Some theoretical aspects of Particle/SMC Methods

P. Del Moral

INRIA, Centre Bordeaux-Sud Ouest

SAMSI Workshop on Sequential Monte Carlo Methods, September 2008.

 $\hookrightarrow \sim$ Joint works :

D. Crisan, D. Dawson, A. Doucet, J. Jacod, A. Jasra, A. Guionnet, M. Ledoux, L. Miclo, F. Patras, T. Lyons, S. Rubenthaler,... http-references :

 \hookrightarrow Feynman-Kac formulae. Genealogical and interacting particle systems, Springer (2004), <u>+ References</u> \hookrightarrow DM, Doucet, Jasra. SMC Samplers. JRSS B (2006).

- Some foundations & Motivating Applications
- 2 A simple mathematical model
- 3 Some Feynman-Kac sampling recipes
- 4 A series of applications
- 5 Some theoretical aspects

Summary

Some foundations & Motivating Applications

- Some "different" particle interpretation models
- Sequential Monte Carlo & Feynman-Kac models
- Motivating application areas

2 A simple mathematical model

- 3 Some Feynman-Kac sampling recipes
- 4 A series of applications
- 5 Some theoretical aspects

Particle Interpretation models

- Mathematical physics and molecular chemistry (≥ 1950's) : Particle/microscopic interpretation models, particle absorption, macro-molecular chains, quantum and diffusion Monte Carlo.
- Environmental studies and biology (≥ 1950's): Population, gene evolutions, species genealogies, branching/birth and death models.
- Evolutionary mathematics and engineering sciences (≥ 1970's): Adaptive stochastic search method, evolutionary learning models, interacting stochastic grids approximations, genetic algorithms.
- Applied Probability and Bayesian Statistics ($\geq 1990's$): Approximating simulation technique (recursive acceptance-rejection model), Sequential Monte Carlo, http-ref : interacting Monte Carlo Markov chains (Andrieu, Bercu, DM, Doucet, Jasra).
- Pure mathematics (≥ 1960's for fluid models, ≥ 1990's for discrete time and interacting jump models): Stochastic linearization tech., mean field particle interpretations of nonlinear PDE and measure valued equations.

Central idea of particle/SMC in stochastic engineering :

{ **Physical and Biological intuitions** *[learning, adaptation, optimization,...]* } **Engineering problems**

Sequential Monte Carlo	Sampling	Resampling
Particle Filters	Prediction	Updating
Genetic Algorithms	Mutation	Selection
Evolutionary Population	Exploration	Branching
Diffusion Monte Carlo	Free evolutions	Absorption
Quantum Monte Carlo	Walkers motions	Reconfiguration
Sampling Algorithms	Transition proposals	Acceptance-rejection

More botanical names : spawning, cloning, pruning, enrichment, go with the winner, and many others.

Pure mathematical point of view :

= Mean field particle interpretation of Feynman-Kac measures

Some application areas of Feynman-Kac formulae

• Physics :

- Feynman-Kac-Schroedinger semigroups ∈ nonlinear integro-differential equations (~ generalized Boltzmann models).
- Spectral analysis of Schrödinger operators and large matrices with nonnegative entries.
- Particle evolutions in disordered/absorbing media.
- Multiplicative Dirichlet problems with boundary conditions.
- Microscopic and macroscopic interacting particle interpretations.

• Chemistry and Biology:

- Self-avoiding walks, macromolecular simulation, directed polymers.
- Spatial branching and evolutionary population models.
- Coalescent and Genealogical tree based evolutions.

Some application areas of Feynman-Kac formulae

• Rare events analysis:

- Multisplitting and branching particle models (Restart type methods).
- Importance sampling and twisted probability measures.
- Genealogical tree based simulations (default tree sampling models).

Advanced Signal processing:

- Optimal filtering, prediction, smoothing.
- Open loop optimal control, optimal regulation.
- Interacting Kalman-Bucy filters.
- Stochastic and adaptative grid approximation-models

• Statistics/Probability:

- Restricted Markov chains (w.r.t terminal values, visiting regions, constraints simulation problems,...)
- Analysis of Boltzmann-Gibbs type distributions (simulation, partition functions, localization models...).
- Random search evolutionary algorithms, interacting Metropolis/simulated annealing algo, combinatorial counting.

Some foundations & Motivating Applications

A simple mathematical model

- Standard notation
- A genetic type spatial branching process
- Genealogical tree approximation measures
- Limiting Feynman-Kac measures

3 Some Feynman-Kac sampling recipes

- 4 A series of applications
- 5 Some theoretical aspects

Standard notation

E measurable space, $\mathcal{P}(E)$ proba. on *E*, $\mathcal{B}(E)$ bounded meas. functions.

