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Abstract. We analyze the robustness properties of the Snell envelope backward evolution equation for the
discrete time optimal stopping problem. We consider a series of approximation schemes, including
cut–off-type approximations, Euler discretization schemes, interpolation models, quantization tree
models, and the stochastic mesh method of Broadie and Glasserman. In each situation, we provide
nonasymptotic convergence estimates, including Lp-mean error bounds and exponential concentra-
tion inequalities. We deduce these estimates from a single and general robustness property of Snell
envelope semigroups. In particular, this analysis allows us to recover existing convergence results for
the quantization tree method and to improve significantly the rates of convergence obtained for the
stochastic mesh estimator of Broadie and Glasserman. In the second part of the article, we propose
a new approach based on a genealogical tree approximation model of the reference Markov process
in terms of a neutral-type genetic model. In contrast to Broadie–Glasserman Monte Carlo models,
the computational cost of this new stochastic approximation is linear in the number of particles.
Some simulation results are provided and confirm the interest of this new algorithm.
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1. Introduction. The evaluation of optimal stopping time of random processes, based on
a given optimality criterion, is one of the major problems in stochastic control and optimal
stopping theory, particularly in financial mathematics with American options pricing and
hedging. The present paper is restricted to the case of the discrete time optimal stopping
problem corresponding in finance to the case of Bermudan options.

It is well known that the price of Bermudan options giving the opportunity to exercise a
payoff fk at discrete dates k = 0, . . . , n can be calculated by a backward dynamic programming
formula. This recursion consists in comparing at each time step k the immediate payoff fk
and the expectation of the future gain (or the so-called continuation value), which precisely
involves the Markov transition Mk+1 of the underlying assets process (Xk).

The first objective of this paper is to provide a simple framework to analyze in unison
most of the numerical schemes currently used in practice to approximate the Snell envelope,
which are precisely based on the approximation of the dynamic programming recursion. The
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idea is to analyze the related approximation error in terms of robustness properties of the
Snell envelope with respect to the pair parameters (fk,Mk). Hence, we include in our analysis
approximation schemes which are defined in terms of some approximate pairs of functions
and transitions (f̂k, M̂k)k≥0. After stating the robustness lemma (Lemma 2.1) in section 2,
we deduce from it nonasymptotic convergence theorems, including Lp-mean error bounds and
related exponential inequalities for the deviations of Monte Carlo–type approximation models.

In section 3, that approach allows us to derive nonasymptotic error bounds for determinis-
tic approximation schemes such as cut-off techniques, Euler-type discrete time approximations,
quantization tree models, interpolation-type approximations and then recover or improve some
existing results or in some cases provide new bounds. We emphasize that this non asymptotic
robustness analysis also allows us to combine in a natural way several approximation models.
For instance, under appropriate tightness conditions, cut-off techniques can be used to reduce
the numerical analysis of the Snell envelope to compact state spaces and bounded functions
f̂n. In the same line of ideas, in designing any type of Monte Carlo approximation model, we
can suppose that the transitions of the chain Xn are known, based on a preliminary analysis
of Euler-type approximation models.

In section 4, we focus on two kinds of Monte Carlo importance sampling approximation
schemes. The first one is the stochastic mesh method introduced by Broadie and Glasserman
in their seminal paper [5] (see also [24] for some recent refinements). The principal idea of that
methodology is to operate a change of measures to replace conditional expectations by simple
expectations involving Markov transition densities with respect to some reference measures.
The number of sampled points with respect to the reference measures ηn required by this
model can be constant in every exercise date. This technique avoids the explosion issue of the
naive Monte Carlo method. As with any full Monte Carlo–type technique, the main advantage
of their approach is that it applies to high-dimensional Bermudan options with a finite but
possibly large number of exercise dates. In [5], the authors provided a set of conditions under
which the Monte Carlo importance scheme converges as the computational effort increases.
However, the computing time grows quadratically with the number of sampled points in the
stochastic mesh. In this context, in section 4.2, we provide new nonasymptotic estimates,
including Lp-mean error bounds and exponential concentration inequalities. Our analysis
allows us to derive (4.7), improving significantly existing convergence results (see [5] or [1]).

The second type of Monte Carlo importance sampling scheme discussed in this article
is another version of the Broadie–Glasserman model, called average density in their original
article. The main advantage of this strategy comes from the fact that the sampling distribution
ηn can be chosen as the distribution of the random states Xn of the reference Markov chain,
even if the Radon–Nikodym derivatives Rn(x, y) =

dMn(x,·)
dηn

(y) are not known explicitly. Here,
we assume only that the Markov transitions Mn(x, ·) are absolutely continuous with respect to
some measures λn. We can then approximate these functions with empirical measures. In this
situation, we can recover an approximation similar to the original stochastic mesh method,
except that the Radon–Nikodym derivatives Rk+1(ξ

i
k, ξ

j
k+1) are replaced by approximations.

The stochastic analysis of this particle model is provided in the second part of section 4.2 and
follows essentially the same line of arguments as that of the Broadie–Glasserman model.

In the final part of the article, section 5, we present a new Monte Carlo approach based on
the genealogical tree evolution model associated with a neutral genetic model with mutations
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given by the Markov transitions Mn. The main advantage of this new strategy comes from
the fact that the computational effort of the algorithm is now linear in the number of sampled
points. We recall that a neutral genetic model is a Markov chain with a selection/mutation
transition. During the mutation phase, the particles explore the state space independently
according to the Markov transitions while the selection step induces interactions between the
various particles. This type of model is frequently used in biology and genetic algorithms
literature (see, for instance, [16] and the references therein).

An important observation concerns the genealogical tree structure of the genetic particle
model that we consider. The main advantage of this path particle model comes from the
fact that the occupation measure of the ancestral tree model converges in some sense to
the distribution of the path of the reference Markov chain. It is also well known that the
Snell envelope associated with a Markov chain evolving on some finite state space is easily
computed using the tree structure of the chain evolution. Therefore, replacing the reference
distribution Pn by its N -approximation P

N
n , we define an N -approximated Markov model

whose evolutions are described by the genealogical tree model defined above. We can then
construct the approximation ûk as the Snell envelope associated with this N -approximated
Markov chain. Several estimates of convergence are provided in section 5. Finally, some
numerical simulations are performed, illustrating the interest of our new algorithm.

2. Preliminary. In a discrete time setting, the problem is related to the pricing of Bermuda
options and is defined in terms of a given real-valued stochastic process (Zk)0≤k≤n, adapted
to some increasing filtration F = (Fk)0≤k≤n that represents the available information at any
time 0 ≤ k ≤ n. For any k ∈ {0, . . . , n}, let Tk be the set of all stopping times τ taking values
in {k, . . . , n}. The Snell envelope of (Zk)0≤k≤n is the stochastic process (Uk)0≤k≤n defined for
any 0 ≤ k < n by the following backward equation:

Uk = Zk ∨ E(Uk+1|Fk),

with the terminal condition Un = Zn, where a ∨ b = max(a, b). The main property of this
stochastic process is that

Uk = sup
τ∈Tk

E(Zτ |Fk) = E(Zτ∗k |Fk)(2.1)

with τ∗k = min {k ≤ l ≤ n : Ul = Zl} ∈ Tk.

At this level of generality, in the absence of any additional information on the filtration F
or on the terminal random variable Zn, no numerical computation of the Snell envelope is
available. To get one step further, we assume that (Fn)n≥0 is the natural filtration associated
with some Markov chain (Xn)n≥0 taking values in some sequence of measurable state spaces
(En, En)n≥0. Let η0 = Law(X0) be the initial distribution on E0, and define by Mn(xn−1, dxn)
the elementary Markov transition of the chain from En−1 into En. We also assume that
Zn = fn(Xn) for some collection of nonnegative measurable functions fn on En. In this
situation, the computation of the Snell envelope amounts to solving the following backward
functional equation:

(2.2) uk = Hk+1(uk+1) = fk ∨Mk+1(uk+1),
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for any 0 ≤ k < n, with the terminal value un = fn. In the above displayed formula,
Mk+1(uk+1) stands for the measurable function on Ek defined for any xk ∈ Ek by the condi-
tional expectation formula

Mk+1(uk+1)(xk) =

∫
Ek+1

Mk+1(xk, dxk+1) uk+1(xk+1)

= E (uk+1(Xk+1)|Xk = xk) .

Let Hk,l = Hk+1 ◦ Hk+1,l, with k ≤ l ≤ n, be the nonlinear semigroups associated with the
backward equation (2.2). We use the convention Hk,k = Id, the identity operator, so that
uk = Hk,l(ul), for any k ≤ l ≤ n. Given a sequence of bounded integral operators Mk from
some state space Ek−1 into another Ek, let us denote by Mk,l the composition operator such
that Mk,l := Mk+1Mk+2 . . .Ml, for any k ≤ l, with the convention Mk,k = Id, the identity
operator. With this notation, one can check that a necessary and sufficient condition for the
existence of the Snell envelope (uk)0≤k≤n is that Mk,lfl(x) < ∞ for any 1 ≤ k ≤ l ≤ n and
any state x ∈ Ek. To check this claim, we simply notice that

(2.3) fk ≤ uk ≤ fk +Mk+1uk+1 ∀ 1 ≤ k ≤ n =⇒ fk ≤ uk ≤
∑

k≤l≤n

Mk,lfl , ∀ 1 ≤ k ≤ n.

From the readily proved Lipschitz property |Hk(u)−Hk(v)| ≤ Mk+1 (|u− v|), for any func-
tions u, v on Ek, we also have that

(2.4) |Hk,l(u)−Hk,l(v)| ≤ Mk,l (|u− v|)

for any functions u, v on El and any k ≤ l ≤ n.
Even if it looks simple, the numerical solving of the recursion (2.2) often requires extensive

computations. The central problem is to compute the conditional expectation Mk+1(uk+1)
on the whole state space Ek at every time step 0 ≤ k < n. For Markov chain models taking
values in some finite state spaces (with a reasonably large cardinality), the above expectations
can be easily computed by a simple backward inspection of the whole realization tree that
lists all possible outcomes and every transition of the chain. In more general situations, we
need to resort to some approximation strategy. Most of the numerical approximation schemes
amount to replacing the pair of functions and Markov transitions (fk,Mk)0≤k≤n by some

approximation model (f̂k, M̂k)0≤k≤n on some possibly reduced measurable subsets Êk ⊂ Ek.

Let ûk be the Snell envelope on Êk associated with the functions f̂k and the sequence of
integral operators M̂k from Êk−1 into Êk. As in (2.2), the computation of the Snell envelope
ûk amounts to solving the following backward functional equation:

ûk = Ĥk+1(ûk+1) = f̂k ∨ M̂k+1(ûk+1).(2.5)

Let Ĥk,l = Ĥk+1 ◦ Ĥk+1,l, with k ≤ l ≤ n, be the nonlinear semigroups associated with

the backward equations (2.5), so that ûk = Ĥk,l(ûl), for any k ≤ l ≤ n. Using the elementary
inequality |(a ∨ a′) − (b ∨ b′)| ≤ |a − b| + |a′ − b′|, which is valid for any a, a′, b, b′ ∈ R, for
any 0 ≤ k < n and for any functions u on Ek+1 one readily obtains the local approximation
inequality

(2.6)
∣∣∣Hk+1(u)− Ĥk+1(u)

∣∣∣ ≤ |fk − f̂k|+ |(Mk+1 − M̂k+1)(u)|.
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To transfer these local estimates to the semigroups Hk,l and Ĥk,l we use the same perturbation
analysis as in [9, 13, 23, 28] in the context of nonlinear filtering semigroups and particle
approximation models. The difference between the approximate and the exact Snell envelope
can be written as a telescoping sum

uk − ûk =
n∑

l=k

[
Ĥk,l(Hl+1(ul+1))− Ĥk,l(Ĥl+1(ul+1))

]
,

setting for simplicity Hn+1(un+1) = un and Ĥn+1(un+1) = ûn, for l = n. Combining the
Lipschitz property (2.4) of the semigroup Ĥk,l with the local estimate (2.6), one finally gets
the following robustness lemma, which is a natural and fundamental tool for the analysis of
the Snell envelope approximations.

Lemma 2.1. For any 0 ≤ k < n, on the state space Êk, we have that

|uk − ûk| ≤
n∑

l=k

M̂k,l|fl − f̂l|+
n−1∑
l=k

M̂k,l|(Ml+1 − M̂l+1)ul+1|.

The perturbation analysis of nonlinear semigroups described above and the resulting ro-
bustness lemma are not really new. As mentioned previously, it is a rather standard tool
in approximation theory and numerical probability. More precisely, these Lipschitz-type es-
timates are often used by induction or as an intermediate technical step in the proof of a
convergence theorem of some particular approximation scheme.

