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Summary

Sequential Monte Carlo (SMC) methods are a class of importance sampling
and resampling techniques designed to simulate from a sequence of probability
distributions. These approaches have become very popular over the last few
years to solve sequential Bayesian inference problems (e.g. Doucet et al. 2001).
However, in comparison to Markov chain Monte Carlo (MCMC), the applica-
tion of SMC remains limited when, in fact, such methods are also appropriate
in such contexts (e.g. Chopin (2002); Del Moral et al. (2006)). In this paper,
we present a simple unifying framework which allows us to extend both the
SMC methodology and its range of applications. Additionally, reinterpreting
SMC algorithms as an approximation of nonlinear MCMC kernels, we present
alternative SMC and iterative self-interacting approximation (Del Moral &
Miclo 2004; 2006) schemes. We demonstrate the performance of the SMC
methodology on static and sequential Bayesian inference problems.

Keywords and Phrases: Importance Sampling; Nonlinear Markov
Chain Monte Carlo; Probit Regression; Sequential Monte Carlo;
Stochastic Volatility

1. INTRODUCTION

Consider a sequence of probability measures {πn}n∈T
where T = {1, . . . , P}.

The distribution πn (dxn) is defined on a measurable space (En, En). For ease
of presentation, we will assume that each πn (dxn) admits a density πn (xn)
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with respect to a σ−finite dominating measure denoted dxn and that this
density is only known up to a normalizing constant

πn (xn) =
γn (xn)

Zn

where γn : En → R+ is known pointwise, but Zn might be unknown. We will
refer to n as the time index; this variable is simply a counter and need not
have any relation with ‘real time’. We also denote by Sn the support of πn,
i.e. Sn = {xn ∈ En : πn (xn) > 0}.

In this paper, we focus upon sampling from the distributions {πn}n∈T
and

estimating their normalizing constants {Zn}n∈T
sequentially; i.e. first sam-

pling from π1 and estimating Z1, then sampling from π2 and estimating Z2

and so on. Many computational problems in Bayesian statistics, computer sci-
ence, physics and applied mathematics can be formulated as sampling from
a sequence of probability distributions and estimating their normalizing con-
stants; see for example Del Moral (2004), Iba (2001) or Liu (2001).

1.1. Motivating Examples

We now list a few motivating examples.

Optimal filtering for nonlinear non-Gaussian state-space models. Consider
an unobserved Markov process {Xn}n≥1 on space (XN,XN, Pµ) where Pµ has
initial distribution µ and transition density f . The observations {Yn}n≥1 are
assumed to be conditionally independent given {Xn}n≥1 and Yn| (Xn = x) ∼

g ( ·|x). In this case we define En = Xn, xn = x1:n (x1:n , (x1, . . . , xn)) and

γn (xn) = µ (x1) g (y1|x1)

{ n∏

k=2

f (xk|xk−1) g (yk|xk)

}
(1)

This model is appropriate to describe a vast number of practical problems
and has been the main application of SMC methods (Doucet et al. 2001).
It should be noted that MCMC is not appropriate in such contexts. This
is because running P MCMC algorithms, either sequentially (and not using
the previous samples in an efficient way) or in parallel is too computationally
expensive for large P . Moreover, one often has real-time constraints and thus,
in this case, MCMC is not a viable alternative to SMC.

Tempering/annealing. Suppose we are given the problem of simulating from
π (x) ∝ γ (x) defined on E and estimating its normalizing constant Z =∫

E
γ (x) dx. If π is a high-dimensional, non-standard distribution then, to

improve the exploration ability of an algorithm, it is attractive to consider
an inhomogeneous sequence of P distributions to move “smoothly” from a
tractable distribution π1 = µ1 to the target distribution πP = π. In this case
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we have En = E ∀n ∈ T and, for example, we could select a geometric path
(Gelman & Meng 1996; Neal 2001)

γn (xn) = [γ (xn)]ζn [µ1 (xn)]1−ζn

with 0 ≤ ζ1 < · · · < ζP = 1. Alternatively, to maximize π (x), we could

consider γn (xn) = [γ (xn)]ζn where {ζn} is such that 0 < ζ1 < · · · < ζP and
1 << ζP to ensure that πP (x) is concentrated around the set of global maxima
of π (x). We will demonstrate that it is possible to perform this task using
SMC whereas, typically, one samples from these distributions using either
an MCMC kernel of invariant distribution π∗(x1:P ) ∝ γ1(x1) × · · · × γP (xP )
(parallel tempering; see Jasra et al. (2005b) for a review) or an inhomogeneous
sequence of MCMC kernels (simulated annealing).

Optimal filtering for partially observed point processes. Consider a marked
point process {cn, εn}n≥1 on the real line where cn is the arrival time of the
nth point (cn > cn−1) and εn its associated real-valued mark. We assume
the marks {εn} (resp. the interarrival times Tn = cn − cn−1, T1 = c1 >
0) are i.i.d. of density fε (resp. fT ). We denote by y1:mt

the observations

available up to time t and the associated likelihood g
(

y1:mt
| {cn, εn}n≥1

)
=

g (y1:mt
|c1:kt

, ε1:kt
) where kt = arg max {i : ci < t}. We are interested in the

sequence of posterior distributions at times {dn}n≥1 where dn > dn−1. In this

case, we have xn =
(
c1:kdn

, ε1:kdn

)
and

πn(xn) ∝ g
(
y1:mdn

|c1:kdn
, ε1:kdn

) kdn∏
k=1

fε (εk) fT (ck − ck−1)

where c0 = 0 by convention. These target distributions are all defined on
the same space En = E =

⊎∞
k=1Ak × Rk where Ak = {c1:k : 0 < c1 <

· · · < ck < ∞} but the support Sn of πn (xn) is restricted to
⊎∞

k=1Ak,dn
×Rk

where Ak,dn
= {c1:k : 0 < c1 < · · · < ck < dn}, i.e. Sn−1 ⊂ Sn. This is a

sequential, trans-dimensional Bayesian inference problem (see also Del Moral
et al. (2006)).

1.2. Sequential Monte Carlo and Structure of the Article

SMC methods are a set of simulation-based methods developed to solve the
problems listed above, and many more. At a given time n, the basic idea

is to obtain a large collection of N weighted random samples
{
W

(i)
n ,X

(i)
n

}

(i = 1, . . . , N, W
(i)
n > 0;

∑N
i=1 W

(i)
n = 1),

{
X

(i)
n

}
being named particles,

whose empirical distribution converges asymptotically (N → ∞) to πn; i.e.
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for any πn−integrable function ϕ : En → R

N∑

i=1

W (i)
n ϕ

(
X(i)

n

)
−→

∫

En

ϕ (xn)πn (xn) dxn almost surely.