•
$$(\mu, f) \in \mathcal{P}(E) \times \mathcal{B}(E) \longrightarrow \mu(f) = \int \mu(dx) f(x)$$

• M(x, dy) integral operator on E

$$M(f)(x) = \int M(x, dy) f(y)$$

[\mu M](dy) = $\int \mu(dx) M(x, dy)$ (\Rightarrow [\mu M](f) = \mu [M(f)])

• Bayes-Boltzmann-Gibbs transformation : $G : E \to [0, \infty[$ with $\mu(G) > 0$

$$\Psi_G(\mu)(dx) = \frac{1}{\mu(G)} G(x) \mu(dx)$$

Note

If $\mu = \text{Law}(X)$ and $M(x, dy) := \mathbb{P}(Y \in dy \mid X = x)$ Then

• Expectation operators

$$\mu(f) = \int \mathbb{P}(X \in dx) f(x) = \mathbb{E}(f(X))$$
$$M(f)(x) = \int \mathbb{P}(Y \in dy \mid |X = x) f(y) = \mathbb{E}(f(Y) \mid X = x)$$
$$[\mu M](dy) = \int \mathbb{P}(Y \in dy \mid X = x) \mathbb{P}(X \in dx) = \mathbb{P}(Y \in dy)$$

• Bayes rule (Y = y fixed observation) :

$$\mu(dx) := p(x) \ dx \quad \text{and} \quad G(x) = p(y \mid x)$$

$$\Downarrow$$

$$\Psi_G(\mu)(dx) = \frac{1}{\mu(G)} \ G(x) \ \mu(dx) = p(x \mid y) \ dx$$

Only 3 Ingredients

• A state space :

 E_n with n = time/level index [transitions, paths, excursions,...].

$$X_n := (X'_{n-1}, X'_n), \quad X'_{[0,n]}, \quad X'_{[t_{n-1}, t_n]}, \quad X'_{[T_{n-1}, T_n]}, \dots$$

• A Markov Proposal/Exploration/Mutation transition :

$$M_n(x_{n-1}, dx_n) := \mathbb{P}\left(X_n \in dx_n \mid X_{n-1} = x_{n-1}\right)$$

• A potential/likelihood/fitness/weight function on E_n :

$$G_n$$
 : $x_n \in E_n \longrightarrow G_n(x_n) \in [0,\infty[$

Running Examples :

- [Confinement] X_n =Simple random walk (SRW) on $E_n = \mathbb{Z}$ and $G_n = 1_A$.
- [Filtering] M_n =signal transitions, G_n =Likelihood weight function.

SMC/Genetic type branching particle model :

Selection/Branching : $(\forall \epsilon_n \geq 0 \text{ s.t. } \epsilon_n(x^1, \dots, x^N) \times G_n(x^i) \in [0, 1])$

• Acceptance probability:

$$\widehat{\xi}_n^i = \xi_n^i$$
 with probability $\epsilon_n(\xi_n^1, \dots, \xi_n^N) \ G_n(\xi_n^i)$

• Otherwise :

$$\widehat{\xi}_n^i = \xi_n^j$$
 with probability $\frac{G_n(\xi_n^j)}{\sum_{k=1}^N G_n(\xi_n^k)}$

Running examples: [Confinement & Filtering] = $[(G_n = 1_A) \& (G_n = \text{Likelihood})].$

Some remarks :

- $\epsilon_n = 0 \implies$ Simple Mutation-Selection Genetic model.
- $G_n = \exp\{-V_t \Delta t\}$ & $\epsilon_n = 1 \implies V_t$ -expo-clocks \oplus uniform selection
- $G_n \in [0,1]$ & $\epsilon_n = 1 \Rightarrow$ Interacting Acceptance-Rejection Sampling.
- Better fitted individuals acceptance :

For
$$\epsilon_n(x^1,\ldots,x^N)G_n(x^i) = G_n(x^i) / \sup_{1 \le j \le N} G_n(x^j)$$

• Related branching rules:

[DM-Crisan-Lyons MPRF 99, DM 04] (Given $\xi_n = (\xi_n^i)_i$)

 $P_n^i :=$ Proportion of offsprings of the individual ξ_n^i

• Unbiasedness property : $\mathbb{E}(P_n^i) = G_n(\xi_n^j) / \sum_{k=1}^N G_n(\xi_n^k)$

• Local mean error :
$$\mathbb{E}\left(\left[\sum_{i=1}^{N}\left[P_{n}^{i}-\mathbb{E}\left(P_{n}^{i}\right)\right]f(\xi_{n}^{i})\right]^{2}\right)\leq\frac{Cte}{N}$$

Interacting-Branching proc. \hookrightarrow 3 Particle/SMC occupation measures:

Limiting measures ("Test" functions $f : E_n \to \mathbb{R}$)

Occupation measures of the Current population

$$\eta_n^N(f) := \frac{1}{N} \sum_{i=1}^N f(\xi_n^i) \longrightarrow_{N \uparrow \infty} \eta_n(f) := \frac{\gamma_n(f)}{\gamma_n(1)}$$

with the Feynman-Kac measures (X_n Markov with transitions M_n):

$$\gamma_n(f) := \mathbb{E}\left(f_n(X_n) \prod_{0 \le p < n} G_p(X_p)\right)$$

• Running examples :

• Confinement $G_n = 1_A$:

