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We introduce a novel methodology for sampling from a sequence
of probability distributions of increasing dimension and estimating
their normalizing constants. These problems are usually addressed us-
ing Sequential Monte Carlo (SMC) methods. The alternative Sequen-
tially Interacting Markov Chain Monte Carlo (SIMCMC) scheme pro-
posed here works by generating interacting non-Markovian sequences
which behave asymptotically like independent Metropolis-Hastings
(MH) Markov chains with the desired limiting distributions. Con-
trary to SMC methods, this scheme allows us to iteratively improve
our estimates in an MCMC-like fashion. We establish convergence of
the algorithm under realistic verifiable assumptions and demonstrate
its performance on several examples arising in Bayesian time series
analysis.

1. Introduction. Consider a sequence of probability distributions {πn}n∈T

where T = {1, 2, ..., P}, which we will refer to as “target” distributions. We
shall also refer to n as the time index. For ease of presentation, we shall
assume here that πn (dxn) is defined on a measurable space (En,Fn) where
E1 = E, F1 = F and En = En−1 × E, Fn = Fn−1 × F and we denote
xn = (x1, ..., xn) where xi ∈ E for i = 1, ..., n. Each πn (dxn) is assumed
to admit a density πn (xn) with respect to a σ−finite dominating measure
denoted dxn and dxn = dxn−1 × dxn. Additionally, we have

πn (xn) =
γn (xn)

Zn

where γn : En → R+ is known pointwise and the normalizing constant Zn

is unknown.
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2 A. BROCKWELL ET AL.

In a number of important applications, it is desirable to be able to sample
from the sequence of distributions {πn}n∈T and to estimate their normaliz-
ing constants {Zn}n∈T; the most popular statistical application is the class
of non-linear non-Gaussian state-space models detailed in Section 4. In this
context, πn is the posterior distribution of the hidden state variables from
time 1 to n given the observations from time 1 to n and Zn is the marginal
likelihood of these observations. Many other applications - including contin-
gency tables and population genetics - are discussed in [6], [10] and [16].

A now standard approach to solve this class of problems relies on Se-
quential Monte Carlo (SMC) methods; see [10] and [16] for a review of the
literature. In the SMC approach, the target distributions are approximated
by a large number of random samples - termed particles - which are carried
forward over time by using a combination of sequential importance sam-
pling and resampling steps. These methods have become the tools of choice
for sequential Bayesian inference but, even when there is no requirement for
‘real-time’ inference, SMC algorithms are increasingly used as an alternative
to MCMC; see for example [5], [7] and [16] for applications to econometrics
models, finite mixture models and contingency tables. They also allow us
to implement easily goodness-of-fit tests in a time series context -e.g. [4]-
whereas a standard MCMC implementation is cumbersome [11]. Moreover,
they provide an estimate of the marginal likelihood of the data.

The SMC methodology is now well-established and many theoretical con-
vergence results are available [6]. Nevertheless, in practice, it is typically
impossible to determine beforehand the number of particles necessary to
achieve a fixed precision for a given application and users typically per-
form multiple runs for an increasing number of particles until stabilization
of the Monte Carlo estimates is observed. Moreover, SMC algorithms are
substantially different from MCMC algorithms and can appear difficult to
implement for non-specialists.

In this paper we propose an alternative to SMC named Sequentially In-
teracting Markov Chain Monte Carlo (SIMCMC). SIMCMC methods allow
us to compute Monte Carlo estimates of the quantities of interest iteratively
as they are, for instance, when using MCMC methods. This allows us to
refine the Monte Carlo estimates until a suitably chosen stopping time. Fur-
thermore, for people familiar with MCMC methods, SIMCMC methods are
somewhat simpler than SMC methods to implement, because they only rely
on MH steps. However, SIMCMC methods are not a class of MCMC meth-
ods. These are non-Markovian algorithms which can be interpreted as an
approximation of P ‘ideal’ standard MCMC chains. It is based on the same
key idea as SMC methods; that is as πn+1 (xn) =

∫
πn+1 (xn) dxn is often
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SEQUENTIALLY INTERACTING MCMC 3

‘close’ to πn (xn), it is sensible to use πn (xn) as part of a proposal distri-
bution to sample πn+1 (xn+1). In SMC methods, the correction between the
proposal distribution and the target distribution is performed using Impor-
tance Sampling whereas in SIMCMC methods it is performed using an MH
step. Such a strategy is computationally much more efficient than sampling
separately from each target distribution using standard MCMC methods
and also provides direct estimates of the normalizing constants {Zn}n∈T.

The potential real-time applications are also worth commenting on. SMC
methods have been used in various real-time engineering applications, for
example, in neural decoding [2] and in target tracking. In these problems, it
is important to be able to compute functionals of the posterior distributions
of some quantity of interest, but it must also be done in real-time. SMC
methods work with collections of particles that are updated sequentially to
reflect these distributions. Clearly, in such real-time problems it is important
that the collections of particles are not too large, or else the computational
burden can cause the SMC algorithm to fall behind the system being an-
alyzed. SIMCMC methods provide a very convenient way to make optimal
use of what computing power is available. Since SIMCMC works by adding
one particle at a time to collections representing distributions, we can simply
run it continually in between arrival of successive observations, and it will
accrue as many particles as it can in whatever amount of time is taken.

The rest of the paper is organized as follows. In Section 2, we describe
SIMCMC methods, give some guidelines for the design of efficient algo-
rithms and discuss implementation issues. In Section 3, we present some
convergence results. In Section 4, we demonstrate the performance of this
algorithm for various Bayesian time series problems and compare it to SMC.
Finally we discuss a number of further potential extensions in Section 5. The
proofs of the results in Section 3 can be found in Appendix A.

2. Sequentially Interacting Markov Chain Monte Carlo.

2.1. The SIMCMC Algorithm. The SIMCMC algorithm constructs P

sequences
{
X

(i)
1

}
,
{
X

(i)
2

}
, . . . ,

{
X

(i)
P

}
, with the property that as the itera-

tion index i approaches infinity, the distribution of X
(i)
n approaches πn; see

Section 3. To specify the algorithm, we require a sequence of P proposal
distributions, specified by their densities

q1(x1), q2(x1, x2), . . . , qP (xP−1, xP ).