In the context of optimal stopping problems, similar induction arguments are developed
to prove the convergence of some specific approximation models, for instance, in the papers of
Egloff [18], Gobet, Lemor, and Warin [21], or Pagès [25]. However, to the best of our knowl-
edge, the general and abstract semigroup formulation given above and its direct application
to different approximation models seem to represent the first result of this type for that class
of models.

Besides the fact that the convergence of many Snell approximation schemes results from
a single robustness property, Lemma 2.1 can be used sequentially and without further work
to obtain nonasymptotic estimates for models combining several levels of approximations. In
the same vein, and whenever it is possible, Lemma 2.1 can also be used as a technical tool to
reduce the analysis of Snell approximation models on compact state spaces or even on finite
but possibly large quantization trees or Monte Carlo–type grids.

We end this section with an exponential inequality that can be readily deduced from
the Lp-mean error bounds presented in this article. For a more thorough discussion on the
connection between Khintchine style Lp-mean error bounds and concentration inequalities, we
refer the reader to [10, 11, 12] and the more recent article on the concentration properties of
mean field–type particle models [15].

Lemma 2.2. Suppose the estimates have the following form:

√
N sup

x∈Ek

E (|uk(x)− ûk(x)|p)
1
p ≤ a(p)bk(n),

where bk(n) are some finite constants whose values do not depend on the parameter p and a(p)
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is a collection of constants such that for all nonnegative integers r,

(2.7) a(2r)2r = (2r)r 2−r and a(2r + 1)2r+1 =
(2r + 1)r+1√

r + 1/2
2−(r+1/2),

with the notation (q)p = q!/(q − p)! , for any 1 ≤ p ≤ q. Then we deduce the following
exponential concentration inequality:

sup
x∈Ek

P

(
|uk(xk)− ûk(xk)| >

bk(n)√
N

+ ε

)
≤ exp

(
−Nε2/(2bk(n)

2)
)
.(2.8)

Proof. This result is a direct consequence of the fact that for any nonnegative random
variable U , if there exists a bounded positive real b such that

∀ r ≥ 1, E (U r)
1
r ≤ a(r)b,

where a(r) is defined by (2.7), then

P (U ≥ b+ ε) ≤ exp
(
−ε2/(2b2)

)
.

To check this implication, we first notice that

P (U ≥ b+ ε) ≤ inf
t≥0

{e−t(b+ε)
E[etU ]}.

Then, developing the exponential and using the moments boundedness assumption, one ob-
tains that for all t ≥ 0,

E
(
etU

)
≤ exp

(
(bt)2

2
+ bt

)
.

As a result,

P (U ≥ b+ ε) ≤ exp

(
− sup

t≥0

(
εt− (bt)2

2

))
.

3. Some deterministic approximation models. In this section, we analyze the robustness
of the Snell envelope with respect to some deterministic approximation schemes that are parts
of many algorithms proposed to approximate the Snell envelope. Hence, the nonasymptotic
error bounds provided in this section can be applied and combined to derive convergence rates
for such algorithms. We recover or improve previous results and in some cases state new error
bounds.

3.1. Cut–off-type models. It is often useful, when computing the Snell envelope, to ap-
proximate the state space by a compact set. Indeed, Glasserman and Yu [20] showed that
for standard (unbounded) models (like Black–Scholes), the Monte Carlo estimation requires
samples of exponential size in the number of variables of the value function, whereas the
bounded state space assumption enables one to estimate the Snell envelope from samples of
polynomial size in the number of variables. For instance, in [19], the authors proposed a new
algorithm that first requires a cut-off step which consists in replacing the price process by
another process killed at first exit from a given bounded set. However, no bound is provided
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for the error induced by this cut-off approximation. In this section, we formalize a general
cut-off model and provide some bounds on the error induced on the Snell envelope.

We suppose that for each n, En is a topological space with σ-fields En that contains the
Borel σ-field on En. Our next objective is to find conditions under which we can reduce the
backward functional equation (2.2) to a sequence of compact sets Ên.

To that end, we further assume that the initial measure η0 and the Markov transition
Mn of the chain Xn satisfy the following tightness property: For every sequence of positive
numbers εn ∈ [0, 1[, there exists a collection of compact subsets Ên ⊂ En such that

(T ) η0(Ê
c
0) ≤ ε0 and ∀n ≥ 0, sup

xn∈Ên

Mn+1(xn, Ê
c
n+1) ≤ εn+1.

For instance, this condition is clearly met for regular Gaussian-type transitions on the Eu-
clidean space, for some collection of increasing compact balls.

In this situation, a natural cut-off consists in considering the Markov transitions M̂k

restricted to the compact sets Êk:

∀x ∈ Êk−1, M̂k(x, dy) :=
Mk(x, dy) 1Êk

Mk(1Êk
)(x)

.

These transitions are well defined as soon as Mk(x, Êk) > 0 for any x ∈ Êk−1. Using the
decomposition

[M̂k −Mk](uk) = M̂k(uk)−Mk(1Êk
uk)−Mk(1Êc

k
uk)

=

(
1− 1

Mk(1Êk
)

)
Mk(uk1Êk

)−Mk(1Êc
k
uk)

=
Mk(1Êc

k
)

Mk(1Êk
)
Mk(uk1Êk

)−Mk(1Êc
k
uk)

and then using Lemma 2.1 yields

‖uk − ûk‖Êk
:= sup

x∈Êk

|uk(x)− ûk(x)|

≤
n∑

l=k+1

⎡⎣∥∥∥∥∥Ml(1Êc
l
)

Ml(1Êl
)

∥∥∥∥∥
Êl−1

‖Ml(ul1Êl
)‖Êl−1

+ ‖Ml(ul1Êc
l
)‖Êl−1

⎤⎦
≤

n∑
l=k+1

[
εl

1− εl
‖Ml(ul)‖Êl−1

+ ‖Ml(u
2
l )‖

1/2

Êl−1
ε
1/2
l

]
.

We summarize the above discussion with the following result.
Theorem 3.1.We assume that the tightness condition (T ) is met for every sequence of

positive numbers εn ∈ [0, 1[ and for some collection of compact subsets Ên ⊂ En. In this
situation, for any 0 ≤ k ≤ n, we have that

‖uk − ûk‖Êk
≤

n∑
l=k+1

ε
1/2
l

1− ε
1/2
l

‖Ml(u
2
l )‖

1/2

Êl−1
.
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Note that

uk ≤
n∑

l=k

Mk,l(fl),

and therefore ∥∥Mk(u
2
k)
∥∥
Êk−1

≤ (n− k + 1)
n∑

l=k

∥∥Mk−1,l(fl)
2
∥∥
Êk−1

.

Consequently, one can find sets (Êl)k<l≤n so that ‖uk − ûk‖Êk
is as small as one wants as

soon as
∥∥Mk,l(fl)

2
∥∥
Êk

< ∞ for any 0 ≤ k < l ≤ n. A similar cut-off approach was introduced

and analyzed in Bouchard and Touzi [6], but the cut-off was operated on some regression
functions and not on the transition kernels.

3.2. Euler approximation models. In several application model areas, the discrete time
Markov chain (Xk)k≥0 is often given in terms of an R

d-valued and continuous time process
(Xt)t≥0 given by a stochastic differential equation of the following form:

(3.1) dXt = a(Xt)dt+ b(Xt)dWt, law(X0) = η0,

where η0 is a known distribution on R
d, a, b are known functions, and W is a d-dimensional

Wiener process. Except in some particular instances, the time homogeneous Markov tran-
sitions Mk = M are usually unknown, and we need to resort to an Euler approximation
scheme.

In this situation, any approximation of the Snell envelope which is based on simulations
of the price process will be impacted by the error induced by the Euler scheme used in sim-
ulations. We propose here to provide bounds for that error. Notice that in this setting, the
exercise dates are discrete and fixed, so that our results are not comparable with those from
Dupuis and Wang [17], who analyzed the convergence of the discrete time optimal stopping
problem to the continuous time optimal stopping problem when the frequency of exercise dates
increases to infinity. Similarly, for numerical approximations of backward stochastic differen-
tial equations, [6] and [21] also analyzed the case where the number of exercise opportunities
grows to infinity.

The discrete time approximation model with a fixed time step 1/m is defined by the
following recursive formula:

ξ̂0(x) = x,

ξ̂ (i+1)
m

(x) = ξ̂ i
m
(x) + a

(
ξ̂ i
m
(x)

) 1

m
+ b

(
ξ̂ i
m
(x)

) 1√
m

εi,

where the εi’s are independent and identically distributed (i.i.d.) centered and R
d-valued

Gaussian vectors with unit covariance matrix. The chain (ξ̂k)k≥0 is an homogeneous Markov

with a transition kernel which we denote by M̂ .
We further assume that the functions a and b are twice differentiable, with bounded partial

derivatives of orders 1 and 2, and the matrix (bb∗)(x) is uniformly nondegenerate.
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In this situation, the integral operators M and M̂ admit densities, denoted by p and p̂.
According to Bally and Talay [3, 4], we have that

(3.2) [p ∨ p̂] ≤ c q and m |p̂− p| ≤ c q,

with the Gaussian density q(x, x′) := 1√
2πσ

e−
1

2σ2 |x−x′|2 , and a pair of constants (c, σ) depending

only on the pair of functions (a, b). Let Q be the Markov integral operator on R
d with density

q. We consider a sequence of functions (fk)0≤k≤n on R
d. Let (uk)0≤k≤n and (ûk)0≤k≤n be

the Snell envelope on R
d associated with the pair (M,fk) and (M̂, fk). Using Lemma 2.1, we

readily obtain the following estimate:

|uk − ûk| ≤
n−1∑
l=k

M̂ l−k|(M − M̂)ul+1| ≤
c

m

n−1∑
l=k

M̂ l−kQ|ul+1|.

Rather crude upper bounds that do not depend on the approximation kernels M̂ can be
derived using the first inequality in (3.2):

|uk − ûk| ≤
1

m

n−k∑
l=1

cl Ql|ul+k|.

Recalling that ul+k ≤
∑

l+k≤l′≤nM
l′−(l+k)fl′ , we also have that

|uk − ûk| ≤
1

m

n−k∑
l=1

cl Ql
∑

l+k≤l′≤n

cl
′−(l+k) Ql′−(l+k)fl′

≤ 1

m

n−k∑
l=1

∑
l+k≤l′≤n

cl
′−k Ql′−kfl′ =

1

m

∑
1≤l≤n−k

l cl Qlfk+l.

We summarize the above discussion with the following theorem.
Theorem 3.2. Suppose the functions (fk)0≤k≤n on R

d are chosen such that Qlfk+l(x) < ∞,
for any x ∈ R

d, and 1 ≤ k + l ≤ n. Then, for any 0 ≤ l ≤ n, we have the inequalities

|uk − ûk| ≤
c

m

n−1∑
l=k

M̂ l−kQ|ul+1| ≤
1

m

∑
1≤l≤n−k

l cl Qlfk+l.

3.3. Interpolation-type models. Most algorithms proposed to approximate the Snell en-
velope provide discrete approximations ûik at some discrete (potentially random) points ξik
of Ek. However, for several purposes, it can be interesting to consider approximations ûk of
functions uk on the whole space Ek. One motivation to do so is, for instance, to be able to
define a new (low biased) estimator, Ūk, using a Monte Carlo approximation of (2.1), with a
stopping rule τ̂k associated with the approximate Snell envelope ûk, by replacing uk by ûk in
the characterization of the optimal stopping time τ∗k (2.1), i.e.,

(3.3) Ūk =
1

M

M∑
i=1

fτ̂ ik
(Xi

τ̂ ik
) with τ̂ ik = min {k ≤ l ≤ n : ûl(X

i
l ) = fl(X

i
l )},

where Xi = (Xi
1, . . . ,X

i
n) are i.i.d. path according to the reference Markov chain dynamic.
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In this section, we analyze nonasymptotic errors of some specific approximation schemes
providing such interpolated estimators ûk of uk on the whole state Ek. Let M̂k+1 = IkM̃k+1

be the composition of the Markov transition M̃k+1 from a finite set Sk into the whole state
space Ek+1, with an auxiliary interpolation-type and Markov operator Ik from Ek into Sk, so
that

∀xk ∈ Sk, Ik(xk, ds) = δxk
(ds),

and such that the integrals

x ∈ Ek 
→ Ik(ϕk)(x) =

∫
Sk

Ik(x, ds) ϕk(s)

of any function ϕk on Sk are easily computed starting from any point xk in Ek. We further
assume that the finite state spaces Sk are chosen so that

(3.4) ‖f − Ikf‖Ek
≤ εk(f, |Sk|) → 0 as |Sk| → ∞

for continuous functions fk on Ek. An example of interpolation transition Ik is provided
hereafter. Let M̂k = Ik−1M̃k be the composition operator on the state spaces Êk = Ek.