Throughout we will denote
∫

En
ϕ (xn)πn (xn) dxn by Eπn

(
ϕ(Xn)

)
. These

particles are carried forward over time using a combination of sequential Im-
portance Sampling (IS) and resampling ideas. Broadly speaking, when an

approximation
{
W

(i)
n−1,X

(i)
n−1

}
of πn−1 is available, we seek to move the par-

ticles at time n so that they approximate πn (we will assume that this is

not too dissimilar to πn−1), that is, to obtain
{
X

(i)
n

}
. However, since the

{
X

(i)
n

}
are not distributed according to πn, it is necessary to reweight them

with respect to πn, through IS, to obtain
{
W

(i)
n

}
. In addition, if the variance

of the weights is too high (measured through the effective sample size (ESS)
(Liu, 2001)), then particles with low weights are eliminated and particles with
high weights are multiplied to focus the computational efforts in “promising”
parts of the space. The resampled particles are approximately distributed
according to πn; this approximation improves as N → ∞.

In comparison to MCMC, SMC methods are currently limited, both in
terms of their application and framework. In terms of the former, Resample
Move (Chopin 2002; Gilks & Berzuini 2001) is an SMC algorithm which may
be used in the same context as MCMC but is not, presumably due to the
limited exposure of applied statisticians to this algorithm. In terms of the
latter, only simple moves have been previously applied to propagate particles,
which has serious consequences on the performance of such algorithms. We
present here a simple generic mechanism relying on auxiliary variables that
allows us to extend the SMC methodology in a principled manner. Moreover,
we also reinterpret SMC algorithms as particle approximations of nonlinear
and nonhomogeneous MCMC algorithms (Del Moral 2004). This allows us to
introduce alternative SMC and iterative self-interacting approximation (Del
Moral & Miclo 2004; 2006) schemes. We do not present any theoretical results
here but a survey of precise convergence for SMC algorithms can be found in
Del Moral (2004) whereas the self-interacting algorithms can be studied using
the techniques developed in Del Moral & Miclo (2004; 2006) and Andrieu et
al. (2006).

The rest of the paper is organized as follows. Firstly, in Section 2, we re-
view the limitations of the current SMC methodology, present some extensions
and describe a generic algorithm to sample from any sequence of distributions
{πn}n∈T

and estimate {Zn}n∈T
defined in the introduction. Secondly, in Sec-

tion 3, we reinterpret SMC as an approximation to nonlinear MCMC and
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discuss an alternative self-interacting approximation. Finally, in Section 4, we
present three original applications of our methodology: sequential Bayesian
inference for bearings-only tracking (e.g. Gilks & Berzuini (2001)); Bayesian
probit regression (e.g. Albert & Chib (1993)) and sequential Bayesian infer-
ence for stochastic volatility models (Roberts et al. 2004).

2. SEQUENTIAL MONTE CARLO METHODOLOGY

2.1. Sequential Importance Sampling

At time n−1, we are interested in estimating πn−1 and Zn−1. Let us introduce
an importance distribution ηn−1. IS is based upon the following identities

πn−1 (xn−1) = Z−1
n−1wn−1 (xn−1) ηn−1 (xn−1) ,

Zn−1 =
∫

En−1
wn−1(xn−1)ηn−1(xn−1)dxn−1,

(2)

where the unnormalized importance weight function is equal to

wn−1 (xn−1) =
γn−1 (xn−1)

ηn−1 (xn−1)
. (3)

By sampling N particles
{
X

(i)
n−1

}
(i = 1, . . . , N) from ηn−1 and substituting

the empirical measure

ηN
n−1(dxn−1) =

1

N

N∑

i=1

δ
X

(i)
n−1

(dxn−1)

(where δx is Dirac measure) to ηn−1 into (2) we obtain an approximation of
πn−1 and Zn−1 given by

πN
n−1 (dxn−1) =

N∑

i=1

W
(i)
n−1δX

(i)
n−1

(dxn−1),

ZN
n−1 =

1

N

N∑

i=1

wn−1

(
X

(i)
n−1

)
,

where

W
(i)
n−1 =

wn−1

(
X

(i)
n−1

)

∑N
j=1 wn−1

(
X

(j)
n−1

) .

We now seek to estimate πn and Zn. To achieve this we propose to build
the importance distribution ηn based upon the current importance distri-

bution ηn−1 of the particles
{
X

(i)
n−1

}
. We simulate each new particle X

(i)
n
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according to a Markov kernel Kn : En−1 → P(En) (where P(En) is the class

of probability measures on En), i.e. X
(i)
n ∼ Kn

(
X

(i)
n−1, ·

)
so that

ηn (xn) = ηn−1Kn (xn) =

∫
ηn−1 (dxn−1)Kn (xn−1,xn) . (4)

2.2. Selection of Transition Kernels

It is clear that the optimal importance distribution, in the sense of minimizing
the variance of (3), is ηn (xn) = πn (xn). Therefore, the optimal transition
kernel is simply Kn (xn−1,xn) = πn (xn). This choice is typically impossible
to use (except perhaps at time 1) and we have to formulate sub-optimal
choices. We first review conditionally optimal moves and then discuss some
alternatives.

2.2.1. Conditionally optimal moves

Suppose that we are interested in moving from xn−1 = (un−1,vn−1) ∈
En−1 = Un−1 × Vn−1 to xn = (un−1,vn) ∈ En = Un−1 × Vn (Vn 6= ∅).
We adopt the following kernel

Kn (xn−1,xn) = Iun−1(un)qn (xn−1,vn)

where qn (xn−1,vn) is a probability density of moving from xn−1 to vn. Con-
sequently, we have

ηn (xn) =

∫

Vn−1

ηn−1 (un, dvn−1) qn ((un,vn−1) ,vn) .

In order to select qn (xn−1,vn), a sensible strategy consists of using the dis-
tribution minimizing the variance of wn(xn) conditional on un−1. One can
easily check that the optimal distribution for this criterion is given by a Gibbs
move

qopt
n (xn−1,vn) = πn (vn|un−1) (5)

and the associated importance weight satisfies (even if Vn = ∅)

wn (xn) =
γn (un−1)

ηn−1 (un−1)
. (6)

Contrary to the Gibbs sampler, the SMC framework not only requires being
able to sample from the full conditional distribution πn (vn|un−1) but also
being able to evaluate γn (un−1) and ηn−1 (un−1).

In cases where it is possible to sample from πn (vn|un−1) but impossible
to compute γn (un−1) and/or ηn−1 (un−1), we can use an attractive property
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of IS: we do not need to compute exactly (6), we can use an unbiased estimate
of it. We have the identity

γn (un−1) = γ̂n (un−1)

∫
γn (un−1,vn)

γ̂n (un−1,vn)
π̂n (vn|un−1) dvn (7)

where γ̂n (un−1,vn) is selected as an approximation of γn (un−1,vn) such that∫
γ̂n (un−1,vn) dvn can be computed analytically and it is easy to sample from

its associated full conditional π̂n (vn|un−1). We can calculate an unbiased
estimate of γn (un−1) using samples from π̂n (vn|un−1). We also have

1

ηn−1 (un−1)
=

1

η̂n−1 (un−1)

∫
η̂n−1 (un−1,vn−1)

ηn−1 (un−1,vn−1)
ηn−1 (vn−1|un−1) dvn−1

(8)
where η̂n−1 (un−1,vn−1) is selected as an approximation of ηn−1 (un−1,vn−1)
such that

∫
η̂n−1 (un−1,vn−1) dvn−1 can be computed analytically. So if we

can sample from ηn−1 (vn−1|un−1), we can calculate an unbiased estimate
of (8). This idea has a limited range of applications as in complex cases we
do not necessarily have a closed-form expression for ηn−1 (xn−1). However, if
one has resampled particles at time k ≤ n − 1, then one has (approximately)
ηn−1 (xn−1) = πkKk+1Kk+2 · · ·Kn−1 (xn−1).