Each qn is a density in its last argument xn with respect to dxn, which
may depend (for n = 2, . . . , P ) on the first argument. Proposals are drawn
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4 A. BROCKWELL ET AL.

from q1(·) for updates of the sequence {X
(i)
1 }, from q2(·) for updates of the

sequence {X
(i)
2 }, and so on. (Selection of proposal distributions is discussed

below.) Based on these proposals, we define the weights

w1 (x1) =
γ1 (x1)

q1 (x1)
,

wn (xn) =
γn (xn)

γn−1 (xn−1) qn (xn−1, xn)
, n = 2, . . . , P.(2.1)

For any measure µn−1 on (En−1,Fn−1), we define

(
µn−1 × qn

)
(dxn) = µn−1 (dxn−1) qn (xn−1, dxn)

and

(2.2) Sn = {xn ∈ En : πn (xn) > 0} .

Intuitively, the SIMCMC algorithm proceeds as follows. At each iteration

i of the algorithm, the algorithm samples X
(i)
n for n ∈ T by first sam-

pling X
(i)
1 , then X

(i)
2 and so on. For n = 1,

{
X

(i)
1

}
is a standard Markov

chain generated using an independent MH sampler of invariant distribution
π1 and proposal distribution q1. For n = 2, we would like to approximate
an independent MH sampler of invariant distribution π2 (x2) and proposal
distribution (π1×q2) (x2). As it is impossible to sample from π1 exactly, we

replace π1 at iteration i by its current empirical measure approximation π̂
(i)
1 .

Similarly for n > 2, we approximate an MH sampler of invariant distribution
πn (xn) and proposal distribution (πn−1×qn) (xn) by replacing πn−1 at iter-

ation i by its current empirical measure approximation π̂
(i)
n−1. The sequences{

X
(i)
2

}
, . . . ,

{
X

(i)
P

}
generated this way are clearly non-Markovian.

Sequentially Interacting Markov Chain Monte Carlo

• Initialization, i = 0
• For n ∈ T, set randomly X

(0)
n = x

(0)
n ∈ Sn.

• For iteration i ≥ 1
• For n = 1

• Sample X
∗(i)
1 ∼ q1 (·).

• With probability

(2.3) α1(X
(i−1)
1 ,X

∗(i)
1 ) = 1 ∧

w1

(
X

∗(i)
1

)

w1

(
X

(i−1)
1

)
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set X
(i)
1 = X

∗(i)
1 , otherwise set X

(i)
1 = X

(i−1)
1 .

• For n = 2, . . . , P

• Sample X
∗(i)
n ∼

(
π̂

(i)
n−1 × qn

)
(·).

• With probability

(2.4) αn(X(i−1)
n ,X∗(i)

n ) = 1 ∧
wn

(
X

∗(i)
n

)

wn

(
X

(i−1)
n

)

set X
(i)
n = X

∗(i)
n , otherwise set X

(i)
n = X

(i−1)
n .

In this algorithm, π̂(i)
n is the empirical measure approximation of the target

distribution πn given by

(2.5) π̂(i)
n (dxn) =

1

i + 1

i∑

m=0

δ
X

(m)
n

(dxn) .

The (ratio of) normalizing constants can easily be estimated by

Ẑ1
(i)

=
1

i

i∑

m=1

w1

(
X

∗(m)
1

)
,

̂
(

Zn

Zn−1

)(i)

=
1

i

i∑

m=1

wn

(
X∗(m)

n

)
.(2.6)

Equation (2.6) follows from the identity

Zn

Zn−1
=

∫
wn (xn) (πn−1 × qn) (dxn)

and the fact that asymptotically (as i → ∞) X
∗(i)
n is distributed according

to (πn−1×qn) (xn).

2.2. Algorithm Settings. Similarly to SMC methods, the performance of
the SIMCMC algorithm depends heavily on the selection of the proposal
distributions. However, it is possible to devise some useful guidelines for
this sequence of (pseudo-)independent samplers, using reasoning similar to

that adopted in the SMC framework. Asymptotically, X
∗(i)
n is distributed

according to (πn−1×qn) (xn) and wn(xn) is just the importance weight (up to
a normalizing constant) between πn(xn) and (πn−1×qn) (xn). The proposal
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6 A. BROCKWELL ET AL.

distribution minimizing the variance of this importance weight is simply
given by

(2.7) qopt
n (xn−1, xn) = πn (xn−1, xn)

where πn (xn−1, xn) is the conditional density of xn given xn−1 under πn,
that is

(2.8) πn (xn−1, xn) =
πn (xn)

πn (xn−1)
.

This yields

(2.9) wopt
n (xn) ∝ πn/n−1 (xn−1)

where

(2.10) πn/n−1 (xn−1) =
πn (xn−1)

πn−1 (xn−1)

with

πn (xn−1) =

∫

E
πn (xn) dxn.

In this case, as wopt
n (xn) is independent of xn, the algorithm described above

can be further simplified. It is indeed possible to decide whether to accept
or reject a candidate before even sampling it. This is more computationally
efficient because if the move is to be rejected there is no need to sample
the candidate. In most applications, it will be difficult to sample from (2.7)
and/or to compute (2.9) as it involves computing πn (xn−1) up to a nor-
malizing constant. In this case, we recommend approximating (2.7). Similar
strategies have been developed successfully in the SMC framework [3], [9],
[17], [20]. The advantages of such sampling strategies in the SIMCMC case
will be demonstrated in the simulation section.

Generally speaking, most of the methodology developed in the SMC set-
ting can be directly reapplied here. This includes the use of Rao-Blackwellisation
techniques to reduce the dimensionality of the target distributions [9], [17]
or of auxiliary particle-type ideas where we build target distributions biased
towards ‘promising’ regions of the space [3], [20].
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SEQUENTIALLY INTERACTING MCMC 7

2.3. Implementation Issues.

2.3.1. Burn-in and Storage requirements. We have presented the algo-
rithm without any burn-in. This can be easily included if necessary by con-
sidering at iteration i of the algorithm

π̂(i)
n (dxn) =

1

i + 1 − l(i, B)

i∑

m=l(i,B)

δ
X

(m)
n

(dxn),

where
l(i, B) = 0 ∨ ((i − B) ∧ B)),

where B is an appropriate number of initial samples to be discarded as
burn-in. Note that when i ≥ 2B, we have l(i, B) = B.

Note that in its original form, the SIMCMC algorithm requires storing

the sequences
{
X

(i)
n

}

n∈T
. This could be expensive if the number of target

distributions P and/or the number of iterations of the SIMCMC are large.
However, in many scenarios of interest including non-linear non-Gaussian
state-space models or the scenarios considered in [7], it is possible to dras-
tically reduce these storage requirements as we are only interested in esti-
mating the marginals {πn (xn)} and we have wn (xn) = wn (xn−1, xn) and

qn (xn−1, xn) = qn (xn−1, xn). In such cases, we only need to store
{
X

(i)
n

}

n∈T
,

resulting in significant memory savings.

