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Abstract

In the following paper we consider a simulation technique for stochastic trees. One
of the most important areas in computational genetics is the calculation and subsequent
maximization of the likelihood function associated to such models. This typically consists
of using importance sampling (IS) and sequential Monte Carlo (SMC) techniques. The
approach proceeds by simulating the tree, backward in time from observed data, to a most
recent common ancestor (MRCA). However, in many cases, the computational time and
variance of estimators are often too high to make standard approaches useful. In this paper
we propose to stop the simulation, subsequently yielding biased estimates of the likelihood
surface. The bias is investigated from a theoretical point of view. Results from simulation
studies are also given to investigate the balance between loss of accuracy, saving in computing
time and variance reduction.
Key Words: Stochastic Trees, Sequential Monte Carlo, Coalescent.

1 Introduction

There is currently much interest in performing ancestral inference from molecular population
genetic data. To facilitate this inference, there has been an explosion of research in develop-
ing computationally efficient methods. These techniques are designed either to compute the
likelihood, for maximum likelihood estimation, of a sample of genes or for deriving the poste-
rior distribution on parameters in coalescent models, which describe the ancestry of the genes.
Broadly speaking there are three main approaches to inference in molecular population genet-
ics: (i) importance sampling for likelihood evaluation, whose application in population genetics
was pioneered by (Griffiths & Tavaré, 1994a,b,c) (ii) Markov chain Monte Carlo methods (e.g.
Kuhner et al. (1995), Wilson & Balding (1998)) (iii) Approximate Bayesian Computation (ABC)
(Del Moral et al. (2009), Marjoram et al. (2003)). See Stephens (2004) for a review.

In this paper we concentrate on likelihood-based methods. Molecular data have a sampling
distribution which is a mixture over possible ancestries. The state space of the ancestries is huge
and closed-form expressions are available only in the simplest cases. The objective is to calculate
a parameter θ ∈ Θ ⊆ Rdθ (dθ ∈ Z+) such that

l(y; θ∗) := sup
θ∈Θ

∫
F

lc(z, y; θ)πθ(z)dz (1)

for some observed genetic data y ∈ E, parameter θ ∈ Θ, probability density πθ on F and
lc : E×F×Θ→ R+ an integrable function. Note that y is typically the genetic types of a random
sample of chromosomes. In addition, z = (z0, . . . , zk) denotes the coalescent history, i.e. the
set of ancestral configurations at the embedded events in a Markov process where coalescence,
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mutations or other events take place. zk denotes the current state, while z0 is the state when a
singleton ancestor is reached.

Statistical inference associated to l(y; θ) can be regarded as a missing data problem and
could, in principle, be tackled by the EM algorithm (Dempster et al. 1977) and its Monte Carlo
extensions (e.g. Fort & Moulinés (2003)). However, z, the stochastic tree, can be computationally
expensive to simulate and such techniques are typically avoided. For example, for the coalescent
(Kingman, 1982) and ancestral recombination graphs (e.g. Fearnhead & Donelly (2001)), the
standard approach is to use IS (De Iorio & Griffiths, 2004a; Griffiths & Tavaré, 1994a; Stephens
& Donelly, 2000) and SMC methods (Chen et al. 2005) to approximate (1). These approximations
are usually computed on a discrete grid ∆θ ⊆ Θ and the estimate of θ∗ corresponds to the largest
approximated likelihood on ∆θ. See also Olsson & Rydén (2008) for an alternative procedure for
state-space models.

Techniques such as ABC and composite likelihood (Wiuf, 2006) do not give solutions which
are exact w.r.t. the original model whilst, when possible, exact inference is of interest. This is
because, given a reasonable stochastic model, the approach allows investigators to exactly (up-to
a numerical error) average over the uncertainty in the tree structure when estimating genetic
parameters of interest. One of the main drawbacks of existing exact IS/SMC schemes is the
simulation of the tree backward in time, from observed data, until the tree coalesces. In many
scenarios, especially for large data sets, when getting close to the top of the tree, it often takes
a long time to coalesce. This is due to genetic parameters (e.g. mutation rates) that can be
very large relative to the size of the data. Consequently, it can take a very long time to simulate
the tree back to the MRCA. As a result, the variance of the estimate of the likelihood can be
higher than is desirable, along with long CPU times. It should be noted that the calculation of
the likelihood at these points, θ ∈ Θ, can be inferentially important. In addition, it is seldom
possible to speed up the simulation via importance sampling as the variance of the weights can
become too large. That is, by adapting the parameter of the proposal to lead to a fast coalescence,
the discrepancy between the true process and the proposal leads to a very inefficient algorithm
w.r.t. variance.

1.1 The Time Machine

The approach proposed in this paper is based on IS. Stephens & Donelly (2000) proposed a way
to use IS efficiently to simulate ancestral trees by characterizing an optimal proposal distribution
and similar methods have since been developed for a variety of genetic scenarios (e.g. De Iorio
& Griffiths (2004a,b)). The basic idea is to define an efficient proposal distribution on ancestral
histories which allows us to reconstruct Markov histories backwards in time from the sample y
to an MRCA.

We introduce a stopping time in the IS proposal, backward in time, to stop the simulation
before the MRCA is reached. Then using a simple stopped identity, forward in time we are
able to characterize the bias introduced in the evaluation of the likelihood due to stopping the
simulation of the stochastic tree. The bias can be understood by considering two aspects:

1. The underlying mixing of the evolutionary process

2. The last exit time distributions on the process.

In the context of (1), the idea is that for many models, close to the top of the tree, the process
is able to forget its initial condition. As a result, stopping the simulation is reasonable, because
the place where it is stopped is forgotten by the process forward in time; we formalize these ideas
later on. In reference to (2), the more information there is on the true marginal distributions
of the process, the more it is possible to reduce the bias. Ideas from the theory of population
genetics models (Ethier & Griffiths 1987; Ewens, 1972) will be used to achieve the latter.