2.2.2. Approximate Gibbs Moves

In the previous subsection, we have seen that conditionally optimal moves cor-
respond to Gibbs moves. However, in many applications the full conditional
distribution πn (vn|un−1) cannot be sampled from. Even if it is possible to
sample from it, one might not be able to get a closed-form expression for
γn (un−1) and we need an approximation π̂n (vn|un−1) of πn (vn|un−1) to
compute an unbiased estimate of it with low variance. Alternatively, we can
simply use the following transition kernel

Kn (xn−1,xn) = Iun−1 (un) π̂n (vn|un−1) (9)

and the associated importance weight is given by

wn (xn) =
γn (un−1,vn)

ηn−1 (un−1) π̂n (vn|un−1)
. (10)

Proceeding this way, we bypass the estimation of γn (un−1) which appeared in
(6). However, we still need to compute ηn−1 (un−1) or to obtain an unbiased
estimate of its inverse. Unfortunately, this task is very complex except when
un−1 = xn−1(i.e. Vn−1 = ∅) in which case we can rewrite (10) as

wn (xn) = wn−1 (xn−1)
γn−1 (xn−1,vn)

γn (xn−1) π̂n (vn|xn−1)
. (11)

This strategy is clearly limited as it can only be used when En = En−1 × Vn.
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2.2.3. MCMC and Adaptive moves

To move from xn−1 = (un−1,vn−1) to xn = (un−1,vn) (via Kn), we can
adopt an MCMC kernel of invariant distribution πn (vn|un−1). Unlike stan-
dard MCMC, there are no (additional) complicated mathematical conditions
required to ensure that the usage of adaptive kernels leads to convergence.
This is because SMC relies upon IS methodology, that is, we correct for sam-
pling from the wrong distribution via the importance weight. In particular,
this allows us to use transition kernels which at time n depends on πn−1,
i.e. the “theoretical” transition kernel is of the form Kn,πn−1 (xn−1,xn) and
is approximated practically by Kn,π̂N

n−1
(xn−1,xn). This was proposed and

justified theoretically in Crisan & Doucet (2000). An appealing application
is described in Chopin (2002) where the variance of π̂N

n−1 is used to scale the
proposal distribution of an independent MH step of invariant distribution πn.
In Jasra et al. (2005a), one fits a Gaussian mixture model to the particles so
as to design efficient trans-dimensional moves in the spirit of Green (2003).

A severe drawback of the strategies mentioned above, is the ability to
implement them. This is because we cannot always compute the resulting
marginal importance distribution ηn (xn) given by (4) and, hence, the im-
portance weight wn (xn) . In Section 2.3 we discuss how we may solve this
problem.

2.2.4. Mixture of moves

For complex MCMC problems, one typically uses a combination of MH steps
where the parameter components are updated by sub-blocks. Similarly, to
sample from high dimensional distributions, a practical SMC sampler will
update the components of xn via sub-blocks; a mixture of transition kernels
can be used at each time n. Let us assume Kn (xn−1,xn) is of the form

Kn (xn−1,xn) =
M∑

m=1

αn,m (xn−1)Kn,m (xn−1,xn) (12)

where αn,m (xn−1) ≥ 0,
∑M

m=1 αn,m (xn−1) = 1 and {Kn,m} is a collection
of transition kernels. Unfortunately, the direct calculation of the importance
weight (4) associated to (12) will be impossible in most cases as ηn−1Kn,m (xn)
does not admit a closed-form expression. Moreover, even if this were the case,
(12) would be expensive to compute pointwise if M is large.

2.2.5. Summary

IS, the basis of SMC methods, allows us to consider complex moves including
adaptive kernels or non-reversible trans-dimensional moves. In this respect,
it is much more flexible than MCMC. However, the major limitation of IS is
that it requires the ability to compute the associated importance weights or
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unbiased estimates of them. In all but simple situations, this is impossible and
this severely restricts the application of this methodology. In the following
section, we describe a simple auxiliary variable method that allows us to deal
with this problem.

2.3. Auxiliary Backward Markov Kernels

A simple solution would consist of approximating the importance distribution
ηn (xn) via

ηN
n−1Kn (xn) =

1

N

N∑

i=1

Kn

(
X

(i)
n−1,xn

)
.

This approach suffers from two major problems. First, the computational
complexity of the resulting algorithm would be in O

(
N2

)
which is prohibitive.

Second, it is impossible to compute Kn (xn−1,xn) pointwise in important
scenarios, e.g. when Kn is an Metropolis-Hastings (MH) kernel of invariant
distribution πn.

We present a simple auxiliary variable idea to deal with this problem
(Del Moral et al., 2006). For each forward kernel Kn : En−1 → P(En),
we associate a backward (in time) Markov transition kernel Ln−1 : En →
P(En−1) and define a new sequence of target distributions {π̃n (x1:n)} on
E1:n , E1 × · · · × En through

π̃n (x1:n) =
γ̃n (x1:n)

Zn

where
γ̃n (x1:n) = γn (xn)

∏n−1
k=1Lk (xk+1,xk) .

By construction, π̃n (x1:n) admits πn (xn) as a marginal and Zn as a normaliz-
ing constant. We approximate π̃n (x1:n) using IS by using the joint importance
distribution

ηn (x1:n) = η1 (x1)
∏n

k=2Kk (xk−1,xk) .

The associated importance weight satisfies

wn (x1:n) =
γ̃n (x1:n)

ηn (x1:n)
(13)

= wn−1 (x1:n−1) w̃n (xn−1,xn) .

where the incremental importance weight w̃n (xn−1,xn) is given by

w̃n (xn−1,xn) =
γn (xn) Ln−1 (xn,xn−1)

γn−1 (xn−1)Kn (xn−1,xn)
.
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Given that this Radon-Nikodym derivative is well-defined, the method will
produce asymptotically (N → ∞) consistent estimates of Eπ̃n

(
ϕ(X1:n)

)
and

Zn. However, the performance of the algorithm will be dependent upon the
choice of the kernel Ln−1.

2.3.1. Optimal backward kernels

Del Moral et al. (2006) establish that the backward kernels which minimize
the variance of the importance weights, wn (x1:n), are given by

Lopt
k (xk+1,xk) =

ηk (xk)Kk+1 (xk,xk+1)

ηk+1 (xk+1)
(14)

for k = 1, ..., n− 1. This can be verified easily by noting that

ηn (x1:n) = ηn (xn)
∏n−1

k=1Lopt
k (xk+1,xk) .

