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Abstract
Sequential Monte Carlo analysis of time series provides a direct approach to evaluating approximate

model marginal likelihoods for model comparison. We exemplify this in studies of dynamic bacterial
communication in systems biology, where a long sequence of state vectors follow a complicated nonlinear
dynamic model with several defining biochemical parameters. MCMC methods do not mix well in
these contexts, and do not lead easily to reliable estimates of model marginal likelihood. We develop
an auxiliary particle filtering algorithm that simultaneously updates latent states and fixed parameters.
Our algorithm takes advantage of distributed computing to carry forward a huge number of particles
to ensure accuracy of the estimates. Marginal likelihood computation is developed and illustrated in
evaluation of relevance of selected model components.

Key Words: Distributed Computing, Dynamic Network Models, Marginal Likelihood, Model Com-
parison, Particle Filtering, Systems Biology

1. Introduction

Systems biology studies of dynamic cellular networks aim to develop mechanistic models of
intra-cellular, biochemical interactions, often via differential equations overlaid on assumed
biochemical networks [e.g., Bornholdt, 2005, Wilkinson, 2006]. Interest in such models is tied
to developments in single-cell studies, in which data is generated on expression of genes or
proteins in individual cells over time using time-lapse fluorescent microscopy [Elowitz et al.,
2002, Rosenfeld et al., 2005, Wang et al., 2009]. Such experiments have potential to develop
centrally in studies of natural biological systems as well as via synthetic biology – the latter in-
volving engineering of networks with well-defined function, providing opportunity for controlled
experimentation and design [Tan et al., 2007].

Formal statistical model assessment is really just beginning in this new field. Single cell
time series data is as yet extremely limited – in terms of numbers of genes measured and time
resolution – due to experimental limitations. Models of any realistic complexity contain many
parameters and current data are unlikely to be informative about many of them. Assessing
model forms is therefore challenging, while representing much of excitement and potential of
emerging technologies to aid in identifying bionetwork structure.

We explore some of these issues a synthetic network model in bacterial cells [Tanouchi
et al., 2008]. We develop discrete-time statistical dynamic models inspired by biochemical
models of the regulatory gene network. These models incorporate noise “intrinsic” to biological
networks as well as approximation and measurement errors, and provide the opportunity to
formally evaluate the capacity of single cell data to inform on biochemical parameters and
network structure. The primary focus is on sequential Monte Carlo (SMC) methods for model
fitting, and Bayesian model assessment based on running multiple candidate network models
in parallel. The ability to define effective SMC analyses requires propagation over time of very
large numbers of particles in the combined space of parameters+state variables, and this is
enabled by our development of efficient distributed/parallel implementations of SMC.
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2. Bayesian Inference for State-Space Models

In this paper we focus on a Markovian, nonlinear, non-Gaussian state-space model with infre-
quent observations:

Prior: π(θ)π(x0|θ),
System Evolution: xt ∼ p(xt|xt−1, θ), for t ≥ 1,
Observations: yt ∼ p(yt|xt, θ), for t ∈ t1, t2, . . . , tK .

We denote by x0:T := {x0, x1, . . . , xT } the latent states and yt1,t2,...,tK := {yt1 , yt2 , . . . , ytK}
the set of observations made at times 0 < t1 < t2 < . . . < tK = T . θ is a set of parameters
that governs the model dynamics. The prime objective of our study is to be able to answer
questions in terms of the model parameters θ in a Bayesian setting – in particular learning the
posterior distribution p(θ|yt1,t2,...,tK ) and performing model comparisons.

2.1 Markov Chain Monte Carlo Methods

We briefly discuss here an MCMC algorithm for the state-space model mentioned above. A
general strategy is to iterate through the following set of complete conditionals:

x0:T ∼ p(x0:T |θ, yt1,t2,...,tK ) and θ ∼ p(θ|x0:T , yt1,t2,...,tK ).

For the linear, Gaussian case it is possible to perform block updating of (x0:T |θ, yt1,t2,...,tK )
using Forward Filtering Backward Sampling [Carter and Kohn, 1994, Frühwirth-Schnatter,
1994]. For a general nonlinear/non-Gaussian model blocked Gibbs updating is not possible;
one strategy is to devise an approximate FFBS using local linearization/mixture of Gaussians
to sample x0:T and use that as a proposal in a Metropolis-Hastings step. Two main issues with
this strategy are the following:

• As the length of the time-series x0:T increases the performance of the approximate FFBS
degrades. As a result the Metropolis-Hastings acceptance rate falls quickly.