In reference to a comment of Edwards (2000), our method is termed the ‘time machine’. This
is because, estimation is performed saving the simulation time of going all the way back in time
to the MRCA. A similar idea, in the context of filtering, can be found in the work of Olsson et
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al. (2008) and also in option pricing Avramidis & LÉcuyer (2006). In our context, we have a
simpler underlying process than in filtering, but the ergodicity conditions considered there do not
apply here. The mixing conditions that they require only apply locally and thus the proofs have
to be modified. Recall that approximate tools for inference from stochastic trees (e.g. Del Moral
et al. (2009), Meligkotsidou & Fearnhead (2007), Tavaré et al. (2000)) are available. However, our
approach is ‘less approximate’, in that our point-wise estimate of the likelihood is significantly
less-biased, but costing more in computational-time.

This paper is structured as follows. In Section 2 we introduce a motivating example, the
coalescent model, which will help to illustrate our ideas. In Section 3 our methodology is de-
scribed; Section 4 features an analysis of the bias of the approach; Section 5 presents a simulation
study to demonstrate the performance of our algorithm and we conclude the paper in Section
6. Appendix 1 contains some proofs, Appendix 2 details of our numerical implementations. Our
ideas are illustrated in the context of the coalescent. However, the formulation is kept as general
as possible, as the framework can be extended to other tree models, such as the infinite sites
model. In Appendix 3 we show how this can be done.

2 Motivating Example

The coalescent model is used as a motivating example for our work. Some notations are first
introduced. In particular, we consider the case in which the type space E = {1, . . . , d}n for the
collection of the n ∈ Z+ genes/chromosomes is finite and the only genetic process of interest is
mutation.

2.1 Notation

Denote by (E,E ) a measurable space. For two σ−finite measures λ1 and λ2 mutual absolute
continuity is written λ1 ∼ λ2 and the Radon-Nikodym derivative as dλ1/dλ2. Given a Markov
kernel P : E × E → [0, 1], let P 0(x, ·) = δx(·), (the Dirac measure) and write the composition
for j ≥ 1 as P j(x, ·) =

∫
P (x, dy)P j−1(y, ·), with a corresponding composition of inhomogeneous

kernels as P1:j . Write IA as the indicator of a set. For Card(E) <∞

S(E) = {P = (pij)i,j∈E : pij ≥ 0,
∑
l∈E

pil = 1 ∩ ∃ψi ≥ 0,∀i ∈ E,
∑
l∈E

ψl = 1, ψP = ψ}

denotes the class of stochastic matrices for which there exist a stationary distribution ψ. The
collection of bounded and measurable function are denoted Bb(E). The supremum norm is
written ‖f‖∞ = supx∈E |f(x)|. The total variation distance between two probability measures
λ1 and λ2 on (E,E ) is ‖λ1−λ2‖tv := supA∈E |λ1(A)−λ2(A)|. Given a probability measure λ, and
a j ∈ Z+, the product measure is written λ⊗j := λ⊗j−1×λ, λ⊗−1 := 1. The vector notation x =
(x1, . . . , xj) = x1:j is adopted. In addition, let the d-dimensional vector ei = (0, . . . , 0, 1, 0, . . . , 0)
where the 1 is in the ith position. The L1 norm of a vector is written |x1:j |1 := |x1|+ · · ·+ |xj |.
For d ∈ Z+, Td = {1, . . . , d}.

2.2 Identity of Interest

Define the tree model on the measurable space (F,F ), with F = σ(F ). Let n ≥ 2. The basic
idea is to maximize, w.r.t θ ∈ Θ, the quantity

l(y1:n; θ) =
∑
k∈Kn

∫
Fkn

πθ(z1:k)I{y1:n}×Bn+1

(
zk−1, t(zk)

)
lc(y1:n, zk−1; θ)dz1:k. (2)

where the observed data is y1:n ∈ E, t : Fn → Zdt , normally the identity, for m ∈ Z+

Bm = {x ∈ Zdt : |x1:d|1 = m}.
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and F =
⋃
k∈Kn

(
{k} × F kn

)
for some E ⊂ Fn and Kn ⊂ Z+ depending upon the model under

study. In all of our examples, πθ(z1:k) corresponds to the density of a non-decreasing (in some
sense) Markov process in discrete time, stopped at a random time k ∈ Kn; that is

πθ(z1:k) = pθ(z1)

{ k∏
j=2

pθ(zj−1, zj)

}
IBn+1{t(zk)}.

Throughout the article it is assumed that
∑
k∈Kn

∫
Fkn
πθ(z1:k) = 1, i.e. that the stopping time

is a.s. finite w.r.t πθ. The stopping time will be determined by the first time that the tree is of
‘size’ n+ 1.

Introduce an absolutely continuous distribution Qθ on F and sample (z
(i)

1:k(i)
)1≤i≤N according

to Qθ, then the IS estimator of l(y; θ) is

SN (l̃θ) =
1

N

N∑
i=1

[
πθ(z

(i)

1:k(i)
)I{y}×Bn+1

(z
(i)

k(i)−1:k(i)
)lc(y1:n, z

(i)

k(i)−1
; θ)

Qθ(z
(i)

1:k(i)
)

]
where

l̃n,θ(z1:k, k) =
πθ(z1:k)I{y}×Bn+1

(zk−1:k)lc(y1:n, zk−1; θ)

Qθ(z1:k)

and

SN (·) =
1

N

N∑
i=1

δ
z
(i)

1:k(i)

(·)

the empirical measure of the simulated samples.

2.3 The Coalescent Model

Denote the number of genes of type i at event j of the process as zij , with zj = (z1
j , . . . , z

d
j ).

The objective is to find the genetic parameters θ = (µ, P ) where µ ∈ R+ and P ∈ S(Td),
Θ = R+ × S(Td). µ is the mutation rate per chromosome per generation and mutations along
the edges of the tree occur according to a Markov chain with transition matrix P .