2.3.2. Combining Sampling Strategies. In practice, we can combine the
SIMCMC strategy with SMC methods; that is we can generate say N (ap-
proximate) samples from {πn}n∈T

then we can use the SIMCMC strategy
to increase the number of particles until the Monte Carlo estimates stabi-
lize. We emphasize that SIMCMC will be primarily useful in the context
where we do not have a predetermined computational budget. Indeed, if the
computational budget is fixed, then we could also switch the iteration i and
time n loops in the SIMCMC algorithm to obtain better estimates.

2.4. Discussion and Extensions. Standard MCMC methods do not ad-
dress the problem solved by SIMCMC methods. Trans-dimensional MCMC
methods [12] allow us to sample from a sequence of ‘related’ distributions
but require the knowledge of the ratio of normalizing constants between
different target distributions. and Simulated tempering and parallel tem-
pering require all the target distributions to be defined on the same space
and rely on MCMC kernels to explore each target distribution; see [15] for a
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recent discussion of such techniques. Ideas related to SIMCMC where a se-
quence of ‘ideal’ MCMC algorithms is approximated have recently appeared
in physics [18] and statistics [14]. However, contrary to these algorithms,
the target distributions considered here are of increasing dimension and the
proposed interacting mechanism is simpler.

There are many possible extensions of the SIMCMC algorithm. In this
respect the SIMCMC algorithm is somehow a proof-of-concept algorithm
demonstrating that it is possible to make sequences targeting different dis-
tributions interact without the need to define a target distribution on an
extended state-space. For example, instead of updating each chain sequen-
tially, it is possible to update them in parallel using say standard MCMC
updates and only attempting to ‘jump’ from πn−1 to πn from time to time.

In the context of real-time applications where πn (xn) is typically the
posterior distribution p (xn| y1:n) of some states xn given the observations
y1:n, SIMCMC methods can also be very useful. Indeed, SMC methods can-
not easily address situations where the observations arrive at random times
whereas SIMCMC methods allow us to make optimal use of what computing
power is available by adding as many particles as possible until the arrival of
a new observation. In such cases, a standard implementation would consist
of updating our approximation of πn (xn) at ‘time’ n by adding iteratively
particles to the approximations πn−L+1 (xn−L+1) , . . . , πn−1 (xn−1) , πn (xn)
for a lag L ≥ 1 until the arrival of data yn+1.

3. Convergence Results. We now present some convergence results
for SIMCMC. Despite the non-Markovian nature of SIMCMC, we are here
able to provide realistic verifiable assumptions ensuring the asymptotic con-
sistency of the algorithm whereas a general result ensuring the convergence
of the algorithm proposed in [18] and [14] has not yet been established.

Let us introduce B (En) = {fn : En → R such that ‖fn‖ ≤ 1} where ‖fn‖ =
sup

xn∈En

|fn (xn)|. We denote by E
x

(0)
1:n

[·] the expectation with respect to the dis-

tribution of the simulated sequences initialized at x
(0)
1:n :=

(
x

(0)
1 ,x

(0)
2 , ...,x

(0)
n

)

and N0 = N∪{0}. For any measure µ and test function f , we write µ (f) =∫
µ (dx) f (x).
We introduce Q1 = {x1 ∈ E1 : q1 (x1) > 0} and for n ≥ 2

Qn = {xn ∈ En : (πn−1 × qn) (xn) > 0}. Our key assumption is the follow-
ing.

Assumption A1. For any n ∈ T, we have Sn ⊆ Qn and there exists
Bn < ∞ such that for any xn ∈ Sn

(3.1) wn (xn) ≤ Bn.
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SEQUENTIALLY INTERACTING MCMC 9

This assumption is quite weak and can be easily checked in all the ex-
amples presented in Section 4. Note that a similar assumption also appears
when Lp bounds are established for SMC methods [6].

Our first result establishes the convergence of the empirical averages to-
wards the correct expectations at the standard Monte Carlo rate.

Theorem 3.1. Assume A1. For any n ∈ T and any p ≥ 1 there exist

C1,n, C2,p < ∞ such that for any x
(0)
1:n ∈ S1 × · · · × Sn, fn ∈ B (En) and

i ∈ N0

E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

≤
C1,nC2,p

(i + 1)
1
2

.

By the Borel-Cantelli lemma, this also ensures almost sure convergence
of the empirical averages. Our second result establishes that each sequence{
X

(i)
n

}
converges towards πn.

Theorem 3.2. Assume A1. For any n ∈ T, x
(0)
1:n ∈ S1 × · · · × Sn and

fn ∈ B (En) we have

lim
i→∞

E
x

(0)
1:n

[
fn

(
X(i)

n

)]
= πn (fn) .

4. Applications. In this section, we will focus on the applications of
SIMCMC to non-linear non-Gaussian state-space models. Consider an un-
observed E−valued Markov process {Xn}n∈T

satisfying

X1 ∼ µ (·) , Xn|Xn−1 = x ∼ f (x, ·) .

We assume that we have access to observations {Yn}n∈T
which, conditionally

on {Xn}, are independent and distributed according to

(4.1) Yn| {Xn = x} ∼ g (x, ·) .

This family of models is important, because almost every stationary time
series model appearing in the literature can be cast into this form. Given
y1:P , we are often interested in computing the sequence of posterior distri-
butions {p (x1:n| y1:n)}n∈T

to perform goodness-of-fit and/or to compute the
marginal likelihood p (y1:P ). By defining the un-normalized distribution as

(4.2) γn (x1:n) = p (x1:n, y1:n) = µ (x1) g (x1, y1)
n∏

k=2

f (xk−1, xk) g (xk, yk)

(which is typically known pointwise), we have πn (xn) = p (x1:n| y1:n) and
Zn = p (y1:n) so that SIMCMC can be applied.
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10 A. BROCKWELL ET AL.

We will consider three examples here. In the first two cases, the SIMCMC
algorithms are compared to their SMC counterparts. For a fixed number
of iterations/particles, SMC and SIMCMC have approximately the same
computational complexity. The same proposals and the same number of
samples were thus used to allow for a fair comparison. Note that we chose not
to use any burn-in period for the SIMCMC and we initialize the algorithm

by picking x
(0)
n =

(
x

(0)
n−1, x

(0)
n

)
for any n where x

(0)
P is a sample from the

prior. The SMC algorithms were implemented using a stratified resampling
procedure [13]. In the third example, we consider a slightly more complex
problem of computing the likelihood of a stochastic volatility model with
specified parameters. In this case the observation likelihood in fact depends
on the entire past trajectory of the state, that is, we replace (4.1) by the
assumption that Yn|{X1:n = x1:n} ∼ gn(x1:n, ·).