It is typically impossible, in practice, to use these optimal backward kernels
as they rely on marginal distributions which do not admit any closed-form
expression. However, this suggests that we should select them as an approx-
imation to (14). The key point is that, even if they are different from from
(14), the algorithm will still provide asymptotically consistent estimates.

Compared to a “theoretical” algorithm computing the weights (3), the
price to pay for avoiding to compute ηn (xn) (i.e. not using Lopt

k (xk+1,xk))
is that the variance of the Monte Carlo estimates based upon (13) will be
larger. For example, even if we set πn (xn) = π (xn) and Kn (xn−1,xn) =
K (xn−1,xn) is an ergodic MCMC kernel of invariant distribution π then the
variance of wn (x1:n) will fail to stabilize (or become infinite in some cases)
over time for any backward kernel Lk (xk+1,xk) 6= Lopt

k (xk+1,xk) whereas
the variance of (3) will decrease towards zero. The resampling step in SMC
will deal with this problem by resetting the weights when their variance is too
high.

At time n, the backward kernels {Lk (xk+1,xk)} for k = 1, ..., n − 2
have already been selected and we are interested in some approximations
of Lopt

n−1 (xn,xn−1) controlling the evolution of the variance of wn (x1:n).

2.3.2. Suboptimal backward kernels

• Substituting πn−1 for ηn−1. Equation (14) suggests that a sensible sub-
optimal strategy consists of substituting πn−1 for ηn−1 to obtain

Ln−1 (xn,xn−1) =
πn−1 (xn−1)Kn (xn−1,xn)

πn−1Kn (xn)
(15)

which yields

w̃n (xn−1,xn) =
γn (xn)∫

γn−1 (dxn−1)Kn (xn−1,xn)
. (16)



SMC for Bayesian Computation 11

It is often more convenient to use (16) than (14) as {γn} is known analytically,
whilst {ηn} is not. It should be noted that if particles have been resampled
at time n− 1, then ηn−1 is indeed approximately equal to πn−1 and thus (14)
is equal to (15).

• Gibbs and Approximate Gibbs Moves. Consider the conditionally optimal
move described earlier where

Kn (xn−1,xn) = Iun−1 (un)πn (vn|un−1) (17)

In this case (15) and (16) are given by

Ln−1 (xn,xn−1) = Iun
(un−1)πn−1 (vn−1|un−1) ,

w̃n (xn−1,xn) =
γn (un−1)

γn−1 (un−1)
.

An unbiased estimate of w̃n (xn−1,xn) can also be computed using the tech-
niques described in 2.2.1. When it is impossible to sample from πn (vn|un−1)
and/or compute w̃n (xn−1,xn), we may be able to construct an approximation
π̂n (vn|un−1) of πn (vn|un−1) to sample the particles and another approxi-
mation π̂n−1 (vn−1|un−1) of πn−1 (vn−1|un−1) to obtain

Ln−1 (xn,xn−1) = Iun
(un−1) π̂n−1 (vn−1|un−1) , (18)

w̃n (xn−1,xn) =
γn (un−1,vn) π̂n−1 (vn−1|un−1)

γn−1 (un−1,vn−1) π̂n (vn|un−1)
. (19)

• MCMC Kernels. A generic alternative approximation of (15) can also
be made when Kn is an MCMC kernel of invariant distribution πn. This has
been proposed explicitly in (Jarzynski (1997), Neal (2001)) and implicitly in
all papers introducing MCMC moves within SMC, e.g. Chopin (2002), Gilks
& Berzuini (2001). It is given by

Ln−1 (xn,xn−1) =
πn (xn−1)Kn (xn−1,xn)

πn (xn)
(20)

and will be a good approximation of (15) if πn−1 ≈ πn; note that (20) is
the reversal Markov kernel associated with Kn. In this case, the incremental
weight satisfies

w̃n (xn−1,xn) =
γn (xn−1)

γn−1 (xn−1)
. (21)

This expression (21) is remarkable as it is easy to compute and valid irrespec-
tive of the MCMC kernel adopted. It is also counter-intuitive: if Kn (xn−1,xn)

is mixing quickly so that X
(i)
n ∼ πn then the particles would still be weighted.
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The use of resampling helps to mitigate this problem; see (Del Moral et al.
2006, Section 3.5) for a detailed discussion.

Contrary to (15), this approach does not apply in scenarios where En−1 =
En but Sn−1 ⊂ Sn as discussed in Section 1 (optimal filtering for partially
observed processes). Indeed, in this case

Ln−1 (xn,xn−1) =
πn (xn−1)Kn (xn−1,xn)∫

Sn−1
πn (xn−1)Kn (xn−1,xn) dxn−1

(22)

but the denominator of this expression is different from πn (xn) as the inte-
gration is over Sn−1 and not Sn.

2.3.3. Mixture of Markov Kernels

When the transition kernel is given by a mixture of M moves as in (12), one
should select Ln−1 (xn,xn−1) as a mixture

Ln−1 (xn,xn−1) =

M∑

m=1

βn−1,m (xn)Ln−1,m (xn,xn−1) (23)

where βn−1,m (xn) ≥ 0,
∑M

m=1 βn−1,m (xn) = 1 and {Ln−1,m} is a collection
of backward transition kernels. Using (14), it is indeed easy to show that the
optimal backward kernel corresponds to

βopt
n−1,m (xn) ∝

∫
αn,m (xn−1) ηn−1 (xn−1)Kn (xn−1,xn) dxn−1,

Lopt
n−1,m (xn,xn−1) =

αn,m (xn−1) ηn−1 (xn−1)Kn (xn−1,xnn)∫
αn,m (xn−1) ηn−1 (xn−1)Kn (xn−1,xn) dxn−1

.

Various approximations to βopt
n−1,m (xn) and Lopt

n−1,m (xn,xn−1) have to be
made in practice.

Moreover, to avoid computing a sum of M terms, we can introduce a
discrete latent variable Mn ∈ M, M = {1, . . . , M} such that P (Mn = m) =
αn,m (xn−1) and perform IS on the extended space. This yields an incremental
importance weight equal to

w̃n (xn−1,xn, mn) =
γn (xn)βn−1,mn

(xn) Ln−1,mn
(xn,xn−1)

γn−1 (xn−1) αn,mn
(xn−1)Kn,mn

(xn−1,xn)
.

2.4. A Generic SMC Algorithm

We now describe a generic SMC algorithm to approximate the sequence of
targets {πn} based on kernel Kn; the extension to mixture of moves being
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straightforward. The particle representation is resampled using an (unbi-
ased) systematic resampling scheme whenever the ESS at time n given by[∑N

i=1(W
(i)
n )2

]−1

is below a prespecified threshold, say N/2 (Liu, 2001).

• At time n = 1. Sample X
(i)
1 ∼ η1 and compute W

(i)
1 ∝ w1

(
X

(i)
1

)
. If

ESS<Threshold, resample the particle representation
{
W

(i)
1 , X

(i)
1

}
.