The various components of the identity (2) for the coalescent model are defined as:

F =
⋃
k∈Kn

(
{k} × F kn

)
Fn = {z1:d ∈ (Z+ ∪ {0})d : 2 ≤ |z1:d|1 ≤ n+ 1}
Kn = {n, n+ 1, . . . }

with t the identity function,

lc(yn1:d, z; θ) =

{ ∏d
j=1 y

n
j !

n! if yn1:d = z
0 otherwise

and finally,

πθ(z1:k) = I{z:|z|1=n+1}(zk)}
{ k∏
j=2

pθ(zj−1, zj)

}∫
pθ(z0)p1

θ(z0, z1)dz0

where

pθ(zj−1, zj) =


zij−1

|zj−1|1
µ

|zj−1|1−1+µpil if zj = zj−1 − ei + el
zij−1

|zj−1|1
|zj−1|1−1
|zj−1|1−1+µ if zj = zj−1 + ei

0 otherwise.



5

p1
θ(z0, z1) = I{z:z=2z0}(z1) and

pθ(z0) =

{
ψθ(i) if z0 = ei
0 otherwise.

Write p1
θ(z1) =

∫
pθ(z0)p1

θ(z0, z1)dz0 (here dz is counting measure). Note that for any fixed n ≥ 2,
θ ∈ Θ,

∑
k∈Kn

∫
Fkn
πθ(z1:k)dz1:k = 1. For simplicity of exposition, the results are given with only

mutation. However, they can be easily extended to the case of migration as well (e.g. De Iorio
& Griffiths (2004b)).

2.4 Likelihood Computation

To compute the likelihood, for a given θ ∈ Θ, importance sampling is adopted. An importance
distribution, Qθ, is introduced to simulate the tree backward in time to the MRCA; this ensures
that the data is hit.

In details, let x denote the reverse chain backward in time and write x ∈ Fn instead of z (this
convention is used throughout the article, see also Figure 1). Let:

Q
yn1:d
θ (x1:k−1) = I{yn1:d}(x1)

{ k−1∏
j=2

qθ(xj−1, xj)

}
I{x∈(Z+∪{0})d:x=ei,i∈Td}(xk−1)

for some Markov transition qθ; see Stephens & Donelly (2000) for the optimal Qθ. Then the
likelihood is

l(yn1:d; θ) =
n− 1

n− 1 + µ

∏d
j=1(ynj )!

n!

∑
k∈Kn−1

∫
Fk−1
n−1

pθ(xk−1)

{ k−1∏
j=2

pθ(xj , xj−1)

qθ(xj−1, xj)

}
×

Q
yn1:d
θ (x1:k−1)dx1:k−1.

The simulation proceeds by sampling from qθ(y
n
1:d, ·) and computing the weight

wθ(y
n
1:d, x2) =

pθ(x2, y
n
1:d)

qθ(yn1:d, x2)

Simulations backward in time are carried out until we reach the MRCA, i.e. when there is only
one individual in the sample. This procedure is repeated N times to provide a Monte Carlo
estimator for the likelihood

SN (l̃n,θ) =

{
n− 1

n− 1 + µ

∏d
j=1(ynj )!

n!

}
1

N

N∑
i=1

[
pθ(x

(i)

k(i)−1
)

{ k(i)−1∏
j=2

wθ(x
(i)
j−1, x

(i)
j )

}]

where (x
(i)

1:k(i)−1
)1≤i≤N are the simulated samples, x

(i)
1 = yn1:d for every i ∈ TN and

l̃n,θ(x1:k−1, k) =

{
n− 1

n− 1 + µ

∏d
j=1(ynj )!

n!

}
pθ(xk−1)

{ k−1∏
j=2

wθ(xj−1, xj)

}
.

This can be repeated for many θ using a driving value (Griffiths & Tavaré, 1994) or bridge
sampling ideas (e.g. Fearnhead & Donelly (2001)). In addition, to deal with the problem of
weight degeneracy (e.g. Doucet et al. (2001)) resampling steps can be added. See, for example,
Chen et al. (2005).
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Z3
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1:d

ρ α− 1

Figure 1: A Coalescent tree. Here there are no mutations on the tree, and B3 is the set used to
stop the simulation, backward in time (see Section 3.2). The horizontal dotted line represents
the random times ρ and α− 1.

3 Stopping the Simulation

It is now detailed how we stop the simulation of the stochastic tree back in time before the MRCA
is reached. In the next Section we provide theoretical results and connections to the theory of
SMC are established. For the purpose of stopping the simulation, introduce two stopping times
(forwards in time): the first hitting time of the set Bn+1

τ := inf{k ≥ 1 : |t(Zk)|1 = n+ 1}

and some stopping time α associated to the hitting of a set A ∈ F

α := inf{k ≥ 1 : Zk ∈ A}

such that
Pπθ (α < τ) = 1

where Pπθ is the πθ−probability. For example, in the context of the coalescent, it is suggested to
take, for m < n

α = inf{k ≥ 1 : |Zk|1 = m+ 1}.

3.1 A Stopped Identity

Let Eπθ denote the expectations w.r.t the process {Zk}. Then the likelihood (2) can be written
as

l(y1:n; θ) = Eπθ
[
I{y1:n}×Bn+1

{Zτ−1, t(Zτ )}lc(y1:n, Zτ−1; θ)

]
and applying the strong Markov property we have

l(y1:n; θ) = Eπθ
[
E
(
I{y1:n}×Bn+1

{Zτ−1, t(Zτ )}lc(yn1:d, Zτ−1; θ)

∣∣∣∣Zα)]
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that is,

l(y1:n; θ) =
∑
α

∫
πuθ (zα)

[∑
τ

∫ { τ∏
i=α+1

pθ(zi−1, zi)

}
lc(yn1:d, zτ−1; θ)×

I{y1:n}×Bn+1
{zτ−1, t(zτ )}dzα+1:τ

]
dzα (3)

where

πuθ (zα) =

∫
p1
θ(z1)

{ α∏
i=2

pθ(zi−1, zi)

}
I(Ac)α−1×A(z1:α)dz1:α−1.

The equation (3) will be the starting point for constructing our biased estimates of the likelihood
function.

3.2 Coalescent Model

Consider the coalescent model. Specifically, define, for n > m ≥ 3 the stopping time α

α = inf{k ≥ 1 : Zk ∈ Bm+1}

which is the first time the forward process has m+ 1 individuals.
Using equation (3), we have

l(y1:n; θ) =

∞∑
α=m

∞∑
τ=α+n−m

∫
πuθ (zα)

[ ∫ { τ∏
i=α+1

pθ(zi−1, zi)

}
lc(yn1:d, zτ−1; θ)dzα+1:τ

]
dzα. (4)

In words this means that to have m + 1 chromosomes, we need a minimum of m steps in the
process and τ has to be at least n−m+ α steps.