4.1. Linear Gaussian Model. We consider a linear Gaussian model

Xn = φXn−1 + Vn,(4.3)

Yn = Xn + σWn

with X1 ∼ N (0, 1) , Vn
i.i.d.
∼ N (0, 1), Wn

i.i.d.
∼ N (0, 1) and N

(
µ, σ2

)
is a

Gaussian distribution of mean µ and variance σ2. For this model we can
compute the marginal likelihood ZP = p (y1:P ) exactly using the Kalman
filter. This allows us to compare our results to the ground truth.

We simulated a realization of P = 100 observations with φ = 0.95 and σ =
0.1 for which log p (y1:P ) = −136.332. We use two proposal distributions:
the prior distribution f (xn−1, xn) and the optimal distribution (4.3) given
by qn (xn−1, xn) ∝ f (xn−1, xn) g (xn, yn). In both cases, it is easy to check
that Assumption A1 is satisfied. In Figure 1, we display the estimates of
log p (y1:P ) obtained as a function of N for one realization of the SIMCMC
algorithm.

In Table 1, we display the performance of both SIMCMC and SMC in
terms of Root Mean Square Error (RMSE) for a varying number of samples
and the two proposal distributions.

As expected, the RMSE of our estimates is drastically improved when
the optimal distribution is used. For a small number of samples N , the
performance of SMC is better than SIMCMC. This is not surprising as
SIMCMC is an iterative MCMC-type algorithm and no burn in was used.
For a larger number of samples, N ≥ 5000, SMC and SIMCMC display very
similar performance.
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Fig 1. True log-likelihood (blue), SIMCMC estimates computed using the prior proposal
(red) and optimal proposal (green) as a function of N

Table 1

RMSE of log p (y1:P ) over 50 realizations of the algorithms

N 250 500 1000 2500 5000 10000 25000 50000

SIMCMC (prior) 8.20 3.09 2.39 1.10 0.64 0.46 0.23 0.17

SIMCMC (optimal) 0.32 0.11 0.09 0.05 0.03 0.02 0.01 0.01

SMC (prior) 11.80 4.13 1.97 0.94 0.68 0.40 0.29 0.19

SMC (optimal) 0.07 0.05 0.04 0.03 0.02 0.02 0.02 0.01

4.2. A Nonlinear Non-Gaussian State-Space Model. We now consider a
nonlinear non-Gaussian state-space model introduced in [13] which has been
used in many SMC publications

Xn =
Xn−1

2
+

25Xn−1

1 + X2
n−1

+ 8cos (1.2n) + Vn,

Yn =
X2

n

20
+ Wn

where X1 ∼ N (0, 5) , Vn
i.i.d.
∼ N (0, 25) and Wn

i.i.d.
∼ N (0, 1). As the sign of

the state Xn is not observed, the marginal posterior distributions {p (xn| y1:n)}
are often bimodal. SMC approximations are able to capture properly the
bimodality of the posteriors. This allows us to assess here whether SIM-
CMC can also explore properly these multimodal distributions by compar-
ing SIMCMC to SMC results. The proposal distribution used is based on an
extended Kalman filter and we checked that Assumption A1 was satisfied;
see [9] for details.
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12 A. BROCKWELL ET AL.

Table 2

Standard Deviation of log p (y1:P ) over 50 realizations

N 250 500 1000 2500 5000 10000 25000 50000

SIMCMC 4.71 3.60 1.74 1.37 0.87 0.78 0.54 0.38

SMC 1.61 1.52 1.14 0.94 0.63 0.58 0.47 0.30

We simulated a realization of P = 100 observations. In Table 2, we dis-
play the performance of both SIMCMC and SMC for a varying number of
particles.

This model is more complex than the linear Gaussian model described
earlier and the posterior distributions we are sampling can be multimodal.
Consequently, the standard deviation of the estimates is not surprisingly
higher than in the linear Gaussian case but the conclusions are similar. For
a small number of samples, SMC outperforms SIMCMC whereas for a large
number of samples the performance of both algorithms are comparable.

4.3. Stochastic Volatility Model. Stochastic volatility models are of con-
siderable interest in the field of finance, having important applications in op-
tion pricing and (in the multivariate case) portfolio management. However,
inference for these models remains a difficult computational problem because
of the high-dimensional latent variable space that must be integrated out
somehow. A number of authors have proposed MCMC and related methods,
see for example [4] and references therein. It is also possible to use our SIM-
CMC approach for this purpose so as to compute the log-likelihood of the
model for any particular specified parameter vector. This could in turn be
used within a standard numerical optimization scheme or an MCMC scheme
for parameter estimation, but in its own right also provides a convenient way
to assess model goodness-of-fit.

We consider a particular form of a stochastic volatility model given in [1].
The log of a share price {log St, t ∈ R+} is assumed to satisfy the stochastic
differential equation

d log S(t) = [µ + βσ2(t)]dt + σ(t)dW (t)(4.4)

dσ2(t) = aσ2(t)dt + bdL(t),(4.5)

where µ, β, a and b are real-valued constants, and {W (t)} and {L(t)} are,
respectively, standard Brownian motion and Poisson processes. {W (t)} and
{L(t)} are independent of each other, and {L(t)} is assumed to have rate
λ. To ensure stationarity of the variance process {σ2(t)}, we require a < 0.
We also set σ2(0) = 0.

This a continuous-time model for S(t), but we will assume that observa-
tions are made at discrete times n = 1, 2, . . . , T, and, as our data, we have
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SEQUENTIALLY INTERACTING MCMC 13

the log-returns
Yn = log(S(n)/S(n − 1)).

From (4.4) above, we see that

(4.6) Yn =

∫ n

n−1

[
µ + βσ2 (t)

]
dt + Wn

where

Wn =

∫ n

n−1
σ (t) dW (t) .

It follows directly from (4.6) that conditionally on the segment of the volatil-
ity trajectory {σ2(t), n− 1 ≤ t < n}, Yn is normally distributed, with mean
µ + βκn, and variance κn where

κn =

∫ n

n−1
σ2 (t) dt.

Furthermore, the segment {σ2(t), n − 1 ≤ t < n} is completely determined
by the (almost-surely finite) list of jump times of {L(t)} in the interval
{0 ≤ s < n}. Let us denote the set of jump times in the interval [n − 1, n)
by

Jn = {J
(n)
1 , . . . , J

(n)
Mn

}.

