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We consider a discrete time hidden Markov model where the sig-
nal is a stationary Markov chain. When conditioned on the observa-
tions, the signal is a Markov chain in a random environment under
the conditional measure. It is shown that this conditional signal is
weakly ergodic when the signal is ergodic and the observations are
nondegenerate. This permits a delicate exchange of the intersection
and supremum of σ-fields, which is key for the stability of the non-
linear filter and partially resolves a long-standing gap in the proof of
a result of Kunita [J. Multivariate Anal. 1 (1971) 365–393]. A similar
result is obtained also in the continuous time setting. The proofs are
based on an ergodic theorem for Markov chains in random environ-
ments in a general state space.

1. Introduction. Consider a discrete time Markov chain (Xn)n∈Z+ and
a random process (Yn)n∈Z+ such that Yn and Ym (n 6= m) are conditionally
independent given (Xn)n∈Z+ and such that the conditional distribution of
Yn given (Xn)n∈Z+ depends only on Xn. Then the pair (Xn, Yn)n∈Z+ defines
a hidden Markov model, where the observation process (Yn)n∈Z+ provides
indirect information on the signal process (Xn)n∈Z+ . Models of this form
have a wide array of applications in statistics, engineering and finance, and
possess a rich theory of statistical inference [7]. Of particular interest in the
present paper is the filtering problem, which aims to estimate the current
state Xn of the signal given the observation history (Yk)0≤k≤n by computing
the regular conditional probability P(Xn ∈ ·|(Yk)0≤k≤n). A similar class of
problems can also be formulated in continuous time.

This paper is concerned with the long time properties of the nonlinear
filter, that is, we are interested in the behavior of the regular conditional
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2 R. VAN HANDEL

probabilities Πn = P(Xn ∈ ·|(Yk)0≤k≤n) as n →∞, in the case that the sig-
nal possesses an invariant probability measure π. The investigation of such

problems in general hidden Markov models has a long history, starting with
the pioneering work of Kunita [23] (in the continuous time setting) on the

stationary behavior of the mean square estimation error of the nonlinear
filter. To study this problem, he established the following key result [23],

Theorem 3.3: for any invariant measure π of the signal, the filtering process
(Πn)n∈Z+ possesses a unique invariant measure with barycenter π if and

only if the signal is ergodic in a particular sense (see below).
A different but closely related problem of interest is the stability of non-

linear filters. Denote by Pµ the law of (Xn, Yn)n∈Z+ with the initial law

X0 ∼ µ, and write the corresponding filter as Πµ
n = Pµ(Xn ∈ ·|(Yk)0≤k≤n).

In practice, the initial measure µ (the Bayesian prior) is rarely known pre-

cisely, and it is thus highly desirable that the filter Πµ
n becomes insensitive

to the choice of µ as n →∞ (e.g., as in Theorem 5.2 below). When this is

the case, the filter is said to be stable. In a pioneering paper, Ocone and
Pardoux [25] used Kunita’s theorem to establish that stability of the filter

is inherited from the ergodicity of the signal process.
The asymptotic properties of nonlinear filters have received considerable

attention in recent years (see, e.g., [12] and the references therein). Beside
the fundamental interest of the topic, results in this direction have a variety

of applications, which include uniform convergence of filter approximations
[5, 6, 13, 14], maximum likelihood estimation [7, 8, 19], stochastic control

[18, 31] and estimation error bounds [3, 23]. In various specific cases one can
even obtain detailed quantitative information about the rate of stability of

the filter (see [12] for references). In the general setting, however, little is
known about the asymptotic properties of nonlinear filters beyond the work
of Kunita [23] and subsequent papers, such as [25], which rely directly on

the approach of [23] (but see [36]).
Unfortunately, as was pointed out in [1], there is a serious gap in the

proof of the main result in [23]. To describe the problem, let us suppose
that the signal process possesses an invariant probability measure π. Then

Pπ is a stationary measure, and we can therefore extend the stationary hid-
den Markov model to two-sided time (Xn, Yn)n∈Z by a standard argument.

Denote by P the extension of Pπ to two-sided time, and define the σ-fields
FX

I = σ{Xn :n ∈ I} and FY
I = σ{Yn :n ∈ I} (I ⊂ Z). The key step in Ku-

nita’s proof is to argue that his result would follow if we could establish that
the following identity holds true:

⋂

n≥0

FY
]−∞,0] ∨FX

]−∞,−n] = FY
]−∞,0] P-a.s.
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He proceeds to argue as follows. Suppose that the signal satisfies the follow-
ing ergodicity condition:

⋂

n≥0F
X
]−∞,−n] is P-a.s. trivial. Then

⋂

n≥0

FY
]−∞,0] ∨FX

]−∞,−n]
?
=FY

]−∞,0] ∨
⋂

n≥0

FX
]−∞,−n] =FY

]−∞,0] P-a.s.

The exchange of the intersection and supremum of σ-fields is not at all
obvious, however, and no proof of this assertion is provided in [23]. Indeed,
this exchange is not permitted in general, as an illuminating counterexample
in [1] shows.

It is important to note, on the other hand, that all known counterexam-
ples rely in an essential way on the degeneracy of the observation model,
that is, Yk = h(Xk) for some function h without any additional noise. It is
therefore tempting to conjecture that the exchange of intersection and supre-
mum is always permitted provided that the observations are nondegenerate,
which is most naturally imposed in our general setting by requiring that the
conditional law of Yn given (Xk)k∈Z satisfies

P(Yn ∈ A|(Xk)k∈Z) =

∫

IA(du)g(Xn, u)ϕ(du) P-a.s.,

where ϕ is a fixed reference measure and g is a strictly positive function.
Though no counterexamples are known, it is unclear whether or not this is
the case, and the (positive or negative) verification of this conjecture remains
an open problem.

From the work of Budhiraja [4] and of Baxendale, Chigansky and Liptser
[1], and from the results of Section 5 below, it is clear that Kunita’s exchange
of intersection and supremum and its time-reversed cousin

⋂

n≥0

FY
]−∞,0] ∨FX

]−∞,−n]
?
= FY

]−∞,0]

and
⋂

n≥0

FY
[0,∞[ ∨FX

[n,∞[
?
= FY

[0,∞[ P-a.s.

lie at the heart of the qualitative asymptotic theory of nonlinear filtering.
The main result of this paper, Theorem 4.2, establishes that both these
identities do indeed hold under conditions that are only mildly stronger
than those assumed by Kunita. Given an invariant probability measure π of
the signal process, we assume the following:

1. The signal is ergodic in the following sense:

‖Pδz (Xn ∈ ·)− π‖TV
n→∞
−−−→ 0 for π-a.e. z,

where ‖ · ‖TV is the total variation norm (Assumption 3.1 below).
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2. The observations are nondegenerate (Assumption 3.2 below).

These assumptions are satisfied by the vast majority of stationary hidden
Markov models of practical interest, including the important case of aperi-
odic and positive Harris recurrent signals with nondegenerate observations.
Note that we do not require the Feller assumption, and that we allow for sig-
nal and observation processes with arbitrary Polish state spaces (the Polish
assumption guarantees an abundance of regular conditional probabilities).
The latter has the additional advantage that our results extend directly to
the continuous time setting (Section 6).

Beside our main result, this paper contains two additional results which
are of independent interest. First, as we will discuss shortly, the proof of
our main result hinges on the ergodic theory of Markov chains in random
environments as developed by Cogburn [10, 11] and Orey [26] for countable
state spaces. In Section 2, we prove the counterpart of a result from [11]
for Markov chains in random environments on general Polish state spaces
(Theorem 2.3). This result is not specific to hidden Markov models, and
could be relevant in other settings.

Second, we will show in Section 5 that the permissibility of the exchange
of intersection and supremum leads to the stability of the nonlinear filter in
a much stronger sense than was previously established in [1, 4, 25]. A special
case of our main stability theorem (Theorem 5.2) is the following result: if
the signal is aperiodic and positive Harris recurrent, and if the observations
are nondegenerate, then

‖Πµ
n −Πν

n‖TV
n→∞
−−−→ 0 Pγ-a.s. for all µ, ν, γ.

Similar results hold in the continuous time setting (Section 6).
The remainder of this section is devoted to a guided tour through our

proofs.

1.1. The method of von Weizsäcker and the conditional signal. In [37],
von Weizsäcker has studied the exchange of intersection and supremum prob-
lem in a general setting. Following his approach, one can establish the fol-
lowing illuminating result. Let Gn, n ∈ N be a decreasing family of countably
generated σ-fields and let F be another countably generated σ-field. Then
⋂

n∈N

F∨Gn =F P-a.s. iff
⋂

n∈N

Gn is PF (ω, ·)-a.s. trivial for P-a.e. ω,

where PF (ω, ·) is a version of the regular conditional probability P(·|F). It
would appear at first glance that P-a.s. triviality of the tail σ-field

⋂

n∈N Gn

automatically implies that it is also P(·|F)-a.s. trivial; after all, it is elemen-
tary that P(A|F) = P(A) P-a.s. whenever P(A) = 0 or P(A) = 1. However,
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the tail σ-field is not countably generated, so we cannot eliminate the de-
pendence of the exceptional set on A. Verification of P(·|F)-a.s. triviality is
thus a nontrivial problem.

Despite its generality, the result of von Weizsäcker is rarely used in the
literature. In many cases the result is difficult to apply, as a tractable charac-
terization of the conditional measure P(·|F) is typically not available. In our
setting, however, a fortuitous observation makes this approach much more
attractive: when conditioned on the observations, the signal process remains
an (albeit nonhomogeneous) Markov process whose transition probabilities
depend on the observed sample path of the observation process. This obser-
vation dates back to the work of Stratonovich [33], and has recently been
applied to obtain quantitative stability results for various special filtering
models [7, 20, 35]. In these references a time horizon N is fixed and the
signal is considered under the conditional measure P(·|FY

[0,N ]), while we will

work under the conditional measure P(·|FY
[0,∞[), but this difference does not

affect the Markov property of the conditional signal.
Our basic strategy is thus as follows. Note that by the above discussion

⋂

n≥0

FY
[0,∞[ ∨FX

[n,∞[ = FY
[0,∞[ P-a.s.

would be established if we could show that

T X =
⋂

n≥0

FX
[n,∞[ is P(·|FY

[0,∞[)-a.s. trivial P-a.s.

We therefore aim to show that the signal (Xn)n≥0, which is a nonhomoge-
neous Markov process under the regular conditional probability P(·|FY

[0,∞[),

has trivial tail σ-field T X for almost every observation path, provided our
ergodicity and nondegeneracy assumptions are satisfied. The time-reversed
result follows similarly.

1.2. Markov chains in random environments. To obtain our main result,
we must now show that tail triviality of the signal process under the condi-
tional measure is inherited from the ergodicity of the signal process under
the original probability measure. In the following, we will often refer to the
signal process under the conditional measure as the conditional signal.

To fix some ideas, consider the case of a time homogeneous finite state
Markov chain. In this setting, ergodicity (and hence tail triviality) is de-
termined entirely by the graph of the chain, and not by the precise values
of the transition probabilities. In particular, for one such chain to inherit
ergodicity from another chain, it suffices that the two chains have the same
graph, or, in probabilistic terms, that their transition probabilities are mu-
tually absolutely continuous. That a similar statement holds in a general
state space can be inferred, for example, from [28], Theorem 2.1.
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The problem in our setting is that the conditional signal is not time ho-
mogeneous. Nonetheless, the transition probability of the conditional signal
Kn(x, ·) = P(Xn ∈ ·|Xn−1 = x,FY

[0,∞[) satisfies a key homogeneity property:

it is easily seen [using the stationarity of P and the Markov property of
(Xn, Yn)n∈Z] that n 7→ Kn is a stationary stochastic process. The conditional
signal is thus a Markov chain in a random environment in the terminology
of Cogburn, who established [11], Section 3, that the ergodicity of such a
process in a finite (or countable) state space is determined by its graph in
essentially the same manner as for time homogeneous chains. This suggests
that to prove our result, it suffices to show that the transition probabilities
of the conditional signal and of the signal are equivalent.

As is perhaps to be expected, things are not quite so straightforward
in practice. First, even in a finite state space, the conditional signal under
P(·|FY

[0,∞[) does not fit in the framework of Cogburn as the ergodic theory

of Markov chains in random environments relies on the availability of all
environmental variables (Yk)k∈Z. In order to apply the result of Cogburn,
we must therefore condition not on FY

[0,∞[ but on FY
Z

. It is then necessary

to establish two things: that

P(Xn ∈ ·|Xn−1 = i,FY
Z )∼P(Xn ∈ ·|Xn−1 = i) for all i P-a.s.,

so that the ergodicity of the signal process under P implies the ergodicity
of the signal process under P(·|FY

Z
) by the result of Cogburn, and that

P((Xn)n≥0 ∈ ·|FY
Z ) ∼P((Xn)n≥0 ∈ ·|FY

[0,∞[) P-a.s.,

so that triviality of T X under P(·|FY
Z

) implies triviality of T X under
P(·|FY

[0,∞[). We will prove these identities in Sections 3 and 4 using a cou-

pling argument; it is here that the nondegeneracy of the observations is re-
quired. Once these facts have been established, von Weizsäcker’s argument
completes the proof.

Unlike Cogburn’s results, however, our results are not restricted to fi-
nite or countable state spaces. Our first order of business is therefore to
extend the necessary result from [11] to the setting of general Polish state
spaces. As with ordinary Markov chains in general state spaces, the general
case requires significantly more sophisticated tools than are needed in the
countable setting. Our general result in Section 2 is inspired by the elegant
martingale methods of Derriennic [16] and of Papangelou [28] for ordinary
Markov chains in general state spaces.

1.3. Organization of the paper. This paper is organized as follows.
In Section 2, we introduce the general model for a Markov chain in a ran-

dom environment. The main result, Theorem 2.3, establishes that weak er-
godicity, tail triviality and irreducibility are equivalent for stationary Markov



THE STABILITY OF CONDITIONAL MARKOV PROCESSES 7

chains in random environments. This result is key for the proof of our main
result.

In Section 3, we introduce the general hidden Markov model. We begin
by proving that this model fits in the framework of Section 2 if we condition
on the complete observation record (Yn)n∈Z (Lemma 3.3). The main result
of this section, Theorem 3.4, establishes that the conditional signal is er-
godic provided that the ergodicity and nondegeneracy Assumptions 3.1 and
3.2 are satisfied. The proof proceeds in two steps. First, we show that the
result would follow from ergodicity of the signal and the equivalence of the
conditional and unconditional transition probabilities (Lemma 3.5). Next,
we show that this equivalence does in fact hold if we additionally assume
nondegenerate observations (Lemma 3.8). Of independent interest is Lemma
3.7, which is used repeatedly in the following sections.

In Section 4, we complete the proof of the main result of this paper (The-
orem 4.2). First, we develop the argument of von Weizsäcker in our set-
ting (Section 4.1). The remainder of the section is devoted to proving that
P((Xn)n≥0 ∈ ·|FY

Z
) ∼ P((Xn)n≥0 ∈ ·|FY

[0,∞[) P-a.s. (the relevance of which

was discussed above).
Section 5 establishes that our main result implies stability of the filter

(Theorem 5.2). The key connection between Theorems 5.2 and 4.2 is the
expression in Lemma 5.6 for the Radon–Nikodym derivative between differ-
ently initialized filters.

In Section 6, we extend our main results to the continuous time setting.
Finally, Section 7 contains a brief discussion on the implications of our

main result for the gap in the result of Kunita [23].

2. Markov chains in random environments.

2.1. The canonical setup and main result. Throughout this paper, we
operate in the following canonical setup. We consider the pair (Xn, Yn)n∈Z,
where Xn takes values in the Polish space E and Yn takes values in the Polish
space F . We realize these processes on the canonical path space Ω = ΩX ×ΩY

with ΩX = EZ and ΩY = FZ, such that Xn(x, y) = x(n) and Yn(x, y) = y(n).
Denote by F the Borel σ-field on Ω, and introduce the natural filtrations

FX
n = σ{Xk :k ≤ n}, FY

n = σ{Yk :k ≤ n}, Fn = FX
n ∨FY

n

for n ∈ Z, as well as the σ-fields

FX
I = σ{Xk :k ∈ I}, FY

I = σ{Yk :k ∈ I}, FI = FX
I ∨FY

I

for I ⊂ Z. For simplicity of notation, we set

FX = FX
Z , FY = FY

Z , FX
+ =FX

[0,∞[, FY
+ = FY

[0,∞[
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and we will denote by Y the FZ-valued random variable (Yk)k∈Z. The canon-
ical shift Θ :Ω→ Ω is defined as Θ(x, y)(m) = (x(m + 1), y(m + 1)).

In the following sections we will introduce a measure on (Ω,F) which
defines a hidden Markov model. In the present section, however, it will
be more convenient to attach a somewhat different interpretation to our
canonical setup. To this end, consider a probability kernel of the form
PX :E × ΩY × B(E) → [0,1], where B(E) denotes the Borel σ-field of E.
We will define a stationary probability measure P on (Ω,F) such that the
following holds a.s. for every n ∈ Z:

P(Xn+1 ∈A|FX
n ∨FY ) = PX(Xn, Y ◦Θn,A).