The approximation models M̃k are not necessarily deterministic. In [14], the authors
examined the situation where

∀s ∈ Sk, M̃k(s, dx) =
1

Nk

∑
1≤i≤Nk

δXi
k(s)

(dx),

where Xi
k(s) stands for a collection of Nk independent random variables with common law

Mk(s, dx).
Theorem 3.3. We suppose that the Markov transitions Mk are Feller, in the sense that

Mk(C(Ek)) ⊂ C(Ek−1), where C(Ek) stands for the space of continuous functions on the Ek.
Let (uk)0≤k≤n and, respectively, (ûk)0≤k≤n be the Snell envelopes associated with the functions

fk = f̂k and the Markov transitions Mk (and, respectively, M̂k = Ik−1M̃k) on the state spaces
Êk = Ek. Then

‖uk − ûk‖Ek
≤

n−1∑
l=k

[
εl (Ml+1ul+1, |Sl|) + ‖(Ml+1 − M̃l+1)ul+1‖Sl

]
.

The proof of the theorem is a direct consequence of Lemma 2.1 combined with the following
decomposition:

‖uk − ûk‖Ek
(3.5)

≤
n−1∑
l=k

[
‖(Id− Il)Ml+1)ul+1‖El

+ ‖Il(Ml+1 − M̃l+1)ul+1‖El

]
.

We illustrate these results in the typical situation where the spaces Ek are the convex hull
generated by the finite sets Sk. First, we present the definition of the interpolation operators.
Let P = {P1, . . . ,Pm} be a partition of a convex and compact space E into simplexes with



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE ROBUSTNESS OF THE SNELL ENVELOPE 597

disjoint nonempty interiors, so that E = ∪1≤i≤mPi. We denote by δ(P) the refinement degree
of the partition P:

δ(P) := sup
1≤i≤m

sup
x,y∈Pi

‖x− y‖.

Let S = V(P) be the set of vertices of these simplexes. We denote by I the interpolation
operator defined by I(f)(s) = f(s), if s ∈ S, and if x belongs to some simplex Pj with vertices
{xj1, . . . , x

j
dj
},

I(f)

⎛⎝ ∑
1≤i≤dj

λi x
i
j

⎞⎠ =
∑

1≤i≤dj

λi f(x
j
i ),

where the barycenters (λi)1≤i≤dj are the unique solution of

x =
∑

1≤i≤dj

λi x
j
i with (λi)1≤i≤dj ∈ [0, 1]dj and

∑
1≤i≤dj

λi = 1.

The Markovian interpretation is that starting from x, one chooses the “closest simplex” and
then one chooses one of its vertices xi with probability λi.

For any δ > 0, let ω(f, δ) be the δ-modulus of continuity of a function f ∈ C(E):

ω(f, δ) := sup
(x,y)∈E:‖x−y‖≤δ

|f(x)− f(y)|.

The following technical lemma provides a simple way to check condition (3.4) for interpolation
kernels.

Lemma 3.4. Then, for any f, g ∈ C(E),

(3.6) sup
x∈E

|f(x)− Ig(x)| ≤ max
x∈S

|f(x)− g(x)|+ ω(f, δ(P)) + ω(g, δ(P)).

In particular, we have that

sup
x∈E

|f(x)− If(x)| ≤ ω(f, δ(P)).

Proof. Suppose x belongs to some simplex Pj with vertices {xj1, . . . , x
j
dj
}, and let (λi)1≤i≤dj

be the barycenter parameters x =
∑

1≤i≤dj
λi x

i
j. Since we have Ig(x

j
i ) = g(xji ), and Ig(xji ) =

g(xji ) for any i ∈ {1, . . . , dj}, it follows that

|f(x)− Ig(x)| ≤
dj∑
i=1

λi|(f(x)− f(xji )|+
dj∑
i=1

λi|f(xji )− Ig(xji )|

+

dj∑
i=1

λi|Ig(xji )− g(x)|

=

dj∑
i=1

λi|(f(x)− f(xji )|+
dj∑
i=1

λi|f(xji )− g(xji )|

+

dj∑
i=1

λi|g(xji )− g(x)|.
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This implies that

sup
x∈Pj

|f(x)− Ig(x)| ≤ max
x∈Pj

|f(x)− g(x)| + ω(f, δ(Pj)) + ω(g, δ(Pj)),

with

ω(f, δ(Pj)) = sup
‖x−y‖≤δ(Pj )

|f(x)− f(y)| and δ(Pj) := sup
x,y∈Pj

‖x− y‖.

The end of the proof is now clear.
Combining (3.5) and (3.6), we obtain the following result.
Proposition 3.5. Let Pk = {P1

k , . . . ,P
mk
k } be a partition of a convex and compact space Ek

into simplexes with disjoint nonempty interiors, so that Ek = ∪1≤i≤mk
Pi. Let Sk = V(Pk) be

the set of vertices of these simplexes. Let (ûk)0≤k≤n be the Snell envelope associated with the

functions f̂k = fk and the Markov transitions M̂k = Ik−1M̃k on the state spaces Ek = Êk:

‖uk − ûk‖Ek
≤

n−1∑
l=k

[
ω(Ml+1ul+1, δ(Pl)) + ‖(Ml+1 − M̃l+1)ul+1‖Sl

]
.

To illustrate the results of Theorem 3.3 and Proposition 3.5, we have derived the effective
convergence rate induced by the interpolation in a specific example.

Following the previous section, let us consider the R
d-valued Markov chain (ξ̂k)0≤k≤n

defined as the Euler time discretization of the stochastic differential equation (3.1), with a
time step Δt = 1, i.e.,

ξ̂0 = x,

ξ̂k+1 = ξ̂k + a(ξ̂k)Δt+ b(ξ̂k)
√
Δtεk,(3.7)

where εk are i.i.d. centered Gaussian vectors on R
d with unit covariance matrix.

Let Lip(Rd) be the set of all Lipschitz functions f on R
d, and set

(3.8) L(f) = sup
x,y∈Rd,x 
=y

‖f(x)− f(y)‖
‖x− y‖ , f ∈ Lip(Rd).

We assume that a : R
d → R and b : R

d → M(d, d) are Lipschitz continuous functions.
Then we can prove that the time homogeneous Markov transitions Mk = M associated with
the Markov chain (ξ̂k)0≤k≤n is such that for any Lipschitz continuous function f on R

d,

(3.9) |M(f)(x)−M(f)(y)| ≤ (1 + α)L(f)‖x− y‖,

with α := α(L(a), L(b),Δt) := L(a)Δt+dL(b)
√
Δt ≥ 0. Hence, we observe thatMk(Lip(R

d))⊂
Lip(Rd). We also observe that

(3.10)

(
fk and uk+1 ∈ Lip(Rd)

)
⇓(

uk ∈ Lip(Rd) with L(uk) ≤ L(fk) ∨ L(Mk+1(uk+1))
)
.
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Moreover, assume that the payoff function fk = f for all k = 0, . . . , n. Using (3.9) together
with (3.10) implies

L(uk) ≤ (1 + α)n−kL(f).

Using again (3.9) yields

ω
(
Ml+1ul+1, δ(Pl)

)
≤ (1 + α)n−lL(f)δ(Pl).

Finally, in the specific case of model (3.7), with payoff functions fk = f and some refinement
degrees of the partitions δ(Pk) ≤ δ, we obtain the following bound for the convergence of our
interpolation model:

‖uk − ûk‖Ek
≤ (1 + α)n−k+1

α
L(f)δ +

n−1∑
l=k

‖(Ml+1 − M̃l+1)ul+1‖Sl
.

3.4. Quantization tree models. Quantization tree models belong to the class of deter-
ministic grid approximation methods. The basic idea consists in choosing finite space grids

Êk =
{
x1k, . . . , x

mk
k

}
⊂ Ek = R

d

and some neighborhoods measurable partitions (Ai
k)1≤k≤mk

of the whole space Ek such that
the random state variable Xk is suitably approximated, as mk → ∞, by discrete random
variables of the following form:

X̂k :=
∑

1≤i≤mk

xik 1Ai
k
(Xk) � Xk.

The numerical efficiency of these quantization methods depends heavily on the choice of these
grids. There exist various criteria to choose these objects judiciously, including minimal Lp-

quantization errors, that ensure that the corresponding Voronoi-type quantized variable X̂k

minimizes the Lp distance to the real state variable Xk. For further details on this subject, we
refer the interested reader to the pioneering article by Pagès [25], and the series of articles by
Bally, Pagès, and Printemps [2], Pagès and Printems [27], Pagès, Pham, and Printems [26],
Bucklew and Wise [8], and Graf and Luschgy [22], and the references therein. The second
approximation step of these quantization models consists in defining the coupled distribution
of any pair of variables (X̂k−1, X̂k) by setting

P

(
X̂k = xjk, X̂k−1 = xik−1

)
= P

(
Xk ∈ Aj

k, Xk−1 ∈ Ai
k−1

)
,

for any 1 ≤ i ≤ mk−1, and 1 ≤ j ≤ mk. This allows one to interpret the quantized variables
(X̂k)0≤k≤n as a Markov chain taking values in the states spaces (Êk)0≤k≤n with Markov
transitions

M̂k(x
i
k−1, x

j
k) := P

(
X̂k = xjk | X̂k−1 = xik−1

)
= P

(
Xk ∈ Aj

k | Xk ∈ Ai
k−1

)
.
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Using the decompositions

Mk(f)(x
i
k−1) =

mk∑
j=1

∫
Aj

k

f(y) P(Xk ∈ dy | Xk−1 = xik−1)

=

mk∑
j=1

∫
Aj

k

f(y) P(Xk ∈ dy | Xk−1 ∈ Ai
k−1)

+

∫ [
M(f)(xik−1)−M(f)(x)

]
P(Xk−1 ∈ dx|Xk−1 ∈ Ai

k−1)

and

M̂k(f)(x
i
k−1) =

mk∑
j=1

∫
Aj

k

f(xjk) P(Xk ∈ dy | Xk−1 ∈ Ai
k−1),

we find that

[Mk − M̂k](f)(x
i
k−1)

=

mk∑
j=1

∫
Aj

k

[f(y)− f(xjk)] P(Xk ∈ dy | Xk−1 ∈ Ai
k−1)

+

∫ [
M(f)(xik−1)−M(f)(x)

]
P(Xk−1 ∈ dx | Xk−1 ∈ Ai

k−1).

We further assume that Mk(Lip(R
d)) ⊂ Lip(Rd). From previous considerations, we find that

|[Mk − M̂k](f)(x
i
k−1)| ≤ L(f) E

[
|Xk − X̂k|p | X̂k−1 = xik−1)

] 1
p

+L(Mk(f)) E(|Xk−1 − X̂k−1|p | X̂k−1 = xik−1)
1
p .

This clearly implies that

M̂k,l|(Ml+1 − M̂l+1)f |(xik) ≤ L(f)
[
E(|Xl+1 − X̂l+1|p | X̂k = xik)

] 1
p

+L(Ml+1(f)) E(|Xl − X̂l|p | X̂k = xik)
1
p .

Using (3.10), we also obtain that L(uk) ≤ L(fk) ∨ L(Mk+1(uk+1)). Using Lemma 2.1, we
readily arrive at the following proposition, similar to Theorem 2 in [2].

Proposition 3.6. Assume that (fk)0≤k≤n ∈ Lip(Rd)n+1, and Mk(Lip(R
d)) ⊂ Lip(Rd), for

any 1 ≤ k ≤ n. In this case, we have (uk)0≤k≤n ∈ Lip(Rd)n+1, and for any 0 ≤ k ≤ n, we
have the almost sure estimate

|uk − ûk|(X̂k) ≤ L(Mk+1(uk+1)) |Xk − X̂k|

+
n−1∑

l=k+1

(L(ul) + L(Ml+1(ul+1))) E(|Xl − X̂l|p | X̂k)
1
p

+L(fn)
[
E(|Xn − X̂n|p | X̂k)

] 1
p
.
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Proof. Using the decomposition

ûk(X̂k)− uk(Xk) = [ûk(X̂k)− uk(X̂k)] + [uk(X̂k)− uk(Xk)],

we have that

|uk(X̂k)− uk(Xk)| ≤ L(uk) |X̂k −Xk|.

Then the proof is completed by the following inequality:

|ûk(ξ̂k)− uk(Xk)| ≤ L(fn)
[
E(|Xn − X̂n|p | X̂k)

] 1
p

+
n−1∑
l=k

(L(ul) + L(Ml+1(ul+1))) E(|Xl − X̂l|p | X̂k)
1
p .