Then

σ2(J
(n)
k+1) = exp

(
a
(
J

(n)
k+1 − J

(n)
k

))
σ2(J

(n)
k ) + b, for k = 0, ...,Mn−1

and

κn =
Mn∑

k=0

σ2(J
(n)
k )

∫ J
(n)
k+1

J
(n)
k

exp[a(t − J
(n)
k )]dt

=
Mn∑

k=0

σ2(J
(n)
k ) ·

exp[a(J
(n)
k+1 − J

(n)
k )] − 1

a
.(4.7)

Thus the observations under this model can be seen to satisfy the model

Yn ∼ N (µ + βκn, κn)

Xn = Jn,

where Jn is the set of jump-times in [n− 1, n) as defined above. From (4.7),
it is obvious that κn is a function of X1, . . . ,Xn, and it is clear, because
Poisson processes are “memoryless”, that {Xn, n = 1, 2, . . .} is indeed a
Markov process.
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14 A. BROCKWELL ET AL.

To illustrate the performance of the SIMCMC algorithm, we evaluate the
log-likelihood of this model, fit to daily closing prices of National Australia
Bank shares as listed on the Australian Stock Exchange, from Feb. 9th, 2002
to Aug. 10th, 2004. The prices and the corresponding log-returns are shown,
respectively, in Figures 2 and 3, respectively.

National Australia Bank Share Prices

0 100 200 300 400 500
25.000

26.000

27.000

28.000

29.000

30.000

31.000

32.000

33.000

34.000

35.000

36.000

37.000

Fig 2. National Australia Bank share closing prices from Feb. 9th 2002 to Aug. 10th, 2004.

For this data, we have P = 506 log-returns y1, . . . , y506. For our proposal
distributions qn(xn−1, xn), we simply use the distribution of the arrivals in
a Poisson process with rate 2λ. (Note that we choose to use proposals with
a higher rate than the model because in general it is safer to use proposals
with a higher spread than the target distribution than to use proposals with
a smaller variance, but in this example, the factor of 2 makes little difference
to the results obtained with a factor of 1.)

Figure 4 shows a realization of a sequence of estimates log p(y1:506) (i)
for 25,000 iterations of the SIMCMC algorithm, applied using the burn-in
adjustment of Subsection 2.3.1 with B = 5000. Results were obtained with
parameters a = −0.8, b = exp(−7.0), λ = exp(−1.8), µ = 0, δ = −0.5. Note
that these parameters are not optimal, they were simply obtained by simple
hand-exploration of the parameter space over several iterations to obtain
“reasonable” values. (For a more careful analysis, one could plug the SIM-
CMC algorithm into a numerical optimizer to obtain better estimates.) As a
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SEQUENTIALLY INTERACTING MCMC 15

Log-Returns of NAB Share Prices
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Fig 3. Log-returns of the National Australia Bank share closing prices.

base-line we also show (horizontal dashed line) the log-likelihood of the best
iid-normal model for the log-returns. Not surprisingly, the stochastic volatil-
ity model, even with sub-optimal hand-chosen parameters, out-performs the
iid-normal model significantly.

5. Discussion. We have described an iterative algorithm based on in-
teracting non-Markovian sequences which is an alternative to SMC and have
established convergence results validating this methodology. The algorithm
is straightforward to implement for people already familiar with MCMC.
For a fixed computational complexity, our simulation results indicate that,
as expected, SMC usually outperforms SIMCMC for a small number of sam-
ples but that the performance of SMC and SIMCMC are very comparable
when a large number of samples is used to obtain precise estimates of the
quantities of interest. The main strength of SIMCMC is that it allows us
to iteratively improve our estimates in an MCMC-like fashion until a suit-
able stopping criterion is met. This is useful as in numerous applications the
number of particles required to ensure the estimates are reasonably precise
is unknown. It is also useful in real-time applications when one is unsure of
exactly how much time will be available between successive arrivals of data
points.

As discussed in Subsection 2.4, numerous variants of SIMCMC can be
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Fig 4. Sequential estimates of the log-likelihood of the stochastic volatility model (4.4)-
(4.5) for the National Australia Bank log-returns, over 25000 iterations of the SIMCMC
algorithm. Parameters were not optimized, they were simply adjusted several times by
hand to be “reasonable”. Even so, the log-likelihood exceeds that of the maximum likelihood
iid-normal model for log-returns, shown with a dashed line.

easily developed which have no SMC equivalent. The fact that such schemes
do not need to define a target distribution on an extended state-space ad-
mitting {πn}n∈T as marginals offers indeed a lot of flexibility. For example,
if we have access to multiple processors, it is possible to sample from each
πn independently using standard MCMC and perform several interactions
simultaneously; i.e. chains 1 and 2 could interact at the same time chains 3
and 4 interact. Adaptive versions of the algorithms can also be proposed by
monitoring the acceptance ratio of the MH steps. If the acceptance proba-
bility of the MH move between say πn−1 and πn is low, we could for example
increase the number of proposals at this time index.

From a theoretical point of view, there are a number of interesting ques-
tions to explore. Under additional stability assumptions on the Feynman-
Kac semigroup induced by {πn}n∈T and {qn}n∈T [6, chapter 4], we be-
lieve that it should be possible to obtain convergence results similar to [6,
chapter 7] in an SMC framework ensuring that, for functions of the form
fn (xn) = fn (xn), the bound C1,n in Theorem 3.1 is independent of n. We
also conjecture that assumption A1 is not only sufficient but necessary.

imsart-aos ver. 2007/12/10 file: simcmc.tex date: January 8, 2008



SEQUENTIALLY INTERACTING MCMC 17

APPENDIX A: PROOFS OF CONVERGENCE

The proof is inspired by ideas developed in [8]. However, in our context,
it is possible to establish much stronger results than in this reference as we
can characterize exactly the invariant distribution of some of the Markov
kernels appearing in the analysis; see Proposition 2.

A.1. Notation. We denote by P (En) the set of probability measures
on (En,Fn). We introduce the independent Metropolis-Hastings (MH) kernel
K1 : E1 ×F1 → [0, 1] defined by

K1
(
x1, dx

′
1

)
= α1

(
x1,x

′
1

)
q1
(
dx′

1

)
(A.1)

+

(
1 −

∫
α1 (x1,y1) q1 (dy1)

)
δx1

(
dx′

1

)
.

For n ∈ {2, ..., P}, we associate with any µn−1 ∈ P (En−1) the Markov kernel
Kn,µn−1

: En ×Fn → [0, 1] defined by

Kn,µn−1

(
xn, dx′

n

)
= αn

(
xn,x′

n

) (
µn−1 × qn

) (
dx′

n

)
(A.2)

+

(
1 −

∫
αn (xn,yn)

(
µn−1 × qn

)
(dyn)

)
δxn

(
dx′

n

)

where x′
n =

(
x′

n−1, x
′
n

)
. In (A.1) and (A.2), we have for n ∈ T

αn
(
xn,x′

n

)
= 1 ∧

wn (x′
n)

wn (xn)
.