In this case, write

πuθ (zα) =

∫
ψθ(z1)

{ α∏
i=2

pθ(zi−1, zi)

}
IBm×Bm+1(zα−1:α)dz1:α−1

Note this is well-defined due to the fact that the size of the population is non-decreasing, and
then, for any α ∈ Km

πuθ (zα) =

∫
IBm+1

(zα)πeθ(zα−1)pθ(zα−1, zα)dzα−1

where

πeθ(zα−1) =
m− 1 + µ

m− 1

∫
p1
θ(z1)

{ α−1∏
i=2

pθ(zi−1, zi)

}
pθ(zα−1, u)IBm×Bm+1

(zα−1, u)dz1:α−2du.

That is, given α, the distribution of the chromosome counts at the first entrance time of Bm+1

can be written as the composition of:

• the distribution of the counts at the last exit time from Bm

• and the Markov transition.

Returning to the likelihood (4) and making the substitutions, α′ = α − 1, η = τ − α′ + 1, it
thus follows that

l(y1:n; θ) =

∞∑
η=n−m+2

∞∑
α′=m−1

∫
πeθ(zα′)IBm+1

(zα′+1)

{ η+α′−1∏
i=α′+1

pθ(zi−1, zi)

}
×

I{yn1:d}×Bn+1
(zη+α′−2:η+α′−1)lc(yn1:d, zη+α′−2; θ)dzα′:η+α′−1.
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Here η is the time from the last time there are m chromosomes to n+ 1 chromosomes. Now set

ρ = inf{k ≥ 1 : |Xk| ∈ Bm}.

In other words the simulation is stopped the first time there are m chromosomes. Our approxi-
mation of the likelihood is then

lb(y1:n; θ) =

∞∑
ρ=n−m+2

∫
hθ(xρ)

{ ρ∏
i=2

pθ(xi, xi−1)

}
I{yn1:d}×Bn+1

(x2:1)lc(yn1:d, x2; θ)dx1:ρ.

On the basis of the above analysis, it is then clear that if

hθ(x) =

∞∑
α=m−1

∫
πeθ(zα)I{zα}(x)dzα (5)

then the approximation of the likelihood is exact. That is, to minimize the bias an approximation
of the true distribution of the counts at the last time there are m chromosomes should be used.
The ideas and notation are clarified in Figure 1.

4 Results on the Bias

In our biased simulation, using the decomposition (3), the procedure will approximate

lb(y1:n; θ) =
∑
ρ

∫
hθ(xρ)

{ ρ∏
i=2

pθ(xi, xi−1)

}
I{yn1:d}×Bn+1

(x2:1)lc(yn1:d, x2; θ)dx1:ρ

where our notation is such that:

•
(
Xk

)
k≥1

is the time reversed process

• ρ is a first hitting time associated to
(
Xk

)
k≥1

• hθ an approximation of a marginal probability.

4.1 Error Bounds

We begin by giving a simple result on the error bounds for SMC algorithms. The result applies
to the standard IS algorithms, for example in De Iorio & Griffiths (2004b), Stephens & Donelly
(2000), and for the SMC algorithms as in Chen et al. (2005). The simulation is to be performed
backward in time, as in Section 2.4. The ideas here are adapted from the theory of Del Moral
(2004).

The biased estimates are denoted as SNb (l̃n,θ), N ≥ 1, where l̃n,θ depends upon whether IS
or SMC is implemented. For example, in the IS case:

l̃n,θ(x1:ρ, ρ) =

hθ(xρ)

{∏ρ
i=2 pθ(xi, xi−1)

}
I{yn1:d}×Bn+1

(x2:1)lc(yn1:d, x2; θ)

Qθ(x1:ρ)

where

Qθ(x1:ρ) = I{yn1:d}×Bn+1
(x2:1)

{ ρ−1∏
i=2

qθ(xi, xi+1)

}
I(Ac)ρ−1×A(x1:ρ)

is such that A is the set associated to ρ ≥ 3 (Qθ−a.s.), x1, x2 /∈ A and
∑
ρ

∫
Qθ(x1:ρ)dx1:ρ = 1.

Below expectations w.r.t the stochastic process that is simulated by the algorithm are written as
E and it is assumed

‖l̃n,θ(x1:ρ, ρ)‖∞ < +∞ ∀θ ∈ Θ.
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Proposition 1. For any n ≥ 2, p ≥ 1, θ ∈ Θ, y1:n, there exists a Bp,n(θ) < +∞ such that:

E[|SNb (l̃n,θ)− l(y1:n; θ)|p]1/p ≤ Bp,n(θ)√
N

+ |lb(y1:n; θ)− l(y1:n; θ)|.

Remark. The result shows the standard variance-bias type decomposition. That is, Bp,n(θ)/
√
N

can be thought of as a bound on the variance and |lb(y1:n; θ)− l(y1:n; θ)| is the bias. Our estimate
converges to lb(y1:n; θ), and it is sought to control the bias term, which, in our case can be
approximately written in the form

|lb(y1:n; θ)− l(y1:n; θ)| = |[λ1 − λ2](P1:k(f))| (6)

for λ1, λ2 two probability measures and {Pn} a sequence of non-homogenous Markov kernels (θ
is suppressed on the R.H.S).

4.2 Controlling the Bias

A simple technical result is now given which shows how to control the bias term (6).
Some assumptions are now made, that can be satisfied by many stochastic tree models. In-

troduce a sequence of time inhomogeneous Markov kernels {Pn}, on space (R,R) and a sequence
of sets

(
{Cn : n ≥ 0, Cn ∈ R}

)
n≥0

.

(A1) Stability of {Pn}.

(i) Initial Probability Measures. λ1, λ2 are concentrated on C0.