 $\gamma_n(1) = \mathbb{P}\left(\forall 0 \le p < n \quad X_p \in A \right) \quad \& \quad \eta_n = \operatorname{Law}\left(X_n \mid \forall 0 \le p < n \quad X_p \in A\right)$

• Filtering: G_n=Likelihood function :

 $\gamma_n(1) = p_n(y_0, \dots, y_{n-1})$ & $\eta_n = \text{Law}(X_n \mid Y_0 = y_0, \dots, Y_{n-1} = y_{n-1})$

Limiting measures ("Test" function on path space $f_n : E_n = (E'_0 \times \ldots \times E'_n) \to \mathbb{R}$)

• Occupation measures of the historical/genealogical tree

$$\eta_n^N(f_n) := \frac{1}{N} \sum_{i=1}^N f_n\left(\xi_{0,n}^i, \xi_{1,n}^i, \dots, \xi_{n,n}^i\right) \longrightarrow_{N\uparrow\infty} \eta_n(f_n) := \frac{\gamma_n(f_n)}{\gamma_n(1)}$$

with the Feynman-Kac measures on path space :

$$\gamma_n(f_n) := \mathbb{E}\left(f_n(X'_0,\ldots,X'_n) \prod_{0 \le p < n} G_p(X'_0,\ldots,X'_p)\right)$$

• Running examples : $X_n = (X'_0, \dots, X'_n)$ SRW & $G_n(X_n) = 1_A(X'_n)$

$$\begin{aligned} \gamma_n(1) &= & \mathbb{P}\left(\forall 0 \le p < n \quad X'_p \in A\right) \\ \eta_n &= & \operatorname{Law}\left(\left(X'_0, \dots, X'_n\right) \mid \forall 0 \le p < n \quad X'_p \in A\right) \end{aligned}$$

 $\mathsf{Filtering} \rightsquigarrow \eta_n = \mathrm{Law}\left(\left(X_0', \ldots, X_n' \right) \ | \ Y_0 = y_0, \ldots, Y_{n-1} = y_{n-1} \right)$

Note

Updated Feynman-Kac models

$$\widehat{\gamma}_n(f_n) := \mathbb{E}\left(f_n(X'_0,\ldots,X'_n) \prod_{0 \leq p \leq n} G_p(X'_0,\ldots,X'_p)\right)$$

 $\$ [Path space models] $x_n = (x'_0, \dots, x'_n)$

(SMC) Updating weight functions : $G_n(x_n) = \frac{\widehat{\gamma}_n(dx_n)}{\widehat{\gamma}_{n-1}(dx_{n-1}) \times M'_n(x'_{n-1}, dx'_n)}$ Local explorations : $x_{n-1} \rightsquigarrow x_n = (x_{n-1}, x'_n)$ with $x'_n \sim M'_n(x'_{n-1}, dx'_n)$

Limiting measures ("Test" function on path space $F_n : (E_0 \times \ldots \times E_n) \to \mathbb{R}$)

• Occupation measures of the complete genealogical tree ($\epsilon_n = 0$)

$$\frac{1}{N}\sum_{i=1}^{N} F_n\left(\xi_0^i,\xi_1^i,\ldots,\xi_n^i\right) \longrightarrow_{N\uparrow\infty} (\eta_0\otimes\ldots\otimes\eta_n)(F_n)$$

with the Feynman-Kac tensor product measures :

$$(\eta_0 \otimes \ldots \otimes \eta_n)(F_n) = \int_{E_0} \ldots \int_{E_n} \eta_0(dx_0) \ldots \eta_n(dx_n) F_n(x_0, \ldots, x_n)$$

• Acceptance parameter $\epsilon_n \neq 0 \rightsquigarrow$ Limiting McKean measures.

 $\eta_n = \operatorname{Law}(\overline{X}_n)$ with Markov transition $\overline{X}_n \stackrel{\eta_n}{\leadsto} \overline{X}_{n+1}$

Interacting-Branching model = Mean-field interpretation of \overline{X}_n

Limiting mean potential/success proportions ($G_n = 1_A$)

$$\eta_n^N(G_n) := \frac{1}{N} \sum_{i=1}^N G_n(\xi_n^i) \longrightarrow_{N\uparrow\infty} \eta_n(G_n) \stackrel{\text{def.}}{=} \frac{\gamma_n(G_n)}{\gamma_n(1)} = \frac{\gamma_{n+1}(1)}{\gamma_n(1)}$$
(1)

 \Rightarrow Unbiased estimate of the normalizing cts/partition functions :

$$\gamma_n^N(1) := \prod_{0 \le p < n} \eta_p^N(G_p) \longrightarrow_{N \uparrow \infty} \gamma_n(1) = \prod_{0 \le p < n} \eta_p(G_p)$$

with the key product formula :

(1)
$$\implies \gamma_n(1) := \mathbb{E}\left(\prod_{0 \le p < n} G_p(X_p)\right) = \prod_{0 \le p < n} \eta_p(G_p)$$

Running ex. : $[X_n \text{ SRW } \& G_n = 1_A]$

 $\prod_{0 \le p < n}$ (Success proportion time p) $\simeq \mathbb{P} (\forall 0 \le p < n \quad X_p \in A)$

