioned tonot be killedLet F be a polish spae and let Z be a àdlàg strong Markov proess whih evolves in Funtil it is killed. When it is killed, it jumps to a emetery point ∂ /∈ F . The killing timeis denoted by τ∂ = inf{t ≥ 0, Zt = ∂}. In this setion, we �x T ≥ 0 and we prove anapproximation method for the distribution of the proess ZT starting with distribution
µ0 ∈ M1(F ) and onditioned to the event {T < τ∂}.The approximation method is based on a sequene of Fleming-Viot type systems
X(N) =

(

X1,(N),...,X2,(N)
) with values in FN , N ≥ 2. A natural hoie for the dy-nami of X(N), N ≥ 2, should be the following: the partiles evolve independently as Nindependent opies of Z until one of them is killed; at this time, the killed partile jumpsfrom ∂ to the position of one of the N − 1 remaining partiles; then the partiles evolveas N independent opies of Z until one of them is killed and so on. Unfortunately, for ageneral hoie of Z, the number of jumps of the system ould explode in �nite time, orthe N partiles ould be killed at the same time (see [2, Example 5.3℄ for an example ofexplosion in a non-trivial setting). When this happens, the approximation method anno longer operate. In order to overome this di�ulty, we assume that we're given a se-quene (ZN

)

N≥2
of strong Markov proesses whih onverges to Z at time T (Hypothesis2.1 below) and suh that, for all N ≥ 2, the Fleming-Viot system with N partiles drivenby ZN between the killings doesn't explode before time T (Hypothesis 2.2). Theorem 2.13



below states that the empirial measure at time T of the system X(N) (whose partiles aredriven by ZN between the killings) onverges, when N goes to in�nity, to the distributionof Z onditioned to {T < τ∂}. A rate of onvergene of the approximation method is alsogiven, whih only depends on the survival probability of ZN at time T ≥ 0.Let (ZN
)

N≥2
be a sequene of àdlàg strong Markov proesses whih evolve in F ∪

{∂}, where ∂ is a emetery point for eah ZN . We denote the killing time of ZN by
τN∂ = inf{t ≥ 0, ZN

t = ∂}. For eah N ≥ 2, we de�ne the interating partile system
X

(N) = (X1,(N),...,XN,(N)) with values in FN as follows:� Let m(N) ∈ M1

(

FN
) be the initial distribution of the system.� The N partiles evolve as N independent opies of ZN until one of them is killed.This killing time is denoted by τ (N)

1 .� At time τ (N)
1 , the proess is modi�ed:� If there exists more than one partile whih is killed at time τ (N)

1 , we stop theinterating partile system itself and this time is denoted by τ (N)
stop (In fat, wewill assume that this kind of event doesn't happen almost surely).� Otherwise the unique killed partile jumps instantaneously onto the positionof another partile, hosen uniformly between the N − 1 remaining ones.� At time τ (N)

1 and after proeeding to the jump, the proess lies in FN . Then thesystem evolves as N independent opies of ZN , until the next killing time, denotedby τ (N)
2 .� At this time, the proess jumps with the same mehanism as above (and ould bestopped at a time denoted by τ (N)

stop, as above).� Then the partiles evolve as N independent opies of ZN , and so on.We set τ (N)
stop = +∞ if X i,(N) and Xj,(N) are never killed at the same time, for all i 6= j.On the event {τ (N)

stop = +∞}, we denote by τ (N)
1 < τ

(N)
2 < ... < τ

(N)
n < ... the sequene ofjump times and we set

τ (N)
∞ = lim

n→∞
τ (N)
n . (2.1)If τ (N)

stop < +∞, we set τ (N)
∞ = +∞. The interating partile system is then well de�nedfor all time t < τ

(N)
stop ∧ τ (N)

∞ .We denote by Ai,(N)
t the number of jumps of the ith partile up to time t, t < τ

(N)
stop∧τ (N)

∞ .We denote the total number of jumps of the system by A(N)
t :

A
(N)
t =

N
∑

i=1

A
i,(N)
t ,and by µ(N)

t the empirial distribution of X(N)
t :

µ
(N)
t =

1

N

N
∑

i=1

δ
X

i,(N)
t

∈ M1(F ),4



where M1(F ) denotes the spae of probability measures on F .The �rst assumption onerns the onvergene of ZN
T starting with initial randomdistribution µ(N)

0 to ZT starting with (possibly random) distribution µ0.Hypothesis 2.1. We assume that, for all bounded and ontinuous funtions f : F∪{∂} 7→
R+ suh that f(∂) = 0,

µ
(N)
0

(

PN
T f
) law−−−→

N→∞
µ0 (PTf) .where PN

. (respetively P.) denotes the semi-group of the proess with killing ZN (respe-tively Z).Remark 2.1. A typial situation where Hypothesis 2.1 is ful�lled is the following: we'regiven µ0, Z, and a sequene ZN suh that, for all x ∈ F and all ontinuous and boundedfuntion f : F 7→ R+,
PN
T f(x) −−−→

N→∞
PTf(x). (2.2)If we assume that m(N) = µ⊗N

0 , then Hypothesis 2.1 is ful�lled. Indeed, we have
µ
(N)
0

(

PN
T f
) law
=

1

N

N
∑

i=1

[

PN
T f(xi)− µ0

(

P
(N)
T f

)]

+ µ0

(

P
(N)
T f

)

,where (xi)i≥1 is an iid sequene of random variables with law µ0. By the law of largenumbers, the �rst right term onverges to 0 almost surely. By the onvergene assumption(2.2) and by dominated onvergene, the seond right term onverges almost surely to
µ0 (PTf), so that Hypothesis 2.1 is ful�lled.The seond assumption onerns the non-explosion of the number of jumps for thesystem with N partiles driven by ZN between the killings.Hypothesis 2.2. We assume that, for all N ≥ 2, the proess X

N is well de�ned up totime T , whih means that
Pm(N)

(

T < τstop ∧ τ (N)
∞

)

= 1.Hypothesis 2.2 is learly ful�lled if ZN is only subjet to smooth killing events happen-ing with uniformly bounded killing rates (the question has not been answered to in the aseof unbounded killing rates). In the ase of an It�'S di�usion driven by time-homogeneousstohasti di�erential equations and hardly killed when it hits the boundary of an openset, the problem is muh harder and has been extensively studied reently (see [22℄, [13℄and referenes therein for di�erent and quite general riteria of non-explosion). The aseof It� di�usions driven by stohasti di�erential equations with time/environment depen-dent oe�ients subjet to soft and hard killings is treated in Setion 3 of this paper.Theorem 2.1. We assume that the survival probability of Z at time T is stritly positive,whih means that
µ0 (PT1F ) > 0, almost surely. (2.3)Assume that Hypotheses 2.1 and 2.2 are ful�lled. Then, for any ontinuous and boundedfuntion f : F 7→ R+,
µ
(N)
T (f)

law−−−→
N→∞

µ0 (PTf)

µ0 (PT1F )
.5



Moreover, for any bounded measurable funtion f : F 7→ R+, we have the inequality
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∣
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.Remark 2.2. In Setion 3, we give a non-explosion riterion for systems whose partilesare driven by di�usions evolving in a random/time dependent environment, killed afterexponential times or when they hit the boundary of a given open set. In partiular, thisriterion requires that the rate of killing is bounded and that the killing boundary andthe oe�ients of the di�usions are smooth. If Z is a di�usion in random environment,with unbounded killing rate, irregular oe�ients and non-smooth killing boundary, onean de�ne a sequene of strong Markov proesses (ZN )N≥2 whih approximates Z andful�lls the riterion of Setion 3 for all N ≥ 2, proeeding by suessive approximationsof the rate of killing, the killing boundary and the oe�ients of the di�usion Z. It yieldsthat Theorem 2.1 gives an approximation method for Z onditioned to {T < τ∂}, while