• For large T , p(θ|x0:T , yt1,t2,...,tK ) becomes highly concentrated, therefore the MCMC mixes
very poorly.

This introduces high autocorrelation among the MCMC samples and therefore to a poor effec-
tive sample size for estimating the parameters. We further illustrate this with our example.

2.2 Sequential Monte Carlo

For a general state-space model with infrequent observations we devise an auxiliary particle filter
with simultaneous updating of states xt and parameters θ. Sequentially updating p(xt, θt|Dt)
in particulate form leads to Monte Carlo samples from the target posterior, here Dt is the
information set at time t. The subscript t on θ indicates they are samples from time t posterior,
not that they are time varying. The inherent degeneracy in model parameters associated with
sequential importance sampling is addressed as follows:

Let θt = (φt, ψt) where there exists a conditional sufficient statistic st for φt but where ψt
does not yield any such structure. We write the time t posterior for the (xt, θt, st) as follows:

p(xt, φt, st, ψt|Dt) =
∫
p(φt|st) p(st|st−1, xt, Dt) p(xt, dst−1, ψt|Dt). (1)

Given a sample from p(xt, st−1, ψt|Dt), st is updated in a deterministic way: st = S(st−1, xt, yt)
and subsequently φt is sampled from p(φt|st). This provides an exact way of replenishing
particles in φ space [Storvik, 2002, Fearnhead, 2002, Johannes and Polson, 2007, Carvalho



et al., 2009] . For regeneration of ψt we resort to kernel smoothing [Liu and West, 2001]. For
tk−1 < t ≤ tk Bayes’ theorem gives:

p(xt, st−1, ψt|Dt) ∝
∫
p(ytk |xtk , φtk−1, ψtk)1(t=tk) p(xt, dφt−1, st−1|ψt, Dt−1) p(ψt|Dt−1). (2)

Liu and West [2001] suggest fitting a smooth kernel density to {ψ(i)
t−1}Mi=1 with shrinkage in

locations and regenerate ψt from that density p(ψt|Dt−1). If ψ̄t−1 and Σ(ψt−1) are respectively
the sample mean and covariance matrix of {ψ(i)

t−1}Mi=1, the shrinkage and particle regenerations
are given by

µ
(i)
t−1 = aψ

(i)
t−1 + (1− a)ψ̄t−1 and ψ

(i)
t ∼ N(µ(i)

t−1, κ
2Σ(ψt−1)), i = 1, 2, . . . ,M. (3)

Smoothness of the kernel density is determined by a discount factor δ; a = (3δ − 1)/2δ and
κ2 = 1 − a2. Liu and West [2001] further suggests using an auxiliary variable to reduce
degeneracy. For tk−1 ≤ t < tk we use a strategy of looking ahead to the next available
observation ytk and carry forward particles that are more compatible. If mt−1 is a prior point
estimate of (xtk |xt−1, φt−1, ψt), we can write

p(xt, st−1, ψt|Dt) ∝
∫
p(ytk |xtk , φtk−1, ψtk)1(t=tk)

p(ytk |mt−1, φt−1, µt−1)
p(xt|xt−1, φt−1, ψt)

p(ytk |mt−1, φt−1, µt−1) p(dxt−1, dφt−1, st−1|ψt, Dt−1) p(ψt|Dt−1). (4)

{x(i)
t−1, φ

(i)
t−1, ψ

(i)
t }Mi=1 are resampled with weights proportional to p(ytk |m

(i)
t−1, φ

(i)
t−1, µ

(i)
t−1), and

are then evolved with the kernel p(xt|xt−1, φt−1, ψt) and finally are associated with weights
p(ytk |x

(i)
tk
, φ

(i)
tk−1, ψ

(i)
tk

)1(t=tk)/p(ytk |m
(i)
t−1, φ

(i)
t−1, µ

(i)
t−1). Here we write (1)-(4) in the form of an

algorithm.