In contrast with [2], which focuses on optimizing deterministic grids, we remark that the
independent applications of Lemma 2.1 in this model and in the previous examples illustrate
the generality of our framework.

4. Monte Carlo importance sampling approximation schemes.

4.1. Path space models. The choice of nonhomogeneous state spaces En is not without
consequences. In several applications, the underlying Markov model is a path space Markov
chain

(4.1) Xn = (X ′
0, . . . ,X

′
n) ∈ En = (E′

0 × · · · ×E′
n).

The elementary prime variables X ′
n represent an elementary Markov chain with Markov tran-

sitions M ′
k(xk−1, dx

′
k) from E′

k−1 into E′
k. In this situation, the historical process Xn can

be seen as a Markov chain with transitions given for any xk−1 = (x′0, . . . , x
′
k−1) ∈ Ek−1 and

yk = (y′0, . . . , y
′
k) ∈ Ek by the following formula:

Mk(xk−1, dyk) = δxk−1
(dyk−1) M

′
k(y

′
k−1, dy

′
k).

This path space framework is, for instance, well suited when dealing with path dependent
options such as Asian options.

Besides, this path space framework is also well suited for the analysis of the Snell envelope
under different probability measures. To fix the ideas, we associate with the latter a canon-
ical Markov chain (Ω,F , (X ′

n)n≥0,P
′
η′0
) with initial distribution η′0 on E′

0, and with Markov

transitions M ′
n from E′

n−1 into E′
n. We use the notation E

′
η′0

to denote the expectations with

respect to P
′
η′0
. We further assume that there exists a sequence of measures (ηk)0≤k≤n on the

state spaces (E′
k)0≤k≤n such that

(4.2) η′0 ∼ η0 and M ′
k(x

′
k−1, .) ∼ ηk,

for any x′k−1 ∈ E′
k−1, and 1 ≤ k ≤ n. Let (Ω,F , (X ′

n)n≥0,Pη0) be the canonical space
associated with a sequence of independent random variables X ′

k with distribution ηk on the
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state space E′
k, with k ≥ 1. Under the probability measure Pη0 , the historical process Xn =

(X ′
0, . . . ,X

′
n) can be seen as a Markov chain with transitions

Mk(xk−1, dyk) = δxk−1
(dyk−1) ηk(dy

′
k).

By construction, for any integrable function f ′
k on E′

k, we have

Eη′0(f
′
n(X

′
n)) = Eη0 (fn(Xn)) ,

with the collection of functions fk on Ek given for any xk = (x′0, . . . , x
′
k) ∈ Ek by

(4.3) fk(xk) = f ′
k(x

′
k)×

dP′
k

dPk
(xk) with

dP′
k

dPk
(xk) =

dη′0
dη0

(x′0)
∏

1≤l≤k

dM ′
l (x

′
l−1, .)

dηl
(x′l).

Proposition 4.1. The Snell envelopes uk and u′k associated with the pairs (f ′
k,M

′
k) and

(fk,Mk) are given, for any 0 ≤ k < n, by the backward recursions

u′k = f ′
k ∨M ′

k+1(u
′
k+1) and uk = fk ∨Mk+1(uk+1) with (u′n, un) = (f ′

n, fn).

These functions are connected by the formula

(4.4) ∀ 0 ≤ k ≤ n, ∀xk = (x′0, . . . , x
′
k) ∈ Ek, uk(xk) = u′k(x

′
k)×

dP′
k

dPk
(xk).

Proof. The first assertion is a simple consequence of the definition of the Snell envelope,
and formula (4.4) is easily derived using the fact that

u′k(x
′
k) = f ′

k(x
′
k) ∨

(∫
E′

k+1

ηk+1(dx
′
k+1)

dM ′
k+1(x

′
k, .)

dηk+1
(x′k+1) u

′
k+1(x

′
k+1)

)
.

That completes the proof of the proposition.
Under condition (4.2), the above proposition shows that the computation of the Snell

envelope associated with a given pair of functions and Markov transitions (f ′
k,M

′
k) reduces to

that of the path space models associated with a sequence of independent random variables with
distributions ηn. More formally, the restriction Pη0,n of reference measure Pη0 to the σ-field
Fn generated by the canonical random sequence (X ′

k)0≤k≤n is given by the tensor product
measure Pη0,n = ⊗n

k=0ηk. Nevertheless, under these reference distributions, the numerical
solving of the backward recursion stated in the above proposition still involves integrations
with respect to the measures ηk. These equations can be solved if we replace these measures
by some sequence of (possibly random) measures η̂k with finite support on some reduced
measurable subset Ê′

k ⊂ E′
k, with a reasonably large and finite cardinality. We extend η̂k to

the whole space E′
k by setting η̂k(E

′
k − Ê′

k) = 0.

Let P̂η̂′0 be the distribution of a sequence of independent random variables ξ̂′k with dis-

tribution η̂k on the state space Ê′
k, with k ≥ 1. Under the probability measure P̂η̂′0 , the

historical process Xn = (X ′
0, . . . ,X

′
n) can now be seen as a Markov chain taking values in the

path spaces

Êk :=
(
Ê′

0 × · · · × Ê′
k

)
,
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with Markov transitions given for any xk−1 = (x′0, . . . , x
′
k−1) ∈ Êk−1 and yk = (y′0, . . . , y

′
k) ∈

Êk by the following formula:

M̂k(xk−1, dyk) = δxk−1
(dyk−1) η̂k(dy

′
k).

Notice that the restriction P̂η̂′0,n of the approximated reference measure P̂η̂′0 to the σ-field Fn

generated by the canonical random sequence (X ′
k)0≤k≤n is now given by the tensor product

measure P̂η̂′0,n = ⊗n
k=0η̂k.

Let ûk be the Snell envelope on the path space Êk, associated with the pair (f̂k, M̂k), with
the sequence of functions f̂k = fk given in (4.3). By construction, for any 0 ≤ k ≤ n and any
path xk = (x′0, . . . , x

′
k) ∈ Êk, we have

ûk(xk) = û′k(x
′
k)×

dP′
k

dPk
(xk),

with the collection of functions (û′k)0≤k≤n on the state spaces (E′
k)0≤k≤n given by the backward

recursions

(4.5) û′k(x
′
k) = f ′

k(x
′
k) ∨

(∫
Ê′

k+1

M̂ ′
k+1(x

′
k, dx

′
k+1) û

′
k+1(x

′
k+1)

)
,

with the random integral operator M̂ ′
k from E′

k into Ê′
k+1 defined by

M̂ ′
k+1(x

′
k, dx

′
k+1) = η̂k+1(dx

′
k+1) Rk+1(x

′
k, x

′
k+1),

with the Radon–Nikodym derivatives Rk+1(x
′
k, x

′
k+1) =

dM ′
k+1(x

′
k,.)

dηk+1
(x′k+1).

4.2. Broadie–Glasserman models. We consider the path space models associated with
the change of measures presented in section 4.1. We use the same notation. We further assume
that η̂k = 1

N

∑N
i=1 δξik

is the occupation measure associated with a sequence of independent

random variables ξk := (ξik)1≤i≤N with common distribution ηk on Ê′
k = E′

k. This Monte
Carlo–type model was introduced in 1997 by Broadie and Glasserman (see, for instance, [5]
and the references therein). Let Ê be the expectation operator associated with this additional
level of randomness, and set Êη0 := Ê⊗ EPη0

.
In this situation, we observe that

(M ′
k+1 − M̂ ′

k+1)(x
′
k, dx

′
k+1) =

1√
N

V̂k+1(dx
′
k+1) Rk+1(x

′
k, x

′
k+1),

with the random fields V̂k+1 :=
√
N [ηk+1 − η̂k+1]. From these observations, we readily prove

that the approximation operators M̂ ′
k+1 are unbiased, in the sense that

(4.6) ∀0 ≤ k ≤ l, ∀x′l ∈ El, Êη0

(
M̂ ′

k,l(f)(x
′
l) |Fk

)
= M ′

k,l(f)(x
′
l),
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for any bounded function f on El+1. Furthermore, for any even integer p ≥ 1, we have

√
N Êη0

(∣∣∣[M ′
l+1 − M̂ ′

l+1

]
(f)(x′l)

∣∣∣p) 1
p ≤ 2 a(p) ηl+1

[
(Rl+1(x

′
l, ·)f)p

] 1
p .

The above estimate is valid as soon as the right-hand side (r.h.s.) in the above inequality is
well defined.

We are now in position to state and prove the following theorem.
Theorem 4.2. For any integer p ≥ 1, we denote by p′ the smallest even integer greater than

p. Then, for any time horizon 0 ≤ k ≤ n and any x′k ∈ E′
k, we have that

√
N Êη0

(∣∣u′k(x′k)− û′k(x
′
k)
∣∣p) 1

p(4.7)

≤ 2a(p)
∑

k≤l<n

{∫
M ′

k,l(x
′
k, dx

′
l)ηl+1

[
(Rl+1(x

′
l, ·)u′l+1)

p′
]} 1

p′
.

Note that, as stated in the introduction, this result implies exponential rate of convergence
in probability. Hence, this allows us to improve noticeably existing convergence results stated
in [5], where there was no rate of convergence, and in [1], where the rate of convergence in
probability was polynomial.

Proof. For any even integers p ≥ 1, any 0 ≤ k ≤ l, any measurable function f on El+1,
and any xk ∈ E′

k, using the generalized Minkowski inequality we find that

√
N Êη0

(∣∣∣M̂ ′
k,l

∣∣∣[M ′
l+1 − M̂ ′

l+1

]
(f)

∣∣∣ (x′k)∣∣∣p |Fl

) 1
p

≤ 2a(p)

∫
M̂ ′

k,l(x
′
k, dx

′
l) ηl+1

[
(Rl+1(x

′
l, ·)f)p

] 1
p .

By the zero-bias property (4.6), we conclude that

√
N Êη0

(∣∣∣M̂ ′
k,l

∣∣∣[M ′
l+1 − M̂ ′

l+1

]
(f)

∣∣∣ (x′k)∣∣∣p) 1
p

≤ 2a(p)

{∫
M ′

k,l(x
′
k, dx

′
l) ηl+1

[
(Rl+1(x

′
l, ·)f)p

]}1/p

.

For odd integers p = 2q + 1, with q ≥ 0, we use the fact that

E(Y 2q+1)2 ≤ E(Y 2q) E(Y 2(q+1)) and E(Y 2q) ≤ E(Y 2(q+1))
q

q+1 ,

for any nonnegative random variable Y and

(2(q + 1))q+1 = 2 (2q + 1)q+1 and (2q)q = (2q + 1)q+1/(2q + 1),

so that

a(2q)2qa(2(q + 1))2(q+1) ≤ 2−(2q+1)(2q + 1)2q+1/(q + 1/2) =
(
a(2q + 1)2q+1

)2
,
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and

N Êη0

(∣∣∣M̂ ′
k,l

∣∣∣[M ′
l+1 − M̂ ′

l+1

]
(f)

∣∣∣ (x′k)∣∣∣2q+1
)2

≤
(
2(2q+1)a(2q + 1)2q+1

)2 ∫
M ′

k,l(x
′
k, dx

′
l) ηl+1

[
(Rl+1(x

′
l, ·)f)2(q+1)

] q
q+1

×
∫

M ′
k,l(x

′
k, dx

′
l) ηl+1

[
(Rl+1(x

′
l, ·)f)2(q+1)

]
.

Using the fact that E(Y
q

q+1 ) ≤ E(Y )
q

q+1 , we prove that the r.h.s. term in the above display is
upper bounded by

(
2(2q+1)a(2q + 1)2q+1

)2{∫
M ′

k,l(x
′
k, dx

′
l)ηl+1

[
(Rl+1(x

′
l, ·)f)2(q+1)

]}2
(
1− 1

2(q+1)

)
,

from which we conclude that

√
N Êη0

(∣∣∣M̂ ′
k,l

∣∣∣[M ′
l+1 − M̂ ′

l+1

]
(f)

∣∣∣ (x′k)∣∣∣2q+1
) 1

2q+1

≤ 2a(2q + 1)

{∫
M ′

k,l(x
′
k, dx

′
l) ηl+1

[
(Rl+1(x

′
l, ·)f)2(q+1)

]} 1
2(q+1)

.

That complete the proof of the theorem.
The Lp-mean error estimates stated in Theorem 4.2 are expressed in terms of Lp′ norms

of Snell envelope functions and Radon–Nikodym derivatives. The terms in the r.h.s. of (4.7)
have the following interpretation:∫

M ′
k,l(x

′
k, dx

′
l) ηl+1

[
(Rl+1(x

′
l, ·)ul+1)

p′
]

= E

[(
Rl+1(X

′
l , ξ

1
l+1)ul+1(ξ

1
l+1)

)p′ |X ′
k = x′k

]
.