Z is degenerate. This example illustrates that allowing an approximating sequene ZNfor Z gives a great generality to the approximation method of Theorem 2.1.Remark 2.3. In the partiular ase of a proess Z with a uniformly bounded killing rateand without hard killing, a uniform rate of onvergene over all times T an be obtained,using the stability of the underlying Feynman-Ka semi-group (we refer the reader toRousset's work [20℄ and referenes therein).Proof of Theorem 2.1. The proof onsists of three steps. In a �rst step, we �x N ≥ 2 andwe prove that, for any bounded and measurable funtion f : F ∪ {∂} suh that f(∂) = 0,there exists a martingale M (N)
t suh that

µ
(N)
t

(

PN
T−tf

)

= µ
(N)
0

(

PN
T f
)

+M
(N)
t +

1

N

N
∑

i=1

A
i,(N)
t
∑

n=1

[

1

N − 1

∑

j 6=i

PN

T−τ
i,(N)
n

f(X
j,(N)

τ
i,(N)
n

)

] (2.4)where τ i,(N)
n is the nth killing time of the ith partile. In a seond step, we de�ne themeasure ν(N)

t on F by
ν
(N)
t (dx) =

(

N − 1

N

)A
(N)
t

µ
(N)
t (dx),where a loss of mass is introdued at eah jump, in order to ompensate the last rightterm in (2.4): we prove that ν(N)

T (f)− µ
(N)
0

(

PN
T f
) is the sum of two martingales. Thenwe prove that the L2 norm of eah of these martingales is bounded by ‖f‖∞/

√
N , whihyields us to

√

E

(

∣

∣

∣
ν
(N)
T (f)− µ

(N)
0 (PN

T f)
∣

∣

∣

2
)

≤ 2‖f‖∞√
N

.In the third step of the proof, we remark that ν(N)
T and µ

(N)
T are proportional mea-sures, whih allows us to onlude the proof of Theorem 2.1 by renormalizing ν(N)

T and
µ
(N)
0

(

PN
T .
). 6



Step 1: Fix N ≥ 2 and let f : F ∪ {∂} 7→ R+ be a measurable bounded funtion suhthat f(∂) = 0. Let us prove (2.4). We de�ne, for all t ∈ [0,T ] and z ∈ F ∪ {∂},
ψN
t (z) = PN

T−tf(z).The proess (ψN
t (ZN

t )
)

t∈[0,T ]
is a martingale whih is equal to 0 at time τN∂ almost surely,as soon as τN∂ ≤ T . Indeed, for all s,t ≥ 0 suh that s + t ≤ T , we have by the Markovproperty and the fat that PN is a semi-group:

E
(

ψN
t+s(ZN

t+s)|
(

ZN
u

)

u∈[0,t]

)

= PN
s ψ

N
t+s(ZN

t ) = ψN
t (ZN

t ).Moreover ∂ is an absorbing state and f(∂) = 0, then
ψN
τN
∂
∧T (ZN

τN
∂
∧T ) = ψN

τN
∂
(∂)1τ∂≤T + ψN

τN
∂
(ZN

T )1τ∂>T = ψN
τN
∂
(ZN

T )1τ∂>T .Fix i ∈ {1,...,N} and denote by τ
i,(N)
n the nth jump time of the partile i. For all

n ≥ 0, we de�ne the proess (Mi,n,(N)
t

)

t∈[0,T ]
by

M
i,n,(N)
t = 1

t<τ
i,(N)
n+1

ψN

t∧τ
i,(N)
n+1

(X
i,(N)

t∧τ
i,(N)
n+1

)− ψN

t∧τ
i,(N)
n

(X
i,(N)

t∧τ
i,(N)
n

) (with τ i,(N)
0 = 0 ).Sine X i,(N) evolves as ZN in the time interval [τ i,(N)

n ,τ
i,(N)
n+1 [, Mi,(N),n

t is a martingale whihful�lls almost surely
M

i,n,(N)
t =















−ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

), if n < A
i,(N)
t ,

ψN
t (X

i,(N)
t )− ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

), if n = A
i,(N)
t ,

0, if n > A
i,(N)
t ,sine n < A

i,(N)
t is equivalent to τ i,(N)

n+1 < t, while n > A
i,(N)
t is equivalent to τ i,(N)

n > t.Summing over all jumps, we get
ψN
t (X

i,(N)
t ) = ψ0(X

i,(N)
0 ) +

A
i,(N)
t
∑

n=0

M
i,n,(N)
t +

A
i,(N)
t
∑

n=1

ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

). (2.5)De�ning
M

i,(N)
t =

A
i,(N)
t
∑

n=0

M
i,n,(N)
t and M

(N)
t =

1

N

N
∑

i=1

M
i,(N)
tand summing over i ∈ {1,...,N}, we get

µ
(N)
t (ψN

t ) = µ
(N)
0 (ψN

0 ) +M
(N)
t +

1

N

N
∑

i=1

A
i,(N)
t
∑

n=1

ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

).At eah jump time τ i,(N)
n , the position of the partile X i,(N) after the jump is hosen withrespet to the empirial measure of the other partiles. The expetation of ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

)7



onditionally to the position of the other partiles at the jump time is then the averagevalue 1
N−1

∑

j 6=i ψ
N

τ
i,(N)
n -

(X
j,(N)

τ
i,(N)
n -

). We dedue that
M(N)

t =
1

N

N
∑

i=1

A
i,(N)
t
∑

n=1

(

ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

)− 1

N − 1

∑

j 6=i

ψN

τ
i,(N)
n -

(X
j,(N)

τ
i,(N)
n -

)

)

.is a loal martingale. We �nally get
µ
(N)
t (ψN

t ) = µ
(N)
0 (ψN

0 ) +M
(N)
t +M(N)

t +
1

N

N
∑

i=1

A
i,(N)
t
∑

n=1

[

1

N − 1

∑

j 6=i

ψN

τ
i,(N)
n -

(X
j,(N)

τ
i,(N)
n -

)

]

, (2.6)whih is exatly (2.4).Step 2: Let us now explain why ν(N)

T∧τ
(N)
α

(ψN

T∧τ
(N)
α

) − ν
(N)
0 (ψN

0 ) is the sum of two mar-tingales. Sine N is �xed and in order to larify the alulus, we remove the supersripts
N and (N) when there is no risk of onfusion. Denoting by MC the ontinuous part of
M = M(N), we dedue from (2.6) that

νT (ψT )− ν0(ψ0) =

∫ T

0

(

N − 1

N

)At-

dMC
t +

AT
∑

n=1

ντn(ψτn)− ντn-(ψτn-).Let us ompute eah term in the right side sum. For all n ≥ 1,
ντn(ψτn)− ντn-(ψτn-) =

(

N − 1

N

)Aτn

(µτn(ψτn)− µτn-(ψτn-))

+ µτn-(ψτn-)

(

(

N − 1

N

)Aτn

−
(

N − 1

N

)Aτn-
)

.On the one hand, we have
(

N − 1

N

)Aτn

−
(

N − 1

N

)Aτn-

= − 1

N − 1

(

N − 1

N

)Aτn

.On the other hand, denoting by i the index of the killed partile at time τn, we have
µτn(ψτn)− µτn-(ψτn-) =

1

N(N − 1)

∑

j 6=i

ψτ in-
(Xj

τ in-
) +Mτn −Mτn- +Mτn −Mτn-,where

1

N(N − 1)