Algorithm: APF for State-Space Model

1. For each i = 1, 2, . . . ,M , sample from the prior θ(i)0 ∼ π(θ) and x
(i)
0 ∼ π(x0|θ(i)0 ).

For t = 1, 2, . . . , T perform 2-8 repeatedly

2. For each i = 1, 2, . . . ,M calculate the prior point estimatem(i)
t−1 and the shrinkage location

µ
(i)
t−1.

3. For each i = 1, 2, . . . ,M select an auxiliary integer variable ki from {1, 2, . . . , N} with
probabilities proportional to

g
(l)
t = w

(l)
t−1 p(ytk |m

(l)
t−1, φ

(l)
t−1, µ

(l)
t−1) where tk−1 < t ≤ tk, l ∈ {1, 2, . . . , N}.

4. Sample ψt from the kernel density estimate of p(ψt|Dt−1),

ψ
(i)
t ∼ N(µ(ki)

t−1 , κ
2Σ(ψt−1)), for i = 1, 2, . . . ,M.

5. Sample current state vector x(i)
t ∼ p(xt|x

(ki)
t−1 , φ

(ki)
t−1 , ψ

(i)
t ), for i = 1, 2, . . . ,M .

6. Evaluate the corresponding weight

w
(i)
t =

 p(ytk |x
(i)
tk
, φ

(ki)
tk−1, ψ

(i)
tk

)∏tk−1
τ=tk−1

p(ytk |m
(ki)
τ , φ

(ki)
τ , µ

(ki)
τ )

1(t=tk)

7. Update sufficient statistics: s(i)t = S(s(ki)
tk−1, x

(i)
tk
, ytk)1(t = tk) + s

(ki)
t−11(t 6= tk).

8. Sample φ(i)
t ∼ p(φt|s

(i)
t ), for i = 1, 2, . . . ,M .



2.2.1 Marginal Likelihood Calculation

The SMC methods have an added advantage of producing marginal likelihood estimates without
much further computation. Note that the marginal likelihood has the structure

p(yt1 , yt2 , . . . , ytk) = p(yt1 , yt2 , . . . , ytk−1) p(ytk |yt1 , yt2 , . . . , ytk−1).

The update is a very simple expression for our auxiliary particle filter, in that

p(ytk |yt1 , yt2 , . . . , ytk−1) =
tk∏

t=tk−1+1

{(
M∑
i=1

g
(i)
t

)(
1
M

M∑
i=1

w
(i)
t

)}
.

These marginal likelihood values can be used to perform Bayesian model comparison. We
elaborate this with our example in the next section.

3. Distributed Computing

Performance of SMC critically depends upon the number of particles used. Theoretical results
connecting the required number of particles to the desired accuracy of a particle filter can be
found in Del Moral [2004] and in the works of Crisan, Doucet, Jasra and many others. A
general rule is that, the higher the dimension of the particles and longer the filter is run, one
would require more particles to achieve required accuracy. Fortunately this can be done in
a surprisingly efficient manner using distributed computing platforms. Note that every SMC
algorithm sequentially performs the following three steps in some order:

(a) Sampling step: Evolving state vector xt−1 to xt and regenerating parameters θ.

(b) Importance step: Computation of particle weights g(i)
t and w

(i)
t .

(c) Weight normalization and resampling step.

While computations in (a) and (b) can be trivially parallelized on any number of processing
units, step (c) requires communication among the processors. Let N (i)

t be the number of times
the ith particle is replicated in a resampling step drawing N particles, written as:

(N (1)
t , N

(2)
t , . . . , N

(M)
t ) ∼ SRSWR

(
N ;w(1)

t , . . . , w
(M)
t

)
.

Then on a “1 master K slave processors” architecture with each slave evolving M particles,
we use the following algorithm to perform weight normalization and resampling in distributed
manner:

Algorithm: Weight Normalization and Resampling in a Distributed Environment

1. Every slave computes the processor total weight W [k]
t in parallel.

2. {W [1]
t ,W

[2]
t , . . . ,W

[K]
t } are sent to the master.