Then Xn is interpreted as a Markov chain in a random environment: the en-
vironment is the sequence Y , and Xn is a nonhomogeneous Markov process,
for almost every path Y , under the regular conditional probability P(·|FY ).

Remark 2.1. Markov chains in random environments were studied ex-
tensively by Cogburn [10, 11] and by Orey [26] in the case that E is count-
able. The purpose of this section is to extend a result in [11] to the general
setting in which E is Polish. It should be noted that in these papers the
kernel PX(x, y,A) is assumed to depend only on y(0), rather than on the
entire path y = (y(k))k∈Z. This difference is immaterial, however, and the
current notation fits particularly well with the hidden Markov model which
will be studied in the rest of the paper.

We proceed to construct P. Our model consists of three ingredients:

1. The probability kernel PX :E ×ΩY ×B(E)→ [0,1].
2. A probability kernel µ :ΩY ×B(E) → [0,1] such that

∫

PX(z, y,A)µ(y, dz) = µ(Θy,A) for all y ∈ ΩY ,A ∈ B(E).

3. A probability measure PY on (ΩY ,FY ) which is invariant under the shift,
that is, PY (Y ∈ A) = PY (Y ◦Θ ∈ A) for all A ∈FY .

For every n ∈ N, define the probability kernel P
(n)
· :ΩY ×FX

[−n,n] → [0,1] as

P(n)
y (A) =

∫

IA(x)PX(x(n− 1),Θn−1y, dx(n)) · · ·

×PX(x(−n),Θ−ny, dx(−n + 1))µ(Θ−ny, dx(−n)).

Then P
(n+1)
y |FX

[−n,n]
= P

(n)
y , so that we can define a probability kernel

P· :Ω
Y ×FX → [0,1], Py|FX

[−n,n]
= P(n)

y for all n, y
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by the usual Kolmogorov extension argument. We now define the probability
measure P on (Ω,F) by setting

P(A) =

∫

IA(x, y)Py(dx)PY (dy) for all A ∈F .

In addition to the probability measure P and the kernel Py , we introduce a
probability kernel P·,· :E ×ΩY ×FX

+ → [0,1] by setting for A ∈FX
[0,n]

Pz,y(A) =

∫

IA(x)PX(x(n− 1),Θn−1y, dx(n)) · · ·

× PX(x(1),Θy, dx(2))PX (x(0), y, dx(1))δz(dx(0)),

where δz(A) = IA(z), and again extending by the Kolmogorov extension
argument. The following is an easy consequence of our definitions.

Lemma 2.2. The following properties hold true:

1. The following holds for all A ∈ FX
+ , z ∈E, y ∈ΩY :

Ez,y(IA ◦Θ) =

∫

PX(z, y, dz′)Pz′,Θy(A).

2. PΘy(A) = Ey(IA ◦Θ) for all y ∈ΩY , A ∈FX .
3. P is invariant under the shift Θ:Ω → Ω, that is, P((Xk, Yk)k∈Z ∈ A) =

P((Xk+n, Yk+n)k∈Z ∈ A) for all A ∈ F , n ∈ Z.
4. The following hold P-a.s. for A ∈FX , B ∈ FX

+ , n ∈ Z:

E(IA ◦Θn|FY ) = PY ◦Θn(A),E(IB ◦Θn|FX
n ∨FY ) = PXn,Y ◦Θn(B).

Proof. Elementary. �

The goal of this section is to prove the following theorem. In the case that
E is countable, a similar result can be found in [11], Section 3.

Theorem 2.3. The following are equivalent.

1. ‖Pz,y(Xn ∈ ·)−Pz′,y(Xn ∈ ·)‖TV
n→∞
−−−→ 0 for (µ⊗ µ)PY -a.e. (z, z′, y).

2. The tail σ-field T X =
⋂

n≥0F
X
[n,∞[ is a.s. trivial in the following sense:

Pz,y(A) = Pz,y(A)2 = Pz′,y(A) for all A ∈ T X and (z, z′, y) ∈H,

where H is a fixed set (independent of A) of (µ⊗ µ)PY -full measure.
3. For (µ ⊗ µ)PY -a.e. (z, z′, y), there is an n ∈ N such that the measures

Pz,y(Xn ∈ ·) and Pz′,y(Xn ∈ ·) are not mutually singular.

When the first condition of this theorem holds, the Markov chain in the
random environment is said to be weakly ergodic; when the second condition
holds, it is said to be tail trivial ; and when the last condition holds, it is
said to be irreducible. Our goal is to prove that these notions are equivalent.
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2.2. Proof of Theorem 2.3. The implication 1 ⇒ 3 of Theorem 2.3 is
trivial; thus, it suffices to show that 2 ⇒ 1 and 3 ⇒ 1,2. Our approach
below is partially inspired by the martingale methods of Derriennic [16]
and of Papangelou [28] for ordinary Markov chains in general state spaces,
and by the work of Cogburn [11] for countable Markov chains in random
environments.

We begin by stating two preliminary lemmas which are in essence well-
known results. The first lemma below shows that the total variation norm
of a kernel is a measurable function; the second lemma shows that 2 ⇒ 1 in
Theorem 2.3.

Lemma 2.4. Let (G,G) be a measurable space, (K,K) be a measurable
space with K a countably generated σ-field, and ρ :G × K → R be a finite
kernel. Then the map g 7→ ‖ρ(g, ·)‖TV is measurable.

Proof. As K is countably generated, there is a sequence {In} of refining
partitions In = {En

1 , . . . ,En
n} of K such that K = σ{In :n ∈ N}. But then

n
∑

k=1

|ρ(g,En
k )| = ‖ρ(g, ·)|σ{In}‖TV ր‖ρ(g, ·)‖TV as n→∞

for all g ∈ G (see, e.g., [27], page 1635). As g 7→ ρ(g,En
k ) is measurable for

every k,n, the above limit is also measurable and the result follows. �

The proof of the following result follows closely along the lines of the proof
of [29], Proposition 6.2.4, and is therefore omitted.

Lemma 2.5. Let H be a set of (µ⊗ µ)PY -full measure. If

Pz,y(A) = Pz,y(A)2 = Pz′,y(A) for all A ∈ T X and (z, z′, y) ∈ H,

then ‖Pz,y(Xn ∈ ·) −Pz′,y(Xn ∈ ·)‖TV
n→∞
−−−→ 0 for all (z, z′, y) ∈ H . In par-

ticular, if condition 2 of Theorem 2.3 holds, then so does condition 1.

Before we proceed, we state an additional lemma on general Markov
chains which will be used several times. The construction of the set H be-
low follows closely along the lines of [27], pages 1636–1637, so the proof is
omitted.

Lemma 2.6. Let Pz be the law of a Markov process (Zk)k≥0 given Z0 =
z, and let ν be a stationary probability for this Markov process. Then for
any set H̃ of ν-full measure, there is a subset H ⊂ H̃ of ν-full measure such
that

Pz(Zn ∈ H for all n≥ 0) = 1 for all z ∈ H.
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We now proceed with the proof of Theorem 2.3. Let us introduce cer-
tain skew Markov chains which will be useful in what follows. Define Un =
(Xn, Y ◦ Θn); then evidently Un is an E × ΩY -valued stationary Markov
chain under P, whose stationary measure λ(A) = P(Un ∈ A) for all n ∈ Z,
A ∈ B(E×ΩY ) and transition probability kernel PU :E×ΩY ×B(E×ΩY )→
[0,1] are given by

λ(A) =

∫

IA(z, y)µ(y, dz)PY (dy), PU (z, y,B×C) = PX(z, y,B)IC(Θy),

while Un is a Markov process with the same transition probability kernel PU

but with the initial measures δz,y and µ(y, ·) under Pz,y and Py , respectively,
In addition to this skew Markov chain, it will be convenient to construct

a coupling of two copies Un = (Xn, Y ◦ Θn) and U ′
n = (X ′

n, Y ′ ◦ Θn) of the
skew chain such that Y = Y ′. To construct such a coupling, we define an
E × E × ΩY -valued Markov process Vn = (Xn,X ′

n, Y ◦ Θn) with transition
probability kernel

P V (z, z′, y,B ×C ×D) = PX(z, y,B)PX(z′, y,C)ID(Θy).

Note that the probability measure on E ×E ×ΩY ,

λ̃(A) =

∫

IA(z, z′, y)µ(y, dz)µ(y, dz′)PY (dy) = ((µ⊗ µ)PY )(A),

is an invariant measure for the transition probability P V . We will construct
in the usual way a probability kernel Q·,·,· :E×E×ΩY ×B(E×E×ΩY )Z+ →
[0,1] such that Qz,z′,y is the law of (Vn)n≥0 with V0 ∼ δz,z′,y. Note that under
Qz,z′,y, the processes (Xn)n≥0 and (X ′

n)n≥0 are independent and their laws
coincide with the law of (Xn)n≥0 under Pz,y and Pz′,y, respectively.

Define the sequence of measurable functions

βn(z, z′, y) = ‖Pz,y(Xn ∈ ·)−Pz′,y(Xn ∈ ·)‖TV, n ∈ N.

Note that βn is nonincreasing with n, so that β(z, z′, y) = limn→∞ βn(z, z′, y)
is well defined and measurable. We wish to prove that condition 3 of The-
orem 2.3 implies that β(z, z′, y) = 0 (µ ⊗ µ)PY -a.e. We will do this in two
steps. First, following Derriennic [16] (see also Ornstein and Sucheston [27]),
we prove a zero-two law for β(z, z′, y) which asserts that either conditions 1
and 2 of Theorem 2.3 hold, or else β(z, z′, y) attains values arbitrarily close
to 2. In the second step, we will show that condition 3 of Theorem 2.3 rules
out the latter possibility.

Proposition 2.7 (Zero-two law). Let H̃ be a given set of (µ ⊗ µ)PY -
full measure. Then one or the other of the following possibilities must hold
true:
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1. Condition 2 of Theorem 2.3 holds for a subset H ⊂ H̃ of (µ⊗ µ)PY -full
measure, and β(z, z′, y) = 0 for all (z, z′, y) ∈ H .

2. There is an y ∈ ΩY such that the following holds: for any ε > 0, there is
a (z, z′, y′) ∈ H̃ with y′ = Θny for some n ∈ N and β(z, z′, y′) > 2− ε.

Proof. Let H ⊂ H̃ be the subset constructed through Lemma 2.6. It
suffices to show that if condition 2 of Theorem 2.3 does not hold on H , then
the second possibility in the statement of the current proposition must hold
true. Indeed, if condition 2 of Theorem 2.3 does hold on H , then β(z, z′, y) =
0 for all (z, z′, y) ∈ H by Lemma 2.5 and, thus, the first possibility holds true.

We suppose, therefore, that condition 2 of Theorem 2.3 does not hold on
H . Then we may clearly choose a (z, z′, y) ∈H and an A ∈ T X such that we
have either Pz,y(A) 6= Pz′,y(A) or 0 < Pz,y(A) < 1. Let us now define

Z = 2IA − 1, gn(z̃) = Ez̃,Θny(Z ◦Θ−n) for all z̃ ∈ E.

Using the first property of Lemma 2.2, it is not difficult to establish that

gn(z̃) = Ez̃,Θny(gn+k(Xk)) for all z̃ ∈ E,k ≥ 0,

and that

gn(Xn) = Ez̃,y(Z|FX
[0,n]) Pz̃,y-a.s. for every z̃ ∈E.

In particular, gn(Xn) → Z Pz̃,y-a.s. for every z̃ ∈ E by martingale conver-
gence, and this implies for any 0 < ε < 2 and z̃ ∈E that

Pz̃,y(gn(Xn) > 1− ε)
n→∞
−−−→Pz̃,y(A),

Pz̃,y(gn(Xn) <−1 + ε)
n→∞
−−−→ 1−Pz̃,y(A).

We now proceed as follows. Note that for any 0 < ε < 2,

Qz,z′,y(gn(Xn) > 1− ε/2 and gn(X ′
n) < −1 + ε/2)

= Pz,y(gn(Xn) > 1− ε/2)Pz′,y(gn(Xn) < −1 + ε/2),

which converges as n →∞ to Pz,y(A)(1−Pz′,y(A)), and similarly,

Qz,z′,y(gn(X ′
n) > 1− ε/2 and gn(Xn) < −1 + ε/2)

= Pz′,y(gn(Xn) > 1− ε/2)Pz,y(gn(Xn) < −1 + ε/2),

which converges as n→∞ to Pz′,y(A)(1−Pz,y(A)). But as either Pz,y(A) 6=
Pz′,y(A) or 0 < Pz,y(A) < 1, at least one of these expressions must be posi-
tive. Hence, for every 0 < ε < 2, we can find an n ∈ N such that

Qz,z′,y(|gn(Xn)− gn(X ′
n)| > 2− ε) > 0.
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In particular, there must then be a choice of (z̃, z̃′,Θny) ∈ H such that we
have |gn(z̃)− gn(z̃′)|> 2− ε. It remains to note that, for all k ≥ 0,

βk(z̃, z̃′,Θny) = sup
‖f‖∞≤1

|Ez̃,Θny(f(Xk))−Ez̃′,Θny(f(Xk))|

≥ |Ez̃,Θny(gn+k(Xk))−Ez̃′,Θny(gn+k(Xk))|

= |gn(z̃)− gn(z̃′)| > 2− ε,

so that β(z̃, z̃′,Θny) > 2− ε. But we can repeat this procedure for any 0 <
ε < 2, and this establishes that the second possibility of the proposition
holds. �

It remains to argue that condition 3 of Theorem 2.3 rules out the second
possibility of the zero-two law. We will need the following lemma.

Lemma 2.8. The following holds for all (z, z′, y) ∈ E ×E ×ΩY :

βn+1(z, z′, y)≤ (P V βn)(z, z′, y) =

∫

βn(z̃, z̃′, ỹ)P V (z, z′, y, dz̃, dz̃′, dỹ).

In particular, β(z, z′, y)≤ (P V β)(z, z′, y).

Proof. Choose sets En
k as in Lemma 2.4, and define

βn
ℓ (z, z′, y) =

n
∑

k=1

|Pz,y(Xℓ ∈ En
k )−Pz′,y(Xℓ ∈En

k )|.

Then βn
ℓ ր βℓ as n →∞. But βn

ℓ+1 ≤ P V βn
ℓ follows from Jensen’s inequality

and Lemma 2.2, so that βℓ+1 ≤ P V βℓ follows by monotone convergence.
Letting ℓ→∞, we obtain β ≤ P V β by dominated convergence. �

The following result now essentially completes the proof.

Proposition 2.9. Suppose that condition 3 of Theorem 2.3 holds. Then
there is a set H̃ of (µ⊗µ)PY -full measure such that β(z, z′, y) = β(z̃, z̃′, ỹ) <
2 for every (z, z′, y), (z̃, z̃′, ỹ) ∈ H̃ with ỹ = Θny for some n≥ 0.

Proof. Denote by Q the law of (Vn)n≥0 with initial measure λ̃ = (µ⊗
µ)PY . By the previous lemma, β(Vn) is a bounded submartingale under
Q and, hence, {β(Vn)} is a Cauchy sequence in L1(Q) by the martingale
convergence theorem. But then, using the stationarity of Q, we find that

EQ|β(V0)− β(Vn)| = EQ|β(Vk)− β(Vn+k)|
k→∞
−−−→ 0 for all n ∈ N.
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In particular, we evidently have
∫

Qz,z′,y(β(V0) = β(Vn) for all n)λ̃(dz, dz′, dy) = 1

and there is consequently a set H̃1 of λ̃-full measure such that

Qz,z′,y(β(z, z′, y) = β(Vn) for all n) = 1 for all (z, z′, y) ∈ H̃1.

By condition 3 of Theorem 2.3, we may choose another set H̃2 of λ̃-full
measure such that for every (z, z̃, y) ∈ H̃2, there is an n ∈ N such that
Pz,y(Xn ∈ ·) and Pz̃,y(Xn ∈ ·) are not mutually singular. Note that the lat-
ter implies that Pz,y(Xm ∈ ·) and Pz̃,y(Xm ∈ ·) are not mutually singular for
every m ≥ n, as Pz,y(Xn ∈ ·) ⊥ Pz̃,y(Xn ∈ ·) is equivalent to βn(z, z̃, y) = 2
and βm(z, z̃, y) is nonincreasing with m. Now define the set

H̃3 = {(z, z′, z̃, z̃′, y) : (z, z′, y), (z̃, z̃′, y) ∈ H̃1, (z, z̃, y), (z′, z̃′, y) ∈ H̃2}.