∑

j 6=i

ψτ in-
(Xj

τ in-
) =

1

N − 1
µτn-(ψτn-)−

1

N(N − 1)
ψτn-(X

i
τn-)and, by the de�nition of M = M(N),

− 1

N(N − 1)
ψτn-(X

i
τn-) =

1

N − 1
(Mτn −Mτn-) .8



We then have
µτn(ψτn)− µτn-(ψτn-) =

1

N − 1
µτn-(ψτn-) +

N

N − 1
(Mτn −Mτn-) +Mτn −Mτn-,Finally, we get

ντn(ψτn)− ντn-(ψτn-) =

(

N − 1

N

)Aτn -

(Mτn −Mτn-) +

(

N − 1

N

)Aτn

(Mτn −Mτn-) .The proess νt(ψt)− ν0(ψ0) is then the sum of two loal martingales and we have
νT (ψT )− ν0(ψ0) =

∫ T

0

(

N − 1

N

)At-

dMt +
N − 1

N

∫ T

0

(

N − 1

N

)At-

dMt (2.7)Let us bound both terms on the right-hand side (where N is still �xed). We do nothave any ontrol on the moments of the number of jumps, while we would like to deal withreal martingales instead of loal ones. In order to do this, we �x an integer α ≥ 1 andwe stop the interating partile system when the number of jumps At reahes α, whih isequivalent to stop the proess at time τα = τ
(N)
α . By the optional stopping time theorem,the proesses M and M stopped at time τ (N)

α are true martingales, almost surely boundedby α‖f‖∞.On the one hand, the martingale jumps Mτn −Mτn- are bounded by ‖f‖∞/N , whilethe martingale is onstant between the jumps, then
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]

≤ ‖f‖2∞
N

. (2.8)On the other hand, we have
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 ≤ E
(

(MT∧τα)
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=
1
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E
(
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T∧ταM
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T∧τα

)where
E
(

M
i
T∧ταM

j
T∧τα

)

=
α
∑

m=0,n=0

E
(

M
i,m
T∧τα

M
j,n
T∧τα

)

.If i 6= j, then the expetation of the produt of the martingales Mi,n and Mj,m is 0,sine the partiles are independent between the jumps and do not jump simultaneously.Assume i = j and �x m < n. By de�nition, we have
M i,m

T∧τα
=M i,m

T∧τα∧τ im+1
,9



whih is measurable with respet to XT∧τα∧τ im+1
, then

E
(

M i,m
T∧τα

M i,n
T∧τα

|XT∧τα∧τ im+1

)

=M i,m

T∧τα∧τ im+1
E
(

M i,n
T∧τα

|XT∧τα∧τ im+1

)

=M i,m

T∧τα∧τ im+1
M i,n

T∧τα∧τ im+1
= 0,using the optional sampling theorem with the martingaleM i,n

T∧τα
and the uniformly boundedstopping time T ∧ τα ∧ τ in. We dedue that
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)
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)
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α
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T∧τ in
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T∧τ in

)

)

.By (2.5), we have
E
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α
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ψT∧τ in
(X i

T∧τ in
)

)

≤ ‖f‖∞,and we dedue that
E
(

(

M i
T∧τα

)2
)

≤ ‖f‖2∞.Finally, we have
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 ≤ ‖f‖2∞
N

. (2.9)The formula (2.7) and inequalities (2.8) and (2.9) lead us to
√
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∣
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(PN

T−T∧τ
(N)
α

f)− µ
(N)
0 (PN

T∧τ
(N)
α

f)
∣

∣

∣

2
)

≤ 2‖f‖∞√
N

.The number of jumps of the interating partile system remains bounded up to time Tby Hypothesis 2.2, so that T ∧ τ
(N)
α is equal to T for α big enough almost surely. As aonsequene, making α go to in�nity in the inequality above, we get by the dominatedonvergene theorem
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2
)

≤
√
2‖f‖∞√
N

. (2.10)Step 3: Let us now onlude the proof of Theorem 2.1. By Hypothesis 2.1, µ(N)
0 (PN

T .)onverges in distribution to µ0(P
N
T .). It yields that, for eah ontinuous and boundedfuntion f : F → R+, the sequene of random variables (µ(N)

0 (PN
T 1F ), µ

(N)
0 (PN

T f)
) on-verges in distribution to the random variable (µ0(PT1F ), µ0(PTf)). By (2.10), we dedue10



that the sequene of random variables (ν(N)
T (1F ),ν

(N)
T (f)

) onverges in distribution tothe random variable (µ0(PT1F ), µ0(PTf)). Finally, using that µ0(PT1F ) never vanishesalmost surely, we get
µ
(N)
T (f) =

ν
(N)
T (f)

ν
(N)
T (1F )

law−−−→
N→∞

µ0(PTf)

µ0(PT1F )
,for any ontinuous and bounded funtion f : F → R+, whih implies the �rst part ofTheorem 2.1.We an also dedue from (2.10) that
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.Using the Cauhy Shwartz inequality, we dedue that
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4‖f‖∞√
N

,whih onludes the proof of Theorem 2.1 .3 Criterion for the non-explosion of the number of jumpsFix N ≥ 2. The aim of this setion is to give a riterion for the non-explosion assumptionof Hypothesis 2.2 (Setion 2) when the proess ZN is driven by a stohasti di�erentialequation in a random time/dependent environment, with a uniformly bounded smoothkilling rate and a hard killing set given by the boundary of an open set. While thisproblem is the main motivation for proving our non-explosion result, Theorem 3.1 belowis stated in a far more general setting. Firstly, we do not require that the partiles followthe same dynami between the killings: the ith partile will be driven by the dynamiof a strong Markov proess Z i,N , a priori di�erent for eah i ∈ {1,...,N}. Seondly, thejump position of the killed partile is hosen with respet to a general jump measure, notneessarily supported by the positions of the N − 1 remaining partiles.For all i ∈ {1,...,N}, we assume that the proess Z i,N is a strong Markov proess equalto a 3-tuple (t,eit,Z i
t)t∈[0,τ∂ [ up to its killing time, where t is the time, eit is the environmentand Z i

t is the atual position of the di�usion. The environment eit evolves in an open set
Ei ⊂ Rdi (di ≥ 1), the position Z i

t evolves in an open set Di ⊂ Rd′i (d′i ≥ 1), and weassume that there exist four measurable funtions
si : [0,T ]× Ei ×Di 7→ R

di ×R
di

mi : [0,T ]×Ei ×Di 7→ R
di

σi : [0,T ]× Ei ×Di 7→ R
d′i ×R

d′i

µi : [0,T ]× Ei ×Di 7→ R
d′i ,11



suh that Z i,N = (.,ei,Z i) ful�lls the stohasti di�erential equation
deit = si(t,e

i
t,Z

i
t)dβ

i
t +mi(t,e

i
t,Z

i
t)dt, e

i
0 ∈ Ei,

dZ i
t = σi(t,eit,Z

i
t)dB

i
t + µi(t,eit,Z

i
t)dt, Z

i
0 ∈ Di,where (βi,Bi) is a standard di+d′i Brownian motion. We also assume that the proess Z i,Nis hardly killed when Z i

t hits ∂Di and smoothly killed with a rate of killing κi(t,eit,Z i
t) ≥ 0,where

κi : [0,+∞[×Ei ×Di 7→ R+is a measurable funtion. We reall that the distribution of the smooth killing timeprodued by the rate of killing κi is given by
P
(

τ smooth
∂ > t

)

= E
(

e−
∫ t
0 κi(Z

i,N
s )ds

)

.Eah partile in the system is a 3-tuple (t,oit,X
i
t) ∈ [0, +∞[×Ei ×Di and we denotethe whole system by (t,Ot,Xt), where

Ot = (o1t ,...,o
N
t ) ∈ E

def
= E1 × ...× EN and

Xt = (X1
t ,...,X

N
t ) ∈ D

def
= D1 × ...×DN ,denote respetively the vetor of environments and the vetor of positions. Let S : [0, +

