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Université Haute Bretagne
Place du Recteur H. Le Moal

CS 24307
35043 Rennes Cedex France

arnaud.guyader@uhb.fr

P. Lezaud
Centre d’Etudes de la Navigation Aérienne
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Abstract

The estimation of rare event probability is a crucial issue in areas such as reliability, telecommunica-

tions, aircraft management. In complex systems, analytical study is out of question and one has to use

Monte Carlo methods. When rare is really rare, which means a probability less than 10−9, naive Monte

Carlo becomes unreasonable. A widespread technique consists in multilevel splitting, but this method

requires enough knowledge about the system to decide where to put the levels at hand and select the

branching rates. In this paper, we propose to improve the importance splitting algorithm by using adap-

tive branching rates.This variant of the algorithm may be describe by the formalism of Feynman-Kac

Formula, providing a very elegant way of studying its properties. We also propose a second variant using

adaptive splitting levels, for which only partial convergence results have been obtained. We will give

some numerical examples, including the computation large self avoiding random walks on the 2D lattice.
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1 Introduction

Throughout this paper, we will consider the following type of problems: given a strong Markov process X ,
we want to estimate the probability that it enters some measurable set R before visiting some recurrent set
A0. Moreover, we would like not only to estimate this probability, but as well end up with realizations of the
Markov process that reach the rare set. The probability of the event of interest is unknown, but assumed too
small to be estimated by naive Monte-Carlo. In the rare event community this problem is usually addressed
by using an importance splitting algorithm. The basic idea is to use a family of nested sets

R = Bm+1 ⊂ Bm ⊂ · · · ⊂ B1 ⊂ B0 , (1)

and replicate Rj times each trajectory reaching Bj for the first time. It is quite intuitive, and it is well
known (see [10, 7]) that this approach is only efficient when 1/Rj is close to Pj , where Pj is the probability
of reaching Bj given the trajectory has already reached Bj−1. Moreover (see [10]), the variance is minimal
when all the Pj ’s are equal. Even if this approach has already proved to be very attractive for rare event
simulation, it is not always obvious how to choose the sets Bj and the corresponding branching rates Rj . In
the sequel, we will develop new variants of the basic splitting algorithm, the first one solving the problem of
choosing the branching rates, and the second one partially solving the problem of the choice of the sets Bj .

2 Adaptive branching rates

2.1 Mathematical setting

We assume that X is a strong Markov process taking its values in a polish space S, with almost surely right
continuous, left limited trajectories (RCLL, or càdlàg), and that R is closed. We assume to be given a family
of nested, closed, subsets of S satisfying (1), where R denote the event of interest. We also denote by A0 a
closed recurrent set for the process X , and assume that A0 ∩B0 = ∅. We now define for any Borelian set B
in S the following stopping time:

TB = inf{t ≤ 0, Xt ∈ B}.
With this notation, the rare event is simply ER = {TR ≤ TA0

}. It is also quite obvious that we can express
its probability as �

(TR ≤ TA0
) = � [ � TR≤TA0

] = � [ � XTR∧TA0
∈R].

For any 1 ≤ k ≤ m + 1, we denote
Tk = TBk

∧ TA0
.

Then for any functional φ of the trajectory up to Tm+1 = TR∧TA0
, we can express the conditional expectation

given the rare event by

� [φ(Xt, t ≤ Tm+1)|TR ≤ TA0
] =

� [φ(Xt, t ≤ Tm+1)
∏m+1

k=0 � XTk
∈Bk

]

� [
∏m+1

k=0 � XTk
∈Bk

]
, (2)

and
�

(TR ≤ TA0
) = � [

m+1
∏

k=0

� XTk
∈Bk

]. (3)

Now what have we gain by putting it in such a cumbersome form ?

2.2 Feynman-Kac model interpretation

The interest of equation (2) is that it rewrites a conditional expectation given a rare event in the form of a
(discrete time) Feynman-Kac formula, for which a great deal of developments have been carried out by P. Del
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Moral in recent years (see [4]). This theory gives a general algorithm to construct a numerical approximation
and numerous convergence results as soon as we are interested in expressions of the form

η̂n(φ) =
� [φ(Z1, . . . , Zn)

∏n
k=0 Gk(Zk)]

� [
∏n

k=0 Gk(Zk)]
(4)

where Gk are measurable non-negative functions called potentials. Many practical problems can take this
form (arising in non linear Bayesian filtering, statistical physics, directed polymers simulation...).
To see that equation (2) fits exactly in equation (4), we can consider the discrete time Markov chain of the
excursions of X between two consecutive stopping times Tk and Tk+1, that is Xk = {Xt, Tk ≤ t ≤ Tk+1} (see
[2] for a more careful check).

2.3 Algorithm

This formalism gives a nice way to construct a discrete approximation to the measure η̂n using a particle
approximation. Basically, we start with a set of particles, which is an i.i.d. N -sample ξk

0 , k = 1, . . . , N of the
law of X0. Then we associate to each sample k a weight proportional to G0(ξ

k
0 ), and normalize them such

that their sum is equal to 1. We denote the corresponding weights by wk
0 . Then we re-sample according

to the weights. This step will give offspring to particles with high weights, and will remove the ones with
very little weights. To go to the next time step we draw independently for each k a new position using
the transitions of the Markov chain

�
(X1 ∈ dx|X0 = ξk

0 ), recompute the weights using G1, re-sample, and
iterate the process until the final time. Note that in general there are many different ways to practically
implement the re-sampling step, but we will not discuss this topic here. In fact, our un-normalized weights
being either 0 or 1, this discussion would not be much relevant here (see [5] for a review on practical aspects
of these methods).
This family of algorithms is often referred to as genetic as they can be decomposed into a mutation step,
the drawing of new states using the transitions of the chain, and a selection step, which is the re-sampling,
favoring the best fitted according to the potential. It is also referred to as genealogical because we can keep
track of all the previous states occupied by a given particle, constructing a kind of genealogical tree for the
particle system.
Note that in the case of rare event simulation, unlike many other applications, we are also interested in com-
puting the denominator of equation (4), as it is precisely the probability of the rare event (see equation (3)).
Obviously we can write, as usual with splitting methods:

�
(TR ≤ TA0

) =

m+1
∏

k=1

�
(XTk

∈ Bk|XTk−1
∈ Bk−1) =

m+1
∏

k=1

� [ � Bk
(XTk

)|XTk−1
∈ Bk−1].