Then it is easily seen that H̃3 has (µ⊗ µ⊗ µ⊗ µ)PY -full measure.
We claim that β(z, z′, y) = β(z̃, z̃′, y) whenever (z, z′, z̃, z̃′, y) ∈ H̃3. To

see this, fix such a point, and choose n ∈ N such that Pz,y(Xn ∈ ·) and
Pz̃,y(Xn ∈ ·) are not mutually singular and Pz′,y(Xn ∈ ·) and Pz̃′,y(Xn ∈ ·)
are not mutually singular. This implies, in particular, that Qz,z′,y(Vn ∈ ·) and
Qz̃,z̃′,y(Vn ∈ ·) are not mutually singular. But these measures are supported,
respectively, on the sets

Ξ1 = {(ζ, ζ ′,Θny) :β(z, z′, y) = β(ζ, ζ ′,Θny)},

Ξ2 = {(ζ, ζ ′,Θny) :β(z̃, z̃′, y) = β(ζ, ζ ′,Θny)}

as (z, z′, y), (z̃, z̃′, y) ∈ H̃1, and, as the measures are nonsingular, we must
have Ξ1 ∩Ξ2 6= ∅. We have therefore established that β(z, z′, y) = β(z̃, z̃′, y).

To proceed, we define

β(y) =

∫

β(z, z′, y)µ(y, dz)µ(y, dz′).

We claim that β(z, z′, y) = β(y) λ̃-a.e. Indeed, note that
∫

|β(z, z′, y)− β(y)|λ̃(dz, dz′, dy)

≤

∫

|β(z, z′, y)− β(z̃, z̃′, y)|(µ⊗ µ⊗ µ⊗ µ)(y, dz, dz′, dz̃, dz̃′)PY (dy)

by Jensen’s inequality, and we may restrict the integral on the right-hand
side to H̃3, as this set has full measure. Thus, the left-hand side vanishes as
claimed.
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To complete the proof, let H̃4 be a set of λ̃-full measure such that β(z, z′, y) =
β(y) for all (z, z′, y) ∈ H̃4. Using Lemma 2.6, we can find a subset H̃5 ⊂ H̃4

of λ̃-full measure such that we have

Qz,z′,y(Vn ∈ H̃5 for all n ≥ 0) = 1 for all (z, z′, y) ∈ H̃5.

We now set H̃ = H̃1 ∩ H̃2 ∩ H̃5. Then evidently β(z, z′, y) = β(y) = β(Θny)
for all n ≥ 0 whenever (z, z′, y) ∈ H̃, and β(z, z′, y) < 2 as condition 3 of
Theorem 2.3 holds for (z, z′, y) ∈ H̃ . The proof is easily completed. �

Let us now complete the proof of the implication 3 ⇒ 1,2 in Theorem 2.3.
By the zero-two law, it suffices to show that condition 3 of Theorem 2.3 rules
out the second possibility of Proposition 2.7. Assume that condition 3 of
Theorem 2.3 holds, and apply the zero-two law with the set H̃ obtained from
Proposition 2.9. If the second possibility of Proposition 2.7 holds, then there
is an y ∈ ΩY and a sequence (zk, z

′
k,Θ

nky) ∈ H̃ such that β(zk, z′k,Θ
nky) →

2 as k → ∞. But by Proposition 2.9, β(zk, z′k,Θ
nky) = β(z1, z

′
1,Θ

n1y) < 2
for all k ≥ 1, which is a contradiction. Hence, the proof of Theorem 2.3 is
complete.

3. Weak ergodicity of conditional Markov processes.

3.1. The hidden Markov model. Throughout this paper we will operate
in the same canonical setting as in Section 2. In this section, however, we
will initially give a different construction of the measure P which makes
(Xn, Yn)n∈Z a hidden Markov model; the signal process Xn then plays the
role of the unobserved component, while the observation process Yn is the
observed component. Such hidden Markov structure is the usual setup in
which nonlinear filtering problems are of interest. We will shortly see, how-
ever, that hidden Markov models are Markov chains in random environments
in disguise, so that the results of Section 2 apply.

As before, the signal Xn takes values in the Polish space E and the ob-
servations Yn take values in the Polish space F . We proceed to construct a
measure P on the canonical path space (Ω,F). The hidden Markov model
consists of:

1. A probability kernel P :E ×B(E)→ [0,1].
2. A probability measure π on (E,B(E)) such that

∫

P (z,A)π(dz) = π(A) for all A ∈ B(E).

3. A probability kernel Φ :E ×B(F )→ [0,1].
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We now construct P as follows. For every n ∈ N, we can define the probability
measure P(n) on F[−n,n] as

P(n)(A) =

∫

IA(x, y)Φ(x(n), dy(n)) · · ·Φ(x(−n), dy(−n))

×P (x(n− 1), dx(n)) · · ·P (x(−n), dx(−n + 1))π(dx(−n)).

Then P(n+1)|F[−n,n]
= P(n), so that we can construct the probability measure

P :F → [0,1], P|F[−n,n]
= P(n) for all n ∈ N

by the Kolmogorov extension theorem. Note that under P, the signal Xn

is a stationary Markov chain with transition probability kernel P (z,A) and
stationary probability measure π, while, conditionally on the signal, the
observations are independent at different times and Yn has law Φ(Xn, ·). We
also remark that the joint process (Xn, Yn)n∈Z is easily seen to be itself a
stationary Markov chain.

In addition to the probability measure P, we introduce the probability
kernel P· :E ×F+ → [0,1] such that Pz is the law of (Xn, Yn)n≥0 started at
X0 = z [i.e., under Pz , the signal (Xn)n≥0 is a Markov chain with transition
probability kernel P and initial measure X0 ∼ δz , the observations (Yn)n≥0

are conditionally independent given the signal, and Yn has conditional law
Φ(Xn, ·) given FX

+ ]. For any probability measure ν on (E,B(E)), we define
the probability measure

Pν(A) =

∫

IA(x, y)Pz(dx, dy)ν(dz) for all A ∈ F+.

Note that Pπ is in fact the restriction of P to F+.
We now introduce two assumptions on the hidden Markov model which

will play an important role in our main results.

Assumption 3.1 (Ergodicity). The following holds:

‖Pz(Xn ∈ ·)− π‖TV
n→∞
−−−→ 0 for π-a.e. z ∈E.

Assumption 3.2 (Nondegeneracy). There exists a probability measure
ϕ on B(F ) and a strictly positive measurable function g :E × F → ]0,∞[
such that

Φ(z,A) =

∫

IA(u)g(z,u)ϕ(du) for all A ∈ B(F ), z ∈E.

We do not automatically assume in the following that either of these
assumptions is in force, but we will impose them explicitly where they are
needed.
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3.2. The conditional signal process. Despite that we have constructed
the measure P in a rather different manner, the hidden Markov model in-
troduced in the previous subsection is in fact a disguised Markov chain in
a random environment in the sense of Section 2. This is established in the
following lemma.

Lemma 3.3. There exist probability kernels PX :E×ΩY ×B(E)→ [0,1]
and µ :ΩY ×B(E)→ [0,1], and a probability measure PY on (ΩY ,FY ), such
that the conditions of Section 2 are satisfied and the measure P constructed
there coincides with the measure P constructed in the current section. In
particular,

PX(Xn, Y ◦Θn,A) = P(Xn+1 ∈ A|FX
n ∨FY ) P-a.s.,

µ(Y ◦Θn,A) = P(Xn ∈ A|FY ) P-a.s.

for every A ∈ B(E) and n ∈ Z, and PY = P|FY .

Proof. Let us fix the measure P as defined in the current section. We
will use this measure to construct PX , µ and PY . Subsequently, denoting
by P′ the probability measure on F constructed from PX , µ and PY in
Section 2 (called P there), we will show that in fact P′ = P.

Set PY = P|FY , and let µ̃ :ΩY × B(E) → [0,1] be a regular conditional
probability of the form P(X0 ∈ ·|FY ). Moreover, note that

P(X1 ∈ A|FX
0 ∨FY ) = P(X1 ∈ A|σ(X0)∨FY ) P-a.s.

by the Markov property of (Xn, Yn)n∈Z; indeed, due to the Markov property
the σ-fields F[1,∞[ and F−1 are conditionally independent given σ(X0, Y0),
so that the claim follows directly from the elementary properties of the con-
ditional expectation. We can therefore obtain a regular conditional prob-
ability P̃X :E × ΩY × B(E) → [0,1] of the form P(X1 ∈ ·|FX

0 ∨ FY ) [i.e.,
P̃X(X0, Y,A) = P(X1 ∈ A|FX

0 ∨ FY ) P-a.s. for every A ∈ B(E)]. The reg-
ular conditional probabilities exist by the Polish assumption [21], Theorem
5.3.

Note that it follows trivially from the stationarity of (Xn, Yn)n∈Z that PY

is invariant under Θ. We now claim that for PY -a.e. y ∈ ΩY , we have
∫

P̃X(z, y,A)µ̃(y, dz) = µ̃(Θy,A) for all A ∈ B(E).

To see this, note that as B(E) is countably generated, it suffices by a stan-
dard monotone class argument to prove the claim for A in a countable
generating algebra {En} ⊂ B(E) such that B(E) = σ{En :n ∈ N}. But note
that for fixed n ∈ N,
∫

P̃X(z,Y,En)µ̃(Y,dz) = E(P(X1 ∈En|F
X
0 ∨FY )|FY ) = P(X1 ∈En|F

Y ),
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while P(X1 ∈ En|F
Y ) = µ̃(Y ◦Θ,En) follows from

E(f(Y ){P(X0 ∈ En|F
Y ) ◦Θ}) = E(f(Y ◦Θ−1)P(X0 ∈En|F

Y ))

= E(f(Y ◦Θ−1)IEn(X0))

= E(f(Y )IEn(X1))

for every bounded measurable f :ΩY → R, where we have twice used the
stationarity of P. As we must only verify equality for a countable collection
{En}, we can indeed find a set H ∈ FY of PY -full measure such that

∫

P̃X(z, y,A)µ̃(y, dz) = µ̃(Θy,A) for all A ∈ B(E), y ∈H.

We now set µ(y,A) = µ̃(y,A) and PX(z, y,A) = P̃X(z, y,A) for all z ∈ E, y ∈
H , and A ∈ B(E), and we set µ(y,A) = π(A), PX(z, y,A) = π(A) whenever
y /∈ H . Then µ and PX are still versions of their defining regular conditional
probabilities and PX , µ, PY satisfy the conditions of Section 2. The various
identities in the statement of the lemma follow from the stationarity of P in
the same way as we established above that P(X1 ∈En|F

Y ) = µ̃(Y ◦Θ,En).
It remains to show that the measure P′ constructed from PX , µ, PY as

in Section 2 coincides with the measure P. It suffices to show that P′(A) =
P(A) for every A ∈F[−n,n], n ∈ N. To this end, note that for A ∈F[−n,n] we
evidently have

P′(A) =

∫

IA(x, y)PX(x(n− 1),Θn−1y, dx(n)) · · ·

×PX(x(−n),Θ−ny, dx(−n + 1))µ(Θ−ny, dx(−n))PY (dy)

= E(E(E(· · ·E(E(IA|F
X
n−1 ∨FY )|FX

n−2 ∨FY ) · · · |FX
−n ∨FY )|FY ))

= P(A).

Thus, the proof is complete. �

From this point onward we will fix PX , µ, PY as defined in the previous
lemma. In particular, this allows us to define the probability kernels Py and
Pz,y as in Section 2, and these are easily seen to be versions of the regular
conditional probabilities P(·|FY ) and P(·|FX

0 ∨ FY ), respectively. Under
Py , the process (Xn)n∈Z has the law of the signal process conditioned on
the observations (Yn)n∈Z; we will refer to this process as the conditional
signal process. The main purpose of this section is to obtain a sufficient
condition for the conditional signal to be weakly ergodic, that is, for any
(hence all) of the conditions of Theorem 2.3 to hold in the current setting.
In Sections 4–6, we will see that this question has important consequences
for the asymptotic properties of nonlinear filters.
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Intuitively, it seems plausible that the weak ergodicity of the conditional
signal process is inherited from the ergodicity of the (unconditional) signal
process, that is, that weak ergodicity of the conditional signal follows from
Assumption 3.1. The counterexample in [1] illustrates, however, that this
need not be the case. The following theorem, which is the main result of
this section, shows that weak ergodicity of the conditional signal follows
nonetheless if we also assume nondegeneracy of the observations (Assump-
tion 3.2).

Theorem 3.4. Suppose that both Assumptions 3.1 and 3.2 are in force.
Then any (hence all) of the conditions of Theorem 2.3 hold true.

The proof of this result is contained in the following subsections.

3.3. Weak ergodicity of the conditional signal. The strategy of the proof
of Theorem 3.4 is to show that condition 3 of Theorem 2.3 follows from
Assumptions 3.1 and 3.2. In this subsection we prove that condition 3 of
Theorem 2.3 follows from Assumption 3.1 and a certain absolute continuity
assumption; that the latter follows from Assumptions 3.1 and 3.2 is estab-
lished in the next subsection.

Lemma 3.5. Suppose Assumption 3.1 holds, and that there is a strictly
positive measurable function h :E ×ΩY ×E → ]0,∞[ such that for µPY -a.e.
(z, y),

PX(z, y,A) =

∫

IA(z̃)h(z, y, z̃)P (z, dz̃) for all A ∈ B(E).

Then condition 3 of Theorem 2.3 holds.

Proof. First, we note that Assumption 3.1 implies that there is a set
H1 of (µ ⊗ µ)PY -full measure such that for any (z, z′, y) ∈ H1, there is an
n ∈ N such that Pz(Xn ∈ ·) and Pz′(Xn ∈ ·) are not mutually singular. To
see this, note that

∫

‖Pz(Xn ∈ ·)−Pz′(Xn ∈ ·)‖TVµ(y, dz)µ(y, dz′)PY (dy)

≤ 2

∫

‖Pz(Xn ∈ ·)− π‖TVµ(y, dz)PY (dy)

= 2

∫

‖Pz(Xn ∈ ·)− π‖TVπ(dz)
n→∞
−−−→ 0

by Assumption 3.1. But as ‖Pz(Xn ∈ ·) − Pz′(Xn ∈ ·)‖TV is nonincreasing
and uniformly bounded, we find that ‖Pz(Xn ∈ ·)−Pz′(Xn ∈ ·)‖TV → 0 as
n →∞ for (µ⊗ µ)PY -a.e. (z, z′, y), which establishes the claim.
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Now let H2 be a set of µPY -full measure such that the absolute continuity
condition in the statement of the lemma holds true for all (z, y) ∈ H2. By
Lemma 2.6, there is a subset H3 ⊂ H2 of µPY -full measure such that for
every (z, y) ∈ H3 we have Pz,y((Xn,Θny) ∈ H3 for all n ≥ 0) = 1. It follows
directly that for every (z, y) ∈ H3, n ∈ N and A ∈ B(E), we have

Pz,y(Xn ∈ A) = Ez(h(X0, y,X1) · · ·h(Xn−1,Θ
n−1y,Xn)IA(Xn)).

In particular, Pz,y(Xn ∈ ·) ∼Pz(Xn ∈ ·) for all (z, y) ∈ H3 and n ∈ N.
To complete the proof, define the following set:

H4 = {(z, z′, y) : (z, z′, y) ∈H1, (z, y), (z′, y) ∈ H3}.

Then H4 has (µ ⊗ µ)PY -full measure, and for every (z, z′, y) ∈ H4, there is
an n ∈ N such that Pz,y(Xn ∈ ·) and Pz′,y(Xn ∈ ·) are not mutually singular.
�

3.4. Nondegeneracy. Before we proceed, we will prove an elementary re-
sult on regular conditional probabilities. The result generalizes the trivial
identity

P(A|B,C)

P(A|C)
=

P(B|A,C)

P(B|C)
provided P(A ∩C) > 0,P(B ∩C) > 0

to regular conditional probabilities in Polish spaces.

Lemma 3.6. Let G1, G2 and K be Polish spaces and set Ω = G1 ×G2 ×K.
We consider a probability measure P on (Ω,B(Ω)). Denote by γ1 :Ω → G1,
γ2 :Ω → G2 and κ :Ω → K the coordinate projections, and let G1, G2 and K
be the σ-fields generated by γ1, γ2 and κ, respectively. Choose fixed versions
of the following regular conditional probabilities (which exist by the Polish
assumption):

ΞK
1 (g1, ·) = P(κ ∈ ·|G1)(g1), ΞK

12(g1, g2, ·) = P(κ ∈ ·|G1 ∨ G2)(g1, g2),

Ξ2
1(g1, ·) = P(γ2 ∈ ·|G1)(g1), Ξ2

1K(g1, k, ·) = P(γ2 ∈ ·|G1 ∨K)(g1, k),

where g1 ∈G1, g2 ∈ G2, k ∈ K. Suppose that there exists a nonnegative mea-
surable function h :G1 ×G2 ×K → [0,∞[ and a set H ⊂ G1 ×G2 such that
E(IH(γ1, γ2)) = 1 and for every (g1, g2) ∈ H,

ΞK
12(g1, g2,A) =

∫

IA(k)h(g1, g2, k)ΞK
1 (g1, dk) for all A ∈K.