∞[×EN ×DN → M1(E
N ×DN ) and H : [0,+∞[×EN ×∂(DN ) → M1(E

N ×DN ) be twogiven measurable jump measures, whih will be used to hoose the jump loation afterthe smooth killing and hard killing respetively. We de�ne the dynamis of the system
(t,Ot,Xt) starting from (0,O0,X0) as follows:� For all i ∈ {1,...,N}, the 3-tuple (t,oit,X

i
t) starts from (0,oi0,X

i
0) and evolves as

Z i,N = (.,ei,Z i) independently of the rest of the system until one of the partiles iskilled. This �rst killing time is denoted by τ1.� At time τ1, the proess jumps to a new position, whose hoie depends on the kindof killing (the time omponent isn't hanged):� if it is a smooth killing event, then the proess jumps to a position hosen withrespet to the jump measure S(τ,Oτ -,Xτ -),� if it is a hard killing event and there exists one and only one element i1 ∈
{1,...,N} suh that X i1

τ1- belongs to ∂Di1 , then the position of (O,X) at time τ1is hosen with respet to the probability measure H(τ,Oτ -,Xτ -).� if it is a hard killing event and there exist more than one element whih hitsits orresponding boundary ∂Di, we stop the proess and this time is denotedby τstop (in fat, we will prove that this kind of event doesn't happen almostsurely under our hypotheses).� At time τ1 and after proeeding to the jump, the proess lies in {τ1}×E×D. Theneah 3-tuple (t,oi,X i) evolves as (.,ei,Z i) starting from (τ1,o
i
τ1
,X i

τ1
), independentlyof the rest of the system and until one of them is killed. This seond killing time isdenoted by τ2. 12



� At this time, the proess jumps with the same mehanism as above (and ould bestopped at a time denoted by τstop, as above).� Then eah 3-tuple (t,oi,X i) evolves as (.,ei,Z i) starting from (τ2,o
i
τ2
,X i

τ2
), indepen-dently of the rest of the system, and so on.We set τstop = +∞ if (X i,Xj) never reahes ∂Di × ∂Dj , for all i 6= j. On the event

{τstop = +∞}, we denote by τ1 < τ2 < ... < τn < ... the sequene of jump times and weset
τ∞ = lim

n→∞
τn. (3.1)The number of jumps of the system explodes in �nite time if and only if τ∞ < +∞.We prove in Theorem 3.1 below, that this doesn't happen almost surely under the twofollowing onditions: Hypothesis 3 and Hypothesis 4.In the following hypothesis, the funtion φi is the Eulidean distane from the bound-ary ∂Di, whih means that

φi(x) = min
z∈∂Di

‖x− z‖2, ∀x ∈ Di,where ‖.‖ denotes the Eulidean distane. For all a > 0, Da
i will denote the boundary'sneighborhood

Da
i = {x ∈ Di, φi(x) < a}.Hypothesis 3.1. We assume that, for all i ∈ {1,...,N} and all T ≥ 0, there exists a > 0suh that1. φi is of lass C2

b on Da
i ,2. the smooth killing rate κi is uniformly bounded on [0,T ]× Ei ×Di3. si,σi,mi and µi are uniformly bounded on [0,T ]× Ei ×Da

i ,4. there exist two measurable funtions fi : [0,T ]×Ei ×Da
i 7→ R+ and gi : [0,T ]×Ei ×

Da
i 7→ R suh that ∀(t,ǫ,z) ∈ [0,T ]× E ×Da

i ,
∑

k,l

∂φi

∂xk
(z)

∂φi

∂xl
(z)[σiσ

∗
i ]kl(t,ǫ,z) = fi(t,ǫ,z) + gi(t,ǫ,z), (3.2)and suh that(a) fi is of lass C1 in time and of lass C2 in environment/spae, and the deriva-tives of fi are uniformly bounded,(b) there exists a positive onstant kg > 0 suh that, for all (t,ǫ,z) ∈ [0,T ]×Ei×Da

i ,
|gi(t,ǫ,z)| ≤ kgφi(z),() there exists two positive onstants 0 < cπ < Cπ suh that, for all (t,ǫ,z) ∈

[0,T ]× Ei ×Da
i ,

cπ < fi(t,ǫ,z) + gi(t,ǫ,z) < Cπ.13



The last point of Hypothesis 3.1 says that the term (3.2), whih naturally appears inthe quadrati variation of φi(Z
i
t), is well approximated by a smooth positive funtion finear the boundary ∂Di. However, we do not require any strit regularity assumption on

σi, sine gi is only required to be measurable.Remark 3.1. 1. We reall that the Ck regularity of φi near the boundary is equivalentto the Ck regularity of the boundary ∂Di itself, for all k ≥ 2 (see [8, Chapter 5,Setion 4℄).2. In partiular, if eah Di is bounded and has a boundary of lass C3, and if σi isof lass C2, then the �rst point and the last point of Hypothesis 3.1 are ful�lled.Indeed, the regularity of Di implies that φi is of lass C3 on a neighborhood of ∂Di,and the regularity of σi implies that (3.2) happens, with gi = 0.We introdue now a ondition on the jump measure H, whih will ensure that τ∞ <
+∞ implies that at least two partiles onverge to the boundary when the time goes to
τ∞. we denote by Di the set

Di = D1 × ...×Di−1 × ∂Di ×Di+1 × ...×DN .Sine we deide to stop the proess when more than two partiles hit simultaneously theirorresponding boundaries, it is su�ient to de�ne the jump measure H on ∪N
i=1Di.Hypothesis 3.2. 1. There exists a non-dereasing ontinuous funtion h : R+ → R+vanishing only at 0 suh that, ∀i ∈ {1,...,N},

inf
(t,e,(x1,...,xN))∈[0,+∞[×E×Di

H(t,e,x1,...,xN )(E × Ai) ≥ p0,where p0 > 0 is a positive onstant and Ai ⊂ D is the set de�ned by
Ai = {(y1,...,yN) ∈ D | ∃j 6= i suh that φi(yi) ≥ h(φj(yj))} .2. We have

inf
(t,e,(x1,...,xN))∈[0,+∞[×E×Di

H(t,e,x1,...,xN )(E × Bx1,...,xn
) = 1,where

Bx1,...,xn
= {(y1,...,yN ) ∈ D | ∀i, φi(yi) ≥ φi(xi)}Informally, h(φj) is a kind of distane from the boundary and we assume in the �rstpoint that, if all the not-killed partiles are far from their respetive boundaries at time

τn, then the jump position X i
τn is hosen far from ∂Di with probability p0 > 0. Theseond point ensures that eah partile lies farther from its boundary after than before ahard killing jump.Remark 3.2. 1. The model of interating partiles system introdued above is verygeneral, even if ei is required to be ontinuous up to the killing time. Indeed, it alsoinludes the ase of a di�usion evolving in an environment given by a ontinuoustime Markov Chain. By instane, if one set si and mi equal to 0, κi equal to 1 and

S = 1
2

(

δ(t,ǫi+1,zi) + δ(t,ǫi−1,zi)

), then the partile X i will evolve as a di�usion with anenvironment oi de�ned as a simple ontinuous time random walk.14



2. Hypothesis 3.2 is very general and allows a lot of hoies for H. For instane:(a) For all µ ∈ M1(E × D), one an �nd a ompat set K ⊂ E × D suh that
µ(K) > 0. Then H = µ ful�lls the assumption with p0 = µ(K) and h(φj) =
φj ∧ d(K,E × ∂D).(b) Hypothesis 3.2 also inludes the ase studied by Grigoresu and Kang in [13℄,where