• At time n; n ≥ 2. Sample X
(i)
n ∼ Kn

(
X

(i)
n−1, ·

)
and compute W

(i)
n ∝

W
(i)
n−1w̃n

(
X

(i)
n−1, X

(i)
n

)
. If ESS<Threshold, resample the particle representation

{
W

(i)
n , X

(i)
n

}
.

The target πn is approximated through

πN
n (dxn) =

N∑

i=1

W (i)
n δ

X
(i)
n

(dxn) .

In addition, the approximation
{

W
(i)
n−1,X

(i)
n

}
of πn−1 (xn−1)Kn (xn−1,xn)

obtained after the sampling step allows us to approximate, unbiasedly,

Zn

Zn−1
=

∫
γn (xn) dxn∫

γn−1 (xn−1) dxn−1
by

Ẑn

Zn−1
=

N∑

i=1

W
(i)
n−1w̃n

(
X

(i)
n−1,X

(i)
n

)
. (24)

Alternatively, it is possible to use path sampling (Gelman & Meng, 1998) to
compute this ratio.

3. NONLINEAR MCMC, SMC AND SELF-INTERACTING
APPROXIMATIONS

For standard Markov chains, the transition kernel, say Qn, is a linear operator
in the space of probability measures, i.e. we have Xn ∼ Qn (Xn−1, ·) and the
distribution µn of Xn satisfies µn = µn−1Qn. Nonlinear Markov chains are
such that Xn ∼ Qµn−1,n (Xn−1, ·), i.e. the transition of Xn depends not only
on Xn−1 but also on µn−1 and we have

µn = µn−1Qn,µn−1 . (25)

In a similar fashion to MCMC, it is possible to design nonlinear Markov chain
kernels admitting a fixed target π (Del Moral & Doucet 2003). Such a proce-
dure is attractive as one can design nonlinear kernels with theoretically better
mixing properties than linear kernels. Unfortunately, it is often impossible to
simulate exactly such nonlinear Markov chains as we do not have a closed-
form expression for µn−1. We now describe a general collection of nonlinear
kernels and how to produce approximations of them.
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3.1. Nonlinear MCMC Kernels to Simulate from a Sequence of Distributions

We can construct a collection of nonlinear Markov chains kernels such that

π̃n = π̃n−1Qn,π̃n−1

where {π̃n} is the sequence of auxiliary target distibutions (on (E1:n, E1:n))
associated to {πn} and Qn,µ : P (E1:n−1) × En−1 → P (E1:n). The simplest
transition kernel is given by

Qn,µ (x1:n−1,x
′
1:n) = Ψn (µ × Kn) (x′

1:n) (26)

where Ψn : P(E1:n) → P(E1:n)

Ψn (ν) (x′
1:n) =

ν (x′
1:n) w̃n

(
x′

n−1,x
′
n

)
∫

ν (dx1:n) w̃n (xn−1,xn)
.

is a Boltzmann-Gibbs distribution.
If w̃n (xn−1,xn) ≤ Cn for any (xn−1,xn), we can also consider an alter-

native kernel given by

Qn,µ(x1:n−1,x
′
1:n) =

w̃n(xn−1,x
′
n)

Cn
Ix1:n−1

(
x′

1:n−1

)
Kn(x′

n−1,x
′
n) +

(
1−

∫

E1:n

w̃n(xn−1,x
′
n)

Cn
δx1:n−1

(
dx′

1:n−1

)
Kn(x′

n−1, dx
′
n)

)
×

Ψn(µ × Kn)(x′
1:n). (27)

This algorithm can be interpreted as a nonlinear version of the MH algorithm.

Given x1:n−1 we sample x′
n ∼ Kn(xn−1, ·) and with probability w̃n(xn−1:n)

Cn
we

let x′
1:n = (x1:n−1,x

′
n), otherwise we sample a new x′

1:n from the Boltzmann-
Gibbs distribution.

3.2. SMC and Self-Interacting Approximations

In order to simulate the nonlinear kernel, we need to approximate (25) given
here by (26) or (27). The SMC algorithm described in Section 2 can be
interpreted as a simple Monte Carlo implementation of (26). Whenever
w̃n (xn−1,xn) ≤ Cn, it is also possible to approximate (27) instead. Un-
der regularity assumptions, it can be shown that this alternative Monte Carlo
approximation has a lower asymptotic variance than (26) if multinomial re-
sampling is used to sample from the Boltzmann-Gibbs distribution (chapter
9 of Del Moral (2004)).

In cases where one does not have real-time constraints and the number
P of target distributions {πn} is fixed it is possible to develop an alternative
iterative approach. The idea consists of initializing the algorithm with some
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Monte Carlo estimates
{
π̃N0

n

}
of the targets consisting of empirical measures

(that is 1
N0

∑N0

i=1 δ
X

(i)
n,1:n

) of N0 samples. For the sake of simplicity, we assume

it is possible to sample exactly from π̃1 = π1. Then the algorithm proceeds
as follows at iteration i; the first iteration being indexed by i = N0 + 1.

• At time n = 1. Sample X
(i)
1,1 ∼ π̃1 and set π̃i

1 =
(
1 − 1

i

)
π̃i−1

1 + 1
i δX

(i)
1,1

.

• At time n; n = 2, ..., P. Sample X
(i)
n,1:n ∼ Qn,π̃i

n−1

(
X

(i)
n−1,1:n−1, ·

)
and

set π̃i
n =

(
1 − 1

i

)
π̃i−1

n + 1
i δX

(i)
n,1:n

.

In practice, we are interested only in {πn} and not {π̃n} so we only need to

store at time n the samples
{
X

(i)
n,n−1:n

}
asymptotically distributed according

to πn (xn) Ln−1 (xn, xn−1). We note that such stochastic processes, described
above, are self-interacting; see Del Moral & Miclo (2004; 2006) and Andrieu
et al. (2006) and Brockwell & Doucet (2006) in the context of Monte Carlo
simulation.

4. APPLICATIONS

4.1. Block Sampling for Optimal Filtering

4.1.1. SMC Sampler

We consider the class of nonlinear non-Gaussian state-space models discussed
in Section 1. In this case the sequence of target distribution defined on En =
Xn is given by (1). In the context where one has real-time constraints, we
need to design a transition kernel Kn which updates only a fixed number of
components of xn to maintain a computational complexity independent of n.

The standard approach consists of moving from xn−1 = un−1 to xn =
(xn−1, xn) = (un−1,vn) using (5) given by

πn (vn|un−1) = p (xn| yn, xn−1) ∝ f (xn|xn−1) g (yn|xn) .