Then there is an H ′ ⊂ G1 ×K with E(IH′(γ1, κ)) = 1 so that for all (g1, k) ∈
H ′,

Ξ2
1K(g1, k,B) =

∫

IB(g2)h(g1, g2, k)Ξ2
1(g1, dg2) for all B ∈ G2.
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Proof. We can evidently write (using the disintegration of measures
[21], Theorem 5.4) for every A ∈ G1, B ∈ G2, and C ∈K

P(γ1 ∈ A,γ2 ∈ B,κ ∈C)

=

∫

IA(g1)IB(g2)Ξ
K
12(g1, g2,C)Ξ2

1(g1, dg2)Ξ1(dg1)

=

∫

IA(g1)IC(k)Ξ2
1K(g1, k,B)ΞK

1 (g1, dk)Ξ1(dg1),

where Ξ1 is the law of γ1 under P. Therefore,
∫

Ξ2
1K(g1, k,B)IA(g1)IC(k)ΞK

1 (g1, dk)Ξ1(dg1)

=

∫

IB(g2)h(g1, g2, k)Ξ2
1(g1, dg2)IA(g1)IC(k)ΞK

1 (g1, dk)Ξ1(dg1),

where the exchange of integration order is permitted due to the nonnegativ-
ity of the integrand. As this holds for every A ∈ G1 and C ∈K, we obtain

Ξ2
1K(g1, k,B) =

∫

IB(g2)h(g1, g2, k)Ξ2
1(g1, dg2) for P-a.e. (g1, k)

for every fixed B ∈ G2. But as G2 is countably generated, it suffices to verify
that equality holds for B in a countable generating algebra, and we can thus
eliminate the dependence of the exceptional set on B. �

To complete the proof of Theorem 3.4, we must show that the absolute
continuity condition PX(z, y, ·) ∼ P (z, ·) of Lemma 3.5 holds. Recall that
P (z, ·) is a version of the regular conditional probability P(X1 ∈ ·|FX

0 ), while
PX is a version of the regular conditional probability P(X1 ∈ ·|FX

0 ∨FY ). By
the Markov property, however, it is immediate that we can also consider P to
be a version of the regular conditional probability P(X1 ∈ ·|σ(X0)), and PX

a version of the regular conditional probability P(X1 ∈ ·|σ(X0) ∨ FY
+ ). To

prove absolute continuity, we will apply the previous lemma to the law of the
triple (X0,X1, (Yk)k≥0). In particular, to establish that PX(z, y, ·)∼ P (z, ·),
we may equivalently investigate whether the laws of (Yk)k≥0 under different
initial conditions are equivalent.

The following result, which is of independent interest, shows that—provided
the observations are nondegenerate—two initial laws of the signal give rise
to equivalent laws of the observations whenever the signal forgets the initial
laws. This will be used below to establish that PX(z, y, ·) ∼ P (z, ·).

Lemma 3.7. Suppose Assumption 3.2 holds. Let ν, ν̄ be probability mea-
sures such that ‖Pν(Xn ∈ ·)−Pν̄(Xn ∈ ·)‖TV

n→∞
−−−→ 0. Then Pν |FY

+
∼Pν̄ |FY

+
.
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Proof. We will work on the space Ω′ = EZ+ × EZ+ × FZ+ , where we
write Xn(x,x′, y) = x(n), X ′

n(x,x′, y) = x′(n), and Yn(x,x′, y) = y(n).
We make use of the well-known fact [24], Theorem III.14.10 and (III.20.7),

that ‖Pν(Xn ∈ ·)−Pν̄(Xn ∈ ·)‖TV → 0 as n→∞ implies the existence of a
successful coupling of the laws of (Xn)n≥0 under Pν and Pν̄ . We can thus
construct a probability measure Q :B(EZ+ ×EZ+)→ [0,1] such that:

1. The law of (Xn)n≥0 under Q coincides with the law of (Xn)n≥0 under
Pν ;

2. The law of (X ′
n)n≥0 under Q coincides with the law of (Xn)n≥0 under

Pν̄ ;
3. There is a finite random time τ such that a.s. Xn = X ′

n for all n ≥ τ .

In addition, we define a probability kernel QY :EZ+ ×B(FZ+)→ [0,1] such
that (Yn)n≥0 are independent under QY (x, ·) and QY (x,Yn ∈ ·) = Φ(x(n), ·).

Now consider the following probability measures on Ω′:

Q1(A) =

∫

IA(x,x′, y)QY (x,dy)Q(dx, dx′),

Q2(A) =

∫

IA(x,x′, y)QY (x′, dy)Q(dx, dx′).

It is easily seen that Pν |FY
+

= Q1|FY
+

and Pν̄ |FY
+

= Q2|FY
+

. To complete the

proof, it therefore suffices to show that Q1 ∼Q2. It is immediate, however,
that

dQY (x′, ·)

dQY (x, ·)
=

N
∏

k=0

g(x′(k), y(k))

g(x(k), y(k))
whenever x(n) = x′(n) for all n > N,

where g(z, y) is the observation density defined in Assumption 3.2. Thus,
evidently

Q1 ∼Q2 with
dQ2

dQ1
=

τ
∏

k=0

g(X ′
k, Yk)

g(Xk, Yk)
.

The proof is complete. �

We can now prove the following.

Lemma 3.8. Suppose Assumptions 3.1 and 3.2 hold. Then there is a
strictly positive measurable h :E ×ΩY × E → ]0,∞[ such that for µPY -a.e.
(z, y),

PX(z, y,A) =

∫

IA(z̃)h(z, y, z̃)P (z, dz̃) for all A ∈ B(E).
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Proof. By the Markov property, P and PX are versions of the regular
conditional probabilities P(X1 ∈ ·|σ(X0)) and P(X1 ∈ ·|σ(X0)∨FY

+ ), respec-
tively. By the Polish assumption, we can also introduce regular conditional
probabilities R :E ×FY

+ → [0,1] and RX :E × E ×FY
+ → [0,1] of the form

P((Yk)k≥0 ∈ ·|σ(X0)) and P((Yk)k≥0 ∈ ·|σ(X0,X1)), respectively. Applying
Lemma 3.6 to the law of the triple (X0,X1, (Yk)k≥0), it evidently suffices
to show that there is a strictly positive measurable h :E ×ΩY ×E → ]0,∞[
such that

RX(z, z′,A) =

∫

IA(y)h(z, y, z′)R(z, dy) for all A ∈ FY
+

for (z, z′) ∈H with P((X0,X1) ∈ H) = 1.
By a well-known result on kernels ([15], Section V.58) there exists a non-

negative measurable function h̃ :E × ΩY × E → [0,∞[ such that, for all
z, z′ ∈ E,

RX(z, z′,A) =

∫

IA(y)h̃(z, y, z′)R(z, dy) + R⊥(z, z′,A) for all A ∈ FY
+ ,

where the kernel R⊥ is such that R⊥(z, z′, ·) ⊥ R(z, ·) for every z, z′ ∈ E.
Now suppose we can establish that RX(z, z′, ·)∼ R(z, ·) for (z, z′) ∈H with
P((X0,X1) ∈ H) = 1. Then R⊥(z, z′, ·) = 0 for (z, z′) ∈H , and h̃(z, y, z′) > 0
except on a null set. We can then set h(z, y, z′) = 1 whenever h̃(z, y, z′) =
0, and set h(z, y, z′) = h̃(z, y, z′) otherwise; this gives a function h with
the desired properties, completing the proof. It thus remains to show that
RX(z, z′, ·) ∼ R(z, ·) for (z, z′) ∈H with P((X0,X1) ∈ H) = 1.

To this end, let us introduce convenient versions of the regular conditional
probabilities R and RX . Note that we may set

∫

f0(y(0)) · · · fn(y(n))RX(z, z′, dy)

=

∫

f0(u)Φ(z, du) ×Ez′(f1(Y0) · · ·fn(Yn−1))

for all bounded measurable f0, . . . , fn and n < ∞. Similarly, we may set
∫

f0(y(0)) · · · fn(y(n))R(z, dy)

=

∫

f0(u)Φ(z, du)×

∫

Ez̃(f1(Y0) · · ·fn(Yn−1))P (z, dz̃)

=

∫

f0(u)Φ(z, du)×EP (z,·)(f1(Y0) · · ·fn(Yn−1)).

It thus suffices to show that

Pz′ |FY
+
∼PP (z,·)|FY

+
for (z, z′) ∈ H with P((X0,X1) ∈H) = 1.
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By Assumption 3.2 and Lemma 3.7, it suffices to show that

‖Pz′(Xn ∈ ·)−PP (z,·)(Xn ∈ ·)‖TV
n→∞
−−−→ 0

for (z, z′) ∈H with P((X0,X1) ∈ H) = 1.
Now note that by Assumption 3.1, we may choose a set H1 of π-full

measure such that ‖Pz(Xn ∈ ·) − π‖TV → 0 as n → ∞ for all z ∈ H1. By
Lemma 2.6, there is a subset H2 ⊂H1 of π-full measure such that for every
z ∈ H2 we have Pz(Xn ∈ H2 for all n ≥ 0) = 1. In particular, for z, z′ ∈ H2,
we then have

‖Pz′(Xn ∈ ·)−PP (z,·)(Xn ∈ ·)‖TV

≤ ‖Pz′(Xn ∈ ·)− π‖TV

+

∫

‖Pz′′(Xn ∈ ·)− π‖TVP (z, dz′′)
n→∞
−−−→ 0.

But H = H2 ×H2 satisfies P((X0,X1) ∈ H) = 1 by construction. �

Combining Lemmas 3.5 and 3.8 now completes the proof of Theorem 3.4.

4. Exchange of intersection and supremum of σ-fields. As is discussed
in the Introduction and in the following sections, key to the asymptotic
properties of nonlinear filters are certain identities for the observation and
signal σ-fields. For example, key to the proof of total variation stability
(Section 5) is the identity

⋂

n≥0

FY
+ ∨FX

[n,∞[
?
=FY

+ P-a.s.,

and the goal of this section is to show that such identities hold under As-
sumptions 3.1 and 3.2. The question can be seen as pertaining to the per-
missibility of the exchange of the intersection and the supremum of σ-fields;
indeed, under Assumption 3.1 the tail σ-field T X is P-a.s. trivial, so that
the above identity can be written as

⋂

n≥0

FY
+ ∨FX

[n,∞[
?
=FY

+ ∨
⋂

n≥0

FX
[n,∞[ P-a.s.

The validity of such an exchange is a notoriously delicate problem [37].
For the sake of demonstration, we begin by proving the following lemma.

Lemma 4.1. Suppose that any (hence all) of the conditions of Theorem
2.3 are in force. Then the following holds true:

⋂

n≥0

FY ∨FX
[n,∞[ =

⋂

n≥0

FY ∨FX
−n =FY P-a.s.
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The interest of this lemma is independent of the remainder of the paper;
it follows directly from Theorem 2.3, and thus serves as a simplified demon-
stration of the proof of the exchange of intersection and supremum property.
Unfortunately, this result is not in itself of use in proving asymptotic prop-
erties of nonlinear filters, as the entire observation field FY appears in the
expression rather than the positive and negative time observations FY

+ and
FY

0 . Using additional coupling and time reversal arguments, we will prove
the following useful result.

Theorem 4.2. Suppose that Assumptions 3.1 and 3.2 are in force. Then
⋂

n≥0

FY
+ ∨FX

[n,∞[ = FY
+ and

⋂

n≥0

FY
0 ∨FX

−n = FY
0 P-a.s.

The proof of Lemma 4.1 is given in Section 4.1 below, while the proof of
Theorem 4.2 is contained in Sections 4.2–4.4.

4.1. Proof of Lemma 4.1. In [37], von Weizsäcker studied problems of
this type in a general setting, and Lemma 4.1 can be derived from his result
and Theorem 2.3. As the idea is straightforward, however, we give a direct
proof here.

Let us begin by proving the assertion
⋂

n≥0

FY ∨FX
[n,∞[ = FY P-a.s.

It suffices to show that, for every A ∈F ,

P

(

A
∣

∣

∣

⋂

n≥0

FY ∨FX
[n,∞[

)

= P(A|FY ) P-a.s.

As bounded random variables of the form F (x, y) = f(x)g(y) are total in
L1(P), it suffices to verify the statement for A ∈FX only. By the martingale
convergence theorem, it is sufficient to show that, for any A ∈FX ,

P(A|FY ∨FX
[n,∞[)

n→∞
−−−→P(A|FY ) in L1(P).

We now appeal to the following fact: as FX
[n,∞[ is countably generated, we

have

P(A|FY ∨FX
[n,∞[) = PY (A|FX

[n,∞[) P-a.s.

for any A ∈ FX , where we have used that (Lemma 2.2) PY (·) is a regular
conditional probability of the form P(·|FY ); see [37], Lemma 4.II.1. But

Py(|Py(A|FX
[n,∞[)−Py(A)|)

n→∞
−−−→ 0 for PY -a.e. y

follows by martingale convergence and the following lemma.
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Lemma 4.3. Suppose that any (hence all) of the conditions of Theorem
2.3 hold. Then the tail σ-field T X is Py-trivial for PY -a.e. y.

Proof. By condition 1 of Theorem 2.3, we find that
∫

‖Pz,y(Xn ∈ ·)−Py(Xn ∈ ·)‖TVµ(y, dz)PY (dy)

≤

∫

‖Pz,y(Xn ∈ ·)−Pz′,y(Xn ∈ ·)‖TVµ(y, dz′)µ(y, dz)PY (dy)

converges to zero as n →∞. But as ‖Pz,y(Xn ∈ ·)−Py(Xn ∈ ·)‖TV is non-
increasing, we find that ‖Pz,y(Xn ∈ ·) − Py(Xn ∈ ·)‖TV → 0 as n →∞ for
µPY -a.e. (z, y). Note that by the Markov property of (Xn)n≥0 under Pz,y,

‖Pz,y(Xn ∈ ·)−Py(Xn ∈ ·)‖TV

= ‖Pz,y|FX
[n,∞[

−Py|FX
[n,∞[

‖TV
n→∞
−−−→ ‖Pz,y|T X −Py|T X‖TV

(see, e.g., [24], Section III.20). Therefore, Pz,y|T X = Py|T X for µPY -a.e.
(z, y), and it remains to invoke condition 2 of Theorem 2.3. �

We can now easily complete the proof of
⋂

n≥0F
Y ∨ FX

[n,∞[ = FY P-a.s.

Indeed, integrating with respect to PY , we find by dominated convergence
that

P(|PY (A|FX
[n,∞[)−PY (A)|)

n→∞
−−−→ 0

and the result now follows directly.
We now turn to the proof of the assertion

⋂

n≥0

FY ∨FX
−n = FY P-a.s.

As above, it suffices to show that, for every A ∈ FX ,

P(A|FY ∨FX
−n)

n→∞
−−−→P(A|FY ) in L1(P).

In fact, it suffices to establish only that

E(f1(Xk1) · · ·fℓ(Xkℓ
)|FY ∨FX

−n)

n→∞
−−−→E(f1(Xk1) · · ·fℓ(Xkℓ

)|FY ) in L1(P)

for all ℓ <∞, k1, . . . , kℓ ∈ Z, and bounded measurable functions f1, . . . , fℓ, as
the family of functions of the form f1(Xk1) · · ·fℓ(Xkℓ

) is total in L1(FX ,P).
Now note that by the last property of Lemma 2.2, we can write

E(f1(Xk1) · · ·fℓ(Xkℓ
)|FY ∨FX

−n) = EX−n,Y ◦Θ−n(f1(Xk1+n) · · ·fℓ(Xkℓ+n)),

E(f1(Xk1) · · ·fℓ(Xkℓ
)|FY ) = EY ◦Θ−n(f1(Xk1+n) · · ·fℓ(Xkℓ+n)).
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Therefore, using the stationarity of P, we find that

E(|E(Λ0|F
Y ∨FX

−n)−E(Λ0|F
Y )|)

=

∫

|Ez,y(Λn)−Ey(Λn)|µ(y, dz)PY (dy)

≤

∫

|Ez,y(Λn)−Ez′,y(Λn)|µ(y, dz)µ(y, dz′)PY (dy),

where we have written Λn = f1(Xk1+n) · · ·fℓ(Xkℓ+n) for simplicity. It follows
(see, e.g., [24], Section III.20) from the first condition of Theorem 2.3 that
this expression converges to zero as n→∞, and thus the claim is established.

4.2. Time reversal. In order to apply the theory of Markov chains in
random environments, it was important to condition the signal process on
all observations FY . Note that the conditional probability P(X0 ∈ ·|FY )
satisfies the property P(X0 ∈ ·|FY ) ◦ Θn = P(Xn ∈ ·|FY ) which was used
repeatedly in Section 2; this property is not shared by the conditional prob-
ability P(X0 ∈ ·|FY

+ ). An unfortunate consequence is that we obtain the
triviality of T X under the regular conditional probability P(·|FY ), which
leads to Lemma 4.1, rather than the triviality of T X under P(·|FY

+ ), which
would give (the first part of) Theorem 4.2.