H =
∑

j 6=i

pij(xi)δxj
, ∀(x1,...,xN ) ∈ Di.with ∑j 6=i pij(xi) = 1 and inf i∈{1,...,N},j 6=i,xi∈∂D pij(xi) > 0. In that ase, thepartile on the boundary jumps to the position of another one, with positiveweights. It yields that Hypothesis 3.2 is ful�lled with p0 = 1 and h(φj) = φj.This is also the ase for the Fleming-Viot type system used in the approxima-tion method proved in Setion 2.We're now able to state the main result of this setion:Theorem 3.1. Assume that Hypotheses 3.1 and 3.2 are satis�ed. Then τ∞ = +∞ almostsurely.Remark 3.3. Another model of di�usions killed at the boundary of an open set an bede�ned as follows: the partile is re�eted on the boundary until its loal time on thisboundary reahes an independent exponentially distributed random variable, then it iskilled. We emphasize that the statement of Theorem 3.1 is still valid if the partiles aredriven by suh di�usions with re�eting/killing boundaries. Indeed, the only di�erenewith our proof is that the re�etion on the boundary makes appear an additional inreasingloal time in the deomposition of the semi-martingale Y i (see (3.4) in the proof).The long-time behavior of di�usions with re�eting/killing boundaries onditioned tonot be killed has been studied in [14℄ by Kolb and Steinsaltz and in [21℄ by Evans andSteinsaltz. The approximation method proved in Setion 2 an be used to ompute thedistribution of di�usions with re�eting/killing boundaries onditioned to not be killed.Proof of Theorem 3.1. Sine κi is uniformly bounded for all i ∈ {1,...,N} in �nite timealmost surely, there is no aumulation of soft killing events almost surely. As a onse-quene, we only have to prove the non-aumulation of hard killing events and we assumeuntil the end of the proof that κi = 0 for all i ∈ {1,...,N}.The proof is organised as follows. For eah partile X i, we ompute the It�'s deompo-sition of the semi-martingale φi(X

i) whenX i is inDa
i . Then we prove that τstop∧τ∞ < +∞implies that at least two partiles X i

t and Xj
t onverge to their respetive boundaries when

t→ τstop ∧ τ∞. Denoting by
T ij
0 = inf{t ≥ 0, φi(X

i
t-) = φj(X

j
t-) = 0},we dedue that

P (τstop ∧ τ∞ < +∞) ≤
∑

1≤i<j≤N

P
(

T ij
0 < +∞

)This allows us to redue the problem of non-explosion of the number of jumps to a problemof non-attainability of (0,0) for a pair of semi-martingales.(φi(X
i),φj(X

j)) ful�lls a ri-terion whih implies its non-attainability of (0,0) in �nite time almost surely, onluding15



the proof of Theorem 3.1. The above-mentioned riterion of non-attainability is provedin the last setion of the present paper (Proposition 4.1).By de�nition, if τstop < +∞, then at least two partilesX i0 andXj0 hit their respetiveboundaries at time τstop. It yields that φi(X
i
τstop-) = φj(X

j
τstop-) = 0. Now, we de�ne theevent

E = {τ∞ < T and τstop = +∞}.Conditionally to E , the total number of jumps of the system goes to +∞ up to time
τ∞. Sine there is only a �nite number of partiles, at least one of them, say i0, jumpsin�nitely many times up to time τ∞. For eah jumping time τn, we denote by σi0

n the nextjump time of i0, with τn < σi0
n < τ∞. Conditionally to the event E , we get σi0

n − τn → 0when n → ∞. Let γ :]0,a[7→ R+ be a C2 funtion with ompat support in ]0,a[. TheIt�'s formula applied to the semi-martingale γ(φi(X
i0)) and Hypothesis 3.1 immediatelyimply that γ(φi(X

i0)) is a ontinuous di�usion proess with bounded oe�ients between
τn and σi0

n -. Moreover, φi(X
i0
t ) goes to 0 when t goes to σi0

n , then γ(φi(X
i0

σ
i0
n -
)) = 0. Wededue that

sup
t∈[τn,σ

i0
n [

γ(φi(X
i0
t )) = sup

t∈[τn,σ
i0
n [

γ(φi(X
i0
t ))− γ(φi(X

i0

σ
i0
n -
)) −−−→

n→∞
0, a.s.Sine the proess φi0(X

i0) is ontinuous between τn and σi0
n −, we onlude that φi0(X

i0
τn)doesn't lie above the support of γ, for n big enough, almost surely. But the supportof γ an be hosen arbitrarily lose to 0, it yields that φi0(X

i0
τn) goes to 0 almost surelyonditionally to E . Let us denote by (τ i0n )n the sequene of jumping times of the partile

i0. We denote by An the event
An =

{

∃j 6= i0 | φi0(X
i0

τ
i0
n

) ≥ h(φj(X
j

τ
i0
n

))
}

,where h is the funtion of Hypothesis 3.2. We have, for all 1 ≤ k ≤ l,
P

(

l+1
⋂

n=k

Ac
n

)

= E

(

E

(

l+1
∏

n=k

1Ac
n
| (X1

t ,...X
N
t )

0≤t<τ
i0
l+1

))

= E

(

l
∏

n=k

1Ac
n
E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

)

.By de�nition of the jump mehanism of the interating partile system and by the �rstpoint of Hypothesis 3.2,
E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

= H(t,O
τ
i0
l+1
,X

τ
i0
l+1

)
(

Ac
i0

)

≤ 1− p0,where Ai0 and p0 are de�ned in Hypothesis 3.2. By indution on l, we get
P

(

l
⋂

n=k

Ac
n

)

≤ (1− p0)
l−k, ∀1 ≤ k ≤ l.16



Sine p0 > 0, it yields that
P

(

⋃

k≥1

∞
⋂

n=k

Ac
n

)

= 0.It means that, for in�nitely many jumps τn almost surely, one an �nd a partile j suhthat φi0(X
i0
τn) ≥ h(φj(X

j
τn)). Beause there is only a �nite number of other partiles, onean �nd a partile, say j0 (whih is a random variable), suh that

φi0(X
i0
τn) ≥ h(φj0(X

j0
τn)), for in�nitely many n ≥ 1.In partiular, limn→∞ φj0(X

j0
τn) = 0 almost surely. We dedue that
lim
n→∞

(φi0(X
i0
τn),φj0(X

j0
τn)) = (0,0).This immediately imply that

(

φi0(X
i0
τ∞-),φj0(X

j0
τ∞-)

)

= (0,0).We �nally onlude that
P (τstop ∧ τ∞ < +∞) ≤

∑

1≤i<j≤N

P
(

T ij
0 < +∞

)

. (3.3)Fix i 6= j ∈ {1,...,N} and let us prove that P (T ij
0 < +∞

)

= 0. We begin to dividethe time into a sequene of intervals [tn,tn+1[ suh that, for eah interval, or the pair
(φi(X

i),φj(X
j)) is far from (0,0), or the distane funtions φi and φj are of lass C2(whih will allow us to use the It�'s formula). Let (tn)n≥0 be the sequene of stoppingtimes de�ned by

t0 = inf{t ∈ [0,τstop ∧ τ∞[, φi(X i
t) + φj(Xj

t ) ≤ a/2}and, for all n ≥ 0,
t2n+1 = inf{t ∈ [t2n,τstop ∧ τ∞[, φi(X

i
t) + φj(X

j
t ) ≥ a}

t2n+2 = inf{t ∈ [t2n+1,τstop ∧ τ∞], φi(X
i
t) + φj(X

j
t ) ≤ a/2}.By onstrution, we have for all n ≥ 0,

{

φi(X
i
t) < a and φj(X

j
t ) < a, ∀t ∈ [t2n,t2n+1[,

φi(X
i
t) ≥ a/2 or φj(X

j
t ) ≥ a/2 otherwise.We emphasize that T ij

0 /∈ [t2n+1,t2n+2[ almost surely, while, for all t ∈ [t2n,t2n+1[, φi and
φj are of lass C2 at X i

t and Xj
t , whih will allow us to use the It�'s formula during theseintervals of time. In partiular, Hypothesis 3.1 and the It�'s formula immediately impliesthat φi(X

i) + φj(X
j) is an It� di�usion proess with bounded oe�ients between times

t2n and t2n+1 for all n ≥ 0. Sine φi(X
i) + φj(X

j) goes from a/2 to a between times t2nand t2n+1, we dedue that (tn)n≥0 onverges to +∞ almost surely. We dedue that
P
(