This distribution is often referred to (abusively) as the optimal importance
distribution in the literature, e.g. Doucet et al. (2001); this should be un-
derstood as optimal conditional upon xn−1. In this case we can rewrite (6)
as

wn (xn) = wn−1 (xn−1) p (yn|xn−1) ∝ wn−1 (xn−1)
p (xn−1| y1:n)

p (xn−1| y1:n−1)
(28)

If one can sample from p (xn| yn, xn−1) but cannot compute (28) in closed-
form then we can obtain an unbiased estimate of it using an easy to sample
distribution approximating it

π̂n (vn|un−1) = p̂ (xn| yn, xn−1) =
f̂ (xn|xn−1) ĝ (yn|xn)

∫
f̂ (xn|xn−1) ĝ (yn|xn) dxn
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and the identity

p (yn|xn−1) =

∫
f̂ (xn|xn−1) ĝ (yn|xn) dxn

×

∫
f (xn|xn−1) g (yn|xn)

f̂ (xn|xn−1) ĝ (yn|xn)
p̂ (xn| yn, xn−1) dxn.

An alternative consists of moving using p̂ (xn| yn, xn−1) -see (9)- and comput-
ing the weights using (11)

wn (xn) = wn−1 (xn−1)
f (xn|xn−1) g (yn|xn)

p̂ (xn| yn, xn−1)

We want to emphasize that such sampling strategies can perform poorly even
if one can sample from p (xn| yn, xn−1) and compute exactly the associated
importance weight. Indeed, in situations where the discrepancy between
p (xn−1| y1:n−1) and p (xn−1| y1:n) is high, then the weights (28) will have
a large variance. An alternative strategy consists not only of sampling Xn at
time n but also of updating the block of variables Xn−R+1:n−1 where R > 1. In
this case we seek to move from xn−1 = (un−1,vn−1) = (x1:n−R, xn−R+1:n−1)
to xn = (un−1,vn) =

(
x1:n−R, x′

n−R+1:n

)
and the conditionally optimal dis-

tribution is given by

πn (vn|un−1) = p
(
x′

n−R+1:n

∣∣ yn−R+1:n, xn−R

)
.

Although attractive, this strategy is difficult to apply, as sampling from
p

(
x′

n−R+1:n

∣∣ yn−R+1:n, xn−R

)
becomes more difficult as R increases. More-

over, it requires the ability to compute or obtain unbiased estimates of both
p (yn−R+1:n|xn−R) and 1/ηn−1 (x1:n−R) to calculate (6). If we use an ap-
proximation π̂n (vn|un−1) of πn (vn|un−1) to move the particles, it remains
difficult to compute (10) as we still require an unbiased estimate of 1/ηn−1

(x1:n−R). The discussion of Section 2.3.2 indicates that, alternatively, we can
simply weight the particles sampled using π̂n (vn|un−1) by (19); this only
requires us being able to derive an approximation of πn−1 (vn−1|un−1).

4.1.2. Model and Simulation details

We now present numerical results for a bearings-only-tracking example (Gilks
and Berzuini, 2001). The target is modelled using a standard constant velocity
model

Xn =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


Xn−1 + Vn,
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with Vn i.i.d. N4 (0, Σ) (Nr(a, b) is the r−dimensional normal distribution
with mean a and covariance b) and

Σ = 5




1/3 1/2 0 0
1/2 1 0 0
0 0 1/3 1/2
0 0 1/2 1


 .

The state vector Xn =
(
X1

n, X2
n, X3

n, X4
n

)T
is such that X1

n (resp. X3
n) cor-

responds to the horizontal (resp. vertical) position of the target whereas X2
n

(resp. X4
n) corresponds to the horizontal (resp. vertical) velocity. One only

receives observations of the bearings of the target

Yn = tan−1

(
X3

n

X1
n

)
+ Wn

where Wn is i.i.d. N
(
0, 10−4

)
; i.e. the observations are almost noiseless. This

is representative of real-world tracking scenarios.
We build an approximation π̂n (vn|un−1) (resp. π̂n−1 (vn−1|un−1)) of

πn (vn|un−1) (resp. π̂n−1 (vn−1|un−1)) using the forward-backward sampling
formula for a linear Gaussian approximation of the model based on the Ex-
tended Kalman Filter (EKF); see Doucet et al. (2006) for details. We compare

• The block sampling SMC algorithms denoted SMC(R) for R = 1, 2, 5
and 10 which are using the EKF proposal.

• Two Resample-Move algorithms as described in (Gilks and Berzuini,
2001), where the SMC(1) is used followed by: (i) one at a time MH moves
using an approximation of p (xk| yk, xk−1, xk+1) as a proposal (RML(10)) over
a lag L = 10; and (ii) using the EKF proposal for L = 10 (RMFL(10)). The
acceptance probabilities of those moves were in all cases between (0.5,0.6).

Systematic resampling is performed whenever the ESS goes below N/2.
The results are displayed in Table 1.

The standard algorithms -namely, SMC(1), RML(10) and RMFL(10) -
need to resample very often as the ESS drop below N/2; see the 2nd column
of Table 1. In particular, the Resample-Move algorithms resample as much
as SMC(1) despite their computational complexity being similar to SMC(10);
this is because MCMC steps are only introduced after an SMC(1) step has
been performed. Conversely, as R increases, the number of resampling steps
required by SMC(R) methods decreases dramatically. Consequently, the num-

ber of unique particles
{

X
(i)
1

}
approximating the final target p (x1| y1:100)

remains very large whereas it is close to 1 for standard methods.
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Filter # Time Resampled
SMC(1) 44.6
RML(10) 45.2
RMFL(10) 43.3
SMC(2) 34.9
SMC(5) 4.6
SMC(10) 1.3

Table 1: Average number of resampling steps for 100 simulations, 100 time
instances per simulations using N = 1000 particles.

4.2. Binary Probit Regression

Our second application, related to the tempering example in Section 1, is the
Bayesian binary regression model in (for example) Albert & Chib (1993). The
analysis of binary data via generalized linear models often occurs in applied
Bayesian statistics and the most commonly used technique to draw inference
is the auxiliary variable Gibbs sampler (Albert & Chib 1993). It is well known
(e.g. Holmes & Held 2006) that such a simulation method can perform poorly,
due to the strong posterior dependency between the regression and auxiliary
variables. In this example we illustrate that SMC samplers can provide sig-
nificant improvements over the auxiliary variable Gibbs sampler with little
extra coding effort and comparable CPU times. Further, we demonstrate
that the SMC algorithm based on (17) can greatly improve the performance
of Resample Move (Chopin, 2002; Gilks & Berzuini, 2001) based on (20).

4.2.1. Model

The model assumes that we observe binary data Y1, . . . , Yu, with associated
r−dimensional covariates X1, . . . , Xu and that the Yi, i = 1, . . . , u are i.i.d.:

Yi|β ∼ B(Φ(x′
iβ))

where B is the Bernoulli distribution, β is a r−dimensional vector and Φ is
the standard normal CDF. We denote by x the u × r design matrix (we do
not consider models with an intercept).

Albert & Chib (1993) introduced an auxiliary variable Zi to facilitate
application of the Gibbs sampler. That is, we have:

Yi|Zi =

{
1 if Zi > 0
0 otherwise

Zi = x′
iβ + εi

εi ∼ N (0, 1).
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In addition, we assume β ∼ Nr(b, v). Standard manipulations establish that
the marginal posterior π(β|y1:u, x1:u) concides with that of the original model.