To prove Theorem 4.2, we must therefore eliminate the dependence of
our results to date on the past observations. As we will see in the following
subsections, this can be done provided that the signal is not only ergodic
forward in time (as is guaranteed by Assumption 3.1) but also after time
reversal; in essence, we aim to establish that the remote past of the signal
does not depend on the present. In this subsection, we will show that this
property in fact already follows from Assumption 3.1, so that no additional
assumptions need to be imposed.

In the following we will extend the definition of Pz to negative times, that
is, Pz is a version of the regular conditional probability P(·|X0). Note that
the time reversed signal X̃n = X−n is again a Markov chain under P and
Pz with stationary measure π. The goal of this subsection is to prove the
following result.

Proposition 4.4. Suppose that Assumption 3.1 holds. Then

‖Pz(X−n ∈ ·)− π‖TV
n→∞
−−−→ 0 for π-a.e. z ∈ E.

We will need the following lemma on regular conditional probabilities.

Lemma 4.5. Let G be a Polish space. Denote by γ1 :G × G → G and
γ2 :G × G → G the coordinate projections and by G1 and G2 the σ-fields
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generated by γ1 and γ2, respectively. Consider a probability measure π on
(G,B(G)), and a probability measure P on (G × G,B(G × G)) such that
the laws of γ1 and γ2 under P both equal π. Denote by P1 :G × B(G) →
[0,1] and P2 :G × B(G) → [0,1] the regular conditional probabilities of the
form P(γ1 ∈ ·|G2) and P(γ2 ∈ ·|G1), respectively, and consider their Lebesgue
decompositions

P(A×B) =

∫

IA(dz)IB(dz′)p(z, z′)π(dz)π(dz′) + P⊥(A×B),

P1(z
′,A) =

∫

IA(z)p1(z, z′)π(dz) + P⊥
1 (z′,A),

P2(z,B) =

∫

IB(z′)p2(z, z′)π(dz′) + P⊥
2 (z,B),

where P⊥ ⊥ π ⊗ π, P⊥
1 (z′, ·) ⊥ π and P⊥

2 (z, ·) ⊥ π, and p, p1, p2 :G × G →
[0,∞[ are measurable. Then p(z, z′) = p1(z, z′) = p2(z, z′) for π⊗π-a.e. (z, z′).

Proof. The existence of regular conditional probabilities follows from
the Polish assumption, while the existence of measurable p1, p2 follows from
[15], Section V.58. It also follows from [15], Sections V.56–58, that there
exist S1, S2 ∈ B(G × G) such that (π ⊗ π)(S1) = (π ⊗ π)(S2) = 1 and for
π-a.e. z, z′,

∫

IS1(z, z′)P⊥
1 (z′, dz) = 0,

∫

IS2(z, z′)P⊥
2 (z, dz′) = 0.

Now note that, by the disintegration of measures, we have for all A,B ∈ B(G)

P(A×B) =

∫

IB(z′)P1(z
′,A)π(dz′) =

∫

IA(z)P2(z,B)π(dz).

Now substitute in the Lebesgue decompositions of P1 and P2, and note that
∫

IS1(z, z′)P⊥
1 (z′, dz)π(dz′) =

∫

IS2(z, z′)P⊥
2 (z, dz′)π(dz) = 0.

Therefore, P⊥
1 π ⊥ π ⊗ π and P⊥

2 π ⊥ π ⊗ π. But by the uniqueness of the
Lebesgue decomposition of P, this implies that

∫

IA(dz)IB(dz′)p(z, z′)π(dz)π(dz′)

=

∫

IA(dz)IB(dz′)p1(z, z′)π(dz)π(dz′)

=

∫

IA(dz)IB(dz′)p2(z, z′)π(dz)π(dz′)

for all A,B ∈ B(G), from which the result follows. �
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We can now prove Proposition 4.4.

Proof of Proposition 4.4. Denote by fn(z, z′) the density in the
Lebesgue decomposition of Pz(Xn ∈ ·) with respect to π. Then by Assump-
tion 3.1,

∫

|fn(z, z′)− 1|π(dz)π(dz′)
n→∞
−−−→ 0.

In particular, there is a subsequence nk ր∞ such that
∫

|fnk
(z, z′)− 1|π(dz)

k→∞
−−−→ 0 for π-a.e. z′.

But by the previous lemma and by stationarity, fn(z, z′) is also the density

in the Lebesgue decomposition of Pz′(X−n ∈ ·) with respect to π. It follows
that ‖Pz′(X−nk

∈ ·) − π‖TV → 0 as k → ∞ for π-a.e. z′. But X̃n = X−n

is again Markov, so ‖Pz′(X−n ∈ ·) − π‖TV is nonincreasing and the result
follows. �

4.3. Equivalence of the initial measures. Let us begin by fixing a version
µ+ :ΩY ×B(E)→ [0,1] of the regular conditional probability P(X0 ∈ ·|FY

+ ).
We can then define a probability kernel P+

· :ΩY ×FX
+ → [0,1] by setting

P+
y (A) =

∫

Pz,y(A)µ+(y, dz) for all A ∈FX
+ , y ∈ ΩY .

It is not difficult to see that P+
y is a version of the regular conditional

probability P(·|FY
+ ); indeed, it suffices to note that by the Markov property

Pz,y is a version of the regular conditional probability P(·|σ(X0)∨FY
+ ). We

also recall that

Py(A) =

∫

Pz,y(A)µ(y, dz) for all A ∈FX
+ , y ∈ΩY

is a version of the regular conditional probability P(·|FY ).
Theorem 2.3 establishes that the tail σ-field T X is Py-a.s. trivial for PY -

a.e. y (Lemma 4.3). To demonstrate the first part of Theorem 4.2 along the
lines of the proof of Lemma 4.1, however, we would have to show that T X

is P+
y -a.s. trivial for PY -a.e. y. The latter would follow from the former if

we could show that P+
y ∼Py for PY -a.e. y, and it evidently suffices to show

that µ+(y, ·) ∼ µ(y, ·) for PY -a.e. y. The purpose of this subsection is to
prove that this is indeed the case under Assumptions 3.1 and 3.2. In fact,
we will prove the following stronger statement: µ+(y, ·) ∼ π and µ(y, ·) ∼ π
for PY -a.e. y.

The easy part of the proof is contained in the following lemma.
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Lemma 4.6. Suppose Assumptions 3.1 and 3.2 hold. Then there is a
strictly positive measurable k+ :ΩY ×E → ]0,∞[ such that, for PY -a.e. y ∈
ΩY ,

µ+(y,A) =

∫

IA(z̃)k+(y, z̃)π(dz̃) for all A ∈ B(E).

Proof. By Lemma 3.6, it suffices to show that there exists a strictly
positive measurable k+ :ΩY ×E → ]0,∞[ such that, for π-a.e. z ∈ E,

Pz(B) =

∫

IB(y)k+(y, z)P(dy) for all B ∈FY
+ .

But this follows immediately from Lemma 3.7 and Assumptions 3.1 and 3.2.
�

It remains to prove the corresponding result for µ. Though we will proceed
along the same lines, the proof is complicated by the fact that Lemma 3.7
only establishes equivalence for observations at positive times FY

+ and not
on the entire time interval FY . We therefore set out to extend Lemma 3.7
to FY .

Lemma 4.7. Under Assumptions 3.1 and 3.2, Pz|FY ∼P|FY for π-a.e.
z.

Proof. By the Markov property of the signal process, FX
[n,∞[ and FX

−n

are independent under Pz . We can therefore estimate as follows:

‖Pz|FX
−n∨F

X
[n,∞[

−Pz′ |FX
−n∨F

X
[n,∞[

‖TV

= ‖Pz|FX
−n

⊗Pz|FX
[n,∞[

−Pz′ |FX
−n

⊗Pz′ |FX
[n,∞[

‖TV

≤ ‖Pz |FX
−n

−Pz′ |FX
−n

‖TV + ‖Pz|FX
[n,∞[

−Pz′ |FX
[n,∞[

‖TV

= ‖Pz(X−n ∈ ·)−Pz′(X−n ∈ ·)‖TV + ‖Pz(Xn ∈ ·)−Pz′(Xn ∈ ·)‖TV

≤ ‖Pz(X−n ∈ ·)− π‖TV + ‖Pz′(X−n ∈ ·)− π‖TV

+ ‖Pz(Xn ∈ ·)− π‖TV + ‖Pz′(Xn ∈ ·)− π‖TV.

Here we have used the Markov property of Xn and X̃n = X−n, and the
elementary identity ‖µ1 ⊗ ν1 −µ2 ⊗ ν2‖TV ≤ ‖µ1 −µ2‖TV + ‖ν1 − ν2‖TV. By
Assumption 3.1 and Proposition 4.4, we now find that

‖Pz|FX
−n∨F

X
[n,∞[

−Pz′ |FX
−n∨F

X
[n,∞[

‖TV
n→∞
−−−→ 0 for π ⊗ π-a.e. (z, z′).
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But then we have

‖Pz|FX
−n∨F

X
[n,∞[

−P|FX
−n∨F

X
[n,∞[

‖TV

≤

∫

‖Pz|FX
−n∨F

X
[n,∞[

−Pz′ |FX
−n∨F

X
[n,∞[

‖TVπ(dz′)
n→∞
−−−→ 0 for π-a.e. z.

In particular, P and Pz agree on the remote σ-field for π-a.e. z:

Pz|RX = P|RX for π-a.e. z, RX =
⋂

n≥0

FX
−n ∨FX

[n,∞[.

From this point onward, we fix an arbitrary z such that Pz|RX = P|RX . To
complete the proof, it suffices to show that this implies Pz|FY ∼P|FY .

To proceed, we note that the remote σ-field RX coincides with the tail
σ-field of the one-sided sequence (X−n,Xn)n≥0. We can therefore apply the
maximal coupling theorem [24], Theorem III.14.10, to this sequence. In par-
ticular, we find that we can construct a probability measure Q :B(EZ ×
EZ)→ [0,1] such that:

1. The law of (Xn)n∈Z under Q coincides with the law of (Xn)n∈Z under
Pz ;

2. The law of (X ′
n)n∈Z under Q coincides with the law of (Xn)n∈Z under P;

3. There is a random time 0≤ τ <∞ such that a.s. Xn = X ′
n for all |n| ≥ τ .

Here Xn and X ′
n are the canonical coordinate processes on EZ × EZ. The

remainder of the proof now proceeds exactly as the proof of Lemma 3.7. �

We can now prove the equivalence of µ(y, ·) and π.

Lemma 4.8. Suppose Assumptions 3.1 and 3.2 hold. Then there is a
strictly positive measurable k :ΩY × E → ]0,∞[ such that, for PY -a.e. y ∈
ΩY ,

µ(y,A) =

∫

IA(z̃)k(y, z̃)π(dz̃) for all A ∈ B(E).

Proof. By Lemma 3.6, it suffices to show that there exists a strictly
positive measurable k :ΩY ×E → ]0,∞[ such that, for π-a.e. z ∈ E,

Pz(B) =

∫

IB(y)k(y, z)P(dy) for all B ∈ FY .

But this follows immediately from Lemma 4.7 and Assumptions 3.1 and 3.2.
�

The following corollary follows directly.
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Corollary 4.9. Suppose that Assumptions 3.1 and 3.2 hold true. Then

P+
y |FX

+
∼Py|FX

+
for PY -a.e. y ∈ ΩY .

In particular, P+
y |T X ∼Py|T X for PY -a.e. y ∈ΩY .

4.4. Proof of Theorem 4.2. We begin by proving the first assertion
⋂

n≥0

FY
+ ∨FX

[n,∞[ = FY
+ P-a.s.

This would follow exactly as in the proof of the first part of Lemma 4.1 if we
could show that T X is P+

y -a.s. trivial for PY -a.e. y. But this follows directly
from Lemma 4.3 and Corollary 4.9, so the claim is established.

We now turn to the second assertion
⋂

n≥0

FY
0 ∨FX

−n = FY
0 P-a.s.

Note that this assertion is precisely equivalent to the first assertion of the
theorem after time reversal. But by Proposition 4.4, the reversed Markov
chain X̃n = X−n satisfies Assumption 3.1 whenever the forward chain Xn

does, and Assumption 3.2 is invariant under time reversal. Thus, it suffices
to apply the first part of the theorem to the hidden Markov model obtained
by replacing the forward transition kernel P (z, ·) by the backward transition
kernel Pz(X−1 ∈ ·). This completes the proof.

5. Total variation stability of the nonlinear filter. Let us begin with a
brief reminder of elementary filtering theory. The purpose of nonlinear filter-
ing is to compute conditional probabilities of the form Pµ(Xn ∈ ·|FY

[0,n]). We

will choose fixed versions of these regular conditional probabilities accord-
ing to the following well-known lemma, whose proof we provide for future
reference.

Lemma 5.1. Suppose that Assumption 3.2 holds. For every probability
measure µ on B(E), we define a sequence of probability kernels Πµ

n :ΩY ×
B(E) → [0,1] (n ≥ 0) through the following recursion:

Πµ
n(y,A) =

∫

IA(z)g(z, y(n))P (z′, dz)Πµ
n−1(y, dz′)

∫

g(z, y(n))P (z′, dz)Πµ
n−1(y, dz′)

,

Πµ
0 (y,A) =

∫

IA(z)g(z, y(0))µ(dz)
∫

g(z, y(0))µ(dz)
,

where g is the observation density defined in Assumption 3.2. Then Πµ
n is

a version of the regular conditional probability Pµ(Xn ∈ ·|FY
[0,n]) for every

n ≥ 0.
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Proof. Writing out the recursion, we find that

Πµ
n(y,A) =

Eµ(g(X0, y(0)) · · · g(Xn, y(n))IA(Xn))

Eµ(g(X0, y(0)) · · · g(Xn, y(n)))
.

But note that, by construction,

g(X0, Y0) · · ·g(Xn, Yn) =
dPµ|F[0,n]

d(Pµ|FX
[0,n]

⊗ ϕ⊗n)
,

so that by the Bayes formula Πµ
n(Y,A) = Pµ(Xn ∈ A|FY

[0,n]) Pµ-a.s. �

The filter stability problem can now be phrased as follows: under which
conditions does the filter Πµ

n become independent of µ for large n? The
main goal of this section is to give a precise answer to this question under
Assumptions 3.1 and 3.2. To this end, we will prove the following theorem.

Theorem 5.2. Suppose that Assumptions 3.1 and 3.2 hold. Then

‖Πµ
n −Ππ

n‖TV
n→∞
−−−→ 0 Pµ-a.s. iff ‖Pµ(Xn ∈ ·)− π‖TV

n→∞
−−−→ 0.

The following corollaries are essentially immediate.

Corollary 5.3. Suppose that Assumptions 3.1 and 3.2 hold, and call
the probability measure µ stable if ‖Πµ

n − Ππ
n‖TV → 0 Pµ-a.s. as n → ∞.

Then µ is stable whenever µ ≪ π, and δz is stable for π-a.e. z ∈ E. Moreover,
stability holds for all µ if and only if the signal process is Harris recurrent
and aperiodic.

Proof. The first two statements follow directly from Assumption 3.1,
while the last statement follows from [30], Proposition 3.6, and the fact that,
by assumption, the signal possesses a finite invariant measure π. �

Corollary 5.4. Suppose that Assumptions 3.1 and 3.2 hold true. If we
have ‖Pµ(Xn ∈ ·)− π‖TV → 0, then ‖Πµ

n −Ππ
n‖TV → 0 P-a.s. In particular,

if

‖Pµ(Xn ∈ ·)− π‖TV
n→∞
−−−→ 0, ‖Pν(Xn ∈ ·)− π‖TV

n→∞
−−−→ 0,

we find that ‖Πµ
n −Πν

n‖TV → 0 P-a.s., Pµ-a.s. and Pν-a.s.

Proof. Apply Lemma 3.7 and the triangle inequality. �

Corollary 5.5. Suppose that Assumption 3.2 holds and that the signal
is Harris recurrent and aperiodic. Then ‖Πµ

n − Πν
n‖TV → 0 Pγ-a.s. for all

µ, ν, γ.
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Proof. It is well known that for Harris recurrent aperiodic Markov
chains which possess a finite invariant measure π, we have ‖Pµ(Xn ∈ ·) −
π‖TV → 0 as n →∞ for every probability measure µ [29], Theorem 6.2.8.
Therefore, Assumption 3.1 follows, and it remains to apply the previous
corollary and Lemma 3.7. �

The remainder of this section is devoted to the proof of Theorem 5.2.

5.1. Proof of Theorem 5.2: the case µ ≪ π. We begin by proving stability
of probability measures µ that are absolutely continuous with respect to the
stationary measure π. Note that by Assumption 3.1 we have ‖Pµ(Xn ∈
·) − π‖TV → 0 as n → ∞ for any µ ≪ π. We will also need the following
result.