T ij
0 < +∞

)

≤
+∞
∑

n=0

P
(

T ij
0 ∈ [t2n,t2n+1[

)

.17



It remains us to prove that P (T ij
0 ∈ [t2n,t2n+1[

)

= 0 for all n ≥ 0.Fix n ≥ 0. We de�ne the positive semi-martingale Y i by
Y i
t =

{

φi(X
i
t2n+t) if t < t2n+1 − t2n,

a/2 + |W i
t | if t ≥ t2n+1 − t2n,

(3.4)where W i is a standard one dimensional Brownian motion, whih allows us to de�ne Y i
tfor all time t ∈ [0,+∞[. We de�ne similarly the semi-martingale Y j . It is lear that

P (T ij
0 ∈ [t2n,t2n+1[) ≤ P (∃t ≥ 0, (Y i

t-,Y
j
t-) = (0,0)).The problem of non-explosion of our interating proess is then redued to the prob-lem of the attainability of (0,0) by a given semi-martingale. In order to prove the non-attainability of (0,0) by (Y i, Y j), we need to ompute the It�'s deomposition of Y i and

Y j.Let us set
πi
t =

{

fi(t,o
i
t,X

i
t), if t < t2n+1 − t2n,

1, if t ≥ t2n+1 − t2n
and ρit = {g(t,oit,X i

t), if t < t2n+1 − t2n,

0, if t ≥ t2n+1 − t2n,where fi and gi are given by Hypothesis 3.1. By the It�'s formulas applied to Y i, we have
dY i

t = dM i
t + bitdt+ dKi

t + Y i
t − Y i

t-,where M i is a loal martingale suh that
d〈M i〉t = (πi

t + ρit)dt,

bi is the adapted proess given by
bit =

{

∑d′i
k=1

∂φi

∂xk
(X i

t)[µi]k(t,o
i
t,X

i
t) +

1
2

∑di
k,l=1

∂2φ
∂xk∂xl

(X i
t)[σiσ

∗
i ]kl(t,o

i
t,X

i
t), if t < t2n+1 − t2n,

0 if t ≥ t2n+1 − t2n,andKi is a non-dereasing proess given by the loal time of |Wt| at 0 after time t2n+1−t2n.By the 4th point of Hypothesis 3.1, we have, for all t ≥ 0,
cπ ∧ 1 ≤ πi

t + ρit ≤ Cπ ∨ 1, and |ρit| ≤ k0Y
i
t (3.5)The regularity of φi in Da (1st point of Hypothesis 3.1) and the boundedness of µi,σi (3rdpoint of Hypothesis 3.1), implies that there exists b∞ > 0 suh that, for all t ≥ 0,

bit ≥ −b∞. (3.6)Similarly, we get the deomposition of Y j , with πj , ρj and bj ful�lling inequalities (3.5)and (3.6) (without loss of generality, we keep the same onstants cπ, Cπ, k0 and b∞).The previous deomposition isn't a priori su�ient to prove the non-attainability of
(0,0) by (Y i,Y j): we also need to ompute the deomposition of πi and πj . We deduefrom the It�'s formula that there exists a loal martingale N i and a �nite variationalproess Li suh that, for all t ≥ 0,

dπi
t = dN i

t + dLi
t + πi

t − πi
t-.18



We emphasize that we do not need the expliit omputation of Li. Let us set, for all
t < t2n+1 − t2n,
ξit =

di
∑

k=1,l

∂fi
∂ek

(t,oit,X
i
t)
∂fi
∂el

(t,oit,X
i
t)[sis

∗
i ]kl(t,o

i
t,X

i
t)

+

d′i
∑

k=1,l

∂fi
∂xk

(t,oit,X
i
t)
∂fi
∂xl

(t,oit,X
i
t )[σiσ

∗
i ]kl(t,o

i
t,X

i
t)and, for all t ≥ t2n+1 − t2n, ξit = 0. Then we have

〈N i〉t = ξitdt.Thanks to the regularity assumptions on fi and the boundedness of si,σi, there exists
Cξ > 0 suh that

ξit ≤ Cξ. (3.7)Of ourse, the same holds for πj.Sine the partiles are independent between the jumps, we have for all i 6= j,
〈M i,M j〉 = 0 and 〈N i, N j〉 = 0 a.s. (3.8)We laim that the deompositions of Y i, Y j , πi, πj, together with the inequalities(3.5), (3.6), (3.7) and equation (3.8), imply that (Y 1,Y 2) never onverges to (0,0) almostsurely. This is proved in the next setion, where a riterion for non-attainability of (0,0) forsemi-martingales is given (Hypothesis 4.1 and Proposition 4.1 of Setion 4). In partiular,we dedue that T ij

0 /∈ [t2n,t2n+1[ almost surely, for all n ≥ 0.We then have T ij
0 = +∞ almost surely, for all i 6= j ∈ {1,...,N}, whih imply, by (3.3),that τstop ∧ τinfty = +∞. This onludes the proof of Theorem 3.1.4 Non-attainability of (0,0) for semi-martingalesFix T > 0 and let (Y i

t )t∈[0,T ], i = 1,2, be two non-negative one-dimensional semi-martingales suh that,
dY i

t = dM i
t + bitdt+ dKi

t + I it − I it-, Y
i
0 > 0,where (M i

t )t∈[0,T ] is a ontinuous loal martingale , (bit)t∈[0,T ] is an adapted proess,
(Ki

t)t∈[0,T ] is a ontinuous and non-dereasing adapted proess, and I it is a pure-jumpàdlàg proess. The aim of this setion is to give some onditions, whih ensure that
(Y 1,Y 2) doesn't hit (0,0) up to time T . The problem has been solved for time homo-geneous stohasti di�erential equations by Friedman [10℄, Ramasubramanian [18℄ andthe proof of Proposition 4.1 below is inspired by the reent work of Delarue [7℄, whihobtains lower and higher bound for the hitting time of a orner for a di�usion driven by atime homogeneous SDE re�eted in the square. In our ase, time-dependeny is allowedand we don't require any Markovian property. This generalization �nds an importantappliation in the previous setion, where the non-explosion of a very general interatingpartile system with jumps from a boundary is proved.19



Hypothesis 4.1. For eah i = 1,2, there exists a non-negative loal semi-martingale πisuh that
dπi

t = dN i
t + dLi

t + J i
t − J i

t-,where N i is a ontinuous loal martingale and Li is a ontinuous �nite variational adaptedproess and J i
t is a pure-jump àdlàg proess. Moreover, there exist two adapted proesses

ρit and ξit, and some positive onstants b∞,k0,cπ,Cπ, Cξ suh that, almost surely,1. d 〈M i〉t = (πi
t- + ρit-)dt and d 〈N i〉t = ξit-dt,2. cπ ≤ πi

t + ρit ≤ Cπ, |ρit| ≤ k0Y
i
t , ξt ≤ Cξ and bit ≥ −b∞ for all t ∈ [0,T ]3. 〈M1,M2〉 and 〈N1,N2〉 are non-inreasing proesses.4. I i and J i are suh that, for all jump time t of the proesses I and J ,