4.2.2. Performance of the MCMC algorithm

To illustrate that MCMC-based inference for binary probit regression does
not always perform well, we consider the following example. We simulated
200 data points, with r = 20 covariates. We set the priors as b = 0 and v =
diag(100). Recall that the Gibbs sampler of Albert & Chib (1993) generates
from full conditionals:

β| · · · ∼ Nr(B, V )

B = V (v−1b + x′z)

V = (v−1 + x′x)−1

π(zi| · · · ) ∼

{
φ(zi; x

′
iβ, 1)I{zi>0}(zi) if yi = 1

φ(zi; x
′
iβ, 1)I{zi≤0}(zi) otherwise

where | · · · denotes conditioning on all other random variables in the model
and φ(·) is the normal density. It should be noted that there are more ad-
vanced MCMC methods for these class of models (e.g. Holmes & Held (2006)),
but we only consider the method of Albert & Chib (1993) as it forms a build-
ing block of the SMC sampler below. We ran the MCMC sampler for 100000
iterations, thinning the samples to every 100. The CPU time was approxi-
mately 421 seconds.

In Figure 1 (top row) we can observe two of the traces of the twenty
sampled regression coefficients. These plots indicate very slow mixing, due
to the clear autocorrelations and the thinning of the Markov chain. Whilst
we might run the sampler for an excessive period of time (that is, enough
to substantially reduce the autocorrelations of the samples), it is preferable
to construct an alternative simulation procedure. This is to ensure that we
are representing all of the regions of high posterior probability that may not
occur using this MCMC sampler.

4.2.3. SMC Sampler

We now develop an SMC approach to draw inference from the binary logistic
model. We consider a sequence of densities induced by the following error at
time n:

εi ∼ N (0, ζn).

with 1 < ζ1 > · · · > ζP = 1.
To sample the particles, we adopt the MCMC kernel above, associated to

the density at time n. At time n we sample new z1:u, β from:

Kn((z1:u, β), (z′1:u, β′)) = πn(z′1:u|β, y1:u, x1:u)Iβ(β′).
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We then sample β from the full conditional (since this kernel admits πn as an
invariant measure we can adopt backward kernel (20) and so the incremental
weight is 1). For the corresponding backward kernel, Ln−1, we consider two
options (20) and (17). Since (17) is closer to the optimal kernel, we would
expect that the performance under the second kernel to be better than the
first (in terms of weight degeneracy).

4.2.4. Performance of SMC Sampler

We ran the two SMC samplers above for 50, 100 and 200 time points. We
sampled 1000 particles and resampled upon the basis of the ESS dropping
to N/2 using systematic resampling. The initial importance distribution was
a multivariate normal centered at a point simulated from an MCMC sam-
pler and the full conditional density for z1:u. We found that this performed
noticeably better than using the prior for β.

It should be noted that we did not have to store N , u−dimensional vectors.
This is possible due to the fact that we can simulate from πn(z1:u| · · · ) and
that the incremental weights can be either computed at time n for time n + 1
and are independent of z1:u.

As in Del Moral et al. (2006), we adopted a piecewise linear cooling scheme
that had, for 50 time points, 1/ζn increase uniformly to 0.05 for the first 10
time points, then uniformly to 0.3 for the next 20 and then uniformly to 1. All
other time specifications had the same cooling schedule, in time proportion.

In Figures 1, 2, 3, 4 and Table 2 we can observe our results. Figures
2, 3, 4 and Table 2 provide a comparison of the performance for the two
backward kernels. As expected, (17) provides substantial improvements over
the reversal kernel (20) with significantly lower weight degeneracy and thus
fewer resampling steps. This is manifested in Figure 1 with slighly less de-
pendence (of the samples) for the Gibbs kernel. The CPU times of the two
SMC samplers are comparable to MCMC (Table 2 final column) which shows
that SMC can markedly improve upon MCMC for similar computational cost
(and programming effort).

4.2.5. Summary

In this example we have established that SMC samplers are an alternative to
MCMC for a binary regression example. This was only at a slight increase in
CPU time and programming effort. As a result, we may be able to investigate
more challenging problems, especially since we have not utilized all of the SMC
strategies (e.g. adaptive methods, in Section 2.2).

We also saw that the adoption of the Gibbs backward kernel (17) provided
significant improvements over Resample Move. This is of interest when the
full conditionals are not available, but good approxmations of them are. In
this case it would be of interest to see if similar results hold, that is, in
comparison with the reversal kernel (20). We note that this is not meaningless
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Time points 50 100 200

CPU Time 115.33 251.70 681.33
CPU Time 118.93 263.61 677.65

# Times Resampled 29 29 28
# Times Resampled 7 6 8

Table 2: Results from Binary regression example. The first entry is for the
reversal (i.e. the first column row entry is the reversal kernel for 50 time
points). The CPU time is in seconds.

in the context of artifical distributions, where the rate of resampling may be
controlled by ensuring πn−1 ≈ πn. This is because we will obtain better
performance for the Gibbs kernel for shorter time specifications (and particle
number) and hence (a likely) lower CPU time.

4.3. Filtering for Partially Observed Processes

In the following example we consider SMC samplers applied to filtering for
partially observed processes. In particular, we extend the approach of Del
Moral et al. (2006) for cases with Sn−1 ⊂ Sn, that is, a sequence of densities
with nested supports.

4.3.1. Model

We focus upon the Bayesian Ornstein-Uhlenbeck stochastic volatility model
(Barndoff-Nielsen & Shepard 2001) found in Roberts et al. (2004). That is,
the price of an asset Xt at time t ∈ [0, T ] is modelled via the stochastic
differential equation (SDE):

dXt = σ
1/2
t dWt

where {Wt}t∈[0,T ] is a standard Wiener process. The volatility σt is assumed
to satisfy the following (Ornstein-Uhlenbeck equation) SDE:

dσt = −µσtdt + dZt (29)

where {Zt}t∈[0,T ] is assumed to be a pure jump Lévy process; see Applebaum
(2004) for a nice introduction.

It is well known (Barndoff-Nielsen & Shephard 2001; Applebaum 2004)
that for any self-decomposable random variable, there exists a unique Lévy
process that satisfies (29); we assume that σt has a Gamma marginal, Ga(ν, θ).
In this case Zt is a compound Poisson process:

Zt =

Kt∑

j=1

εj
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where Kt is a Poisson process of rate νµ and the εj are i.i.d. according to
Ex(θ) (where Ex is the exponential distribution). Denote the jump times of
the compound Poisson process as 0 < c1 < · · · < ckt

< t.