Lemma 5.6. Suppose that Assumption 3.2 holds true and that µ ≪ π.
Then we have Πµ

n(y, ·) ≪ Ππ
n(y, ·) for every y ∈ ΩY , where

dΠµ
n

dΠπ
n

(Y,Xn) =
E((dµ/dπ)(X0)|F

Y
+ ∨FX

[n,∞[)

E((dµ/dπ)(X0)|F
Y
[0,n])

P-a.s.

Proof. That Πµ
n(y, ·) ≪ Ππ

n(y, ·) for every y ∈ ΩY can be read off di-
rectly from the expression in the proof of Lemma 5.1. Now note that

dPµ

dP

∣

∣

∣

∣

F[0,∞[

=
dµ

dπ
(X0),

dPµ

dP

∣

∣

∣

∣

FY
[0,n]

= E

(

dµ

dπ
(X0)

∣

∣

∣FY
[0,n]

)

.

Moreover, it follows easily from Assumption 3.2 that

Pµ|FY
[0,n]

∼P|FY
[0,n]

for every n ∈ N.

Therefore, the conditional expectations Pµ(Xn ∈A|FY
[0,n]) are P-a.s. uniquely

defined and E(dµ
dπ (X0)|F

Y
[0,n]) > 0 P-a.s. We obtain by the Bayes formula

Pµ(Xn ∈A|FY
[0,n])

=
E(IA(Xn)(dµ/dπ)(X0)|F

Y
[0,n])

E((dµ/dπ)(X0)|F
Y
[0,n])

=
E(IA(Xn)E((dµ/dπ)(X0)|σ(Xn)∨FY

[0,n])|F
Y
[0,n])

E((dµ/dπ)(X0)|FY
[0,n])

P-a.s.

Choose a measurable Λn :ΩY ×E → [0,∞[ such that

E((dµ/dπ)(X0)|σ(Xn)∨FY
[0,n])

E((dµ/dπ)(X0)|FY
[0,n])

= Λn(Y,Xn) P-a.s.
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Then evidently for every A ∈ B(E)

Πµ
n(Y,A) =

∫

IA(z)Λn(Y, z)Ππ
n(Y,dz) P-a.s.

But as B(E) is countably generated, it suffices by a monotone class argument
to restrict to A in a countable generating algebra, and we can therefore
eliminate the dependence of the P-null set on A. It remains to note that

E

(

dµ

dπ
(X0)

∣

∣

∣FY
+ ∨FX

[n,∞[

)

= E

(

dµ

dπ
(X0)

∣

∣

∣σ(Xn)∨FY
[0,n]

)

P-a.s.

by the Markov property, and the proof is complete. �

We immediately obtain the following corollary.

Corollary 5.7. Suppose Assumption 3.2 holds and µ ≪ π. Then P-
a.s.

‖Πµ
n −Ππ

n‖TV

=
E(|E((dµ/dπ)(X0)|F

Y
+ ∨FX

[n,∞[)−E((dµ/dπ)(X0)|F
Y
[0,n])||F

Y
[0,n])

E((dµ/dπ)(X0)|FY
[0,n])

.

Proof. This follows directly from the identity

‖Πµ
n(y, ·)−Ππ

n(y, ·)‖TV =

∫
∣

∣

∣

∣

dΠµ
n

dΠπ
n

(y, z)− 1

∣

∣

∣

∣

Ππ
n(y, dz)

and the previous lemma. �

We can now complete the proof of Theorem 5.2 for the case µ≪ π.

Lemma 5.8. Suppose Assumptions 3.1 and 3.2 hold and µ ≪ π. Then

‖Πµ
n −Ππ

n‖TV
n→∞
−−−→ 0 P-a.s.

and therefore also Pµ-a.s. as Pµ ≪P.

Proof. We aim to establish the P-a.s. limit of the expression in Corol-
lary 5.7. Note that the denominator satisfies

E

(

dµ

dπ
(X0)

∣

∣

∣FY
[0,n]

)

n→∞
−−−→E

(

dµ

dπ
(X0)

∣

∣

∣FY
+

)

=
dPµ

dP

∣

∣

∣

∣

FY
+

P-a.s.

by martingale convergence. Moreover, Pµ|FY
+
∼ P|FY

+
by Lemma 3.7 and

Assumptions 3.1 and 3.2. Therefore, the P-a.s. limit of the denominator is
P-a.s. strictly positive. It remains to establish convergence of the numerator.
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To this end, note that for any k ∈ N we have P-a.s.
∣

∣

∣

∣

E

(

dµ

dπ
(X0)

∣

∣

∣FY
+ ∨FX

[n,∞[

)

−E

(

dµ

dπ
(X0)

∣

∣

∣FY
[0,n]

)∣

∣

∣

∣

≤

∣

∣

∣

∣

E

(

dµ

dπ
(X0)I(dµ/dπ)≤k(X0)

∣

∣

∣FY
+ ∨FX

[n,∞[

)

−E

(

dµ

dπ
(X0)I(dµ/dπ)≤k(X0)

∣

∣

∣FY
[0,n]

)∣

∣

∣

∣

+

∣

∣

∣

∣

E

(

dµ

dπ
(X0)I(dµ/dπ)>k(X0)

∣

∣

∣FY
+ ∨FX

[n,∞[

)

−E

(

dµ

dπ
(X0)I(dµ/dπ)>k(X0)

∣

∣

∣FY
[0,n]

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

E

(

dµ

dπ
(X0)I(dµ/dπ)≤k(X0)

∣

∣

∣FY
+ ∨FX

[n,∞[

)

−E

(

dµ

dπ
(X0)I(dµ/dπ)≤k(X0)

∣

∣

∣FY
[0,n]

)∣

∣

∣

∣

+ E

(

dµ

dπ
(X0)I(dµ/dπ)>k(X0)

∣

∣

∣FY
+ ∨FX

[n,∞[

)

+ E

(

dµ

dπ
(X0)I(dµ/dπ)>k(X0)

∣

∣

∣FY
[0,n]

)

.

In particular, setting for notational convenience

Mk
n =

∣

∣

∣

∣

E

(

dµ

dπ
(X0)I(dµ/dπ)≤k(X0)

∣

∣

∣FY
+ ∨FX

[n,∞[

)

−E

(

dµ

dπ
(X0)I(dµ/dπ)≤k(X0)

∣

∣

∣FY
[0,n]

)∣

∣

∣

∣

,

we find that the numerator Rn satisfies

Rn = E

(∣

∣

∣

∣

E

(

dµ

dπ
(X0)

∣

∣

∣FY
+ ∨FX

[n,∞[

)

−E

(

dµ

dπ
(X0)

∣

∣

∣FY
[0,n]

)∣

∣

∣

∣

∣

∣

∣FY
[0,n]

)

≤ E(Mk
n |F

Y
[0,n]) + 2E

(

dµ

dπ
(X0)I(dµ/dπ)>k(X0)

∣

∣

∣FY
[0,n]

)

.

But E(Mk
n |F

Y
[0,n]) → 0 P-a.s. as n → ∞ by Hunt’s lemma [15], Theorem

V.45, as Mk
n ≤ k for all n and Mk

n → 0 P-a.s. as n → ∞ by martingale
convergence and Theorem 4.2. Moreover, by martingale convergence and
dominated convergence,

lim sup
k→∞

lim sup
n→∞

E

(

dµ

dπ
(X0)I(dµ/dπ)>k(X0)

∣

∣

∣FY
[0,n]

)

= 0 P-a.s.
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Therefore, the numerator converges to zero P-a.s., and the proof is complete.
�

Remark 5.9. Along the same lines, one can prove the following result.
Suppose that Assumptions 3.1 and 3.2 hold and that the relative entropy
of µ with respect to π is finite, that is, D(µ||π) < ∞. Then D(Πµ

n||Π
π
n)→ 0

P-a.s. as n →∞. We refer to [9] for further details on the role of relative
entropy in filter stability.

5.2. Proof of Theorem 5.2: the general case. We now devote our atten-
tion to the case where µ is not necessarily absolutely continuous with respect
to π. Let us begin by proving the only if part of the theorem.

Lemma 5.10. Suppose that Assumptions 3.1 and 3.2 hold and that

lim sup
n→∞

‖Pµ(Xn ∈ ·)− π‖TV > 0.

Then we must have

Pµ
(

lim sup
n→∞

‖Πµ
n −Ππ

n‖TV = 0
)

< 1.

Proof. Let Pµ(Xn ∈ ·) = µn + µ⊥
n be the Lebesgue decomposition of

Pµ(Xn ∈ ·) with respect to π. In particular, µn ≪ π and µ⊥
n ⊥ π, and there

exists a set Sn such that π(Sn) = 0 and µ⊥
n (Sc

n) = 0. We claim that

lim sup
n→∞

‖Pµ(Xn ∈ ·)− π‖TV > 0 =⇒ lim sup
n→∞

Pµ(Xn ∈ Sn) > 0.

Indeed, by [28], Theorem 7.2, Assumption 3.1 and Pµ(Xn ∈ Sn) → 0 as
n → ∞ would imply that ‖Pµ(Xn ∈ ·) − π‖TV → 0 as n → ∞, which is a
contradiction.

Now note that it is easily established, using the expression in the proof
of Lemma 5.1, that Assumption 3.2 implies Ππ

n(y, ·) ∼ π for every y ∈ ΩY .
Therefore, Ππ

n(y,Sn) = 0 for all y ∈ ΩY , and we can estimate as follows:

Πµ
n(y,Sn) = |Πµ

n(y,Sn)−Ππ
n(y,Sn)| ≤ ‖Πµ

n(y, ·)−Ππ
n(y, ·)‖TV.

In particular, we find that

Pµ(Xn ∈ Sn) = Eµ(Πµ
n(Y,Sn)) ≤Eµ(‖Πµ

n(Y, ·)−Ππ
n(Y, ·)‖TV)

and we must therefore have

limsup
n→∞

Eµ(‖Πµ
n(Y, ·)−Ππ

n(Y, ·)‖TV) > 0.

The proof is easily completed. �

It remains to prove the converse assertion. The idea is to reduce the
general case to the case µ ≪ π. To this end, we will need the following
lemma.
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Lemma 5.11. Suppose that Assumption 3.2 holds. Let µ and ρ be prob-
ability measures, and let µ = µac + µs be the Lebesgue decomposition of µ
with respect to ρ (i.e., µac ≪ ρ and µs ⊥ ρ). Choose S so that ρ(S) = 1 and
µs(S) = 0. Then

Πµ
n(Y,A) = Pµ(X0 ∈ S|FY

[0,n])Π
ν
n(Y,A) + Pµ(X0 /∈ S|FY

[0,n])Π
ν⊥

n (Y,A)

Pµ-a.s. for every A ∈ B(E), where we have written ν = µac/µac(E) and
ν⊥ = µs/µs(E). In particular, we obtain Pµ-a.s. the estimate

‖Πµ
n(Y, ·)−Πρ

n(Y, ·)‖TV ≤ ‖Πν
n(Y, ·)−Πρ

n(Y, ·)‖TV + 2Pµ(X0 /∈ S|FY
[0,n]).

Proof. Note that dν/dµ = IS/µac(E). By the Bayes formula, we thus
have

Eµ(IS(X0)IA(Xn)|FY
[0,n]) = Eµ(IS(X0)|F

Y
[0,n])E

ν(IA(Xn)|FY
[0,n]) Pµ-a.s.

Similarly, as dν⊥/dµ = ISc/µs(E), we find that

Eµ(ISc(X0)IA(Xn)|FY
[0,n]) = Eµ(ISc(X0)|F

Y
[0,n])E

ν⊥

(IA(Xn)|FY
[0,n]) Pµ-a.s.

The first claim now follows by summing these expressions. To prove the sec-
ond assertion, let Ik = {Ek

1 , . . . ,Ek
k} be an increasing sequence of partitions

of E as in the proof of Lemma 2.4. Then we can estimate

k
∑

ℓ=1

|Πµ
n(Y,Ek

ℓ )−Πρ
n(Y,Ek

ℓ )|

≤Pµ(X0 ∈ S|FY
[0,n])

k
∑

ℓ=1

|Πν
n(Y,Ek

ℓ )−Πρ
n(Y,Ek

ℓ )|

+ Pµ(X0 /∈ S|FY
[0,n])

k
∑

ℓ=1

(Πν⊥

n (Y,Ek
ℓ ) + Πρ

n(Y,Ek
ℓ ))

≤
k

∑

ℓ=1

|Πν
n(Y,Ek

ℓ )−Πρ
n(Y,Ek

ℓ )|+ 2Pµ(X0 /∈ S|FY
[0,n]) Pµ-a.s.

It remains to take the limit as k →∞. �

Note that in this result ν ≪ ρ by construction. In particular, presuming
that Assumptions 3.1 and 3.2 hold true and that ‖Pµ(Xn ∈ ·)− π‖TV → 0,
and substituting π for ρ, it is not difficult to establish using Lemmas 5.8
and 3.7 that

lim sup
n→∞

‖Πµ
n(Y, ·)−Ππ

n(Y, ·)‖TV ≤ 2Pµ(X0 /∈ S|FY
+ ) Pµ-a.s.



THE STABILITY OF CONDITIONAL MARKOV PROCESSES 39

We can therefore eliminate the absolutely continuous part of the initial mea-
sure µ using the stability for the case µ ≪ π (Lemma 5.8). However, the
singular part leaves the residual quantity Pµ(X0 /∈ S|FY

+ ), and it remains
to eliminate this term. To resolve this problem, we will exploit the recur-
sive property of the filter. Together with Lemma 5.10, the following result
completes the proof of Theorem 5.2.

Lemma 5.12. Suppose that Assumptions 3.1 and 3.2 hold and that

lim sup
n→∞

‖Pµ(Xn ∈ ·)− π‖TV = 0.

Then we must have

lim sup
n→∞

‖Πµ
n −Ππ

n‖TV = 0 Pµ-a.s.

Proof. Define the following probability kernels:

Υµ
0 (y,A) = µ(A), Υµ

n(y,A) =

∫

IA(z)P (z′, dz)Πµ
n−1(y, dz′).

Then by Lemma 5.1, the filter satisfies the recursive property

Πµ
n+k(y,A) = Π

Υµ
n(y,·)

k (Θny,A) for all k,n ∈ Z+, y ∈ΩY ,A ∈ B(E).

In particular, we can write

lim sup
k→∞

‖Πµ
k (y, ·)−Ππ

k (y, ·)‖TV

= limsup
k→∞

‖Π
Υµ

n(y,·)
k (Θny, ·)−Π

Υπ
n(y,·)

k (Θny, ·)‖TV for all n ∈ Z+.

But from routine manipulations, it follows that, for any B ∈F[0,∞[,

Eµ(IB ◦Θn|FY
[0,n−1]) = PΥµ

n(Y,·)(B) Pµ-a.s.

Therefore,

Eµ
(

lim sup
k→∞

‖Πµ
k (Y, ·)−Ππ

k (Y, ·)‖TV|F
Y
[0,n−1]

)

= Eµ
(

lim sup
k→∞

‖Π
Υµ

n(Y,·)
k (Y ◦Θn, ·)−Π

Υπ
n(Y,·)

k (Y ◦Θn, ·)‖TV|F
Y
[0,n−1]

)

= Eµ
(

lim sup
k→∞

‖Π
Υµ

n(y,·)
k (Y ◦Θn, ·)−Π

Υπ
n(y,·)

k (Y ◦Θn, ·)‖TV|F
Y
[0,n−1]

)∣

∣

∣

y=Y

= EΥµ
n(y,·)

(

lim sup
k→∞

‖Π
Υµ

n(y,·)
k (Y, ·)−Π

Υπ
n(y,·)

k (Y, ·)‖TV

)∣

∣

∣

y=Y
Pµ-a.s.,

where we have used that Υµ
n(Y, ·) is FY

[0,n−1]-measurable.
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For the time being, let us fix a y ∈ ΩY . Note that it is easily established, us-
ing the expression in the proof of Lemma 5.1, that Υρ

n(y, ·) ∼Pρ(Xn ∈ ·) for

every ρ,n, y. Denote by Pµ(Xn ∈ ·) = µn+µ⊥
n the Lebesgue decomposition of

Pµ(Xn ∈ ·) with respect to π (i.e., µn ≪ π and µ⊥
n ⊥ π), and choose Sn such

that π(Sn) = 1 and µ⊥
n (Sn) = 0. Then clearly Υµ

n(y, ·) = νn(y, ·) + ν⊥
n (y, ·)

with

νn(y,A) = Υµ
n(y,A∩ Sn), ν⊥

n (y,A) = Υµ
n(y,A∩ Sc

n)

is the Lebesgue decomposition of Υµ
n(y, ·) with respect to Υπ

n(y, ·) [i.e., νn(y,
·) ≪ Υπ

n(y, ·) and ν⊥
n (y, ·)⊥ Υπ

n(y, ·)]. By Lemma 5.11, we find that

‖Π
Υµ

n(y,·)
k (Y, ·)−Π

Υπ
n(y,·)

k (Y, ·)‖TV

≤ ‖Π
νn(y,·)
k (Y, ·)−Π

Υπ
n(y,·)

k (Y, ·)‖TV + 2PΥµ
n(y,·)(X0 /∈ Sn|F

Y
[0,k])

≤ ‖Π
νn(y,·)
k (Y, ·)−Ππ

k(Y, ·)‖TV + ‖Π
Υπ

n(y,·)
k (Y, ·)−Ππ

k(Y, ·)‖TV

+ 2PΥµ
n(y,·)(X0 /∈ Sn|F

Y
[0,k]) PΥµ

n(y,·)-a.s.