(ii) Absorption of {Pn}. For every n ≥ 1, x ∈ Cn−1 we have

Pn(x,Cn) = 1. (7)

(iii) Local Mixing of {Pn}. For every n ≥ 1, there exist εn ∈ (0, 1), νn concentrated
on Cn, such that for all x ∈ Cn−1

εnνn(·) ≤ Pn(x, ·) ≤ 1

εn
νn(·). (8)

The assumption (A1) (which is comprised of (i)-(iii)) will refer to the fast mixing of the
process close to the top of the tree. The absorption type assumption refers to the birth process
associated to coalescent type chains.

Proposition 2. Assume (A1). Then, for any k ≥ 1, define:

ϑk :=
2

ε21 log 3

k∏
i=2

1− ε2i
1 + ε2i

and we have
‖[λ1 − λ2]P1:k‖tv ≤ ϑk‖λ1 − λ2‖tv.

Remark 1. The result helps to bound the bias as

|[λ1 − λ2](P1:k(f))| ≤ ‖f‖∞‖[λ1 − λ2]P1:k‖tv.

Essentially, the fast mixing of Pn within the domain it is constrained to allow the composition
of kernels to forget its initial distribution at an exponential rate. In addition, as in Olsson et
al. (2008), assuming εn is uniform in n, the benefits of stopping, in terms of variance/bias trade
off can be substantial.
Remark 2. One point of interest in the sequel is that, if the mixing condition (A1) does not
hold, it is possible to establish a similar bound when the initial measures λ1 and λ2 are similar.
That is to say, when λ1 ∼ λ2 and ∃ε ∈ (0, 1) such that

ε ≤ dλ1

dλ2
≤ 1

ε
.

This is unsurprising as it implies that if the kernels do not mix, we need to ‘match’ λ1 and λ2

for the bias to be small.
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4.3 Verifying the Assumptions

(A1) is now discussed in the context of the coalescent. Note that the results follow, with some
extra work, for coalescent processes with migration. Readers interested in how the method may
be applied can skip to Section 5, with no loss in continuity.

Suppose that the transition matrix P satisfies, for any i, j ∈ {1, . . . , d}, εϕ ∈ (0, 1) and
probability ϕ, ϕj > 0

εϕϕj ≤ pij ≤ ε−1
ϕ ϕj .

This condition implies that P mixes extremely quickly. Let C0 = {z1:d : |z1:d|1 = 3}; this
corresponds to the space of λ1 = πeθ . Also let C1 = {z1:d : 3 ≤ |z1:d|1 ≤ 6}. It is clear that
p3
θ(x,C1) = 1: since we start with at most 3 chromosomes and the most possible after 3 steps is

6. Now it can be seen that, for any z ∈ C0

p3
θ(z, ·) ≥ ε1ϕ⊗3(·)

and
p3
θ(z, ·) ≤ ε−1

1 ϕ⊗3(·)

with

ε1 = 6

[
3εϕ
[

inf
i∈{1,...,d}

ϕ(i)
]( µ

µ+ 2

)2]3

.

Here the minorising probability ν = ϕ⊗3 puts all its probability on having 3 chromosomes. Then it
can be subsequently seen that p6

θ satisfies condition (8), with C2 = {z1:d : 3 ≤ |z1:d|1 ≤ 12, ni ≥ 0}
and so fourth. In effect the condition (8) holds with εn → 0; that is, the closer to the top of the
tree we stop, the faster the process will mix forward in time.

As a result, to bound the bias we can write it, approximately, in the form, for r > n−m+ 1

M(r)‖λ1 − λ2‖tv
[ r∑
k=n

ξk/l +R(r)

]
with λ1 as in (5), λ2 = hθ, M(r), R(r) ∈ (0,∞), l ∈ {1, . . . , k} is associated to the fact that we
need to iterate the kernels to satisfy (8) and ξ ∈ (0, 1). r is an integer big enough (say 100000)
where we suspect that the possibility of generating a tree of length n and hitting the data is
extremely small, so we can neglect the upper term. Thus, approximately, the bound shows that
the bias falls geometrically as we stop closer to the top of the tree. Note, however, it cannot go
to zero unless λ1 and λ2 are equal. To an extent, finding good approximations is more difficult
than being able to stop the tree, which is why we focus on this.
Remark 1. The result given here mirrors one proved by Donelly & Kurtz (1999) for Fleming-
Viot models. In Theorem 9.4 of that paper they show that the particle process is uniformly ergodic,
if the mutation process is. This is very similar to the property established above.
Remark 2.The information, in terms of when to stop the simulation, that is contained in the
bound on the bias is as follows. If the mutation process mixes quickly, as above, then the bias
falls at a geometric rate: we should stop the simulation when the process starts to mutate many
times. This could be measured in terms of the effective sample size (e.g. Liu (2001)), if trees are
simulated in parallel, or alternatively, if µ

M ≥ n, for M ∈ Z+ a large multiple of the current size
of the tree.
Remark 3. In terms of the expression ‖λ1 − λ2‖tv, one could adopt a parent-independent
mutation (PIM) marginal. If we have

sup
x
‖pθ(x, ·)− pθ,m(x, ·)‖tv ≤ sup

i,j
|pij − φj | = %

where pθ,m(x, ·) is the transition for the PIM, and the mutation vector is φj, then ideas from
perturbed Markov chains (e.g. Mitrophanov (2005)) can be adopted to determine a quantitative
bound. We are currently investigating a meaningful bound.
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5 Simulations

5.1 Experiment Set-Up

To illustrate our approach, we consider three simulation scenarios: two PIM models and one
parent dependent mutation model (PDM). The two PIM models, denoted PIM 0.5-0.5 and PIM
0.1-0.9 are based on the following per-locus transition matrices:(

0.5 0.5
0.5 0.5

)
, and

(
0.1 0.9
0.1 0.9

)
respectively,

while the per-locus mutation probability matrix underlying the PDM model is(
0.5 0.5
0.1 0.9

)
.