We use ‖·‖
tv

to denote the total variation norm and for any Markov kernel

Ki (x, dx′
)

:=

∫
Ki−1 (x, dy) K

(
y, dx′

)
.

A.2. Preliminary Results. We establish here the expression of the
invariant distributions of the kernels K1 (x1, dx

′
1) and Kn,µn−1

(xn, dx′
n) and

establish that these kernels are geometrically ergodic. We also provide some
perturbation bounds for Kn,µn−1

(xn, dx′
n) and its invariant distribution.

Lemma 1. Assume A1. K1 (x1, dx
′
1) is uniformly geometrically ergodic

of invariant distribution π1 (dx1).

By construction, K1 (x1, dx
′
1) is an MH algorithm of invariant distribution

π1 (dx1). Uniform ergodicity follows from A1; see for example Theorem 2.1.
in [19].
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18 A. BROCKWELL ET AL.

Proposition 2. Assume A1. For any n ∈ {2, ..., P} and any µn−1 ∈
P (En−1), Kn,µn−1

(xn, dx′
n) is uniformly geometrically ergodic of invariant

distribution

(A.3) ωn
(
µn−1

)
(dxn) =

πn/n−1 (xn−1) .
(
µn−1 × πn

)
(dxn)

µn−1

(
πn/n−1

)

where πn (xn−1, dxn) and πn/n−1 (xn−1) are defined respectively in (2.8) and
(2.10).

Proof. To establish the result, it is sufficient to rewrite

wn (xn) =
Zn

Zn−1

πn(xn)
πn−1(xn−1)µn−1 (xn−1)
(
µn−1 × qn

)
(xn)

=
Zn

Zn−1

πn/n−1 (xn−1)
(
µn−1 × πn

)
(xn)

(
µn−1 × qn

)
(xn)

.

This shows that Kn,µn−1
(xn, dx′

n) is nothing but a standard MH algorithm
of proposal distribution

(
µn−1 × qn

)
(xn) and target distribution given by

(A.3). This distribution is always proper because A1 implies that
πn/n−1 (xn−1) < ∞ over En−1. Uniform ergodicity follows from Theorem
2.1. in [19].�

Corollary. It follows that for any n ∈ {2, ..., P} there exists ρn < 1 such
that for any m ∈ N0 and xn ∈ En

(A.4)
∥∥∥Km

n,µn−1
(xn, ·) − ωn

(
µn−1

)
(·)
∥∥∥

tv
≤ ρm

n .

Proposition 3. Assume A1. For any n ∈ {2, ..., P}, we have for any
µn−1,νn−1 ∈ P (En−1), xn ∈ En and m ∈ N

(A.5)
∥∥∥Km

n,µn−1
(xn, ·) − Km

n,νn−1
(xn, ·)

∥∥∥
tv
≤

2

1 − ρn

∥∥µn−1 − νn−1

∥∥
tv

and

(A.6)
∥∥ωn

(
µn−1

)
− ωn (νn−1)

∥∥
tv
≤

2

1 − ρn

∥∥µn−1 − νn−1

∥∥
tv

.

Proof. For any fn ∈ B (En), we have the following decomposition

Km
n,µn−1

(fn) (xn) − Km
n,νn−1

(fn) (xn)

=
m−1∑

j=0

Kj
n,µn−1

(
Kn,µn−1

− Kn,νn−1

)
Km−j−1

n,νn−1
(fn) (xn)

=
m−1∑

j=0

Kj
n,µn−1

(
Kn,µn−1

− Kn,νn−1

) (
Km−j−1

n,νn−1
(fn) (xn) − ωn (νn−1) (fn)

)
.
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From A1, we know that for any νn−1 ∈ P (En−1)
∥∥∥Km−j−1

n,νn−1
(xn, ·) − ωn (νn−1)

∥∥∥
tv
≤ ρm−j−1

n

and from (A.2) for any xn ∈ En and fn ∈ B (En)

Kn,µn−1
(fn) (xn) − Kn,νn−1 (fn) (xn)

=

∫
fn
(
x′

n

)
αn
(
xn,x′

n

) ((
µn−1 − νn−1

)
× qn

) (
dx′

n

)

+ fn (xn)

∫
αn
(
xn,y′

n

) ((
νn−1 − µn−1

)
× qn

) (
dy′

n

)

thus ∥∥∥Kn,µn−1
(xn, ·) − Kn,νn−1 (xn, ·)

∥∥∥
tv
≤ 2

∥∥µn−1 − νn−1

∥∥
tv

.

So

∥∥∥Kn,µn−1
(xn, ·) − Kn,νn−1 (xn, ·)

∥∥∥
tv
≤ 2

∥∥µn−1 − νn−1

∥∥
tv

m−1∑

j=0

ρm−j−1
n

= 2
1 − ρm

n

1 − ρn

∥∥µn−1 − νn−1

∥∥
tv

.

Hence (A.5) follows and we obtain (A.6) by taking the limit as m → ∞.�

A.3. Convergence of Averages. For any n ∈ {2, ..., P}, p ≥ 1 and
fn ∈ B (En) we want to study

E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

.

We have

(A.7) π̂(i)
n (fn) − πn (fn) = π̂(i)

n (fn) − S(i)
n (fn) + S(i)

n (fn) − πn (fn)

where

S(i)
n (fn) =

1

i + 1

i∑

m=0

ωn

(
π̂

(m)
n−1

)
(fn) .

To study the first term on the rhs of (A.7), we introduce the Poisson equation

fn (x) − ωn (µ) (fn) = f̂n,µ (x) − Kn,µ

(
f̂n,µ

)
(x)

whose solution, if Kn,µ is geometrically ergodic, is given by

(A.8) f̂n,µ (x) =
∑

i∈N0

[
Ki

n,µ (fn) (x) − ωn (µ) (fn)
]
.
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20 A. BROCKWELL ET AL.

We have

(i + 1)
[
π̂(i)

n (fn) − S(i)
n

]
= M (i+1)

n (fn)

(A.9)

+
i∑

m=0

[
f̂

n,π̂
(m+1)
n−1

(
X(m+1)

n

)
− f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)]

+ f̂
n,π̂

(0)
n−1

(
X(0)

n

)
− f̂

n,π̂
(i+1)
n−1

(
X(i+1)

n

)

where

(A.10) M (i)
n (fn) =

i−1∑

m=0

[
f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)
− K

π̂
(m)
n−1

(
f̂

n,π̂
(m)
n−1

)(
X(m)

n

)]

is a Gi
n-martingale with Gi

n = σ
(
X

(1:i)
1 ,X

(1:i)
2 , ...,X

(1:i)
n

)
where we define

X
(1:i)
k =

(
X

(1)
k , ...,X

(i)
k

)
.