3. The master processor normalizes the processor total weights and performs Inter-resampling,
i.e. it computes the replication numbers to individual processors:

(N [1]
t , N

[2]
t , . . . , N

[K]
t ) ∼ SRSWR

(
MK;W [1]

t /

K∑
k=1

W
[k]
t , . . . ,W

[K]
t /

K∑
k=1

W
[k]
t

)
.

4. Master sends the replication number N [k]
t to the kth slave.



Figure 1: A schematic representation of the weight normalization and resampling step on a 1
master K slave architecture

5. The slave processors perform Intra-resampling in parallel, i.e. assigning replication num-
ber to individual particles:

(N (1)
t , N

(2)
t , . . . , N

(M)
t ) ∼ SRSWR

(
N

[k]
t ;w(1)

t /W
[k]
t , . . . , w

(M)
t /W

[k]
t

)
.

6. Particle Routing: Particles are transferred from surplus processors to deficient processors.

We recognize the following aspects of the distributed resampling step:

• There is no natural concurrency among the processors during the intra-resampling.

• Particle routing is often extensive, however this step can not be avoided because other-
wise the discrepancy between the computational loads of the processors keep increasing.
Depending on the connection module between processors this step can be made more
efficient. Discussion of an efficient VLSI implementation of a particle filter can be found
in Shabany and Gulak [2006].

Note that the objective of the resampling step is to focus the computational effort in the
high density region, so we replicate particles with higher weights. The multinomial resampling
has complexity of O(M2); it often becomes a bottleneck computation in a particle filter with
huge number of particles. ? discussed various O(M) resampling algorithms; we choose the
Residual Systematic Resampling (RSR) algorithm for its ease of implementation and utility in
a distributed computing context.

4. Example: A Bacterial Communication Model in Systems Biology

Here we use the bacterial communication system investigated in Tanouchi et al. [2008] to
illustrate modelling and inferential challenges in the studies of cellular dynamics. In particular
we show how some biological questions can be transcribed into statistical learning and model
selection problems, and how we can address them.

The bacterial communication system we are considering here is established by quorum
sensing (QS); a canonical example is the lux system from the marine bacterium Vibrio fischeri



(Figure 2). This system consists of two genes encoding proteins LuxI and LuxR. LuxI is an
AHL (acyl homoserine lactone) synthase; LuxR is a transcriptional regulator activated by the
AHL. The AHL signal is produced inside the cell but freely diffuses across the cell membrane
into the environment: therefore, the AHL concentration is low at a low cell density. As the cell
density increases, the signal accumulates in the environment and inside the cell. At sufficiently
high concentrations, AHL can bind to and activate LuxR, which will then activate downstream
genes that are critical for regulating diverse physiological functions, such as bioluminescence,
biofilm formation, and bacterial pathogenicity. This mechanism provides an elegant strategy
for bacteria to sense their density and to achieve coordinated population behavior.

Figure 2: A QS motif

Tanouchi et al. [2008] modelled this system following the ideas of Gillespie [2000] who
suggests approximate modelling of a chemical system using Langevin equations. Our QS system
is modelled by the following system of stochastic differential equations:

dAi
dt

= kA − γAiAi − kC1AiR+ kC2C − P (
Ai
Vi
− Ae
Ve

) + ζ1 + ζ2 + ζ3 + ζ4 + ζ5 + ξAi ,

dAe
dt

= −γAe
Ae + P (

Ai
Vi
− Ae
Ve

)− ζ5 + ζ6,

dR

dt
= kR − γRR− kC1AiR+ kC2C + ζ3 + ζ4 + ζ7 + ζ8 + ξR,

dC

dt
= −γCC + kC1AiR− kC2C − ζ3 − ζ4 + ζ9 + ξC ,

where Ai, Ae, R, and C are the amounts of the intracellular AHL, the extracellular AHL, the
R protein, and the complex, respectively. γAi

, γAe
, γR, and γC are their decay rate constants;

kA and kR are production rate constants of Ai and R; kC1 and kC2 are the association and
dissociation rate of the complex; P is diffusion rate constant of the signal across the cell
membrane; Ve is the average extracellular volume per cell; and Vi is an intracellular volume.
ζi’s denote intrinsic noise sources corresponding to different reactions, each having magnitude
proportional to the instantaneous rate of the corresponding reaction (Table 1). ξAi

, ξR, and ξC
denote extrinsic noise sources. Each extrinsic noise source is additive and its magnitude is fixed.