In the above display, E(·) stands for the expectation with respect to some reference probability
measure under which X ′

l is a Markov chain with transitions M ′
l , and ξ1l+1 is an independent

random variable with distribution ηl+1. Loosely speaking, the above quantities can be very
large when the sampling distributions ηl+1 are far from the distribution of the random states
X ′

l+1 of the reference Markov chain at time (l+1). Next, we provide an original strategy that
allows us, for instance, to take ηl+1 = law(X ′

l+1) as the sampling distribution, even if Rl+1 is
not known (i.e., cannot be evaluated at any point of El+1). In what follows, we consider N
independent copies (ξi0, . . . , ξ

i
n)1≤i≤N of the Markov chain (X ′

0,X
′
1, . . . ,X

′
n), from the origin

k = 0, up to the final time horizon k = n. Then, for all k = 0, . . . , n, we define the associated
occupation measure η̂k = 1

N

∑N
i=1 δξik

. For all k = 0, . . . , n, let Fk be the sigma field generated

by the random sequence (ξl)0≤l≤k.
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We also assume that the Markov transitions M ′
n(x

′
n−1, dx

′
n) are absolutely continuous with

respect to some measures λn(dx
′
n) on E′

n, and we have that

(H)0 ∀(x′n−1, x
′
n) ∈

(
E′

n−1 × E′
n

)
, Hn(x

′
n−1, x

′
n) =

dM ′
n(x

′
n−1, .)

dλn
(x′n) > 0,

where Hn is supposed to be known up to a normalizing constant. In this situation, we have
ηk+1 � λk+1, with the Radon–Nikodym derivative given by

ηk+1(dx
′
k+1) = ηkM

′
k+1(dx

′
k+1) = ηk

(
Hk+1(·, x′k+1)

)
λk+1(dx

′
k+1).

Also notice that the backward recursion of the Snell envelope u′k can be rewritten as

u′k(x
′
k) = f ′

k(x
′
k) ∨

(∫
E′

k+1

ηk+1(dx
′
k+1)

dM ′
k+1(x

′
k, .)

dηk+1
(x′k+1) u

′
k+1(x

′
k+1)

)

= f ′
k(x

′
k) ∨

(∫
E′

k+1

ηk+1(dx
′
k+1)

Hk+1(x
′
k, x

′
k+1)

ηk(Hk+1(·, x′k+1))
u′k+1(x

′
k+1)

)
.

Arguing as in (4.5), we define the approximated Snell envelope (û′k)0≤k≤n on the state spaces
(E′

k)0≤k≤n by setting

û′k(x
′
k) = f ′

k(x
′
k) ∨

(∫
Ê′

k+1

M̂ ′
k+1(x

′
k, dx

′
k+1) û

′
k+1(x

′
k+1)

)
,

with the random integral operator M̂ ′ from Ek into Êk+1 defined by

M̂ ′
k+1(x

′
k, dx

′
k+1) = η̂k+1(dx

′
k+1)

dM ′
k+1(x

′
k, .)

dη̂kM
′
k+1

(x′k+1)

= η̂k+1(dx
′
k+1)

Hk+1(x
′
k, x

′
k+1)

η̂k(Hk+1(·, x′k+1))
.

By construction, these random approximation operators M̂ ′
k+1 satisfy the zero-bias property

stated in (4.6), and we have that

(M ′
k+1 − M̂ ′

k+1)(x
′
k, dx

′
k+1) =

1√
N

V̂k+1(dx
′
k+1) R̂k+1(x

′
k, x

′
k+1),

with the random fields V̂k+1 and the Fk-measurable random functions R̂k+1 defined by

V̂k+1 :=
√
N [η̂kM

′
k+1 − η̂k+1] and R̂k+1(x

′
k, x

′
k+1) :=

Hk+1(x
′
k, x

′
k+1)

η̂k(Hk+1(·, x′k+1))
.
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Furthermore, for any even integer p ≥ 1 and any measurable function f on El, we have that

√
N Êη0

(∣∣∣[M ′
l+1 − M̂ ′

l+1

]
(f)(x′l)

∣∣∣p |Fl

) 1
p ≤ 2 a(p) η̂lM

′
l+1

[
(R̂l+1(x

′
l, ·)f)p

] 1
p
.

The above estimate is valid as soon as the r.h.s. in the above inequality is well defined. For
instance, assuming that

(H)1 ‖M ′
l+1(u

2p
l+1)‖ < ∞

and sup
x′
l,y

′
l∈E′

l

Hl+1(x
′
l, x

′
l+1)

Hl+1(y
′
l, x

′
l+1)

≤ hl+1(x
′
l+1) with ‖M ′

l+1(h
2p
l+1)‖ < ∞,

we find that

√
N E

(∣∣∣[M ′
l+1 − M̂ ′

l+1

]
(u′l+1)(x

′
l)
∣∣∣p |Fl

) 1
p

≤ 2 a(p)
(
‖M ′

l+1(h
2p
l+1)‖ ‖M ′

l+1((u
′
l+1)

2p)‖
) 1

2p
.

Rephrasing the proof of Theorem 4.2, we just proved the following result.
Theorem 4.3. Under the conditions (H)0 and (H)1 stated above, for any even integer p > 1,

any 0 ≤ k ≤ n, and x′k ∈ E′
k, we have that

√
N E

(∣∣u′k(x′k)− û′k(x
′
k)
∣∣p) 1

p(4.8)

≤ 2a(p)
∑

k≤l<n

(
‖M ′

l+1(h
2p
l+1)‖ ‖M ′

l+1((u
′
l+1)

2p)‖
) 1

2p
.

In the end, recovering and extending results from [5], it is interesting to point out that both
the Broadie–Glasserman estimator and this new Broadie–Glasserman-type adapted estimator
have positive bias.

Proposition 4.4. For any 0 ≤ k ≤ n and any x′k ∈ E′
k,

(4.9) E
(
û′k(x

′
k)
)
≥ u′k(x

′
k).

Proof. This inequality can be proved easily by a simple backward induction. The terminal
condition û′n = u′n implies directly the inequality on instant n. Assuming the inequality holds
true in instant k, then Jensen’s inequality implies that

E
(
û′k(x

′
k)
)
≥ fk(x

′
k) ∨ E

(
M̂ ′

k+1(û
′
k+1)(x

′
k)
)

≥ fk(x
′
k) ∨Mk+1u

′
k+1(x

′
k) = u′k(x

′
k),

completing the proof of the proposition.
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5. A genealogical tree based model.

5.1. Neutral genetic models. Using the notation of section 4.1, set

Xn = (X ′
0, . . . ,X

′
n) ∈ En = (E′

0 × · · · ×E′
n).

Further assume that the state spaces E′
n are finite, and denote by ηk the distribution of the

path-valued random variable Xk on Ek, with 0 ≤ k ≤ n.
Further let M ′

k be the Markov transition from X ′
k−1 to X ′

k, and let Mk be the Markov
transition from Xk−1 to Xk. In section 4.1, we have seen that

Mk((x
′
0, . . . , x

′
k−1), d(y

′
0, . . . , y

′
k)) = δ(x′

0,...,x
′
k−1)

(d(y′0, . . . , y
′
k−1)) M

′
k(y

′
k−1, dy

′
k).

In the further development, we fix the final time horizon n, and for any 0 ≤ k ≤ n, we denote
by πk the kth coordinate mapping:

πk : xn = (x′0, . . . , x
′
n) ∈ En = (E′

0 × · · · × E′
n) 
→ πk(xn) = x′k ∈ E′

k.

In this notation, for any 0 ≤ k < n, x′k ∈ E′
k, and any function f ∈ B(E′

k+1), we have that

(5.1) ηn = Law(X ′
0, . . . ,X

′
n) and M ′

k+1(f)(x) :=
ηn((1x ◦ πk) (f ◦ πk+1))

ηn((1x ◦ πk))
.

By construction, it is also readily checked that the flow of measure (ηk)0≤k≤n also satisfies
the following equation:

(5.2) ηk := Φk (ηk−1) ∀ 1 ≤ k ≤ n,

with the linear mapping Φk (ηk−1) := ηk−1Mk.
The genealogical tree based particle approximation associated with these recursions is

defined in terms of a Markov chain ξ
(N)
k = (ξ

(i,N)
k )1≤i≤Nk

in the product state spaces ENk
k ,

where N = (Nk)0≤k≤N is a given collection of integers:

(5.3) P

(
ξ
(N)
k = (x1k, . . . , x

Nk
k ) | ξk−1

)
=

∏
1≤i≤Nk

Φk

⎛⎝ 1

Nk−1

∑
1≤i≤Nk−1

δξik−1

⎞⎠(
xik
)
.

The initial particle system ξ
(N)
0 = (ξ

(i,N)
0 )0≤i≤N0 is a sequence of N0 i.i.d. random copies of

X0. Let FN
k be the sigma-field generated by the particle approximation model from the origin,

up to time k.
To simplify the presentation, when there is no confusion we suppress the population size

parameter N , and we write ξk and ξik instead of ξ
(N)
k and ξ

(i,N)
k . By construction, ξk is a

genetic-type model with a neutral selection transition and a mutation type exploration

(5.4) ξk ∈ ENk
k

Selection
−−−−−−−−→ ξ̂k :=

(
ξ̂ik

)
1≤i≤N̂k

∈ EN̂k
k

Mutation
−−−−−−−→ ξk+1 ∈ E

Nk+1

k+1 ,

with N̂k := Nk+1.
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During the selection transition, we select randomly Nk+1 path-valued particles ξ̂k :=
(ξ̂ik)1≤i≤Nk+1

among theNk path-valued particles ξk = (ξik)1≤i≤Nk
. Sometimes, this elementary

transition is called a neutral selection transition in the literature on genetic population models.
During the mutation transition ξ̂k � ξk, every selected path-valued individual ξ̂ik evolves
randomly to a new path-valued individual ξik+1 = x randomly chosen with the distribution

Mk+1(ξ̂
i
k, x), with 1 ≤ i ≤ N̂k. By construction, every particle is a path-valued random

variable defined by

ξik :=
(
ξi0,k, ξ

i
1,k, . . . , ξ

i
k,k

)
,

ξ̂ik :=
(
ξ̂i0,k, ξ̂

i
1,k, . . . , ξ̂

i
k,k

)
∈ Ek := (E′

0 × · · · × E′
k).

By definition of the transition in path space, we also have that

ξik+1 =

⎛⎜⎝(ξi0,k+1, ξ
i
1,k+1, . . . , ξ

i
k,k+1

)︸ ︷︷ ︸
||

, ξik+1,k+1

⎞⎟⎠
=

( ︷ ︸︸ ︷(
ξ̂i0,k, ξ̂i1,k, . . . , ξ̂ik,k

)
, ξik+1,k+1

)
=
(
ξ̂ik, ξ

i
k+1,k+1

)
,

where ξik+1,k+1 is a random variable with distribution M ′
k+1(ξ̂

i
k,k, ·). In other words, the

mutation transition ξ̂ik � ξik+1 simply consists in extending the selected path ξ̂ik with an

elementary move ξ̂ik,k � ξik+1,k+1 of the end point of the selected path.
From these observations, it is easy to check that the terminal random population model

ξk,k = (ξik,k)1≤i≤Nk
and ξ̂k,k = (ξ̂ik,k)1≤i≤Nk+1

is again defined as a genetic-type Markov chain
defined as above by replacing the pair (Ek,Mk) by the pair (E′

k,M
′
k), with 1 ≤ k ≤ n. The

latter coincides with the mean field particle model associated with the time evolution of the
kth time marginals η′k of the measures ηk on E′

k. Furthermore, the above path-valued genetic
model coincides with the genealogical tree evolution model associated with the terminal state
random variables.

Let ηNk and η̂Nk be the occupation measures of the genealogical tree model after the mu-
tation and the selection steps; that is, we have that

ηNk :=
1

Nk

∑
1≤i≤Nk

δξik
and η̂Nk :=

1

N̂k

∑
1≤i≤N̂k

δ
ξ̂ik
.

In this notation, the selection transition ξk,� ξ̂k consists in choosing N̂k conditionally i.i.d.
random paths ξ̂ik with common distribution ηNk . In other words, η̂Nk is the empirical measure

associated with N̂k conditionally i.i.d. random paths ξ̂ik with common distribution ηNk . Also
observe that ηNk is the empirical measure associated with Nk conditionally i.i.d. random paths
ξik with common distribution ηNk−1Mk.

In practice, we can take N0 = N1 = · · · = Nn = N when we do not have any information
on the variance of Xk. In the case when we know the approximate variance of Xk, we can
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take a large Nk when the variance of X ′
k is large. To clarify the presentation, in the further

development of the article we further assume that the particle model has a fixed population
size Nk = N for any k ≥ 0.