In all three scenarios, the initial population was set to 100 sequences and we considered a single-
locus case (i.e. with 2 possible types). For the PDM model only, we also considered the case
of 10 loci (i.e. 210=1024 different types). Irrespective of the number of loci considered, the
distribution of the 100 initial sequences among the different types was sampled from a multinomial
distribution with a probability vector P defined as the invariant point, solution of equation,
P(2n×1) = P(2n×1)T(2n×2n), where n denotes the number of loci considered and T is the full
mutation probability matrix.

The algorithm description is given in Appendix 2. For the function hθ, we use the distribution
of an un-ordered sample from a PIM model (which, even for the PIM cases, is not the correct
distribution in the bias term).

5.2 Simulation Results

Simulations were carried out until there were TM = 1, 2, 5, 10, 25, 50 sequences left in the popula-
tion. TM = 1 exactly corresponds the approach in Stephens & Donelly (2000) and is subsequently
referred to as SD. For each simulation, we examined 60 values for µ ranging from 0.1 to 30.1.
We report in Figure 2 the estimated log-likelihood distribution, based on 100,000 samples for all
four simulations scenarios (presented in lines) and three values of µ (presented in columns).

In Figure 2 it is clear that as expected, uniformly across the values of µ, the closer to the
MRCA the algorithm is stopped, the more accurate the distribution of the likelihood is estimated.
However, up to TM 10% (and even TM 25% for µ > 20) our results suggest that the time machine
approximation and correction provides an accurate estimate of the distribution of the likelihood.
Conversely, when the algorithm is stopped too early (TM ≥ 25%) the biased estimator underlying
the time machine approach leads to very inaccurate estimates of the likelihood. For even more
extreme cases (TM 50% for µ = 0.1), this results in a highly shifted estimated distribution of
the likelihood.

The above observations are also reflected in the mean likelihood (Figure 3). For every model
considered here, the simulations of the time machine up to TM 25% seem to provide estimates
of the mean likelihood that are similar to the SD approach, although for larger values of µ, TM
25% seems to overestimate the mean likelihood. Furthermore, the time machine approach seems
to accurately locate the value of µ maximizing the likelihood for TM≤ 10%, and to provide
acceptable approximations for for this when TM> 10%, regardless of the simulation scenario.

In Figure 4, the average computation time per iteration is plotted as a function of µ for
the PDM-10 loci simulations. Results for all other models led to the same conclusions and are
therefore not shown. From this figure, the computation time appears to be a linearly increasing
function of µ: increasing the mutation rate naturally decreases the probability of simulating a
coalescent event and therefore tends to increase the time to reach the MRCA (or any population
size). However, it seems that stopping the simulation when there are only more than 5 sequences
left in the population drastically reduces the computation time: for TM 5% the simulation run
is on average more than twice as fast as the SD simulation, and for TM 25%, the time machine
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(d)- PDM 10 loci Simulation

SD TM 50% TM 25% TM 10% TM 5% TM 2%

Figure 2: Estimated distribution of the likelihood for the four simulation scenarios and for three
values the mutation rate µ = 0.1, 10.1 and 10.1. In each model, results are presented for the six
stopping times in the simulation of the genealogical tree. Plots are based on 100,000 samples.

is more than 3 times more time-efficient than the SD algorithm. It should also be noted that
‘large’ values of µ (around 10), for which the time savings are most significant, also seem to be
inferentially important (see the fourth panel of Figure 3).

In Figure 5 the relative standard deviation across our 100 repeats of the algorithm, of the
time machine to SD are plotted for all the scenarios considered. It can be seen, as expected, that
there is some variance reduction and, for example for the TM 5% PDM, the variance reduction
is of the order 1.5.

On the basis of our experiments, combining both computational efficiency and the numerical
accuracy, the use of the time machine with TM 5% is an efficient alternative to the SD algorithm.
The C++ code is available upon request from the third author.

6 Summary

In this paper we have considered a new approach for simulation of stochastic trees and likelihood
calculation of sample probabilities in population genetics models. The approach consists in
stopping the backward simulations before the top of the tree is reached. We have provided
theoretical results on the bias introduced in the estimation of the likelihood. Some extensions to
our work are described below.

Firstly, to extend our analysis to different models. The paper has been written to facilitate
such analysis and we believe it is rather simple to deal with other stochastic tree models. Also,
some further empirical investigations would help support the simulations and theoretical analyses
presented here. Our methodology would be further enhanced with GPU technology (e.g. Lee et
al. (2010)), and this is one area that we are currently investigating.

Secondly, to look at the consistency (in a likelihood sense) of our biased Monte Carlo esti-
mator. As we observed in Section 5, it appears that the Time Machine seems to recover the
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Figure 3: Estimated likelihood for the four simulation scenarios as a function of the mutation
rate µ. Plots are based on 100,000 samples.
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Figure 4: Average computation time as a function of the mutation rate µ. Figures are based on
100,000 samples.

maximum likelihood estimator. Therefore consistency, or potential asymptotic bias is of genuine
interest. There are very few results in the context of consistency, due to the dependency in the
data, after integrating out the tree. That is, it is difficult to apply uniform laws of large numbers
to complex dependency structures. None-the-less, we suggest the work of Douc et el. (2004),
Fearnhead (2003), Olsson et al. (2008), Olsson & Rydén (2008) as possible starting points for a
proof.

Thirdly, the time machine can be used in the context of Markov chain Monte Carlo (MCMC).
If one is interested in Bayesian parameter inference, then a stopping-time SMC algorithm can
be used within an MCMC algorithm (particle MCMC (Andrieu et al. 2010)). Significant time
savings per iteration can be gained by using the time machine; see Jasra & Kantas (2010) for
some details.
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Appendix 1: Proofs

We give the proofs of Propositions 1 and 2.

Proof of Proposition 1. In the case of IS, the result follows by adding and subtracting lb(y1:n; θ)
applying Minkoswki and the Marincinkiewicz-Zygmund inequality. In the case of the SMC algo-
rithm the proof follows from the fact that the algorithm approximates a multi-level Feynman-Kac
formula; see Chapter 12, Proposition 12.2.3 Del Moral (2004). Note that this point is appar-
ently over-looked in Chen et al. (2005), and such a result helps to verify the convergence of the
algorithm. In addition, note that the Proposition 12.2.3 of Del Moral (2004) does not depend
on the importance weights being upper-bounded by 1. Hence, due to the boundedness of the
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weights, the same proof as for IS applies, except the Lp bound for particle approximations of
Feynman-Kac formulae is used instead of the Marincinkiewicz-Zygmund inequality.