Summary-Conclusions

SMC/Genetic type branching/particle model $[M_n$ -free exploration \oplus G_n -weighted branchings/adaptation]

↓ & ↑

Feynman-Kac measures $[M_n$ -free motion $\oplus G_n$ -potential functions]

Some foundations & Motivating Applications

2 A simple mathematical model

Some Feynman-Kac sampling recipes

- Exploration/Branching rules and related tuning parameters
- Some "wrong" approximation ideas
- A nonlinear approach
- Some key advantages

A series of applications

5 Some theoretical aspects

Some evolutionary sampling recipes

Nonlinear Feynman-Kac measures $\sim (G_n, M_n)$

$$\eta_n(f) = \gamma_n(f)/\gamma_n(1) \quad \text{with} \quad \gamma_n(f) = \mathbb{E}\left(f_n(X_n) \prod_{0 \le p < n} G_p(X_p)\right)$$

• ~> Interacting stochastic algorithm :

accept/reject/select/branch/prune/clone/spawn/enrich \rightsquigarrow G_n exploration/proposition/prediction/mutation/free evolution \rightsquigarrow M_n

And Inversely !

- Normalizing constants ~> key multiplicative formula.
- Path space models ~> path-particles=ancestral lines

Occupation meas. of genealogical trees $\simeq \eta_n \in \text{path-space}$

• **Tuning parameters:** $(G_n, M_n) \sim$ change of ref. measures, path/excursion spaces, selection periods, weights interpretations,...

Some "wrong" approximation ideas

• "Pure" weighted Monte Carlo methods : Xⁱ iid copies of X

$$\frac{1}{N}\sum_{i=1}^{N}f_n(X_n^i)\left\{\prod_{0\leq p< n}G_p(X_p^i)\right\} \simeq \mathbb{E}\left(f_n(X_n)\prod_{0\leq p< n}G_p(X_p)\right)$$

 \rightsquigarrow bad grids $X^i \oplus$ degenerate weights (running ex $G_n = 1_A$) \oplus DM, Jacod J. : Interacting particle filtering with discrete-time observations: asymptotic behaviour in the Gaussian case. Stochastics in infinite dimensions, Trends in Mathematics, Birkhauser (2001).

- Uncorrelated MCMC for each target measure η_n (\uparrow complex.).
- "Pure" branching ~> critical random population sizes

$$G_n(x) = \mathbb{E}(g_n(x))$$
 with $g_n(x)$ r.v. $\in \mathbb{N}$

- Harmonic/(Gaussian+linearisation) approximations.
- $G.M(H) \propto H \rightsquigarrow G \propto H/M(H) \rightsquigarrow H$ -process X^H (unknown).

A nonlinear approach \sim Feynman-Kac evolution equation

 $[\eta_n \in \mathcal{P}(E_n) \text{ probability measures } \uparrow \text{ complexity}].$

$$\eta_{n+1} = \Phi_{n+1}(\eta_n) = \Psi_{G_n}(\eta_n) M_{n+1}$$

With only 2 transformations:

• Bayes-Boltzmann-Gibbs updating transformation :

$$\Psi_{G_n}(\eta_n)(dx) := \frac{1}{\eta_n(G_n)} G_n(x) \eta_n(dx)$$

• X-Free Markov transport/prediction eq. : [X_n Markov M_n]

$$\mu(dx) \rightsquigarrow (\mu M_n)(dy) := \int \mu(dx) M_n(x, dy)$$

\$

(Updating/Prediction) ~ (Select./Mutation) = (Branching/Exploration)

2 Local sources of randomness with mean :

$$\mathbb{E}\left(\eta_{n+1}^{N}(f) \mid \xi_{n}\right) = \sum_{i=1}^{N} \frac{G_{n}(\xi_{n}^{i})}{\sum_{j=1}^{N} G_{n}(\xi_{n}^{j})} M_{n+1}(f)(\xi_{n}^{i}) = \Phi_{n+1}\left(\eta_{n}^{N}\right)(f)$$

⚠ The particle measures η_n^N "almost" solve the updating/prediction system :

$$\mathbb{E}(\qquad \left[\eta_{n+1}^{N} - \Phi_{n+1}\left(\eta_{n}^{N}\right)\right](f) \qquad \mid \xi_{n}) = 0 \quad \longleftrightarrow \quad \eta_{n+1} = \Phi_{n+1}(\eta_{n})$$

Up to the local fluctuation errors :

$$\eta_{n+1}^{N} = \Phi_{n+1}\left(\eta_{n}^{N}\right) + \underbrace{\frac{1}{\sqrt{N}}}_{\text{Monte Carlo precision}} \times \underbrace{\left[\sqrt{N} \left(\eta_{n+1}^{N} - \Phi_{n+1}\left(\eta_{n}^{N}\right)\right)\right]}_{:=W_{n}^{N} \simeq \text{Gaussian Field}}$$
P. Del Moral (INRIA Bordeaux)

Some key advantages

 $\bullet \ \rightsquigarrow \ Stochastic \ linearization/perturbation \ model:$

$$\eta_n^N = \Phi_n(\eta_{n-1}^N) + rac{1}{\sqrt{N}} W_n^N$$

with $W_n^N \simeq W_n$ independent and centered Gauss fields.