In what follows, the simulation of the path-valued particle system (ξk)0≤k≤n will be called
the forward step and is summarized in the following algorithm.

5.1.1. Forward algorithm.
Initialization At time step k = 0, generate N i.i.d. random copies of X0 and set ξ0 =(

ξi0
)
0≤i≤N

.

At each time step k = 1, . . . , n
1. Selection: For each i = 1, . . . , N , generate independently an index Ii ∈ {1, . . . , N}

with probability P(Ii = j) = 1/N . Then set ξ̂ik−1 = ξIik−1.
2. Mutation: For each i = 1, . . . , N , generate independently N i.i.d. random vari-

ables (ξik,k)0≤i≤N according to the transition kernel M ′
k(ξ̂

i
k−1,k−1, ·). Then set

ξik = (ξ̂ik−1, ξ
i
k,k).

5.2. Convergence analysis. For general mean field particle interpretation models (5.3),
several estimates can be derived for the above particle approximation model (see, for in-
stance, [10]). For instance, for any n ≥ 0, r ≥ 1, any fn ∈ Osc1(En), and any N ≥ 1, we have
the unbiased and the mean error estimates

E
(
ηNn (fn)

)
= ηn(fn) = E

(
η̂Nn (fn)

)
(5.5)

and
√
N E

(∣∣[ηNn − ηn
]
(fn)

∣∣r) 1
r ≤ 2 a(r)

n∑
p=0

β(Mp,n),

with the Dobrushin ergodic coefficients

β(Mp,n) := sup
(xp,yp∈Ep)

‖Mp,n(xp, ·) −Mp,n(yp, ·)‖tv ,

and the collection of constants a(p) defined in (2.7). Arguing as in (2.8), for time homogeneous
population sizes Nn = N , for any functions f ∈ Osc1(En), we conclude that

P

(∣∣[ηNn − ηn
]
(f)

∣∣ ≥ b(n)√
N

+ ε

)
≤ exp

(
− Nε2

2b(n)2

)
(5.6)

with b(n) := 2

n∑
p=0

β(Mp,n).

For the path space models (5.1), we have β(Mp,n) = 1 so that the estimates (5.5) and (5.6)
take the form

(5.7)
√
N E

(∣∣[ηNn − ηn
]
(fn)

∣∣r) 1
r ≤ 2 a(r) (n+ 1)

and

P

(∣∣[ηNn − ηn
]
(f)

∣∣ ≥ 2(n + 1)√
N

+ ε

)
≤ exp

(
− Nε2

8(n + 1)2

)
.
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In the next lemma we extend these estimates to unbounded functions.
Lemma 5.1. For any p ≥ 1, we denote by p′ the smallest even integer greater than p. In

this notation, for any k ≥ 0 and any function f , we have the almost sure estimate

√
NE

(∣∣[ηNn − ηNk−1Mk−1,n](f)
∣∣p ∣∣FN

k−1

) 1
p

(5.8)

≤ 2a(p)
n∑

l=k

[
ηNk−1Mk−1,l(|Ml,n(f)|p

′
)
] 1

p′
.

In particular, for any f ∈ Lp′(ηn), we have the nonasymptotic estimates

(5.9)
√
N E

(∣∣[ηNn − ηn](f)
∣∣p)1/p

≤ 2 a(p) ‖f‖p′,ηn (n+ 1).

Proof. Writing ηN−1M0 = η0, for any k ≥ 0, we have the decomposition

[ηNn − ηNk−1Mk,n] =

n∑
l=k

[ηNl − (ηNl−1Ml)]Ml,n,

with the semigroup
Mk,n = Mk+1Mk+2 . . .Mn.

Using the fact that
E
(
ηNl (f)

∣∣ηNl−1

)
= (ηNl−1Ml)(f),

we obtain that

E

(∣∣[ηNl − (ηNl−1Ml)](f)
∣∣p ∣∣FN

l−1

) 1
p ≤ E

(∣∣[ηNl − μN
l ](f)

∣∣p ∣∣FN
l−1

) 1
p
,

where μN
l := 1

N

∑N
i=1 δζil

stands for an independent copy of ηNl given ηNl−1. Using Khinchine-
type inequalities, we have that

√
N E

(∣∣[ηNl − μN
l ](f)

∣∣p ∣∣FN
l−1

) 1
p ≤ 2 a(p) E

(∣∣f (ξ1l )∣∣p′ | FN
l−1

) 1
p′

= 2 a(p)
[
ηNl−1Ml(|f |p

′
)
] 1

p′
.

Using the unbias property of the particle scheme, we have that

∀k ≤ l ≤ n, E
(
ηNl (f)

∣∣FN
k−1

)
= (ηNk−1Mk−1,l)(f).

This implies that

√
N E

(∣∣[ηNl − (ηNl−1Ml)](f)
∣∣p ∣∣FN

k−1

) 1
p ≤ 2 a(p) E

(
ηNl−1Ml(|f |p

′
)
∣∣FN

k−1

) 1
p′

= 2 a(p)
[
ηNk−1Mk−1,l(|f |p

′
)
] 1

p′
.

The end of the proof of (5.8) is now a direct application of Minkowski’s inequality, while the
proof of (5.9) is a direct consequence of (5.8).
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5.3. Particle approximations of the Snell envelope. In section 5.1, we have presented
a genealogical based algorithm whose occupation measures ηNn converge, as N ↑ ∞, to the
distribution ηn of the reference Markov chain (X ′

0, . . . ,X
′
n) from the origin, up to the final

time horizon n. Mimicking formula (5.1), we define the particle approximation of the Markov
transitions M ′

k as follows:

M̂ ′
k+1(f)(x) :=

ηNn ((1x ◦ πk) (f ◦ πk+1))

ηNn ((1x ◦ πk))
:=

∑
1≤i≤N 1x(ξ

i
k,n) f(ξ

i
k+1,n)∑

1≤i≤N 1x(ξik,n)

for every state x in the support Êk,n of the measure ηNn ◦ π−1
k . Note that Êk,n coincides with

the collection of ancestors ξik,n at level k of the population of individuals at the final time

horizon. This random set can alternatively be defined as the set of states ξik,k of the particle

population at time k such that ηNn ((1ξik,k
◦ πk)) > 0; more formally, we have

(5.10) Êk,n :=
⋃

1≤i≤N

{
ξik,k : ηNn ((1ξik,k

◦ πk)) > 0
}
.

It is interesting to observe that the random Markov transitions M̂ ′
k+1 coincide with the condi-

tional distributions of the states X ′
k+1 given the current time states X ′

k of a canonical Markov

chain Xn := (X ′
0, . . . ,X

′
n) with distribution ηNn on the path space En := (E′

0 × · · · × E′
n).

Thus, the flow of kth time marginal measures

ηNk,n :=
1

N

N∑
i=1

δξik,n

are connected by the following formula:

ηNk,nM̂
′
k,l = ηNl,n ∀ k ≤ l ≤ n,

with the semigroup M̂ ′
k,l associated with the Markov transitions M̂ ′

k+1 given by

(5.11) M̂ ′
k,l(f)(x) = M̂ ′

k+1M̂
′
k+1 . . . M̂

′
l (f)(x) =

ηNn ((1x ◦ πk) (f ◦ πl))
ηNn ((1x ◦ πk))

,

for every state x in Êk,n. In connection with (5.10), we also have the following formula:

ηNk,n =
1

N

N∑
i=1

(
N ηNn

(
1ξik,k

◦ πk
))

δξik,k
=

N∑
i=1

ηNn

(
1ξik,k

◦ πk
)
δξik,k

,

with the proportion ηNn (1ξik,k
◦πk) of individuals at the final time horizon having the common

ancestor ξik,k at level k. It is also interesting to observe that

E
(
ηNk,n(f)

∣∣FN
k

)
=

N∑
i=1

E

(
ηNn

(
1ξik,k

◦ πk
) ∣∣FN

k

)
f(ξik,k)

=

N∑
i=1

ηNk Mk,n

(
1ξik,k

◦ πk
)

︸ ︷︷ ︸
=1/N

f(ξik,k) = ηNk (f).
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The Snell envelope associated with this particle approximation model is defined by the
following backward recursion:

ûk(x) =

{
fk(x) ∨ M̂ ′

k+1(uk+1)(x) ∀x ∈ Êk,n,

0 otherwise.

In terms of the ancestors at level k, this recursion takes the following form:

ûk
(
ξik,n

)
= fk

(
ξik,n

)
∨ M̂ ′

k+1(ûk+1)
(
ξik,n

)
∀ 1 ≤ i ≤ N.

In what follows, the computation of the Snell envelope approximation (ûk)0≤k≤n will be
called the backward step and is summarized in the following algorithm.

5.3.1. Backward algorithm.
Initialization At time step k = n, for all i = 1, . . . , N , set ûn(ξ

i
n,n) = f(ξin,n).

At each time step k = n− 1, . . . , 0, for all i = 1, . . . , N , set

ûk(ξ
i
k,n) = fk(ξ

i
k,n) ∨

∑N
j=1 ûk+1(ξ

j
k+1,n) 1ξjk,n=ξik,n∑N

j=1 1ξjk,n

.

For later use in the further development of this section, we quote a couple of technical
lemmas. The first one provides some Lp estimates of the normalizing quantities of the Markov

transitions M̂ ′
k+1. The second one allows us to quantify the deviations of M̂ ′

k+1 around its
limiting values M ′

k+1, as N → ∞.
Lemma 5.2. For any p ≥ 1 and 0 ≤ i ≤ N , we have the following uniform estimate:

(5.12) sup
N≥1

sup
0≤l≤k≤n

∣∣∣∣∣∣ηNk (1ξil,k
◦ πl)−1

∣∣∣∣∣∣
p
< ∞.

Lemma 5.3. For any p ≥ 1 and 0 ≤ i ≤ N , we have the following uniform estimate:

(5.13) sup
0≤l≤n

∣∣∣∣∣∣M̂ ′
l+1(f)(ξ

i
l,n)−M ′

l+1(f)(ξ
i
l,n)

∣∣∣∣∣∣
p
≤ cp(n)/

√
N,

with some collection of finite constants cp(n) < ∞ whose values depend only on the parameters
p and n.

The proofs of these lemmas are rather technical; thus they are postponed to the appendices.
We are now in position to state and prove the main result of this section.
Theorem 5.4. For any p ≥ 1 and 0 ≤ i ≤ N , we have the following uniform estimate:

(5.14) sup
0≤k≤n

∥∥(uk − ûk)(ξ
i
k,n)

∥∥
p
≤ cp(n)/

√
N,

with some collection of finite constants cp(n) < ∞ whose values depend only on the parameters
p and n.

Proof. First, we use the following decomposition:

|uk − ûk|1Êk,n
≤

∑
k≤l≤n−1

M̂ ′
k,l|(M̂ ′

l+1 −M ′
l+1)(ul+1)| 1Êk,n

.(5.15)
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By construction, we have that

M̂ ′
k,l|(M̂ ′

l+1 −M ′
l+1)(ul+1)|1Ê(k,n)

= M̂ ′
k,l|1Êl,n

(M̂ ′
l+1 −M ′

l+1)(ul+1)|1Êk,n
.

By (5.11), if we set

ũl+1 = |(M̂ ′
l+1 −M ′

l+1)(ul+1)|

on the set Êl,n, then we have that

M̂ ′
k,l(ũl+1)(ξ

i
k,n) =

ηNn ((1ξik,n
◦ πk) (ũl+1 ◦ πl))

ηNn ((1ξik,n
◦ πk))

.

For any p ≥ 1, we have that∥∥∥M̂ ′
k,l(ũl+1)(ξ

i
k,n)

∥∥∥
p
≤
∥∥∥ηNn ((1ξik,n

◦ πk))−1
∥∥∥1/p
2

×E

(
ηNn ((1ξik,n

◦ πk) (ũl+1 ◦ πl)2p)
)1/(2p)

.

This implies that∥∥∥M̂ ′
k,l(ũl+1)(ξ

i
k,n)

∥∥∥
p
≤
∥∥∥ηNn ((1ξik,n

◦ πk))−1
∥∥∥1/p
2

× sup
1≤j≤N

∥∥∥ũl+1(ξ
j
l,n)

∥∥∥
2p

.

The proof of (5.14) is now a clear consequence of Lemmas 5.2 and 5.3.

5.4. Bias analysis. To end this subsection, we will prove that just as with the bias of
the Broadie–Glasserman-type estimators, the bias of the genealogical tree based estimator is
always positive.