Since Xt ∼ N (0, σ∗
t ), where σ∗

t =
∫ t

0
σsds is the integrated volatility, it is

easily seen that Yti
∼ N (0, σ∗

i ) with Yti
= Xti

−Xti−1 , 0 < t1 < · · · < tu = T
are regularly spaced observation times and σ∗

i = σ∗
ti
−σ∗

ti−1
. Additionally, the

integrated volatility is:

σ∗
t =

1

µ

( Kt∑

j=1

[1 − exp{−µ(t − cj)}]εj − σ0[exp{−µt} − 1]
)

The likelihood at time t is

g(yt1:mt
|{σ∗

t }) =

mt∏

i=1

φ(yti
; σ∗

i )I{ti<t}(ti)

with φ(·; a) the density of normal distribution of mean zero and variance a
and mt = max{ti : ti ≤ t}. The priors are exactly as Roberts et al. (2004):

σ0|θ, ν ∼ Ga(ν, θ), ν ∼ Ga(αν , βν),

µ ∼ Ga(αµ, βµ), θ ∼ Ga(αθ , βθ)

where Ga(a, b) is the Gamma distribution of mean a/b. We take the density,
at time t of the compound poisson process, with respect to (the product of)
Lebesgue and counting measures:

pt(c1:kt
, ε1:kt

, kt) =
kt!

nkt
I{0<c1<···<ckt

<t}(c1:kt
)θkt exp{−θ

kt∑

j=1

εj} ×

(tµν)kt

kt!
exp{−tµνkt}.

4.3.2. Simulation Details

We are thus interested in simulating from a sequence of densities, which at
time n (of the sampler) and corresponding dn ∈ (0, T ] (of the stochastic
process) is defined as:

πn(c1:kdn
, ε1:kdn

, kdn
, σ0, ν, µ, θ|yt1:mdn

) ∝ g(yt1:mdn
|{σ∗

dn
})π(σ0, ν, µ, θ)×

pdn
(c1:kdn

, ε1:kdn
, kdn

).

As in example 2 of Del Moral et al. (2006) this is a sequence of densities on
trans-dimensional, nested spaces. However, the problem is significantly more
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difficult as the full conditional densities are not available in closed form. To
simulate this sequence, we adopted the following technique.

If kdn
= 0 we select a birth move which is the same as Roberts et al. (2004).

Otherwise, we extend the space by adopting a random walk kernel:

q((ckdn−1
−1, ckdn−1

), ckdn
) ∝ exp{−λ|ckdn

− ckdn−1
|}I(ckdn−1

−1,n)(ckdn
).

The backward kernel is identical if ckdn
∈ (0, dn−1) otherwise it is uniform.

The incremental weight is then much like a Hastings ratio, but standard
manipulations establish that it has finite supremum norm, which means that
it has finite variance. However, we found that the ESS could drop, when very
informative observations arrive and thus we used the following idea: If the
ESS drops, we return to the original particles at time n − 1 and we perform
an SMC sampler which heats up to a very simple (related) density and then
make the space extension (much like the tempered transitions method of Neal
(1996)). We then use SMC to return to the density we were interested in
sampling from.

After this step we perform an MCMC step (the centered algorithm of
Roberts et al. (2004)) which leaves πn invariant allowing with probability 1/2
a Dirac step to reduce the CPU time spent on updating the particles.

4.3.3. Illustration

For illustration purposes we simulated u = 500 data points from the prior
and ran 10000 particles with systematic resampling (threshold 3000 particles).
The priors were αν = 1.0, βν = 0.5, αµ = 1.0, βµ = 1.0, αθ = 1.0, βθ = 0.1.
We defined the target densities at the observation times 1, 2, . . . , 500 and set
λ = 10.

If the ESS drops we perform the algorithm with respect to:

πζ
n(c1:kdn

, ε1:kdn
, kdn

, σ0, ν, µ, θ|yt1:mdn
) ∝ g(yt1:mdn

|{σ∗
dn
})ζπ(σ0, ν, µ, θ)×

pdn
(c1:kdn

, ε1:kdn
, kdn

)

for some temperatures {ζ}. We used a uniform heating/cooling schedule to
ζ = 0.005 and 100 densities and performed this if the ESS dropped to 5% of
the particle number.

We can see in Figure 5 that we are able to extend the state-space in
an efficient manner and then estimate (Figure 6) the filtered and smoothed
actual volatility σ∗

i which, to our knowledge, has not ever been performed
for such complex models. It should be noted that we only had to apply the
procedure above, for when the ESS drops, 7 times; which illustrates that our
original incremental weight does not have extremely high variance. For this
example, the MCMC moves can operate upon the entire state-space, which
we recommend, unless a faster mixing MCMC sampler is constructed. That
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is, the computational complexity is dependent upon u (the number of data
points). Additionally, due to the required, extra, SMC sampler, this approach
is not useful for high frequency data, but is more appropriate for daily returns
type data.

5. CONCLUSION

It is well-known that SMC algorithms can solve, numerically, sequential
Bayesian inference problems for nonlinear, non-Gaussian state-space models
(Doucet et al. 2001). We have demonstrated (in addition to the work of
Chopin (2002); Del Moral et al. (2006); Gilks & Berzuini (2001)) that SMC
methods are not limited to this class of applications and can be used to solve,
efficiently, a wide variety of problems arising in Bayesian statistics.

It should be noted that, as for MCMC, SMC methods are not black-
boxes and require some expertise to achieve good performance. Nevertheless,
contrary to MCMC, as SMC is essentially based upon IS, its validity does not
rely on ergodic properties of any Markov chain. Consequently, the type of
strategies that may be applied by the user is far richer, that is, time-adaptive
proposals and even non-Markov transition kernels can be used without any
theoretical difficulties. Such schemes are presented in Jasra et al. (2005a) for
trans-dimensional problems.

We also believe that it is fruitful to interpret SMC as a particle approxi-
mation of nonlinear MCMC kernels. This provides us with alternative SMC
and iterative self-interacting approximation schemes as well as opening the
avenue for new nonlinear algorithms. The key to these procedures is being
able to design nonlinear MCMC kernels admitting fixed target distributions;
see Andrieu et al. (2006) and Brockwell & Doucet (2006) for such algorithms.
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Figure 1: Sampled coefficients from the binary regression example. For
the MCMC (top row), we ran the Gibbs sampler of Albert & Chib (1993)
for 100000 iterations and stored every 100th (CPU time 421 sec). For the
reversal SMC (middle row) we ran 1000 particles for 200 time steps (CPU
681 sec), the final ESS was 790. For the Gibbs SMC (bottom row) we did the
same except the CPU was 677 and the ESS was 557.
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Figure 2: ESS plots from the binary regression example; 50 time points.
The top graph is for reversal kernel (17). We sampled 1000 particles and
resampled when the ESS dropped below 500 particles,
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Figure 3: ESS plots from the binary regression example; 100 time points.
The top graph is for reversal kernel (17). We sampled 1000 particles and
resampled when the ESS dropped below 500 particles,
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Figure 4: ESS plots from the binary regression example; 200 time points.
The top graph is for reversal kernel (17). We sampled 1000 particles and
resampled when the ESS dropped below 500 particles,
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Figure 5: ESS plot for simulated data from the stochastic volatility exam-
ple. We ran 10000 particles with resampling threshold (−−) 3000 particles.
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Figure 6: Actual volatility for simulated data from the stochastic volatility
example. We plotted the actual volatility for the final density (full line) filtered
(esimated at each timepoint, dot) and smoothed (estimated at each timepoint,
lag 5, dash)