We remind the reader that B (En) = {fn : En → R such that ‖fn‖ ≤ 1}
where ‖fn‖ = sup

xn∈En

|fn (xn)|. We establish the following propositions.

Proposition 4. Assume A1. For any n ∈ {2, ..., P}, x
(0)
1:n, p ≥ 1, fn ∈

B (En) and m ∈ N0, we have

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(m)
n−1

(
X(m+1)

n

)∣∣∣∣
p]1/p

≤
1

1 − ρn

.

Proof. Assumption A1 ensures that f̂
n,π̂

(m)
n−1

is given by an expression of

the form (A.8). We have

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(m)
n−1

(
X(m+1)

n

)∣∣∣∣
p]1/p

≤
∑

i∈N0

E
x

(0)
1:n

[∣∣∣∣K
i

n,π̂
(m)
n−1

(fn)
(
X(m+1)

n

)
− ωn

(
π̂

(m)
n−1

)
(fn)

∣∣∣∣
p]1/p

≤
∑

i∈N0

E
x

(0)
1:n

[
E

x
(0)
1:n

(∣∣∣∣K
i

n,π̂
(m)
n−1

(fn)
(
X(m+1)

n

)
− ωn

(
π̂

(m)
n−1

)
(fn)

∣∣∣∣
p∣∣∣∣G

m
n−1

)]1/p

≤
∑

i∈N0

ρi
n =

1

1 − ρn

.

using Minkowski’s inequality and the fact that K
n,π̂

(m)
n−1

is an uniformly er-

godic Markov kernel conditional upon Gm
n−1 using A1.�
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Proposition 5. Assume A1. For any n ∈ {2, ..., P} and any p ≥ 1,

there exist B1,n, B2,p < ∞ such that for any x
(0)
1:n, fn ∈ B (En) and m ∈ N

E
x

(0)
1:n

[∣∣∣M (m)
n (fn)

∣∣∣
p]1/p

≤ B1,nB2,p m
1
2 .

Proof. For p > 1 we use Burkholder’s inequality (e.g. [21, p. 499]); i.e.
there exist constants C1,n, C2,p < ∞ such that

E
x

(0)
1:n

[∣∣∣M (m)
n (fn)

∣∣∣
p]1/p

(A.11)

≤ C1,nC2,pE
x

(0)
1:n




(

m−1∑

i=0

[
f̂

n,π̂
(i)
n−1

(
X(i+1)

n

)
− K

n,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)]2)p/2



1/p

.

For p ∈ (1, 2), we can bound the lhs of (A.11)

E
x

(0)
1:n




(

m−1∑

i=0

[
f̂

n,π̂
(i)
n−1

(
X(i+1)

n

)
− K

n,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)]2)p/2



1/p

≤ E
x

(0)
1:n




(

2
m−1∑

i=0

[∣∣∣∣f̂n,π̂
(i)
n−1

(
X(i+1)

n

)∣∣∣∣
2

+

∣∣∣∣Kn,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
2
])p/2




1/p

≤ E
x

(0)
1:n

[(
2

m−1∑

i=0

[∣∣∣∣f̂n,π̂
(i)
n−1

(
X(i+1)

n

)∣∣∣∣
2

+

∣∣∣∣Kn,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
2
])]1/2

using (a − b)2 ≤ 2
(
a2 + b2

)
and Jensen’s inequality. Now using Jensen’s

inequality again, we have

E
x

(0)
1:n

[∣∣∣∣Kn,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
2
]
≤ E

x
(0)
1:n

[
K

n,π̂
(i)
n−1

(∣∣∣∣f̂n,π̂
(i)
n−1

∣∣∣∣
2
)(

X(i)
n

)]

and using Proposition 4, we obtain the bound

E
x

(0)
1:n




(

m−1∑

i=0

[
f̂

n,π̂
(i)
n−1

(
X(i+1)

n

)
− K

n,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)]2)p/2



1/p

≤
2

1 − ρn

m
1
2 .

For p ≥ 2, we we can bound the lhs of (A.11) through Minkowski’s in-
equality

E
x

(0)
1:n

[∣∣∣M (m)
n (fn)

∣∣∣
p]1/p

≤ C1,nC2,p

(
m−1∑

i=0

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(i)
n−1

(
X(i+1)

n

)
− K

n,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
p]2/p

)1/2

.
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Using Minkowski’s inequality again

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(i)
n−1

(
X(i+1)

n

)
− K

n,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
p]

≤

(
E

x
(0)
1:n

[∣∣∣∣f̂n,π̂
(i)
n−1

(
X(i+1)

n

)∣∣∣∣
p]1/p

+ E
x

(0)
1:n

[∣∣∣∣Kn,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
p]1/p

)p

.

Now from Proposition 4 and Jensen’s inequality, we can conclude for p ≥ 1.
For p = 1, we use Davis’ inequality (e.g. [21, p. 499]) to obtain the result
using similar arguments which are not repeated here.�

Proposition 6. Assume A1. For any n ∈ {2, ..., P} and p ≥ 1 there

exists Bn < ∞ such that for any x
(0)
1:n, fn ∈ B (En) and m ∈ N0

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(m+1)
n−1

(
X(m+1)

n

)
− f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)∣∣∣∣
p]1/p

≤
Bn

m + 2

Proof. Our proof is based on the following key decomposition established
in Lemma 3.2. in [8]

f̂
n,π̂

(m+1)
n−1

(
X(m+1)

n

)
− f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)
+ ωn

(
π̂

(m+1)
n−1

)(
f̂

n,π̂
(m)
n−1

)(A.12)

=
∑

i,j∈N0

(
δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

))
Ki

n,π̂
(m+1)
n−1

(
K

n,π̂
(m+1)
n−1

− K
n,π̂

(m)
n−1

)

× Kj

n,π̂
(m)
n−1

(
fn − ωn

(
π̂

(m)
n−1

)
(fn)

)
.