• If $\eta_n = \Phi_n(\eta_{n-1})$ stable dynamical system

 \implies local errors do not propagate

- \implies uniform control of errors w.r.t. the time parameter
- "No need" to study the cv of equilibrium of MCMC models.
- Adaptive stochastic grid approximations
- Take advantage of the nonlinearity of the system to define beneficial interactions. Non intrusive methods.
- Natural and easy to implement, etc.

Summary

- Some foundations & Motivating Applications
- 2 A simple mathematical model
- 3 Some Feynman-Kac sampling recipes

A series of applications

- Filtering models
- Confinements and twisted measures
- Excursions and level entrances
- Markov process with fixed terminal values
- Non intersecting random walks
- Particle absorption models
- Static Boltzmann-Gibbs measures

Some theoretical aspects

Filtering models

• Signal-Observation likelihood functions (X_n, G_n) :

$$\eta_n = \operatorname{Law}((X_0, \dots, X_n) \mid (Y_0, \dots, Y_n))$$

$$L_n = \frac{1}{n} \log \gamma_n(1) = \operatorname{Log-likelihood function}$$

• Example :

$$Y_n = H_n(X_n) + V_n \quad \text{with} \quad \mathbb{P}(V_n \in dv_n) = g_n(v_n) \, dv_n$$
$$\downarrow [Y_n = y_n]$$
$$G_n(x_n) = g_n(y_n - H_n(x_n))$$

• ~ Particle filters, sampling/resampling alg., bootstrap filter, genetic filter,...

Rare events analysis

• Confinements potentials: $G_n = 1_{A_n}$

$$\begin{aligned} \eta_n &= \operatorname{Law}((X_0, \dots, X_n) \mid X_0 \in A_0, \dots, X_n \in A_n) \\ \mathcal{Z}_n &= \mathbb{P}(X_0 \in A_0, \dots, X_n \in A_n) \end{aligned}$$

→ Interacting acceptance/rejection stochastic simulation

• Twisted measures $\sim \mathbb{P}(V_n(X_n) \geq a)$?

$$\mathbb{E}(f_n(X_n) \ e^{\lambda V_n(X_n)}) = \mathbb{E}\left(f_n(X_n) \ \prod_{0 \le p \le n} e^{\lambda (V_p(X_p) - V_{p-1}(X_{p-1}))}\right)$$

 \rightsquigarrow Interacting particle simulation of twisted measures

Hitting B before C

- Multi-level decomposition $B_0 \supset B_1 \supset \ldots \supset B_m$, $B_0 \cap C = \emptyset$.
- Inter-level excursions :

$$T_n = \inf \{ p \ge T_{n-1} : Y_p \in B_n \cup C \}$$

• Level excursions and level detection potentials:

$$X_n = (Y_p ; T_{n-1} \leq p \leq T_n) \quad \text{and} \quad G_n(X_n) = \mathbb{1}_{B_n}(Y_{T_n})$$

$$\mathbb{P}(Y \text{ hits } B_m \text{ before } C) = \mathbb{E}\left(\prod_{1 \le p \le m} G_p(X_p)\right)$$
$$\mathbb{E}(f(Y_0, \dots, Y_{T_m}) \ \mathbf{1}_{B_m}(Y_{T_m})) = \mathbb{E}\left(f(X_0, \dots, X_m) \ \prod_{1 \le p \le m} G_p(X_p)\right)$$

→ Branching-multilevel splitting algorithms

Objectives - Markov processes with fixed terminal values

- X_n Markov with transitions L(x, dy) on E
- $Law(X_0) = \pi$ only known up to a normalizing constant.
- For a given fixed terminal value x solve/sample inductively the following flow of measures

$$n \mapsto \operatorname{Law}_{\pi}((X_0,\ldots,X_n) \mid X_n = x)$$

FK-formulation - Markov processes with fixed terminal values

• π "target type" measure+(K, L) pair Markov transitions

Metropolis potential $G(x_1, x_2) = \frac{\pi(dx_2)L(x_2, dx_1)}{\pi(dx_1)K(x_1, dx_2)}$

• Theorem [Time reversal formula] :

$$\mathbb{E}_{\pi}^{L}(f_{n}(X_{n}, X_{n-1}..., X_{0})|X_{n} = x)$$

$$= \frac{\mathbb{E}_{x}^{K}(f_{n}(X_{0}, X_{1}, ..., X_{n}) \{\prod_{0 \le p < n} G(X_{p}, X_{p+1})\}}{\mathbb{E}_{x}^{K}(\{\prod_{0 \le p < n} G(X_{p}, X_{p+1})\})}$$

Non intersecting random walks (& connectivity constants)

→ Dynamic Pruning-Enrichment Rosenbluth Monte Carlo model

Molecular simulation \sim Particle absorption models

• X_n Markov $\in (E_n, \mathcal{E}_n)$ with transitions M_n , and $G_n : E_n \to [0, 1]$