Because the extrinsic noise sources are fluctuations in intracellular machinery that influence the
QS system, the equation for Ae does not contain a ξ term. Tanouchi et al. [2008] assumed that
extrinsic noise sources are fully correlated with the same magnitude ξAi

= ξR = ξC = ξ.

Table 1: Reactions and Corresponding Noise Sources

Elementary Reaction Rate Parameter(s) Noise Source Magnitude
AHL production kA ζ1 kA

Internal AHL decay γAi ζ2 γAiAi
Complex association kC1 ζ3 kC1AiR
Complex dissociation kC2 ζ4 kC2C

Diffusion P
Vi

, P
Ve

ζ5 P

(
Ai
Vi
− Ae

Ve

)
External AHL decay γAe

ζ6 γAe
Ae

LuxR production kR ζ7 kR
LuxR decay γR ζ8 γRR

Complex decay γC ζ9 γCC
Extrinsic noise ξ β2

Biological questions about this system can be formed in terms of the rate parameters. Learn-
ing these parameters from real data in itself an important exercise; moreover, questions about
relevance of a reaction in governing the system dynamics can be resolved by performing model
comparison. The full model is compared with a sub-model formed by dropping the correspond-
ing reaction term(s) (equivalently, setting that parameter value to zero). In the subsequent
discussion we formalize this question in statistical terms and discuss Bayesian solutions.

4.1 Discretized Model

The system of stochastic differential equations provides a way of modelling the dynamics in the
QS system in terms of rate parameters. For inferential purpose we discretize them to form the
following statistical model:

Ai,t+h
Ae,t+h
Rt+h
Ct+h

=


Ai,t
Ae,t
Rt
Ct

+ h


kA − γAi

Ai,t − kC1Ai,tRt + kC2Ct − P (Ai,t

Vi
− Ae,t

Ve
)

−γAeAe,t + P (Ai,t

Vi
− Ae,t

Ve
)

kR − γRRt − kC1Ai,tRt + kC2Ct
−γCCt + kC1Ai,tRt − kC2Ct



+
√
h


ζ1,t + ζ2,t + ζ3,t + ζ4,t + ζ5,t + ξt

−ζ5,t + ζ6,t
ζ3,t + ζ4,t + ζ7,t + ζ8,t + ξt
−ζ3,t − ζ4,t + ζ9,t + ξt


where h = dt is the time increment used for discretization. With the following notations:
xt = (Ai,t, Ae,t, Rt, Ct)′, θ = (kA, kR, kC1 , kC2 , γAi

, γAe
, γR, γC ,

P
Vi
, PVe

, β)′ and

µ(xt, θ) =


Ai,t
Ae,t
Rt
Ct

+ h


kA − γAi

Ai,t − kC1Ai,tRt + kC2Ct − P (Ai,t

Vi
− Ae,t

Ve
)

−γAe
Ae,t + P (Ai,t

Vi
− Ae,t

Ve
)

kR − γRRt − kC1Ai,tRt + kC2Ct
−γCCt + kC1Ai,tRt − kC2Ct

 ,

our model can be written as

xt+h = µ(xt, θ) + wt, where wt ∼ N4(0,Σ(xt, θ)) (5)



and

Σ(xt, θ) = h



kA + γAiAi,t

+kC1Ai,tRt + kC2Ct −|P (
Ai,t

Vi
− Ae,t

Ve
)| kC1Ai,tRt −kC1Ai,tRt

+|P (
Ai,t

Vi
− Ae,t

Ve
)|+ β2 +kC2Ct + β2 −kC2Ct + β2

γAeAe,t

+|P (
Ai,t

Vi
− Ae,t

Ve
)| 0 0

kR + γRRt

+kC1Ai,tRt −kC1Ai,tRt

+kC2Ct + β2 −kC2Ct + β2

γCCt

+kC1Ai,tRt

+kC2Ct + β2



.