Note that, for any 0 ≤ k ≤ n, function f on space E′
k, and any i ∈ {1, . . . , N}, we have

that

(5.16) E
(
f(ξik+1,n)|ξk,n

)
= Mk+1f(ξ

i
k,n).

This is because in the neutral genealogical tree model, the selection steps are independent
of the mutations steps. Here, ξk,n contains all the information on the construction of the
tree plus the information on the values of the nodes on this tree at instant k. Equation (5.16)
comes from the fact that given the information ξk,n, the particle ξ

i
k+1,n follows the distribution

M ′
k+1(ξ

i
k,n, ·).

Theorem 5.5. For any 0 ≤ k ≤ n and any i ∈ {1, . . . , N}, we have that

(5.17) E
(
ûk(ξ

i
k,n)|ξk,n

)
≥ uk(ξ

i
k,n).

Proof. To prove this, we will use a simple induction argument.
For l = n, ûn = un, we easily check that the following inequality is verified for all i =

1, . . . , N :

(5.18) E
(
ûl(ξ

i
l,n)|ξl,n

)
≥ ul(ξ

i
l,n).

Assume that (5.18) is verified for all i = 1, . . . , N , and let us prove that the same inequality
is valid for instant l − 1.
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With the elementary decomposition,

E

(
M̂ ′

l (ûl)(ξ
i
l−1,n)|ξl−1,n

)
= E

⎛⎝∑N
j=1 ûl(ξ

j
l,n)1ξjl−1,n=ξil−1,n∑N

j=1 1ξjl−1,n=ξil−1,n

|ξl−1,n

⎞⎠
=

∑N
j=1 E

(
ûl(ξ

j
l,n)|ξl−1,n

)
1
ξjl−1,n=ξil−1,n∑N

j=1 1ξjl−1,n=ξil−1,n

.

By assumption (5.18) and (5.16), we have that

E

(
ûl(ξ

j
l,n)|ξl−1,n

)
≥ E

(
ul(ξ

j
l,n)|ξl−1,n

)
= Mlul(ξ

j
l−1,n).

Applying the preceding decomposition, it follows easily that

E

(
M̂lûl(ξ

i
l−1,n)|ξl−1,n

)
≥

∑N
j=1Mlul(ξ

i
l−1,n)1ξjl−1,n=ξil−1,n∑N

j=1 1ξjl−1,n=ξil−1,n

= Mlul(ξ
i
l−1,n).

Then we can complete this proof by using Jensen’s inequality, getting

E
(
ûl−1(ξ

i
l−1,n)|ξl−1,n

)
≥ fl−1(ξ

i
l−1,n) ∨ E

(
M̂lûl(ξ

i
l−1,n)|ξl−1,n

)
≥ fl−1(ξ

i
l−1,n) ∨Mlul(ξ

i
l−1,n)

= ul−1(ξ
i
l−1,n).

5.5. Numerical simulations. In this section, we give numerical examples to test the ge-
nealogical tree algorithm on two types of options from dimension 1 up to 6.

5.5.1. Price dynamics and options model. Our numerical examples are taken from
Bouchard and Warin [7], who provided precise approximations of option values in their ex-
amples. The asset prices are modeled by a d-dimensional Markov process (X̃t) such that
each component (i.e., each asset) follows a geometric Brownian motion under the risk-neutral
measure; that is, for assets i = 1, . . . , d,

(5.19)
dX̃t(i)

X̃t(i)
= rdt+ σidz

i
t,

where zi, for i = 1, . . . , d, are independent standard Brownian motions. The interest rate r
is set to 5% annually. We also assume that for all i = 1, . . . , d, X̃t0(i) = 1 and σi = 20%
annually.

We consider two different Bermudan options with maturity T = 1 year and 11 equally
distributed exercise opportunities at dates tk = kT/n with k = 0, 1, . . . , n = 10, associated
with two different payoffs:

1. a geometric average put option with strike K = 1 and payoff (K −
∏d

i=1 X̃T (i))+,

2. an arithmetic average put option with strike K = 1 and payoff (K − 1
d

∑d
i=1 X̃T (i))+.
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Table 1
Benchmark values for the geometric and arithmetic put options (taken from [7]).

Number of assets 1 2 3 4 5 6

Geometric payoff 0.06033 0.07815 0.08975 0.09837 0.10511 0.11073

Arithmetic payoff 0.06033 0.03882 0.02947 0.02403 0.02046 0.01830

Note that the geometric average put payoff involves the process
∏d

i=1 X̃(i) which can be
identified with a one-dimensional nonstandard exponential Brownian motion. This trick was
used in [7] to compute a precise benchmark option value by PDE techniques. We report in
Table 1 the benchmark option values computed in [7] for both the geometric and the arithmetic
put options (by using, respectively, the one-dimensional PDE method and the Longstaff–
Schwartz method with 8× 106 × d2 simulations and 10 basis functions for each direction).

5.5.2. State space discretization. The genealogical tree algorithm is designed for finite
state spaces. Hence, before applying it to the aforementioned continuous space examples, we
have to approximate the continuous state space Markov chain solution of (5.19) by a Markov
chain with a finite state space. To this end, one can first discretize the state space using either
a random tree or a stochastic mesh method, or a binomial tree or a quantization approach . . . .
In our numerical simulations, the quantization discretization seemed to be the most efficient.

State space partitioning. Here, we propose using a quantization-like approach for the space
discretization step. We simulate a first set of M i.i.d. paths at each n + 1 possible exercise
dates t0, . . . , tn, (X̃

i
tk
)i=1,...,M
k=0,...,n according to dynamic (5.19). Assume now that there exist two

integers N ′ and P such that M can be written as the product M = N ′P . Then, at each
time step tk, the particle set Sk = {X̃1

tk
, . . . , X̃M

tk
} can be partitioned into N ′ localized subsets

{S1
k , . . . ,SN ′

k } of P particles. Assume now that there exist d integers (Q1, . . . , Qd) such that
N ′ can be written as the product N ′ = Q1 . . . Qd. Assume for simplicity that N ′ = Qd. One
way to build this partition {S1

k , . . . ,SN ′
k } is then to apply the following procedure as in [7]:

1. sort the particles according to the first coordinate, and split the sorted particles into
Q subsets containing the same number of particles Qd−1P ;

2. if d ≥ 2, for each subset, sort the particles according to the second coordinate, and split
the sorted particles into Q subsets containing the same number of particles Qd−2P ,
which finally leads to Q2 subsets containing the same number of particles Qd−2P ;

3. if d ≥ 3, repeat this procedure recursively; in each direction, i = 3, . . . , d.
This operation is realized with a complexity O(dM log(M)) and produces a partition of Sk

into N ′ = Qd subsets S1
k , . . . ,SN ′

k with the same number P of particles.

Now, for each subset Sj
k, for j = 1, . . . , N ′, we compute a representative state, Sj

k, as the

average particle over all the elements of Sj
k. Then, at each time step tk for k = 1, . . . , n,

we will consider the finite state space Ek = {S1
k , . . . , S

N ′
k } and we set E0 = {Xt0}. In what

follows, the discrete points S1
k , . . . , S

N ′
k will be referred to as the sites.

Finite state space Markov chain. Assume now that a sequence of finite state spaces
Ek ⊂ R

d is given for k = 1, . . . , n (for instance, by the above procedure). We define a fi-
nite state space Markov chain (X ′

k)k=0,...,n such that X ′
0 = X̃t0 and for all k = 1, . . . , n, the

following hold:
• X ′

k ∈ Ek;
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• P(X ′
k = Sj

k |X ′
k−1 = Si

k−1) = P(X̃tk ∈ V j
k | X̃tk−1

= Si
k−1), where V j

k denotes the

Voronoi cell associated with the site Sj
k in the discrete set Ek and (X̃tk) is the Markov

process verifying (5.19) observed at the discrete times t0, . . . , tn.
To simulate a transition of the Markov chain (X ′

k)k=0,...,n from the state Si
k−1 ∈ Ek−1 at the

time step k − 1 to the time step k, one can apply the following procedure:
1. Simulate a random variable X̃tk according to M̃k(S

i
k−1, ·), where M̃k denotes the tran-

sition kernel of the continuous state space Markov chain verifying (5.19) from time
tk−1 to tk.

2. Set X ′
k = Si∗

k , where Si∗
k is the nearest neighbor of X̃tk among the elements of Ek.

5.5.3. Complexity. In comparison with the quantization method proposed in [25], the
genealogical algorithm based on the above space discretization needs only to simulate the
finite state space Markov chain (X ′

k) and avoids the time consuming computation of the
transition probabilities.

In terms of complexity, the major part of the computing time is spent in the forward step
described in section 5.1.1 for simulating the discrete space Markov chain (X ′

k). More precisely,
for each transition, one has to compute a nearest neighbor among N ′ sites which finally leads
to a complexity of order O(NN ′) by time step, when considering the whole set of N particles.

In terms of approximation error, we can decompose the error induced by the whole pro-
cedure, on the Snell envelope approximation, into the sum of two terms:

1. the state space discretization error which can be upper bounded, according to [25] or
Proposition 3.6, by c

N ′1/d ;
2. the error induced by the genealogical tree algorithm, which could be upper bounded,

according to the proof of Theorem 5.4, by c N ′β
N1/2 , for a given positive real β > 0.

Hence, to minimize the resulting upper bound on the global error, one has to choose judiciously

the number of sites N ′ as a function of the number of particles such that N ′ = 0(N
d

2βd+2 ).

With this choice, the complexity of the global procedure is of order O(N
(1+2β)d+2

2βd+2 ), with an
approximation error bounded by c

N
1

2βd+2
. In our numerical simulations, we have set β = 1/2 so

that the complexity grows with the dimension from N4/3, N3/2, N8/5, . . . , N2 for dimensions
d = 1, 2, 3, . . . ,∞.

On the other hand, in the backward step (described in section 5.3.1), consisting in com-
puting the Snell envelope, our algorithm requires only a complexity which is linear in the
number of particles, N . Hence, for a given underlying price process, our approach can rapidly
approximate several Bermudan options with different payoff functions.

5.5.4. Numerical results. For each example, we have performed the algorithm for differ-
ent numbers of particles for N = 5×103, 1×104, 2.5×104, 5×104, 1×105, 2×105, 4×105, 1×
106, 2×106. In each case, the sites were computed on the base of M = max(500000, 50×N ′) =

max(500000, 50 × N
d

d+2 ) simulations. Many runs of the algorithm were performed to build
boxplots for our estimates: 50 runs for N < 106 and 24 runs for N = 1×106 and N = 2×106.

Simulations results are reported in Figure 1 for the geometric put payoff and in Figure 2
for the arithmetic put payoff. First, notice that our algorithm has been implemented without
any control variate technique. Moreover, our implementation has not been optimized. In par-
ticular, we have not investigated in this article any parallel implementations of our algorithm.
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(f) d = 6

Figure 1. Boxplots for estimated option values (divided by the benchmark values) as a function of the number
of particles for the geometric put payoff. The box stretches from the 25th percentile to the 75th percentile, the
median is shown as a line across the box, the whiskers extend from the box out to the most extreme data value
within 1.5 IQR (interquartile range), and red crosses indicate outliers.
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Figure 2. Boxplots for estimated option values (divided by the benchmark values) as a function of the number
of particles for the arithmetic put payoff. The box stretches from the 25th percentile to the 75th percentile, the
median is shown as a line across the box, the whiskers extend from the box out to the most extreme data value
within 1.5 IQR (interquartile range), and red crosses indicate outliers.
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Table 2
Error (in % of the option value in Table 1) of the genealogical algorithm with N = 25000 particles and

N ′ = N
d

d+2 sites, and within parentheses of the quantization algorithm with N = 25600 quantization points
(taken from [7]), for the geometric and arithmetic put options.

Number of assets d = 3 d = 4 d = 5 d = 6

Geometric put error
(in % of the option value)

2 (2) 7 (8) 14 (15) 17 (22)

Arithmetic put error
(in % of the option value)

3.5 (3.5) 10 (8) 15 (16) 14 (17)

Thus, it does not seem relevant to report any running time measurements on the paper. How-
ever, the algorithm complexity gives a good indication of the number of operations required
by our algorithm. Moreover, the estimates reported in our graph correspond to the backward
estimate provided by Algorithm A2 in Bouchard and Warin [7] and should be compared to
that type of estimate. We could also obtain a forward estimate with our genealogical approach
by applying the backward induction on the stopping times (just as in the Longstaff–Schwartz
algorithm) with probably better performances than the backward estimator, but this is not
the subject of the present paper.