 $Q_n(x, dy) = G_{n-1}(x) M_n(x, dy)$ sub-Markov operator

• $\rightsquigarrow E_n^c = E_n \cup \{c\}.$

$$X_n^c \in E_n^c \xrightarrow{absorption \sim G_n} \widehat{X}_n^c \xrightarrow{exploration \sim M_n} X_{n+1}^c$$

With:

- Absorption: $\widehat{X}_n^c = X_n^c$, with proba $G(X_n^c)$; otherwise $\widehat{X}_n^c = c$.
- **Exploration:** elementary free explorations $X_n \rightsquigarrow X_{n+1}$

Feynman-Kac integral model

• $T = \inf \{n : \widehat{X}_n^c = c\}$ absorption time : $\forall f_n \in \mathcal{B}_b(E_n)$

$$\mathbb{P}(T \ge n) = \gamma_n(1) := \mathbb{E}\left(\prod_{0 \le p < n} G(X_p)\right)$$
$$\mathbb{E}(f_n(X_n^c) ; (T \ge n)) = \gamma_n(f_n) := \mathbb{E}\left(f_n(X_n) \prod_{0 \le p < n} G_p(X_p)\right)$$

• Continuous time models : $\Delta = time step$

$$(M,G) = (Id + \Delta L, e^{-V\Delta}) \implies Q \rightsquigarrow L^V := L - V$$

 \rightsquigarrow *L*-motions \oplus expo. clocks rate $V \oplus$ Uniform selection.

Spectral radius-Lyapunov exponents

- Q(x, dy) = G(x)M(x, dy) sub-Markov operator on $\mathcal{B}_b(E)$
- Normalized FK-model : $\eta_n(f) = \gamma_n(f)/\gamma_n(1)$.

$$\mathbb{P}(T \ge n) = \mathbb{E}\left(\prod_{0 \le p \le n} G(X_p)\right) = \prod_{0 \le p \le n} \eta_p(G) \simeq e^{-\lambda n}$$

with $e^{-\lambda} \stackrel{M \text{ reg.}}{=} Q$ -top eigenvalue or

$$\lambda = -\text{LogLyap}(Q) = \lim_{n \to \infty} -\frac{1}{n} \log ||| Q^n |||$$
$$= -\frac{1}{n} \log \mathbb{P}(T \ge n) = -\frac{1}{n} \sum_{0 \le p \le n} \log \eta_p(G) = -\log \eta_\infty(G)$$

Feynman-Kac-Shroedinger ground states energies

 $M \quad \mu - \text{reversible}$:

$$\Rightarrow \mathbb{E}(f(X_n^c) \mid T > n) \simeq \frac{\mu(H f)}{\mu(H)} \quad \text{with} \quad Q(H) = e^{-\lambda}H$$

Limiting FK-measures

$$\eta_n = \Phi(\eta_{n-1}) \to_{n\uparrow\infty} \eta_\infty \quad \text{with} \quad \frac{\eta_\infty(G f)}{\eta_\infty(G)} = \frac{\mu(H f)}{\mu(H)}$$

→ Branching particle approximations :

$$\lambda \simeq_{n,N\uparrow} \lambda_n^N := \frac{1}{n} \sum_{0 \le p \le n} \log \eta_p^N(G) \text{ and } \eta_\infty \simeq_{n,N\uparrow} \eta_n^N$$

 $\operatorname{Law}((X_0^c,\ldots,X_n^c) \mid (T \ge n)) \simeq \operatorname{Genealogical tree measures}$

Diffusion and quantum Monte Carlo models

Boltzmann-Gibbs measures

• X r.v. $\in (E, \mathcal{E})$ with $\mu = \operatorname{Law}(X)$

• Target measures associated with $g_n: E \to \mathbb{R}_+$

$$\eta_n(dx) := \Psi_{g_n}(\mu)(dx) = \frac{1}{\mu(g_n)} g_n(x) \mu(dx)$$

Running examples :

$$g_n = 1_{A_n} \Rightarrow \eta_n(dx) \propto 1_{A_n}(x) \mu(dx)$$

$$g_n = e^{-\beta_n V} \Rightarrow \eta_n(dx) \propto e^{-\beta_n V(x)} \mu(dx)$$

$$g_n = \prod_{0 \le p \le n} h_p \Rightarrow \eta_n(dx) \propto \left\{ \prod_{0 \le p \le n} h_p(x) \right\} \mu(dx)$$

Applications : global optimization pb., tails distributions, hidden Markov chain models, etc.

Boltzmann-Gibbs distribution flows

- Target distribution flow : $\eta_n(dx) \propto g_n(x) \ \mu(dx)$
- Product hypothesis :

$$g_n = g_{n-1} \times G_{n-1} \Longrightarrow \eta_n = \Psi_{G_{n-1}}(\eta_{n-1})$$

Running Examples:

$$\begin{array}{rcl} g_n &=& \mathbf{1}_{A_n} & \text{with } A_n \downarrow &\Rightarrow& G_{n-1} = \mathbf{1}_{A_n} \\ g_n &=& e^{-\beta_n V} \text{ with } \beta_n \uparrow &\Rightarrow& G_{n-1} = e^{-(\beta_n - \beta_{n-1})V} \\ g_n &=& \prod_{0 \le p \le n} h_p &\Rightarrow& G_{n-1} = h_n \end{array}$$

• Problem : $\eta_n = \Psi_{G_{n-1}}(\eta_{n-1}) =$ unstable equation.