Note that the parameters P, Vi and Ve are not separately identifiable in this model; we can
identify only P

Vi
and P

Ve
. Therefore we consider the ratios P

Vi
and P

Ve
as model parameters, not

individually. The choice of h is a tricky issue - smaller values of h will ensure that the statistical
model is a good approximation to the stochastic differential equations model, but comes at a
cost – we have to deal with a very long time series. Due to the nature of the experiment
observations can not be made very frequently; let t = t1, t2, . . . , tK be the time points when
observations are made. We also assume a simple additive Gaussian structure for observational
noise:

yt = xt + vt, where vt ∼ N(0, V ). (6)

Combining (5) and (6), we have the state-space model:

System Evolution: xt+h ∼ p(xt+h|xt, θ) = N(µ(xt, θ),Σ(xt, θ)), for t > 0,

Observations: yt ∼ p(yt|xt, θ) = N(xt, V ), for t ∈ t1, t2, . . . , tK .

Note that this system evolution is nonlinear, and though the noise terms are Gaussian, its
variance depends on the states and the parameters.

4.2 Experiments with Synthetic Data

We use a synthetic data set that corresponds to an experiment run for 10 minutes and observa-
tions are recorded at each 0.1 minute. θ parameter values used for simulation are as suggested
in Tanouchi et al. [2008] – we use these values as prior means (Table 2). We choose h = 0.01
minute that makes T = 1000 with observations available at t1 = 10, t2 = 20, . . . , tK = 1000.
For simplicity we use independent observational noise for Ai, Ae, R and C with signal-to-noise
ratio roughly 1 for each term.

4.2.1 Prior Distributions

We use truncated normal distribution as independent priors for the model parameters θj and
the initial states x0,k since they represent rates of some reactions and number of molecules of
some biochemical species respectively:

π(θj) = N+(mθj
, s2θj

) for j = 1, . . . , 11 and π(x0,k) = N+(mx0,k
, s2x0,k

) for k = 1, 2, 3, 4.

We use the following values for prior means based on the prior information gathered in Tanouchi
et al. [2008]. Priors are relatively uninformative based on coefficients of variation set to 0.5. For
the observational variance we use π(V ) = Inverse-Wishart (s, S) with a diagonal S correspond-
ing to the independent observational noise terms that were used for generating the synthetic
data. We set the degrees of freedom to s = 10.



Table 2: Prior Specification

Mean Value Std Value
mkA

842 molecules/min skA
mkA

/2
mγAi

0.023/min sγAi
mγAi

/2
mkC1

0.1 molecules/min skC1
mkC1

/2
mkC2

1/min skC2
mkC2

/2
mP/Vi

1250/min sP/Vi
mP/Vi

/2
mP/Ve

2.5031e-4/min sP/Ve
mP/Ve

/2
mγAe

0.0018/min sγAe
mγAe

/2
mkR

20 molecules/min skR
mkR

/2
mγR

0.2/min sγR
mγR

/2
mγC

0.02/min sγC
mγC

/2
mβ 7 sβ mβ/2
mAi,0 10 molecules sAi,0 mAi,0/2
mAe,0 293477 molecules sAe,0 mAe,0/2
mR0 90 molecules sR0 mR0/2
mC0 88 molecules sC0 mC0/2

4.2.2 MCMC

Updating (V |x0:T , θ, yt1,t2,...,tK ) can be done with a Gibbs step as the complete conditional takes
a conjugate inverse-Wishart form. θ is linear in the mean µ(xt, θ) but it appears in the likeli-
hood also through the covariance matrices Σ(xt, θ) – therefore sampling from the conditional
p(θ|x0:T , V, yt1,t2,...,tK ) is not straightforward. We update each (θj |θ(−j), x0:T , V, yt1,t2,...,tK ) us-
ing random-walk Metropolis-Hastings steps.

For updating the states we note that E[(Ai,t, Ae,t, Ct)|(Ai,t−1, Ae,t−1, Ct−1), R0:T , θ] is linear
in (Ai,t−1, Ae,t−1, Ct−1) as is E[Rt|Rt−1, (Ai,0:T , Ae,0:T , C0:T ), θ]. We sequentially update

(Ai,0:T , Ae,0:T , C0:T |R0:T , θ, V, yt1,t2,...,tK ) and (R0:T |Ai,0:T , Ae,0:T , C0:T , θ, V, yt1,t2,...,tK )

with Metropolis-Hastings steps that use approximate FFBS proposals. Linearity makes forward
filtering trivial – backward sampling needs some form of approximation to

V[(Ai,t, Ae,t, Ct)|(Ai,t−1, Ae,t−1, Ct−1), R0:T , θ] and V[Rt|Rt−1, (Ai,0:T , Ae,0:T , C0:T ), θ].