But νn(y, ·) ≪ π and Υπ
n(y, ·)∼ π, so by Lemma 5.8 the first two terms on the

right converge to zero as k →∞ P-a.s. We claim that this convergence also
holds PΥµ

n(y,·)-a.s. Indeed, recall that Υµ
n(y, ·) ∼ Pµ(Xn ∈ ·) := ρn, so that

the claim is established if we can show that Pρn |FY
+
∼P|FY

+
. But ‖Pρn(Xk ∈

·) − π‖TV = ‖Pµ(Xn+k ∈ ·) − π‖TV → 0, so the claim follows from Lemma

3.7.

We have now established that, for every y ∈ ΩY ,

EΥµ
n(y,·)

(

lim sup
k→∞

‖Π
Υµ

n(y,·)
k (Y, ·)−Π

Υπ
n(y,·)

k (Y, ·)‖TV

)

≤ 2PΥµ
n(y,·)(X0 /∈ Sn).

In particular, this implies that Pµ-a.s.

Eµ
(

lim sup
k→∞

‖Πµ
k(Y, ·)−Ππ

k(Y, ·)‖TV|F
Y
[0,n−1]

)

≤ 2Pµ(Xn /∈ Sn|F
Y
[0,n−1])

and, therefore, we have for all n ∈ N

Eµ
(

lim sup
k→∞

‖Πµ
k(Y, ·)−Ππ

k(Y, ·)‖TV

)

≤ 2Pµ(Xn /∈ Sn) = 2µ⊥
n (E).

But by the assumption that ‖Pµ(Xn ∈ ·)−π‖TV → 0, we must have µ⊥
n (E) →

0 as n →∞. Thus, the proof is complete. �
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6. Continuous time.

6.1. The hidden Markov model in continuous time. Up to this point we
have exclusively dealt with Markov chains and hidden Markov models in
discrete time. In this section, we will prove analogous results for continuous
time filtering models by reducing them to the discrete time setting. First,
however, we must introduce the class of continuous time models in which
we will be interested.

We consider an Ẽ-valued signal (ξt)t∈R and an F̃ -valued observation
(ηt)t∈R, where Ẽ is a Polish space and F̃ is a Polish topological vector
space. We will realize these processes on the canonical path space Ω̃ =
Ω̃ξ × Ω̃η, where Ω̃ξ = D(R; Ẽ) and Ω̃η = D(R; F̃ ) are, respectively, the Skoro-

hod spaces of Ẽ- and F̃ -valued càdlàg paths. Denote by ♥F the Borel σ-field

on Ω̃, and we introduce the natural filtrations ♥Fξ
t , ♥Fη

t , ♥Ft in complete anal-
ogy with the discrete time case:

♥Fξ
t = σ{ξs :s ≤ t}, ♥Fη

t = σ{ηs :s ≤ t}, ♥Ft = ♥Fξ
t ∨ ♥Fη

t .

Moreover, we define for intervals [s, t] (s ≤ t) the σ-fields

♥Fξ
[s,t] = σ{ξr : r ∈ [s, t]}, ♥Fη

[s,t] = σ{ηr − ηs : r ∈ [s, t]}

and we set ♥F[s,t] =
♥Fξ

[s,t] ∨
♥Fη

[s,t]. Finally, we define

♥Fξ =
∨

t≥0

♥Fξ
t , ♥Fξ

+ =
∨

t≥0

♥Fξ
[0,t],

♥Fη =
∨

t≥0

♥Fη
t , ♥Fη

+ =
∨

t≥0

♥Fη
[0,t].

The canonical shift is defined as Θ̃s(ξ, η)(t) = (ξ(s + t), η(s + t)− η(s)).
The continuous time hidden Markov model now consists of the following:

1. A probability kernel Q̃· : Ẽ × ♥Fξ
+ → [0,1] such that, for every A ∈ B(Ẽ),

Q̃z(ξt ∈A|♥Fs) = Q̃ξs(ξt−s ∈A) Q̃z-a.s. for all z ∈ Ẽ, t ≥ s ≥ 0,

and such that Q̃z(ξ0 = z) = 1 for all z ∈ Ẽ.
2. A probability measure π̃ such that

∫

Q̃z(ξt ∈ A)π̃(dz) = π̃(A) for all A ∈ B(Ẽ), t ≥ 0.

3. A probability kernel Φ̃ : Ω̃ξ×♥Fη → [0,1] such that (ηt)t∈R has independent
increments with respect to Φ̃(ξ, ·) for every ξ ∈ Ω̃ξ and such that

∫

IA(Θ̃sη)Φ̃(ξ, dη) = Φ̃(Θ̃sξ,A) for all ξ ∈ Ω̃ξ,A ∈ ♥Fη , s ∈ R.

We assume, moreover, that Φ̃(ξ,A) is ♥Fξ
[s,t]-measurable for every A ∈

♥Fη
[s,t].
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For any probability measure µ on B(Ẽ), we define

Q̃µ(A) =

∫

Q̃z(A)µ(dz) for all A ∈ ♥Fξ
+.

Then under Q̃µ, the signal (ξt)t≥0 is a time homogeneous Markov process

with initial measure ξ0 ∼ µ. In particular, under Q̃π̃ the signal is a stationary
Markov process with stationary measure π̃. We can therefore extend the

measure Q̃π̃ to two-sided time ♥Fξ in the usual fashion, and we denote this
extended measure as Q̃. In particular, under Q̃ the entire signal (ξt)t∈R is
a stationary Markov process with stationary measure π̃. We now define the

probability measure P̃ on ♥F as

P̃(A) =

∫

IA(ξ, η)Φ̃(ξ, dη)Q̃(dξ) for all A ∈ ♥F

and we similarly define the measures P̃µ on ♥Fξ
+ ∨ ♥Fη

+ as

P̃µ(A) =

∫

IA(ξ, η)Φ̃(ξ, dη)Q̃µ(dξ) for all A ∈ ♥Fξ
+ ∨ ♥Fη

+.

Then P̃µ defines the hidden Markov model with initial measure µ, while
P̃ defines the stationary hidden Markov model. Note that the stationary
measure P̃ is invariant under the canonical shift Θ̃s by construction.

We now introduce the continuous time counterparts of Assumptions 3.1
and 3.2.

Assumption 6.1 (Ergodicity). The following holds:

‖Q̃z(ξt ∈ ·)− π̃‖TV
t→∞
−−−→ 0 for π̃-a.e. z ∈ Ẽ.

Assumption 6.2 (Nondegeneracy). There exists a probability measure

ϕ̃ on ♥Fη and a family (Σ̃s,t)s≤t of strictly positive random variables such
that

Φ̃(ξ,A) =

∫

IA(η)Σ̃s,t(ξ, η)ϕ̃(dη) for all A ∈ ♥Fη
[s,t], ξ ∈ Ω̃ξ, s≤ t,

and such that Σ̃s,t is ♥F[s,t]-measurable for every s ≤ t.

Our guiding example in which a kernel Φ̃ can be constructed that satisfies
all the required conditions is the ubiquitous filtering model with white noise
observations. Though none of our results rely specifically on this model,
let us take a moment to show that it does indeed fit within our general
framework.
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Example 6.3 (White noise observations). Set F̃ = R
d for some d < ∞,

and let ϕ̃ be the probability measure which makes (ηt)t∈R a two-sided
d-dimensional Wiener process. Such a probability measure is easily con-
structed; indeed, let W be the canonical Wiener measure on C([0,∞[;Rd),
and define the measurable function α :C([0,∞[;Rd)×C([0,∞[;Rd)→ D(R;Rd)
as

α(η−, η+)(t) =

{

η−(−t), if t < 0,
η+(t), if t ≥ 0.

Then ϕ̃ = (W⊗W) ◦ α−1. Note that ϕ̃ is invariant under the shift Θ̃s.
Let h : Ẽ → R

d be a continuous function (the observation function), so

that t 7→ h(ξt) is càdlàg. By [22], we may define an ♥F[s,t]-measurable map

Σ̃s,t so that

Σ̃s,t(ξ, η) = exp

(
∫ t

s
h(ξr) · dηr −

1

2

∫ t

s
‖h(ξr)‖

2 dr

)

for ϕ̃-a.e. η ∈ Ω̃η

for every ξ ∈ Ω̃ξ. Note that Σ̃s,t is strictly positive by construction. We now

define for every s ≤ t the probability kernel Φ̃s,t : Ω̃
ξ × ♥Fη

[s,t] → [0,1] as

Φ̃s,t(ξ,A) =

∫

IA(η)Σ̃s,t(ξ, η)ϕ̃(dη) for all A ∈ ♥Fη
[s,t], ξ ∈ Ω̃ξ.

Define the process

η̄r = ηr+s − ηs −

∫ r+s

s
h(ξu)du.

Then by Girsanov’s theorem, (η̄r)r∈[0,t−s] is a standard d-dimensional Wiener

process under Φ̃s,t(ξ, ·) for every ξ ∈ Ω̃ξ, as t 7→ h(ξt) is càdlàg and hence
locally bounded (the usual conditions, which we have not assumed, are
not needed for this to hold; see [38], Chapter 10). It remains to note that
{Φ̃s,t(ξ, ·) :s ≤ t} is a consistent family, so there exists a probability kernel

Φ̃ : Ω̃ξ × ♥Fη → [0,1] with

Φ̃(ξ,A) = Φ̃s,t(ξ,A) for all A ∈ ♥Fη
[s,t], ξ ∈ Ω̃ξ, s≤ t,

by the usual Kolmogorov extension argument. It is easily verified that Φ̃
satisfies the required properties, and Assumption 6.2 holds true by con-
struction.

From this point onward we consider again the general continuous time
setting (i.e., we do not assume white noise observations). The goal of this
section is to extend several of our discrete time results to the continuous
time setting. To this end, we will first prove the following counterpart of
Theorem 4.2.
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Theorem 6.4. Suppose that Assumptions 6.1 and 6.2 are in force. Then
⋂

t≥0

♥Fη
+ ∨ σ{ξs :s ≥ t} = ♥Fη

+ and
⋂

t≥0

♥Fη
0 ∨ ♥Fξ

−t = ♥Fη
0 P̃-a.s.

We now turn to the filter stability problem. As in discrete time, we
must choose suitable versions of the regular conditional probabilities P̃µ(ξt ∈

·|♥Fη
[0,t]).

Lemma 6.5. Suppose Assumption 6.2 holds. For any probability measure
µ on B(Ẽ), define a family of probability kernels Π̃µ

t : Ω̃η × B(Ẽ) → [0,1]
(t ≥ 0) by

Π̃µ
t (η,A) =

∫

IA(ξ(t))Σ̃0,t(ξ, η)P̃µ(dξ)
∫

Σ̃0,t(ξ, η)P̃µ(dξ)
.

Then Π̃µ
t is a version of the regular conditional probability P̃µ(ξt ∈ ·|♥Fη

[0,t]).

Proof. Apply the Bayes formula as in Lemma 5.1. �

We can now prove a counterpart of Theorem 5.2. Note that the continuous
time result yields a slightly weaker type of convergence than its discrete time
counterpart; the reason for this choice is explained in the remark below.

Theorem 6.6. Suppose that Assumptions 6.1 and 6.2 hold. Then

Ẽµ(‖Π̃µ
t − Π̃π̃

t ‖TV)
t→∞
−−−→ 0 iff ‖P̃µ(ξt ∈ ·)− π̃‖TV

t→∞
−−−→ 0.

Moreover, if

‖P̃µ(ξt ∈ ·)− π̃‖TV
t→∞
−−−→ 0 and ‖P̃ν(ξt ∈ ·)− π̃‖TV

t→∞
−−−→ 0,

then Ẽν(‖Π̃µ
t − Π̃π̃

t ‖TV) → 0 as t →∞.

Remark 6.7. Theorem 5.2 yields almost sure convergence of the filter-
ing error, while Theorem 6.6 only gives convergence in L1. The subtlety lies
in the fact that convergence results for stochastic processes in continuous
time, such as the martingale convergence theorem, require the choice of a
modification of the stochastic process with appropriate continuity proper-
ties, and this typically requires that the filtrations satisfy the usual condi-
tions (the associated σ-fields are therefore no longer countably generated).
Though it seems very likely that such issues can be resolved with sufficient
care, for example, along the lines of [39], we have chosen the simpler route
which avoids unnecessary complications at the expense of a slightly weaker
notion of convergence.

The remainder of this section is devoted to the proofs of Theorems 6.4
and 6.6.
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6.2. Reduction to discrete time. The proofs in the continuous time set-
ting can largely be reduced to our previous discrete time results. To this end,
we begin by constructing a discrete time hidden Markov model, as defined in
Section 3.1, which coincides with the continuous time model of this section.

The signal and observation state spaces for our discrete model are taken
to be E = D([0,1]; Ẽ) and F = D([0,1]; F̃ ), respectively (recall that these
Skorokhod spaces are themselves Polish). For the discrete time signal we
will choose the E-valued process Xn = (ξt)n≤t≤n+1, while we choose for the
discrete time observations the F -valued process Yn = (ηt − ηn)n≤t≤n+1. We
claim that these processes define a hidden Markov model in the sense of Sec-
tion 3.1. Indeed, it is easily seen that Xn is a Markov process with transition
probability kernel

P (ξ′,A) = Q̃ξ′(1)((ξt)0≤t≤1 ∈A) for all ξ′ ∈ E,A ∈ B(E)

and invariant measure

π(A) = P̃((ξt)0≤t≤1 ∈ A) for all A ∈ B(E).

On the other hand, given ♥Fξ = FX , the random variables Yn are independent

(as ηt has conditionally independent increments given ♥Fξ) and we may define

Φ((ξ(t))0≤t≤1,A) = Φ̃(ξ,Y0 ∈ A) for all ξ ∈ Ω̃ξ,A ∈ B(F ),

where we have used that Φ̃(ξ,A) is ♥Fξ
[0,1]-measurable for A ∈ ♥Fη

[0,1] and that

P̃(Yn ∈A|♥Fξ) = Φ̃(ξ,Yn ∈ A) = Φ̃(Θ̃nξ,Y0 ∈A) = Φ(Xn,A).

Having defined the kernels P and Φ and the measure π, we may now con-
struct the process (Xn, Yn)n∈Z on its canonical path space as in Section 3.1,
and it is easily verified that the measures P and Pµ̃ coincide with the law of
the process (Xn, Yn) under P̃ and P̃µ, respectively, where µ̃ = P̃µ(X0 ∈ ·).

Lemma 6.8. Assumption 6.1 implies Assumption 3.1 for the discrete
chain. Similarly, Assumption 6.2 implies Assumption 3.2 for the discrete
chain.

Proof. By the Markov property, we find that

‖Q̃z((ξt)n≤t≤n+1 ∈ ·)− π‖TV = ‖Q̃z(ξn ∈ ·)− π̃‖TV.

But note also that

Q̃z((ξt)n≤t≤n+1 ∈ ·) = Pξ′(Xn+1 ∈ ·) for all ξ′ ∈E with ξ′(1) = z.

The first statement follows directly. To prove the second statement, it suffices
to note that under Assumption 6.2 we can write for ξ ∈ Ω̃ξ

Φ((ξt)0≤t≤1,A) =

∫

IA((ηt − η0)0≤t≤1)Σ̃0,1((ξt)0≤t≤1, (ηt − η0)0≤t≤1)ϕ̃(dη),
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so we may set ϕ(A) = ϕ̃(Y0 ∈ A) and g(z,u) = Σ̃0,1(z,u). �

The proof of Theorem 6.4 now follows immediately.

Proof of Theorem 6.4. The result follows immediately from Theo-
rem 4.2 in view of the fact that the measures P̃ and P coincide. �

Before we proceed, let us prove a continuous time counterpart of Lemma
3.7.

Lemma 6.9. Suppose Assumption 6.2 holds. Let ν, ν̄ be probability mea-

sures such that ‖P̃ν(ξt ∈ ·)− P̃ν̄(ξt ∈ ·)‖TV
t→∞
−−−→ 0. Then P̃ν |♥Fη

+

∼ P̃ν̄ |♥Fη
+

.

Proof. The result follows from Lemma 3.7, in view of the equivalence
of the measures P̃µ and Pµ̃ (µ̃ = P̃µ(X0 ∈ ·)) for any µ, using the same
argument as in the proof of the first assertion of Lemma 6.8. �

6.3. Proof of Theorem 6.6. As in the discrete time setting, we begin by
proving the only if part of Theorem 6.6. The proof is essentially identical.