FK-stabilization

- Choose $M_n(x, dy)$ s.t. local fixed point eq. $\rightarrow \eta_n = \eta_n M_n$ (Metropolis, Gibbs,...)
- Stable equation :

$$g_n = g_{n-1} \times G_{n-1} \implies \eta_n = \Psi_{G_{n-1}}(\eta_{n-1})$$
$$\implies \eta_n = \eta_n M_n = \Psi_{G_{n-1}}(\eta_{n-1}) M_n$$

• Feynman-Kac "dynamical" formulation (X_n Markov M_n)

$$\int f(x) g_n(x) \mu(dx) \propto \mathbb{E}\left(f(X_n) \prod_{0 \le p < n} G_p(X_p)\right)$$

• ~> Interacting Metropolis/Gibbs/... stochastic algorithms.

Some foundations & Motivating Applications

- 2 A simple mathematical model
- 3 Some Feynman-Kac sampling recipes
- A series of applications
- 5 Some theoretical aspects
 - Non asymptotic results (bias, \mathbb{L}_p and exponential estimates)
 - A stochastic perturbation model \Leftrightarrow Uniform estimates w.r.t. time
 - Asymptotic results (+ sketched proof of a functional CLT)

Non asymptotic results

● Weak estimates ↔ Bias estimates (↔ Propagations of chaos)

Law(q particles among N at time n) $\simeq_{N\uparrow\infty}$ Law(q iid r.v. w.r.t. η_n)

- **1** Total variation $= \frac{q^2}{N}c(n)$, Boltzmann entropy $= \frac{q}{N}c(n)$.
- 2 Stable models: uniform estimates w.r.t. time $\sup_{n} c(n) < \infty$.
- **(3)** Path space and genealogical tree models $c(n) = c \times n$.
- Explicit weak decompositions at any order $\frac{1}{N^k}$.

C→http-ref : DM-Patras-Rubenthaler, Coalescent tree based functional representations for some Feynman-Kac particle models, Hal-INRIA (2006).

• \mathbb{L}_p -mean error bounds [(2),(3) as above]

$$\sup_{N\geq 1}\sqrt{N} \mathbb{E}\left(\sup_{f_n\in\mathcal{F}_n}\left|\eta_n^N(f_n)-\eta_n(f_n)\right|^p\right) \leq b(p) \ c(n)$$

• Exponential estimates [(2) as above & empirical processes ~ \mathcal{F}_n]

$$\mathbb{P}(|\eta_n^N(f_n) - \eta_n(f_n)| > \epsilon) \le c(n) \exp\left\{-\epsilon^2 N/c(n)\right\}$$

A stochastic perturbation model \Leftrightarrow Uniform estimates w.r.t. time

Feynman-Kac (nonlinear) dynamical semigroup : $\eta_{\rho} \rightsquigarrow \Phi_{\rho,n}(\eta_{\rho}) := \eta_n$ A local transport formulation (works \forall approximation scheme $\eta_n^N \simeq \eta_n$!)

~

Some crude uniform estimates w.r.t. time

Hypothesis : (Time homogeneous models) $\exists (m, r)$ s.t. for any (x, y)

 $M^m(x,.) \geq \epsilon M^m(y,.)$ and $G_n(x) \leq r G_n(y)$

• Limiting system stability properties :

$$\|\Phi_{p,p+nm}(\eta) - \Phi_{p,p+nm}(\mu)\|_{tv} \leq (1 - \epsilon^2 / r^{m-1})^n$$

and w.r.t. Csiszár's H-entropy criteria

$$H(\Phi_{p,p+nm}(\mu),\Phi_{p,p+nm}(\eta)) \leq \alpha_H(r^m/\epsilon) (1-\epsilon^2/r^{m-1})^n H(\mu,\eta)$$

• Examples :

 $\alpha_H(t) = t$ (tv norm & Boltzmann entropy), $\alpha_H(t) = t^{1+p}$ (Havrda-Charvat & Kakutani-Hellinger *p*-integrals, $\alpha_H(t) = t^3$ (L₂-norm),...