We have
∣∣∣∣
(
δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

))
Ki

n,π̂
(m+1)
n−1

(
K

n,π̂
(m+1)
n−1

− K
n,π̂

(m)
n−1

)
Kj

n,π̂
(m)
n−1

(
fn − ωn

(
π̂

(m)
n−1

)
(fn)

)∣∣∣∣

=

∣∣∣∣
(
δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

))
Ki

n,π̂
(m+1)
n−1

(
K

n,π̂
(m+1)
n−1

− K
n,π̂

(m)
n−1

)
Kj

n,π̂
(m)
n−1

(fn)

∣∣∣∣

≤ ρj
n

∥∥∥∥
(
δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

))
Ki

n,π̂
(m+1)
n−1

(
K

n,π̂
(m+1)
n−1

− K
n,π̂

(m)
n−1

)∥∥∥∥
tv

≤ ρj
n ×

2

1 − ρn

∥∥∥π̂(m+1)
n−1 − π̂

(m)
n−1

∥∥∥
tv

∥∥∥∥
(
δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

))
Ki

n,π̂
(m+1)
n−1

∥∥∥∥
tv

≤ ρj
n ×

2

1 − ρn

∥∥∥π̂(m+1)
n−1 − π̂

(m)
n−1

∥∥∥
tv
× ρi

n

∥∥∥δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

)∥∥∥
tv

≤
2ρi+j

n

1 − ρn

∥∥∥π̂(m+1)
n−1 − π̂

(m)
n−1

∥∥∥
tv

.

(A.13)
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using A1, (A.5) in Proposition 3 and A1 again.
Now we have

∣∣∣∣ωn

(
π̂

(m+1)
n−1

)(
f̂

n,π̂
(m)
n−1

)∣∣∣∣ =

∣∣∣∣∣∣
ωn

(
π̂

(m+1)
n−1

)



∑

i∈N0

[
Ki

n,π̂
(m)
n−1

(fn) − ωn

(
π̂

(m)
n−1

)
(fn)

]



∣∣∣∣∣∣

=
∑

i∈N0

∣∣∣∣
(
ωn

(
π̂

(m+1)
n−1

)
− ωn

(
π̂

(m)
n−1

))
Ki

n,π̂
(m)
n−1

(fn)

∣∣∣∣

≤
∑

i∈N0

ρi
n

∥∥∥ωn

(
π̂

(m+1)
n−1

)
− ωn

(
π̂

(m)
n−1

)∥∥∥
tv

≤
2

(1 − ρn)2

∥∥∥π̂(m+1)
n−1 − π̂

(m)
n−1

∥∥∥
tv

.(A.14)

using A1 and (A.6) in Proposition 3.
Now for any fn−1 ∈ B (En−1), we have

π̂
(m+1)
n−1 (fn−1) − π̂

(m)
n−1 (fn−1) =

fn−1

(
X

(m+1)
n−1

)

m + 2
−

π̂
(m)
n−1 (fn−1)

m + 2
.

thus

(A.15)
∥∥∥π̂(m+1)

n−1 − π̂
(m)
n−1

∥∥∥
tv
≤

2

m + 2
.

The result follows now directly combining (A.12), (A.13), (A.14), (A.15) and
using Minkowski’s inequality.�

Proposition 7. Assume A1. For any n ∈ {2, ..., P} and any p ≥ 1

there exists B1,n, B2,p < ∞ such that for x
(0)
1:n, fn ∈ B (En) and i ∈ N0

E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − S(i)

n (fn)
∣∣∣
p]1/p

≤
B1,nB2,p

(i + 1)
1
2

Proof. Using (A.9) and Minkowski’s inequality, we obtain

E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − S(i)

n (fn)
∣∣∣
p]1/p

(A.16)

≤
1

(i + 1)
E

x
(0)
1:n

[∣∣∣M (i+1)
n (fn)

∣∣∣
p]1/p

+
1

(i + 1)

i∑
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E
x

(0)
1:n
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(m+1)
n−1

(
X(m+1)

n

)
− f̂
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(m)
n−1

(
X(m+1)

n
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p]1/p

+
1

i + 1
E

x
(0)
1:n

[∣∣∣∣f̂n,π̂
(0)
n−1

(
X(0)

n
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p
]1/p

+
1

i + 1
E

x
(0)
1:n

[∣∣∣∣f̂n,π̂
(i+1)
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(
X(i+1)

n
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p
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.
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The first term on the rhs of (A.16) is bounded using Proposition 5, the term
on the last line of the rhs are going to zero because of Proposition 4. For
the second term, we obtain using Proposition 6

i∑

m=0

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(m+1)
n−1

(
X(m+1)

n

)
− f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)∣∣∣∣
p]1/p

≤
i∑

m=0

Bn

m + 2

≤ Bn log (i + 2)

The result follows.�
Proof of Theorem 3.1. Under A1, the result is clearly true for n = 1

thanks to Lemma 1. Assume it is true for n − 1 and let us prove it for n.
We have using Minkowski’s inequality

E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

≤ E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − S(i)

n (fn)
∣∣∣
p]1/p

+ E
x

(0)
1:n

[∣∣∣S(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

.

The first term on the rhs can be bounded using Proposition 7. For the second
term, we have

E
x

(0)
1:n

[∣∣∣S(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

≤
1

(i + 1)

i∑

m=0

E
x

(0)
1:n

[∣∣∣ωn

(
π̂

(m)
n−1

)
(fn) − ωn (πn−1) (fn)

∣∣∣
p]1/p

.

Using (A.3), we obtain

ωn (πn−1) (fn) − ωn

(
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(m)
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)
(fn)

=
(πn−1 × πn)

(
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)

πn−1

(
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) −

(
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(m)
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)(
πn/n−1.fn

)
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(m)
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(
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=
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)
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)(
πn/n−1.fn

)
.π̂
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(
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)
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(
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)
.πn−1

(
πn/n−1

)

+
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.
(
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)
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(
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)
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so, as πn−1

(
πn/n−1

)
= 1, we have

∣∣∣ωn (πn−1) (fn) − ωn

(
π̂

(m)
n−1

)
(fn)

∣∣∣

≤
∣∣∣
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) (
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∣∣∣
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(
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(m)
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) (
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)∣∣∣

π̂
(m)
n−1

(
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) .

Assumption A1 implies that there exists Dn < ∞ such that
πn/n−1 (xn−1) < Dn over En−1. Thus we have using the induction hypothesis

E
x
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E
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.

This concludes the proof.�

A.4. Convergence of Marginals. Proof of Theorem 3.2. For n = 1
the result follows directly from Assumption A1. Now consider the case where
n ≥ 2. We use the following decomposition for 0 ≤ n (i) ≤ i
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For the first term, we use the following decomposition
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Now we have from Proposition 3 that
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and using A1
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Finally to study the last term E
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use the same decomposition used in the proof of Theorem 3.1 to obtain
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One can check that
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]∣∣∣∣ converges towards zero for

n (i) = ⌊iα⌋ where 0 < α < 1.�
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