Hence, to compare the estimation errors of the backward estimate provided by our al-
gorithm to a corresponding approach, we have reported, in Table 2, the estimation errors

obtained with the genealogical algorithm using N = 25000 particles and N ′ = N
d

d+2 sites,
in valuing the geometric put (on the first line) and the arithmetic put (on the second line)
and, within parentheses, the performances of the backward estimate provided by the quanti-
zation approach [2] implemented in [7], with 25600 quantization points for the same options.
One can observe that both algorithms achieve similar performances for approximately the
same number N of quantization points (for the quantization algorithm) and particles (for the
genealogical algorithm).

Now, notice that the complexity (per time step) of the genealogical algorithm is of order

NN ′ = N
2d+2
d+2 for the construction of the genealogical tree and of order N for the backward

induction on the prices, which is slightly smaller than the complexity of the quantization
approach of order N2 for the backward induction on prices (without taking into account the
complexity related to the construction of the quantization tree and to the computation of the
transition probabilities). Hence, we can conclude that our new algorithm is competitive with
respect to comparable algorithms.

Notice that one can observe on the graph that for d = 2 or 3 the bias of our estimator
can be negative. However, this is not in contradiction to Theorem 5.5. Indeed, recall that our
estimator cumulates two kinds of approximations:

1. The first approximation is the discretization of the Markov chain which can induce a
negative bias.

2. The second is the backward genealogical algorithm to compute the Snell envelope of
the discrete Markov chain which (by theorem) induces a positive bias.

Looking into further applications, this algorithm is also well suited for Bermudan options
with path dependent payoff. Indeed, by construction, the genealogical tree algorithm is defined
in terms of the historical process; then it is able to compute conditional expectations with
respect to the whole past of the process with no additional complexity.
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In the same vein, we believe that this algorithm and the related convergence result could be
extended, with slight modifications, to the more general case of reflected backward stochastic
differential equations with a nonzero driver that does not depend on the z variable and which
satisfies suitable regularity conditions.

Finally, in further research, it could also be interesting to extend this algorithm for the
computation of price sensitivities for hedging purposes.

Appendix A. Proof of Lemma 5.2. Set

δl,n(N) := inf
x∈E′

l

ηNn (gl,x),

with the function gl,x defined in (B.2). Note that

P (δl,n(N) = 0) ≤
∑
x∈E′

l

P
(
ηNn (gl,x) = 0

)
.

On the other hand, for any ε ∈ [0, 1) we have

P
(
ηNn (gl,x) = 0

)
≤ P

(∣∣ηNn (gl,x)− ηn(gl,x)
∣∣ > ε ηn(gl,x)

)
.

Arguing as in (5.7), for any x ∈ E′
l s.t. ηn(gl,x) (= P (X ′

l = x)) > 0 we prove that

(A.1)
√
N E

(∣∣ηNn (gl,x)− ηn(gl,x)
∣∣r) 1

r ≤ 2 a(r) (n+ 1) ηn(gl,x)
−1

and therefore

P

(∣∣ηNn (gl,x)− ηn(gl,x)
∣∣ ≥ (

2(n + 1)√
N

+ ε

)
ηn(gl,x)

)
≤ exp

(
− Nε2

8(n+ 1)2

)
.

For any N ≥ (2(n + 1)/(1 − ε))2, this implies that

P (δl,n(N) = 0) ≤ Card(E′
l) exp

(
− Nε2

8(n+ 1)2

)
.

If we choose ε = 1/2 and N ≥ (4(n + 1))2, we conclude that

P (δl,n(N) = 0) ≤ Card(E′
l) exp

(
− N

32(n + 1)2

)
.

On the other hand, by construction we have the almost sure estimate

ηNn (gl,ξil,n
) =

∑
x∈E′

l

ηNn (gl,x) 1ξil,n=x ≥ δl,n(N) 1δl,n(N)>0 +
1

N
1δl,n(N)=0,

from which we find that

ηNn (gl,ξil,n
)−1 ≤ δl,n(N)−1 1δl,n(N)>0 +N 1δl,n(N)=0.
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Therefore, we have∣∣∣∣∣∣ηNn (gl,ξil,n
)−1

∣∣∣∣∣∣
p
≤ ||δl,n(N)−1 1δl,n(N)>0||p +N ||1δl,n(N)=0||p

≤
∑
x∈E′

l

||ηNn (gl,x)
−1 1ηNn (gl,x)>0||p +N P(δl,n(N) = 0)1/p.

If we set gl,n(x) = gl,x/ηn(gl,x), using the fact that

1

1− u
= 1 + u+ u2 +

u3

1− u
,

for any u �= 1, and ηNn (gl,x)
−1 1ηNn (gl,x)>0 ≤ N ηn(gl,x), we find that

ηNn (gl,x)
−1 1ηNn (gl,x)>0 ≤ 1 +

∣∣1− ηNn (gl,x)
∣∣+ (

1− ηNn (gl,x)
)2

+N ηn(gl,x)
∣∣1− ηNn (gl,x)

∣∣3 .
Combining this estimate with (A.1), for any p ≥ 1 we prove the following upper bound:

‖ηNn (gl,x)
−1 1ηNn (gl,x)>0‖p ≤ 1 +

1√
N

2a(p)(n + 1) + (2a(2p)(n + 1))2
1

N

+
1√
N

(2a(3p)(n + 1))3,

from which we find the rather crude estimates

‖ηNn (gl,x)
−1 1ηNn (gl,x)>0‖p ≤ 1 +

3√
N

a′(p) (n+ 1)3,

with the collection of finite constants a′(p) := 2a(p) + (2a(2p))2 + (2a(3p))3. Using the above
exponential inequalities, we find that∣∣∣∣∣∣ηNn (gl,ξil,n

)−1
∣∣∣∣∣∣
p
≤
∑
x∈E′

l

1

ηn(gl,x)

[
1 +

3√
N

a′(p) (n + 1)3
]
+N Card(E′

l)
1/p exp

(
− N

32p(n + 1)2

)
,

completing the proof of the lemma.

Appendix B. Proof of Lemma 5.3. By construction, we have

(B.1) ∀x ∈ Êl,n, M ′
l+1(f)(x) =

ηNl Ml,n((1x ◦ πl) (f ◦ πl+1))

ηNl Ml,n((1x ◦ πl))
.

Thus, by (B.1), we have

M̂ ′
l+1(f)(x)−M ′

l+1(f)(x) :=
ηNn (gl,xfl+1)

ηNn (gl,x)
− ηNl Ml,n(gl,xfl+1)

ηNl Ml,n(gl,x)
,
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for any x ∈ Êl,n, with the collection of functions

(B.2) gl,x := 1x ◦ πl and fl+1 := f ◦ πl+1.

It is readily checked that

M̂ ′
l+1(f)(x)−M ′

l+1(f)(x) =
1

ηNn (ḡNl,x)

[
ηNn (f̄N

l+1,x)− ηNl Ml,n(f̄
N
l+1,x)

]
,

for any x ∈ Êl,n, with the pair of FN
l -measurable functions

f̄N
l+1,x :=

gl,x

ηNl Ml,n(gl,x)

[
fl+1 −

ηNl Ml,n(gl,xfl+1)

ηNl Ml,n(gl,x)

]
and ḡNl,x =

gl,x

ηNl Ml,n(gl,x)
.

It is also important to observe that as gl,x varies only on E′
l, then

ηNl Ml,n(gl,x) = ηNl (gl,x) ≤ 1.

In this notation, for any 0 ≤ i ≤ N and any p ≥ 1, we have∣∣∣∣∣∣M̂ ′
l+1(f)(ξ

i
l,n)−M ′

l+1(f)(ξ
i
l,n)

∣∣∣∣∣∣
p

≤
∣∣∣∣∣∣ηNn (gl,ξil,n

)−1
∣∣∣∣∣∣
2p

∣∣∣∣∣∣ηNn (f̄N
l+1,ξil,n

)− ηNl Ml,n(f̄
N
l+1,ξil,n

)
∣∣∣∣∣∣
2p
.(B.3)

The collection of random functions f̄N
l+1,ξjl,l

is well defined, and we have

(
ηNn (f̄N

l+1,ξil,n
)− ηNl Ml,n(f̄

N
l+1,ξil,n

)

)β

=
1

ηNl

(
gl,ξil,n

) 1

N

N∑
j=1

[
ηNn (f̄N

l+1,ξjl,l
)− ηNl Ml,n(f̄

N
l+1,ξjl,l

)

]β
1
ξjl,l=ξil,n

for any β ≥ 0. Combining the above formula for β = 2p and Holder’s inequality, we prove
that ∣∣∣∣∣∣∣∣ηNn (f̄N

l+1,ξil,n

)
− ηNl Ml,n

(
f̄N
l+1,ξil,n

)∣∣∣∣∣∣∣∣
2p

≤
∥∥∥∥ηNl (

gl,ξil,n

)−1
∥∥∥∥1/(2p)
q

× sup1≤j≤N

∥∥∥∥ηNn (f̄N
l+1,ξjl,l

)
− ηNl Ml,n

(
f̄N
l+1,ξjl,l

)∥∥∥∥
2pq′

,

for any q, q′ ≥ 1, with 1
q +

1
q′ = 1.

We observe that, as (ξjl,l, (ξ
i
l,l)0≤i≤N , (ξil,n)0≤i≤N ) have the same distribution, for any 1 ≤

j ≤ N , then for any function h and any 1 ≤ j, j′ ≤ N we have that

E

(
h(ξjl,l, (ξ

i
l,l)0≤i≤N , (ξil,n)0≤i≤N )

)
= E

(
h(ξj

′
l,l, (ξ

i
l,l)0≤i≤N , (ξil,n)0≤i≤N )

)
,
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which implies that

sup
1≤j≤N

∥∥∥∥ηNn (f̄N
l+1,ξjl,l

)
− ηNl Ml,n

(
f̄N
l+1,ξjl,l

)∥∥∥∥
2pq′

=

∥∥∥∥ηNn (f̄N
l+1,ξjl,l

)
− ηNl Ml,n

(
f̄N
l+1,ξjl,l

)∥∥∥∥
2pq′

.

As this equation works for any 1 ≤ j ≤ N , in the further development we take j = 1 to
simplify the notation.

Using Lemma 5.1, and recalling that ηNl Ml,n(gl,x) = ηNl (gl,x), for any 1 ≤ j ≤ N we prove
the almost sure estimate

√
N E

(∣∣∣∣[ηNn − ηNl Ml,n](f̄
N
l+1,ξ1l,l

)

∣∣∣∣2pq′ ∣∣FN
l

) 1
2pq′

≤ 2 a(2pq′)(n − l)

[
ηNl Ml,n

(∣∣∣∣f̄N
l+1,ξ1l,l

∣∣∣∣2pq′
)] 1

2pq′

≤ 4 a(2pq′)(n − l) ‖fl+1‖
(
ηNl Ml,n(gl,ξ1l,l

)
) 1

2pq′ −1
.

This yields that

√
NE

(∣∣∣[ηNn − ηNl Ml,n](f̄
N
l+1,ξ1l,l

)
∣∣∣2pq′ ∣∣FN

l

) 1
2pq′

≤ 4 a(2pq′)(n − l)‖fl+1‖ ηNl (gl,ξ1l,l
)−1,

and therefore

√
N

∥∥∥∥ηNn (f̄N
l+1,ξil,n

)− ηNl Ml,n(f̄
N
l+1,ξil,n

)

∥∥∥∥
2pq′

≤ 4 a(2pq′)(n− l)‖fl+1‖
∥∥∥∥ηNl (

gl,ξil,n

)−1
∥∥∥∥1/(2p)
q

∥∥∥ηNl (gl,ξ1l,l
)−1

∥∥∥
2pq′

.

Finally, by (B.3), we conclude that

√
N

∣∣∣∣∣∣M̂ ′
l+1(f)(ξ

i
l,n)−M ′

l+1(f)(ξ
i
l,n)

∣∣∣∣∣∣
p

≤ 4 a(2pq′)(n− l)‖fl+1‖
∣∣∣∣∣∣ηNn (gl,ξil,n

)−1
∣∣∣∣∣∣
2p

∥∥∥∥ηNl (
gl,ξil,n

)−1
∥∥∥∥1/(2p)
q

×
∥∥∥ηNl (gl,ξ1l,l

)−1
∥∥∥
2pq′

.
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We prove (5.13), by taking q = 1 + 2p and q′ = 1 + 1/(2p), so that q = 2pq′ ≥ 2p

√
N

∣∣∣∣∣∣M̂ ′
l+1(f)(ξ

i
l,n)−M ′

l+1(f)(ξ
i
l,n)

∣∣∣∣∣∣
p

≤ 4 a(1 + 2p)(n− l)‖fl+1‖ supl≤k≤n

∣∣∣∣∣∣ηNk (gl,ξ1l,k
)−1

∣∣∣∣∣∣2+1/(2p)

1+2p
.

This end of proof is now a direct consequence of Lemma 5.2.
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