Proof of Proposition 2. The proof is fairly simple and combines the proof of Lemma 3.9 and
Theorem 4.1 of Le Gland & Oudjane (2004) (see also Theorem 3.1 of Tadić & Doucet (2005)).
The idea is to use the contraction property of the total variation distance and Hilbert metric, as
well as the relation between the two (see Lemma 6.1 of Tadić & Doucet (2005)).

The only real complication is using the local mixing condition (8) to derive a bound on the
Radon-Nikodym derivatives

d(λ1P1:k)

d(λ2P1:k)
,
d(λ2P1:k)

d(λ1P1:k)
.

Consider λ1P1:k, clearly

λ1P1:k−1(ICk−1
Pk(f)) ≤ 1

εk
νk(f).

In addition
λ1P1:k−1(ICck−1

Pk(f)) = 0.

Since
λ1P1:k(f) ≥ εkνk(f)

it follows that
d(λ1P1:k)

d(λ2P1:k)
≤ 1

ε2k
.

The proof can then be concluded by following the arguments of Le Gland & Oudjane (2004),
Lemma 3.9 and Theorem 4.1.

Appendix 2: Algorithm Description

Let xt = (x1,t, . . . , xd,t), t ∈ Z+, the population size within each of the d states at time t. The
algorithm will simulate backward in time genealogical trees for an initial population, x1 the
(d−dimensional) counts associated to the observed data, until there are NTM sequences left in
the population. The case where NTM=1 corresponds to ordinary coalescent and NTM > 1 to
the time machine. Most of the notations can be found in Sections 2.1 and 2.2.

Iterative algorithm

For any generation t, there are |xt|1 sequences left in the population, the following steps will be
iterated until |xt|1=NTM :

1. Sampling the type of the offspring sequence (i) with probability

xi,t
|xt|1

.

2. Getting the type of the ancestor sequence (j).
A sequence of a given type i can have arisen from an ancestor sequence of type j through:

(a) a coalescent event with a probability proportional to

|xi,t| − 1.

(b) a j to i mutation event (inclusive of self mutations, from type i to type i), with
probability proportional to:

µκijpji, (9)
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where

κij =


xj,t + µψj
|xt|1 − 1 + µ

if j 6= i

xj,t − 1 + µψj
|xt|1 − 1 + µ

if i=j

,

3. Updating the population sizes within each type.

xt+1 =

 xt − ei + ej if a mutation has occurred

xt − ei if a coalescent event was simulated
,

4. Calculate the contribution to the likelihood of the simulated event (suppressing the sub-
script θ)

wt =


K1

K2

κii
κij

xj,t+1

|xt|1
if a mutation has occurred

K1

K2

1

κii

xi,t+1(|xt+1|1 − 1)

xi,t(xi,t − 1)
if a coalescent event was simulated

, (10)

where
K1 = |xt|1(|xt|1 − 1 + µ),

and
K2 = |xt+1|1(|xt+1|1 − 1 + µ).

5. Updating the log likelihood

Wt =

 log(wt) if t=0

Wt−1 + log(wt) it t ≥ 1
(11)

6. Assessing the stopping criterion.
When the time machine is used (i.e. NTM > 1), steps 1 to 5 are repeated until |xt+1|1 >
NTM . Otherwise, when the full tree is simulated (NTM=1), steps 1 to 5 are repeated until
there are 2 sequences left in the population. Then, mutations are simulated until both
remaining sequences are of the same type, based on the following three steps:

(a) Choose one of the two sequence, of type i, with probability 0.5.

(b) Simulate the mutation event from an ancestor of type j (to type i) according to the
probability defined in equation (9), and setting the coalescent probability to 0.

(c) Calculate the corresponding weight for the sampled j to i simulated transition. At
this final stage there are only two individuals in the population (|xt|1 = |xt+1|1 = 2),
hence K1 = K2, and xi,t = 1, then:

κii
κij

=
µψi

xj,t + µψj
.

When the final generation is reached xj,t+1 = 2, and xj,t+1 = 1 for any other iterations
in that step. The weight for each generation, derived from (10) is then defined as:

wt =


µψi

xj,t + µψj
at the last generation

µψi
2(xj,t + µψj)

otherwise

(d) Update the likelihood according to equation (11)
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Estimating the bias

This step is specific to the time machine (i.e. if NTM ≥ 1). Recalling that ρ is the generation at
which the iterative algorithm was stopped, the bias induced by stopping the simulation before
reaching the MRCA is estimated as:

log(b) = log

(
(|xρ|1)!Γ(µ)

Γ(µ+ |xρ|1)

)
+

d∑
i=1

log

(
Γ(xi,ρ + µψi)

(xi,ρ)!Γ(µψi)

)
,

where Γ denotes the gamma function. The likelihood of the tree is then updated

Wρ+1 = Wρ + log(b).

Estimation of the likelihood

The above algorithm is independently repeated N times, the estimate of the log-likelihood is

log

{
1

N

N∑
i=1

eW
(i)−W̃

}
+ W̃ ,

where W (i) is the value of the final weight for sample i and W̃ = max1≤i≤N W
(i).

Appendix 3: Infinite Sites Model

We now consider our results in the context of the infinite sites model. We concentrate upon
likelihoods associated to rooted genealogical trees; see Ethier & Griffiths (1987) or Griffiths &
Tavaré (1995) for more details.

The Model

The model is based upon the simulation of distinct DNA sequences, and the multiplicity of the
sequences. In more details, the simulation begins with a single DNA sequence x1 = (0), and
counts n1 = 2. The process can then undergo a mutation (rate µ) or a split. If a mutation occurs
(to the first sequence say) we have the new state x1 = (1, 0), x2 = (0) and n = (1, 1), otherwise
the new state is x1 = (0) and n1 = 3.