Y i
t

√

πi
t

− Y i
t-

√

πi
t-

≥ 0.The third point of Hypothesis 4.1 has the following geometrial interpretation: whenan inrement of M1 is non-positive (that is when M1 goes loser to 0), the inrement of
M2 is non-negative (so that M2 goes farther from 0), as a onsequene (M1,M2) remainsaway from 0. A nie graphi representation of this phenomenon is given by Delarue's [7,Figure 1℄.Remark 4.1. An example of a pair of semi-martingales whih ful�lls Hypothesis 4.1is given in the proof of Theorem 3.1 in Setion 3, where (Y 1,Y 2) is given by a smoothfuntion of a pair of di�usion proesses. In this typial ase, heking the validity of ourassumption is a simple appliation of the It�'s formula.The proess

Φt
def
= −1

2
log

(

(Y 1
t )

2

π1
t

+
(Y 2

t )
2

π2
t

) (4.1)goes to in�nity when (Y 1
t ,Y

2
t ) goes to (0,0), sine πi

t is uniformly bounded below by cπ.For all ǫ > 0, we de�ne the stopping time Tǫ = inf{t ∈ [0,T ], Φt ≥ ǫ−1}. We denotethe hitting time of (0,0) by T0 = inf{t ∈ [0,T ], (Y 1
t- ,Y

2
t- ) = (0,0) or (Y 1

t ,Y
2
t ) = (0,0)}. Inpartiular, we have

T0 = lim
ǫ→0

Tǫ, almost surely.We are now able to state our non-attainability result.Proposition 4.1. Assume that Hypothesis 4.1 is ful�lled. Then (Y 1,Y 2) doesn't go to
(0,0) in [0,T ] almost surely, whih means that T0 is equal to +∞ almost surely.Moreover, there exists a positive onstant C whih only depends on b∞,k0,cπ,Cπ, Cξsuh that, for all ǫ−1 > Φ0,

P (Tǫ ≤ T ) ≤ 1

ǫ−1 − Φ0
C
(

E(|L1|T + |L2|T ) + T
)

,where |Li|T is the total variation of Li at time T and Φ0 is de�ned in (4.1).20



Proof of Proposition 4.1: Let (θ′n)n∈N and (θ′′n)n∈N be two inreasing sequenes of stoppingtimes whih onverge to T suh that (M i
t )t∈[0,θ′n] and (N i

t )t∈[0,θ′n] are true martingales andsuh that θ′′n = inf{t ∈ [0,T ],
∫ θ′′n
0
d|Li|t ≥ n} ∧ T . The whole proof is based on anappliation of the It�'s formula to the semi-martingale

(∫ Φt

0

exp(eCF e−u)du

)

t∈[0,Tǫ∧θ′
n′
∧θ′′

n′′
]

, n′,n′′ ∈ N,where CF > 0 is a onstant whih only depends on the parameters b∞,k0,cπ,Cπ,Cξ. Weprove that, for a good hoie of CF , there exists a onstant C whih doesn't depend on ǫ,
n′ and n′′ suh that

E

(
∫ ΦTǫ∧θ′

n′
∧θ′′

n′′

Φ0

exp(eCF e−u)du

)

≤ C(E(|L1|θ′′
n′′

+ |L2|θ′′
n′′
) + T ). (4.2)Assume that this inequality has been proved. We notie that Φt∧Tǫ∧θ′
n′
∧θ′′

n′′
reahes ǫ−1 ifand only if Tǫ ≤ θ′n′ ∧ θ′′n′′ , then, by the right ontinuity of Y 1, Y 2, π1 and π2,

P (Tǫ ≤ θ′n′ ∧ θ′′n′′) = P
(

ΦTǫ∧θ′
n′
∧θ′′

n′′
− Φ0 ≥ ǫ−1 − Φ0

)

≤ P

(
∫ ΦTǫ∧θ′

n′
∧θ′′

n′′

Φ0

exp(eCF e−u)du ≥ ǫ−1 − Φ0

)

,sine r − q ≤
∫ r

q
exp(eCF e−u)du for all 0 ≤ q ≤ r. Finally, using the Markov inequalityand (4.2), we get, for all ǫ−1 > Φ0,

P (Tǫ ≤ θ′n′ ∧ θ′′n′′) ≤ 1

ǫ−1 − Φ0
C
(

E(|L1|θ′′
n′′

+ |L2|θ′′
n′′
) + T

)

.Letting n′ go to ∞, then ǫ go to 0 and �nally n′′ go to ∞, we dedue that P (T0 ≤ T ) = 0,whih is the �rst point of Proposition 4.1. Sine θ′n′ and θ′′n′′ onverge to T almost surely,letting n′ and n′′ go to ∞ implies the seond part of Proposition 4.1, whih onludes theproof.It remains us to prove inequality (4.2). We assume in a �rst time that 〈M1,M2〉 =
〈N1,N2〉 = 0. We de�ne the funtion

Φ : R
∗
+ ×R

∗
+ ×R+ ×R

∗
+ → R

(α1,α2,x1,x2) 7→ − log
(

x2
1

α1
+

x2
2

α2

)

.We have Φt = Phi(π1
t ,π

2
t ,Y

1
t ,Y

2
t ). We will apply the It�'s formula to the semi-martingale

(Φt)t∈[0,Tǫ∧θ′
n′
∧θ′′

n′′
[. The suessive derivatives of the funtion Φ are

∂Φ

∂xi
= −α−1

i xie
2Φ,

∂2Φ

∂x2i
= −α−1

i e2Φ + 2α−2
i x2i e

4Φ,

∂Φ

∂αi

=
1

2
α−2
i x2i e

2Φ,
∂2Φ

∂α2
i

= −α−3
i x2i e

2Φ + α−4
i x4i e

4Φ,

∂2Φ

∂xiαi
= α−2

i xie
2Φ − α−3

i x3i e
4Φ,

∂2Φ

∂xiαj
= −α−1

i α−2
j xix

2
je

4Φ with i 6= j.21



In partiular, one an hek that
∑

i=1,2

∂2Φ

∂x2i
(π1

t-,π
2
t-,Y

1
t- ,Y

2
t- )π

i
t- = 0, almost surely.Using the previous equalities and the It�'s formula, we get

dΦt =−
∑

i=1,2

Y i
t

πi
t

e2ΦtdM i
t +

∑

i=1,2

(Y i
t )

2

2(πi
t)

2
e2ΦtdN i

t −
∑

i=1,2

Y i
t

πi
t

e2ΦtdKi
t

−
∑

i=1,2

Y i
t

πi
t

e2Φtbitdt+
∑

i=1,2

(Y i
t )

2

2(πi
t)

2
e2ΦtdLi

t

+
1

2

∑

i=1,2

(

− 1

πi
t

e2Φt + 2
(Y i

t )
2

(πi
t)

2
e4Φt

)

ρitdt

+
1

2

∑

i=1,2

(

−(Y i
t )

2

(πi
t)

3
e2Φt +

(Y i
t )

4

(πi
t)

4
e4Φt

)

d
〈

N i
〉

t

+
1

2

∑

i=1,2

(

Y i
t

(πi
t)

2
e2Φt − (Y i

t )
3

(πi
t)

3
e4Φt

)

d
〈

M i,N i
〉

t

− 1

2

∑

i 6=j∈{1,2}

Y i
t (Y

j
t )

2

πi
t(π

j
t )

2
e4Φtd

〈

M i,N j
〉

t
+ Φt − Φt-

(4.3)
and

d 〈Φ〉t =
∑

i=1,2

(Y i
t )

2

(πi
t)

2
e4Φt(ρit + πi

t)dt+
∑

i=1,2

(Y i
t )

4

4(πi
t)

4
e4Φtd

〈

N i
〉

t

−
∑

i=1,2

(Y i
t )

3

2(πi
t)

3
e4Φtd

〈

M i,N i
〉

t
−

∑

i 6=j∈{1,2}

Y i
t (Y

j
t )

2

2πi
t(π

j
t )

2
e4Φtd

〈

M i,N j
〉

t
.Let CF > 0 be a positive onstant that will be �xed later in the proof and de�ne thefuntion F : R 7→ R by