Some crude uniform estimates w.r.t. time

Hypothesis : (Time homogeneous models) $\exists (m, r)$ s.t. for any (x, y)

$$M^m(x,.) \geq \epsilon M^m(y,.)$$
 and $G_n(x) \leq r G_n(y)$

● L_p-mean error bounds

$$\sup_{\substack{n\geq 0 \ N\geq 1}} \sup_{N\geq 1} \sqrt{N} \mathbb{E}\left(\left|\left[\eta_n^N - \eta_n\right](f)\right|^p\right)^{\frac{1}{p}} \leq 2 \ b(p) \ m \ r^{2m-1}/\epsilon^3$$

with $b(2p)^{2p} = (2p)_p 2^{-p}$ and $b(2p+1)^{2p+1} = \frac{(2p+1)_{(p+1)}}{\sqrt{p+1/2}} 2^{-(p+1/2)}$

• Uniform concentration estimates :

$$\sup_{\substack{n\geq 0}} \mathbb{P}\left(\left| \left[\eta_n^N - \eta_n \right](f) \right| \ge \ \delta \right) \le 6 \ \exp\left(-N \ \delta^2 \ \epsilon^5 / (32mr^{4m-1})\right)$$

• Extensions to Zolotarev's seminorms $\|\eta_n^N - \eta_n\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |[\eta_n^N - \eta_n](f)|$

Fluctuations and large deviations

• Central Limit Theorems [Sharp L_p estimates]

 $\{\texttt{http-ref}: 1999 {\scriptstyle \leadsto} 2004 : \texttt{DM}, \texttt{Guionnet}, \texttt{Jacod}, \texttt{Ledoux}, \texttt{Tindel}\}$

 $V_n^N(f) := \sqrt{N} \left[\eta_n^N(f) - \eta_n(f)\right] \Longrightarrow V_n(f) = \text{Centered Gaussian r.v.}$

1 Functional Central Limit Theorems. $[\forall d, \forall (f^i)_{1 \le i \le d}]$

$$(V_n^N(f^1),\ldots,V_n^N(f^d)) \Longrightarrow (V_n(f^1),\ldots,V_n(f^d))$$

2 Empirical processes \rightsquigarrow Donsker type theorems.

- Onvergence rates → Berry Esseen type theorems.
- Path space models (Complete tree and genealogical tree).
- Large deviations principles [Sharp asymptotic expo estimates]

$$\lim_{N\to\infty}\frac{1}{N}\log\mathbb{P}\left(\eta_n^N\not\in\mathcal{V}(\eta_n)\right)$$

$$\begin{split} &\textit{Example}: \ \mathcal{V}(\eta_n) = \{ \mu \ : \ |\eta_n^N(f) - \eta_n(f)| \leq \epsilon \} \ \text{(weak and strong τ-topo)}. \\ & \{ \texttt{http-ref 1998} \leadsto 2004 \ : \ \texttt{DM}, \ \texttt{Dawson, Guionnet, Zajic} \} \end{split}$$

Feynman-Kac (nonlinear) semigroup $\eta_p \longrightarrow \Phi_{p,n}(\eta_p) := \eta_n$

 $\text{LOCAL FLUCTUATION THEOREM}: \quad W_n^N := \sqrt{N} \; \left[\eta_n^N - \Phi_n \left(\eta_{n-1}^N \right) \right] \simeq W_n \; \text{ Centered and Independent Gaussian field} \; \left[\left(\eta_n^N - \Phi_n \left(\eta_{n-1}^N \right) \right) \right] \simeq W_n \; \text{Centered and Independent Gaussian field} \; \left[\left(\eta_n^N - \Phi_n \left(\eta_{n-1}^N \right) \right) \right] = W_n \; \text{Centered and Independent Gaussian field} \; \left[\left(\eta_n^N - \Phi_n \left(\eta_{n-1}^N \right) \right) \right] = W_n \; \text{Centered and Independent Gaussian field} \; \left[\left(\eta_n^N - \Phi_n \left(\eta_{n-1}^N \right) \right) \right] = W_n \; \text{Centered and Independent Gaussian field} \; \left[\left(\eta_n^N - \Phi_n \left(\eta_{n-1}^N \right) \right) \right] = W_n \; \text{Centered and Independent Gaussian field} \; \left[\left(\eta_n^N - \Phi_n \left(\eta_{n-1}^N \right) \right) \right] = W_n \; \text{Centered and Independent Gaussian field} \; \left[\left(\eta_n^N - \Phi_n \left(\eta_{n-1}^N \right) \right) \right] = W_n \; \text{Centered and Independent Gaussian field} \; \left[\left(\eta_n^N - \Phi_n \left(\eta_{n-1}^N \right) \right) \right] = W_n \; \text{Centered} \; \text{Ce$

Local transport formulation :

~ Key decomposition formula entering the stability of the limiting system:

$$\begin{split} \eta_n^N - \eta_n &= \sum_{q=0}^n \left[\Phi_{q,n}(\eta_q^N) - \Phi_{q,n}(\Phi_q(\eta_{q-1}^N)) \right] \\ &\simeq \frac{1}{\sqrt{N}} \sum_{q=0}^n W_q^N D_{q,n} \hookleftarrow \text{First order decomp. } \Phi_{p,n}(\eta) - \Phi_{p,n}(\mu) \simeq (\eta - \mu) D_{p,n} + (\eta - \mu)^{\otimes 2} \dots \end{split}$$

$$\Rightarrow \quad \text{Two lines proof of a Functional CLT}: \quad \sqrt{N} \left[\eta_n^N - \eta_n \right] \simeq \sum_{q=0}^n W_q D_{q,n}$$