The key point is that new mutations introduce a new site (that is a new integer number
(which is larger than all others currently present) to the start of a selected sequence) and hence
DNA sequence, whilst splits only increase the number of an existing sequence. The state-space
consists of the d−distinct sequences (vectors of potentially different length sequences x1, . . . , xd)
and the respective counts (n1, . . . , nd) of the sequences that have been simulated. That is, in the
previous notation

zi = ((x1:d)i, (n1:d)i).

The simulation stops, as before, when |(n1:d)k|1 = n+ 1. In general, transitions are governed by
the following Markov kernel. A mutation (rate µ), at time j − 1, of the lth sequence occurs with
probability

1

|(n1:d)j−1|1
µ

|(n1:d)j−1|1 − 1 + µ

and a split of the lth sequence occurs with probability

|(n1:d)j−1|1 − 1

|zj−1|1
|(n1:d)j−1|1 − 1

|(n1:d)j−1|1 − 1 + µ

see Ethier & Griffiths (1987) and Griffiths (1989) for details on the transition dynamics.
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In this scenario, the state-space is more complicated. Let

Ed,r1:rd = {(r1, . . . , rd) ∈ (Z+ ∪ {0})d, (x1
1:r1 , . . . , x

d
1:rd

) ∈ (Z)r1 × · · · × ((Z)rd) :

x1
1:r1 6= · · · 6= xd1:rd

, i ∈ Td, xi1 > · · · > xiri = 0}

here ri are the lengths of the distinct sequences, and the ordering constraint notes that the
discovery of a new site is added to the beginning of the segment vector. In addition, let

Fn,d = {n1:d ∈ (Z+)d ∩ 2 ≤ |n1:d|1 ≤ n+ 1}

En =
⋃

dn∈Tn+1

{dn} × Edn,r1:rdn
× Fn,dn

then
F =

⋃
k∈Kn

{k} × Ekn.

There are three trans-dimensional aspects to the state-space; the time to simulate n+1 sequences;
the number of distinct sequences and the respective lengths of the distinct sequences (which is
determined in part by the first two aspects).

The Bias

For the infinitely-many-sites model, we will use the idea of the first time the number of segregating
sites is m (or mutations here) to stop the simulations backward in time. In a similar manner
to Section 3.2, it can be established that we want the approximating function hθ(·) to be the
marginal of the process at the last time we have m segregating sites.

In the context of the infinitely-many-sites model, the bias is controlled by our ability to
approximate this marginal (see Remark 2 in Section 4.2). This is because the Markov transitions
can only change the multiplicity of counts, or increase the number of distinct sequences; we are
unable to change the beginning of sequences. As a result, it is not possible to establish conditions
such as (A1).

Approximating the Marginal

We propose the following approximation of the marginal, based upon the theoretical properties
of such models (Ethier & Griffiths, 1987;Griffiths, 1989) and the relation to the infinitely-many-
alleles model (e.g. Griffiths (1979) and the references there-in). Let us consider the marginal
distribution, call it ξθ. We extend the state-space to include uncertainty on d, the number of
distinct types, c = |n1:d|1 and s the number of segregating sites, and adopt the decomposition

ξθ(z1:d, d, s, c) = ξθ(x1:d|d, s)ξθ(n1:d|d, c)ξθ(d|c)ξθ(s|c)ξθ(c).

Now, under certain conditions, there are results about the exact densities ξθ(n1:d|d, c) (Ewens,
1972) and ξθ(d|c) (Watterson, 1975). In the case ξθ(s|n), as noted by Griffiths (1979), for large
populations (such that diffusion results can apply) the infinitely-many-sites and infinitely-many-
allele frequencies are not too different. Therefore, we propose to use the probability (as in Ewens
(1972))

ξθ(d|c) =
µdΓ(µ)

Γ(µ+ c)
|S(d)
c |

with S
(d)
c are Stirling numbers of the first kind.

For the quantities ξθ(x1:d|d, s) and ξθ(c), we use approximations. For the former, a uniform
distribution is adopted

ξθ(x1:d|d, s) =

( ∑
m1,...,ms∈Cd,s

[ s∏
i=1

(
d

mi

)])−1
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where

Cd,s := {m1:s : mi ∈ {0, . . . , d},m1 + · · ·+ms ∈ C̄d,s}

C̄d,s := {d− 1, . . . ,

d−1∑
j=0

(s− j)}.

That is, it is a simple task in combinatorics to show that if there are s mutations with m1:s

repetitions of mutations 1 to s, (subject to the constraint that each mutation can only occur at
most once in each sequence and that order of allocating a mutation does not matter) then there
are

s∏
i=1

(
d

mi

)
possible sequences; summing over all the possible multiples yields the desired cardinality of the
state-space. ξθ(c) is not known (except as the marginal of a recursion (as in Ethier & Griffiths
(1987))) and is assigned Pois(nj/θ) (Poisson) distribution (at time j).

In practice, it may not be possible to evaluate some of these quantities and a further Monte
Carlo simulation/numerical approximation (for the integral over s and the normalizing constant
of ξθ(x1:d|d, l)) will be required. That is to say, we set

hθ(z1:d) = ξ̂θ(z1:d).

The approximation will be different for every simulated sample.
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[10] Douc, R., Moulines, É. & Rydén, T. (2004). Asymptotic properties of the maximum
likelihood estimator in autoregressive models. Ann. Stat., 32, 2254–2304.

[11] Doucet, A., De Freitas, J. F. G. & Gordon, N. J. (2001). Sequential Monte Carlo
Methods in Practice. Springer: New York.



21

[12] Edwards, A. W. F. (2000). Discussion of Stephens & Donnelly. J. R. Statist. Soc. Ser. B,
62, 640.

[13] Ethier, S. N. & Griffiths, R. C. (1987). The infinitely many sites model as a measure-
valued diffusion. Ann. Probab., 15, 515–545.

[14] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Pop. Biol.,
3, 87–112.

[15] Fearnhead, P. (2003). Consistency of estimators of the population-scaled recombination
rate.Theor. Pop. Biol., 64, 67–79.

[16] Fearnhead, P. & Donelly, P. (2001). Estimating recombination rates from population
genetic data. Genetics, 159, 1299–1318.
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