F (r) =

∫ r

0

exp
(

CFe
−s
)

ds.We hek that
r ≤ F (r), 1 ≤ F ′(r) ≤ eCF and F ′′(r) = −CF e

−rF ′(r), ∀r ∈ R+.We dedue from It�'s formula that
F (Φt)−F (Φ0) =

∫ t

0

F ′(Φs)dΦ
c
s−

CF

2

∫ t

0

e−ΦsF ′(Φs)d 〈Φ〉s+
∑

0≤s≤t

F (Φs)−F (Φs-), (4.4)where dΦc
s is the ontinuous part of dΦs.Using equation (4.3), we begin to prove a higher bound for ∫ t

0
F ′(Φs)dΦ

c
s. We de�nethe loal martingale

Mt = −
∑

i=1,2

∫ t

0

Y i
s

πi
s

e2ΦsF ′(Φs)dM
i
s +

∑

i=1,2

∫ t

0

(Y i
s )

2

2(πi
s)

2
e2ΦsF ′(Φs)dN

i
s.22



Sine Ki is non-dereasing, we have
−
∑

i=1,2

∫ t

0

Y i
s

πi
s

e2ΦsF ′(Φs)dK
i
s ≤ 0.One an easily hek that, for all t ∈ [0,T0[, Y i

t e
Φt ≤

√

πi
t, then

Y i
t

πi
t

eΦt ≤ 1√
cπ
.Sine bit ≥ −b∞ for all t ∈ [0,T0[, we have

−
∑

i=1,2

∫ t

0

Y i
s

πi
s

F ′(Φs)e
2Φsbisds ≤

2b∞√
cπ

∫ t

0

eΦsF ′(Φs)ds.The inequality F ′(Φs) ≤ eCF yields to
∑

i=1,2

∫ t

0

(Y i
s )

2

2(πi
s)

2
e2ΦsF ′(Φs)dL

i
s ≤

eCF

2cπ

(

|L1|t + |L2|t
)

.We dedue from
|ρit|eΦt ≤ k0Y

i
t e

Φt ≤ k0
√

πi
t ≤ k0

√

Cπthat
1

2

∑

i=1,2

∫ t

0

(

− 1

πi
s

e2Φs + 2
(Y i

s )
2

(πi
s)

2
e4Φs

)

ρisF
′(Φs)ds ≤

3eCF k0
√
Cπ

cπ

∫ t

0

eΦsF ′(Φs)ds.Sine d〈N i〉t = ξitdt, with 0 ≤ ξit ≤ Cξ, we have
1

2

∑

i=1,2

∫ t

0

(

−(Y i
s )

2

(πi
s)

3
e2Φs +

(Y i
s )

4

(πi
s)

4
e4Φs

)

F ′(Φs)d
〈

N i
〉

s
≤ eCFCξt

c2π
.By the Kunita-Watanabe inequality (see [19, Corollary 1.16 of Chapter IV℄), we get, forall preditable proess hs,

∣

∣

∣

∣

∫ t

0

hs
〈

M i,N j
〉

s

∣

∣

∣

∣

≤
√

∫ t

0

hs 〈M i〉s

√

∫ t

0

hs 〈N j〉s ≤
√

CπCξ

∫ t

0

hsds,so that
1

2

∑

i=1,2

∫ t

0

(

Y i
s

(πi
s)

2
e2Φs − (Y i

s )
3

(πi
s)

3
e4Φs

)

F ′(Φs)d
〈

M i,N i
〉

s
≤ 2

√

CπCξ

c
3/2
π

∫ t

0

eΦsF ′(Φs)dsand
−1

2

∑

i 6=j∈{1,2}

∫ t

0

Y i
s (Y

j
s )

2

πi
s(π

j
s)2

e4ΦsF ′(Φs)d
〈

M i,N j
〉

s
≤
√

CπCξ

c
3/2
π

∫ t

0

eΦsF ′(Φs)ds.23



We �nally get
∫ t

0

F ′(Φs)dΦ
c
s ≤Mt + C ′

∫ t

0

eΦsF ′(Φs)ds+
eCF

2cπ

(

|L1|t + |L2|t
)

+
eCFCξt

c2π
. (4.5)where

C ′ =
2b∞√
cπ

+
3k0

√
Cπ

cπ
+

3
√

CπCξ

c
3/2
π

> 0.We prove now a lower bound for ∫ t

0
e−ΦsF ′(Φs)d 〈Φ〉s. We have

e2Φs

Cπ

≤
∑

i=1,2

(Y i
s )

2

(πi
s)

2
e4Φs ≤ 2e2Φs

cπ
, πi

s ≥ cπ and ρis ≥ −k0
√

Cπe
−Φsthen

∫ t

0

∑

i=1,2

(Y i
s )

2

(πi
s)

2
e4Φs(πi

s + ρis)e
−ΦsF ′(Φs)ds ≥

cπ
Cπ

∫ t

0

eΦsF ′(Φs)ds−
2k0

√
Cπ

cπ
eCF t.The proess 〈N i〉 being non-dereasing, we have

∑

i=1,2

∫ t

0

(Y i
s )

4

4(πi
s)

4
e4ΦsF ′(Φs)e

−Φsd
〈

N i
〉

s
≥ 0.The same argument as above leads us to

−
∑

i=1,2

∫ t

0

(Y i
s )

3

2(πi
s)

3
e4ΦsF ′(Φs)e

−Φsd
〈

M i,N i
〉

s
≥ −

√

CπCξ

c
3/2
π
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2πi
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CπCξ
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3/2
π

eCF t.We �nally dedue that
∫ t

0

e−ΦsF ′(Φs)d 〈Φ〉s ≥
cπ
Cπ

∫ t

0

eΦsF ′(Φs)ds−
(

2k0
√
Cπ

cπ
+

2
√

CπCξ

c
3/2
π

)

eCF t (4.6)Sine the jumps of Φt are negative and F is non-dereasing, we get
∑

0≤s≤t

F (Φs)− F (Φs-) ≤ 0. (4.7)By (4.5), (4.6) and (4.7), we dedue from (4.4) that
F (Φt)− F (Φ0) ≤Mt +

(

C ′ − CF cπ
2Cπ

)
∫ t

0

eΦsF ′(Φs)ds+
eCF

2cπ
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+
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c2π
− 2k0CF

√
Cπ

2cπ
− CF

√

CπCξ

c
3/2
π

)

eCF t.24



Choosing CF = 2CπC
′/cπ, we've proved that there exists C > 0 suh that
F (Φt)− F (Φ0) ≤Mt + C

(

|L1|t + |L2|t + t
)

.This yields to (4.2), sine the proess Mt stopped at Tǫ∧ θ′n∧ θ′′n is a true martingale. Theproposition is then proved when 〈M1,M2〉 = 〈N1,N2〉 = 0.Assume now that 〈M1,M2〉 and 〈N1,N2〉 are non-inreasing. We de�ne Φ′
t as theproess starting from Φ0 and whose inrements are de�ned by the right term of (4.3). Onthe one hand, the same alulation as above leads to

F (Φ′
t) ≤Mt +

eCF

cπ

(

|L1|θ′′
n′′

+ |L2|θ′′
n′′

)

+

(

eCFC ′ +
CF

2
C ′′′

)

t. (4.8)On the other hand,
dΦt = dΦ′

t +
∂2Φ

∂x1∂x2
(π1

t ,π
2
t ,Y

1
t ,Y

2
t )d
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〉

t
+

∂2Φ

∂α1∂α2
(π1

t ,π
2
t ,Y

1
t ,Y

2
t )d

〈

N1,N2
〉

t
,and we an hek that ∂2Φ

∂x1∂x2
and ∂2Φ

∂α1∂α2
are non-negative funtions. We dedue from thethird point of Hypothesis 4.1 that Φt ≤ Φ′
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