Even though this state updating scheme performs better than the many other approximate
FFBS methods, we observe that the approximation degrades quickly as the length of the un-
derlying latent time series x0:T increases (Figure 3).

Table 3: Effective Sample Size for Estimation of Parameters

Parameters kA kR kC1 kC2 γAi
γAe γR γC

P
Vi

P
Ve

β

Effective 414 22135 1146 1347 4960 344 1208 1776 248 267 274
Sample Size

Table 3 shows the effective sample sizes for estimating parameter θj based on the MCMC chain
run for 100, 000 iterations after a burn-in of 10, 000 steps when T = 1000. Note that for some
parameters the effective sample size is as small as 248. Clearly MCMC takes too long to pro-
duce a representative sample from the posterior. Therefore marginal likelihood estimates based
on MCMC samples are unreliable because they are based on such poor effective sample size.



Figure 3: Metropolis-Hastings acceptance rates for updating Ai,0:T , Ae,0:T , C0:T given
R0:T , θ, V, yt1,t2,...,tK . For each T we run a MCMC sampler for 100,000 iterations after a burn
in of 10,000 steps.

4.2.3 SMC

We ran the particle filter with 100 million particles on 100 processors on the Shared Cluster
Resource of Duke University. For the distributed implementation we use MPI with C++.

Figure 4 shows the effective sample size calculated using ESSt =
[∑M

i=1W
(i)
t

2]−1

where W (i)
t

is the normalized weight of particle i at time t. We note that we can achieve a much higher
effective sample size with the particle filter compared to the MCMC algorithm. Figure 5 displays
medians, upper and lower 95% quantiles from the SMC samples for each of the 11 parameters.

Figure 4: Effective sample size of the particle filter for the QS Model with 100 million particles

Now focus on the model comparison question. We are interested in evaluating the relevance
of individual reactions in governing the QS model dynamics. Consider the full QS Model (M0)
and 11 sub-models (M1,M2, . . . ,M11) formed by setting θj = 0 for j = 1, 2, . . . , 11 respectively
in the full model. Given the data yt1,t2,...,tk we perform model comparison using

p(Mj |yt1,t2,...,tk) =
π(Mj) pMj (yt1,t2,...,tk)∑11
l=1 π(Ml) pMl

(yt1,t2,...,tk)
for j = 0, 1, . . . , 11.



Figure 5: Plots of 95% upper and lower posterior quantiles and median against T for each
parameter θj of the QS model.



Figure 6: Posterior model probabilities for M0,M1,M2, . . . ,M11



Here π(Mj) are the prior probabilities assigned to model Mj and pMj (yt1,t2,...,tk) the marginal
likelihood of the data under model Mj . We start with equal priorities for each of these 12
models (i.e. π(Mj) = 1/12 for j = 0, 1, 2, . . . , 11) and run a separate particle filter for each
model. Figure 6 shows the posterior model probabilities based on the easy marginal likelihood
estimates we obtain from the particle filter.

Note that the posterior model probabilities of M1,M4,M6,M9 and M10 become negligible
very quickly. With as few as 20 observations the full model is preferred compared to these
sub-models, which means the data contains strong information about the relevance of non-
zero values of the corresponding parameters and hence support the inclusion in the network
model of the corresponding reaction terms. For models M3 and M11 the posterior probabilities
take longer to vanish, and for the model M2 we observe a decreasing trend though it remains
significant. So, a larger amount of data enables learning about aspects of the relevance of
some of the network model components represented, and included in the model, by non-zero
parameters. This example highlights the use and ability of SMC-based computational Bayesian
methods to directly yield formal model assessment focussed on “modules” of network structure
represented by a dynamic mechanistic model. As single cell experimental technologies advance
rapidly in the coming few years, the role and relevance of formal statistical methods – and
model assessment and comparison in particular – will increase due to access to increasingly rich
data, and we expect such approaches to play critical roles in advancing systems biology.
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