Lemma 6.10. Suppose that Assumptions 6.1 and 6.2 hold and that

lim sup
t→∞

‖P̃µ(ξt ∈ ·)− π̃‖TV > 0.

Then we must have

lim sup
t→∞

Ẽµ(‖Π̃µ
t − Π̃π̃

t ‖TV) > 0.

Proof. Let P̃µ(ξn ∈ ·) = µn + µ⊥
n be the Lebesgue decomposition of

P̃µ(ξn ∈ ·) with respect to π̃. In particular, µn ≪ π̃ and µ⊥
n ⊥ π̃, and there

exists a set Sn such that π̃(Sn) = 0 and µ⊥
n (Sc

n) = 0. We claim that

lim sup
t→∞

‖P̃µ(ξt ∈ ·)− π̃‖TV > 0 =⇒ lim sup
n→∞

P̃µ(ξn ∈ Sn) > 0.

To see this, note that (ξn)n∈Z+ is a discrete time Markov chain on the state

space Ẽ. By [28], Theorem 7.2, Assumption 6.1 and P̃µ(ξn ∈ Sn) → 0 as
n →∞ would imply that ‖P̃µ(ξn ∈ ·)− π̃‖TV → 0 as n →∞. But ‖P̃µ(ξt ∈
·) − π̃‖TV is nonincreasing with t, so the latter implies that ‖P̃µ(ξt ∈ ·) −
π̃‖TV → 0 as t→∞. The claim is therefore established by contradiction.

Now note that it is easily established, using the expression in the proof
of Lemma 6.5, that Assumption 6.2 implies Π̃π̃

n(η, ·) ∼ π̃ for every η ∈ Ω̃η .
Therefore, evidently Π̃π̃

n(η,Sn) = 0 for all η ∈ Ω̃η, and we can estimate as
follows:

Π̃µ
n(η,Sn) = |Π̃µ

n(η,Sn)− Π̃π̃
n(η,Sn)| ≤ ‖Π̃µ

n(η, ·)− Π̃π̃
n(η, ·)‖TV.
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In particular, we find that

P̃µ(Xn ∈ Sn) = Ẽµ(Π̃µ
n((ηt)0≤t≤n, Sn))≤ Ẽµ(‖Π̃µ

n − Π̃π̃
n‖TV)

and we must therefore have

limsup
n→∞

Ẽµ(‖Π̃µ
n − Π̃π̃

n‖TV) > 0.

The proof is easily completed. �

We now proceed to prove the converse assertion. One could attempt to
adapt the corresponding discrete time proof to the current setting, but here
we choose a different approach. First, we will show using Theorem 5.2 that

‖P̃µ(ξt ∈ ·)− π̃‖TV
t→∞
−−−→ 0 and ‖P̃ν(ξt ∈ ·)− π̃‖TV

t→∞
−−−→ 0

implies that

Ẽν(‖Π̃µ
n − Π̃π̃

n‖TV)
n→∞
−−−→ 0,

where the limit as n →∞ is taken along the integers n ∈ N. In the second
step, we will show that the function

t 7→ Ẽν(‖Π̃µ
t − Π̃π̃

t ‖TV)(t ∈ R+)

converges to a limit when we let t → ∞ along the positive reals. Taken
together, these two facts complete the proof of Theorem 6.6.

Lemma 6.11. Suppose that Assumptions 6.1 and 6.2 hold and that

‖P̃µ(ξt ∈ ·)− π̃‖TV
t→∞
−−−→ 0 and ‖P̃ν(ξt ∈ ·)− π̃‖TV

t→∞
−−−→ 0.

Then Ẽν(‖Π̃µ
n − Π̃π̃

n‖TV)
n→∞
−−−→ 0 (n ∈ N).

Proof. Let Πµ̃
n and Ππ

n be the filters for the discrete time chain as
defined in Lemma 5.1, where µ̃ = P̃µ(X0 ∈ ·). Note that, using the Markov
property, we find that the condition of the current result implies that

‖Pµ̃(Xn ∈ ·)− π‖TV
n→∞
−−−→ 0.

Therefore, by Assumptions 6.1 and 6.2, Lemma 6.8 and Theorem 5.2, we
find that

‖Πµ̃
n −Ππ

n‖TV
t→∞
−−−→ 0 Pµ̃-a.s.

It follows directly that

‖Πµ̃
n(Y, ξ(1) ∈ ·)−Ππ

n(Y, ξ(1) ∈ ·)‖TV
n→∞
−−−→ 0 Pµ̃-a.s.
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But note that Πµ̃
n(y, ξ(1) ∈ ·) and Ππ

n(y, ξ(1) ∈ ·) are versions of the regular
conditional probabilities

P̃µ(ξn+1 ∈ ·|♥Fη
[0,n+1]) and P̃(ξn+1 ∈ ·|♥Fη

[0,n+1]),

respectively. By the a.s. uniqueness of regular conditional probabilities and
using Lemma 6.9 (which holds by virtue of Assumption 6.2), we therefore
find that

‖Π̃µ
n − Π̃π̃

n‖TV
n→∞
−−−→ 0 P̃ν -a.s.

The result follows by dominated convergence. �

Lemma 6.12. Suppose that Assumption 6.2 holds and that

‖P̃µ(ξt ∈ ·)− π̃‖TV
t→∞
−−−→ 0 and ‖P̃ν(ξt ∈ ·)− π̃‖TV

t→∞
−−−→ 0.

Then Ẽν(‖Π̃µ
t − Π̃π̃

t ‖TV) is convergent as t →∞ (t ∈ R+).

Proof. Let ρ = (µ + π̃)/2. Then we can establish, exactly as in the
proof of Lemma 5.6, that we have Π̃µ

t ≪ Π̃ρ
t and Π̃π̃

t ≪ Π̃ρ
t with

dΠ̃µ
t

dΠ̃ρ
t

=
Ẽρ((dµ/dρ)(ξ0)|

♥Fη
+ ∨ ♥Fξ

[t,∞[)

Ẽρ((dµ/dρ)(ξ0)|
♥Fη

[0,t])
,

dΠ̃π̃
t

dΠ̃ρ
t

=
Ẽρ((dπ̃/dρ)(ξ0)|

♥Fη
+ ∨ ♥Fξ

[t,∞[)

Ẽρ((dπ̃/dρ)(ξ0)|
♥Fη

[0,t])
, P̃ρ-a.s.

Note that Ẽρ(dΠ̃µ
t /dΠ̃ρ

t ) = Ẽρ(dΠ̃π̃
t /dΠ̃ρ

t ) = 1 for all t. Now fix an arbitrary
sequence tk ր∞. By the martingale convergence theorem, we have P̃ρ-a.s.

Ẽρ
(

dµ

dρ
(ξ0)

∣

∣

∣

♥Fη
[0,tk]

)

→ Ẽρ
(

dµ

dρ
(ξ0)

∣

∣

∣

♥Fη
+

)

,

Ẽρ
(

dπ̃

dρ
(ξ0)

∣

∣

∣

♥Fη
[0,tk]

)

→ Ẽρ
(

dπ̃

dρ
(ξ0)

∣

∣

∣

♥Fη
+

)

as k →∞. Moreover, these quantities are P̃ρ-a.s. strictly positive by Lemma 6.9.
Applying again the martingale convergence theorem, we find that Mµ

k :=

dΠ̃µ
tk

/dΠ̃ρ
tk

and M π̃
k := dΠ̃π̃

tk
/dΠ̃ρ

tk
converge P̃ρ-a.s. to the random variables

Mµ =
Ẽρ((dµ/dρ)(ξ0)|

⋂

t
♥Fη

+ ∨ ♥Fξ
[t,∞[)

Ẽρ((dµ/dρ)(ξ0)|
♥Fη

+)

and

M π̃ =
Ẽρ((dπ̃/dρ)(ξ0)|

⋂

t
♥Fη

+ ∨ ♥Fξ
[t,∞[)

Ẽρ((dπ̃/dρ)(ξ0)|
♥Fη

+)
,
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respectively. Moreover, by the tower property of the conditional expec-

tation, we have Ẽρ(Mµ|♥Fη
+) = 1 and Ẽρ(M π̃|♥Fη

+) = 1 P̃ρ-a.s. Therefore,

Ẽρ(Mµ) = Ẽρ(M π̃) = 1, so that Mµ
k → Mµ and M π̃

k → M π̃ in L1(P̃ρ) by
Scheffé’s lemma.

Let us write, for simplicity, Nk = |Mµ
k −M π̃

k | and N = |Mµ −M π̃|. Then

Ẽρ(|Ẽρ(Nk|
♥Fη

[0,tk])− Ẽρ(N |♥Fη
+)|)

≤ Ẽρ(|Ẽρ(Nk|
♥Fη

[0,tk ])− Ẽρ(N |♥Fη
[0,tk ])|) + Ẽρ(|Ẽρ(N |♥Fη

[0,tk])− Ẽρ(N |♥Fη
+)|)

≤ Ẽρ(|Nk −N |) + Ẽρ(|Ẽρ(N |♥Fη
[0,tk ])− Ẽρ(N |♥Fη

+)|)

≤ Ẽρ(|Mµ
k −M π̃

k −Mµ + M π̃|) + Ẽρ(|Ẽρ(N |♥Fη
[0,tk])− Ẽρ(N |♥Fη

+)|)

≤ Ẽρ(|Mµ
k −Mµ|) + Ẽρ(|M π̃

k −M π̃|) + Ẽρ(|Ẽρ(N |♥Fη
[0,tk])− Ẽρ(N |♥Fη

+)|),

where we have used the inverse triangle inequality to establish that |Nk −
N | ≤ |Mµ

k −M π̃
k −Mµ + M π̃|. By the martingale convergence theorem and

the convergence of Mµ
k and M π̃

k , the right-hand side of this expression con-

verges to zero as k → ∞. But note that ‖Π̃µ
tk

− Π̃π̃
tk
‖TV = Ẽρ(Nk|

♥Fη
[0,tk ])

P̃ρ-a.s., so we have

‖Π̃µ
tk
− Π̃π̃

tk
‖TV

k→∞
−−−→ Ẽρ(N |♥Fη

+) in L1(P̃ρ).

In particular, ‖Π̃µ
tk
− Π̃π̃

tk
‖TV converges to Ẽρ(N |♥Fη

+) in P̃ρ-probability. But

‖P̃ν(ξt ∈ ·)− P̃ρ(ξt ∈ ·)‖TV

≤ 1
2(‖P̃ν(ξt ∈ ·)− P̃µ(ξt ∈ ·)‖TV + ‖P̃ν(ξt ∈ ·)− π̃‖TV)

≤ 1
2(‖P̃µ(ξt ∈ ·)− π̃‖TV + 2‖P̃ν(ξt ∈ ·)− π̃‖TV)

t→∞
−−−→ 0,

so by Lemma 6.9 we find that ‖Π̃µ
tk
− Π̃π̃

tk
‖TV converges to Ẽρ(N |♥Fη

+) in P̃ν -

probability. Thus, we have Ẽν(‖Π̃µ
tk
− Π̃π̃

tk
‖TV) → Ẽν(Ẽρ(N |♥Fη

+)) by domi-
nated convergence. But as this holds for any sequence tk ր ∞, the result
follows. �

7. On the result of Kunita and necessity of the ergodic condition. In
Sections 5 and 6 we explored the consequences of our main results for the
stability of nonlinear filters. Our results also have implications for other
asymptotic properties of the filter, however, in particular for the uniqueness
of the invariant measure as studied in [23]. The aim of this section is to
briefly outline the connection with [23], and to compare our assumptions to
those made in the work of Kunita.
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Kunita’s original paper [23] investigated the continuous time setting with
compact signal state space and white noise type observations. His approach
has been extended to locally compact [32] and Polish [2] signal state spaces
on the one hand, and to discrete time models on locally compact [32] and
Polish [17] signal state spaces on the other hand. None of these papers resolve
the gap in [23], however; we refer to [4] for further discussion and references.
For simplicity and concreteness, we will restrict our discussion below to the
original setting of Kunita. However, the results in this paper apply to all
settings considered in the above references, and the reader interested in the
ergodic properties of the nonlinear filter can directly read off the relevant
results from these papers.

In [23], the signal process (ξt)t∈R is a stationary, time-homogeneous Feller–
Markov process on a compact Polish state space Ẽ with stationary measure
π̃ under P̃, and the R

d-valued observation process (ηt)t∈R is defined as

ηt =

∫ t

0
h(ξs)ds + Wt,

where (Wt)t∈R is a two-sided Wiener process and h : Ẽ → R
d is a continuous

function. Kunita establishes that the filter Π̃π̃
t , when seen as a measure-

valued random process, is itself a Feller–Markov process, and we are inter-
ested in the ergodic properties of this process. In particular, [23] yields the
following statement.

Proposition 7.1. There exists at least one invariant measure for the

filter whose barycenter is π̃. If
⋂

t≥0
♥Fη

0 ∨ ♥Fξ
−t = ♥Fη

0 P̃-a.s. holds true, then
there is only one such invariant measure. If in addition π̃ is the unique
invariant measure of the signal, then the invariant measure of the filter is
unique.

In [23], it is assumed that the P̃-a.s. triviality of the tail σ-field
⋂

t≥0
♥Fξ
−t,

or, equivalently [34], Proposition 3, the condition
∫

|P̃δz (ξt ∈ A)− π̃(A)|π̃(dz)
t→∞
−−−→ 0 for all A ∈ B(Ẽ),

is already sufficient to establish
⋂

t≥0
♥Fη

0 ∨ ♥Fξ
−t = ♥Fη

0 P̃-a.s. As we have ar-
gued before, however, this statement is not at all obvious. On the other
hand, by the continuous time version of our main result (Theorem 6.4), it
follows that

∫

sup
A∈B(Ẽ)

|P̃δz (ξt ∈ A)− π̃(A)|π̃(dz)
t→∞
−−−→ 0

does in fact guarantee that
⋂

t≥0
♥Fη

0 ∨ ♥Fξ
−t = ♥Fη

0 P̃-a.s. [that this condition is

equivalent to Assumption 6.1 follows from the fact that ‖P̃µ(ξt ∈ ·)− π̃‖TV
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is nonincreasing]. This condition covers most, but not all, of the models
that satisfy Kunita’s condition, and we have thus partially resolved the gap
in his proof. Whether Kunita’s condition is already sufficient to guarantee
uniqueness of the invariant measure with barycenter π̃ remains an open
problem.

Besides sufficiency of the ergodic condition, it is interesting to ask whether
such a condition is necessary for uniqueness of the invariant measure. Theo-
rem 3.3 of [23] states that Kunita’s condition is in fact necessary for unique-
ness of the invariant measure with barycenter π̃, but this does not appear
to be correct. As the following example shows, neither our condition nor
Kunita’s condition is necessary.

Example 7.2. Consider the signal on Ẽ = [0,1] such that ξt = ξ0 for all
t ∈ R P̃-a.s., and let π̃ be the Lebesgue measure on [0,1]. We choose the
observation function h(x) = x. This model fits entirely within the current
setting.

Let us first show that the signal does not satisfy Kunita’s condition (and
hence it does not satisfy our assumptions, which are stronger than Kunita’s).
Note that

♥Fξ
−t = σ{ξs :s ≤−t}= σ{ξ0} P̃-a.s. for all t ∈ R.

Therefore, P̃-a.s.
⋂

t≥0
♥Fξ
−t = σ{ξ0}, which is certainly not P̃-a.s. trivial.

We claim that nonetheless
⋂

t≥0
♥Fη

0 ∨ ♥Fξ
−t = ♥Fη

0 P̃-a.s., so the invariant
measure of the filter with barycenter π̃ is unique. Clearly it suffices to show
that

♥Fξ
−t = σ{ξ0} ⊂

♥Fη
0 P̃-a.s.

for all t≥ 0. But note that ηt = ξ0t + Wt for all t∈ R, so

lim sup
t→−∞

ηt

t
= ξ0 P̃-a.s.

The claim is therefore established.

The previous example highlights a possibility which is not considered
in this paper. Returning to our canonical model, suppose that the tail σ-
field T X is not P-a.s. trivial (so the signal is not ergodic), but that T X ⊂
FY

[0,∞[ P-a.s. Then, if it could somehow be established that the exchange of

intersection and supremum is permitted, we would still obtain the identity
⋂

n≥0

FY
[0,∞[ ∨FX

[n,∞[
?
=FY

[0,∞[ ∨
⋂

n≥0

FX
[n,∞[ =FY

[0,∞[ P-a.s.,

and therefore also the associated implications for the stability properties and
for the uniqueness of the invariant measure of the filter. The condition T X ⊂
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FY
[0,∞[ is closely related to the notion of detectability which is shown in [36] to

be necessary and sufficient for the stability of the filter (in a suitable sense)
for models with a finite signal state space and nondegenerate observations.
Whether such a necessary and sufficient condition can be obtained for more
general models in the absence of an ergodicity assumption is an interesting
topic for further investigation.
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