Now each term in the product is the normalizing constant at each step of the algorithm, and we can
reconstruct the global normalizing constant by multiplying the local ones. Practically, as in any splitting
method, we then will estimate the global probability of success as the product of all the probability of
reaching the next level set Bk given that we succeeded to hit Bk−1.
Applying these ideas to equation (2) we end up with algorithm 1.

Algorithm 1

Parameters

N the number of particles.

Initialization

Draw an i.i.d. N -sample ξk, k = 1, . . . , N of the law of X0.
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for k = 1 to N , T k
0 ← 0.

Iterations

for h = 0 to m /* level number */

let be I1 the set of indices for which ξk(T h
k ) ∈ Bh, and I0 its complement in 1, . . . , N .

Ph ← |I1|/N .

for k ∈ I0, let ξk be a copy of ξ` where ` is chosen randomly in I1 with uniform probabilities.

for k ∈ 1, . . . , N , extend each trajectory ξk using the transition probabilities of X , until time T h+1
k

when it first hits Bh+1 ∪ A0.

endfor

let Pm+1 be the proportion of trajectories that actually hit R.

Output

estimate the probability of the rare event by P̂1 =
∏m+1

h=0 Ph.

We have therefore constructed an algorithm that does not need to specify any branching rate. Note that
just as in the plain splitting algorithm, there is a (hopefully small but) non zero probability of extinction
(i.e. I1 = ∅ at some stage). In this case, if we do not accept to estimate the probability by 0, we need to
restart the whole process. We should also mention a variant in which we do not stop the computation until
a fixed number of successes has been reached, which was proposed in [11]. As mentioned in [2], for algorithm
1, the probability of extinction is exponentially small as N → +∞, and restricted on realizations such that
the particle system does not die, the probability estimator P̂1 is unbiased.

2.4 Convergence results

We briefly present here some convergence results, following general results on Feynman-Kac models (see [2]
for details). As in algorithm 1, we denote by P̂1 our estimate of the probability of the rare event, and � P̂1>0

the indicator function of the non extinction set of realizations. Then we have a strong law of large numbers:
√

N � [|P̂1. �
P̂1>0 −

�
(TR ≤ TA0

)|p] 1

p ≤ Cp,

for any positive p, and for some finite constant Cp depending on p, and on the model. We also have the
same kind of estimates for any functional of the trajectory, given that the rare event is hit.
We also have a CLT type result: the sequence of random variables

√
N(P̂1. �

P̂1>0 −
�

(TR ≤ TA0
))

converges in distribution to a Gaussian N(0, σ2) with

σ2 = c.
�

(TR ≤ TA0
)2.

The square of the probability here characterizes an efficient simulation method, like standard splitting
methods. But unfortunately the expression for the constant c is not very simple in general. In dimension 1
however, the asymptotic variance reduces to

σ2 =

m+1
∑

h=0

(

1�
(Th ≤ TA0

|Th−1 ≤ TA0
)
− 1

)

, (5)

which is the same variance as given in [10], with optimal branching rates. This suggest that our variant
is strictly better than standard splitting because it is asymptotically as efficient as the standard one with
optimal branching rates, and with the same algorithmic complexity.
Note that a variant of this algorithm, better fitted for hybrid models, has been developed and applied to
practical problems in [9].
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3 Adaptive levels

Having solved the problem of choosing the branching rates, it still remains that of choosing the family of
nested sets Bk, k = 1, . . . , m + 1, and even the number m.
We will assume here that R is the super level set of some scalar function Φ:

R = {x ∈ S : Φ(x) ≥ λR},

for some λR ∈ � . We assume that Φ is upper semi continuous to ensure that its level sets are closed. In the
rare event literature such a function Φ is often referred to as an importance function.

3.1 Algorithm

The main idea is to construct recursively Φ level sets such that the probability to reach the next one will
approximately be some value given as a parameter. Following [3] we give the details below in algorithm 2 of
the proposed approach.

Algorithm 2

Parameters

N the number of particles.

K the number of succeeding particles at each step.

Initialization

Draw an i.i.d. N -sample ξk, k = 1, . . . , N of the trajectory of X until new stopping time T 0
k when it

hits A0, re-compute Sk = sup0≤t≤T 0

k
Φ(ξk(t)), and T S

k = inf{0 ≤ t ≤ T 0
k , Φ(ξk(t)) ≥ Sk}.

Sort the Sk, k = 1, . . . , N in decreasing order, and reorder the ξk, T 0
k , and T S

k accordingly.

m← 0.

Iterations

while SK < λR do

m← m + 1.

for k = K + 1, . . . , N

Choose at random an index ` in 1, . . . , K with uniform probability.

Let ξk = ξ` until time T S
k , and extend the trajectory by simulation until T 0

k when it hits A0,
compute Sk = sup0≤t≤T 0

k
Φ(ξk(t)), and T S

k = inf{0 ≤ t ≤ T 0
k , Φ(ξk(t)) ≥ Sk}.

endfor

Sort the Sk, k = 1, . . . , N in decreasing order, and reorder the ξk, T 0
k , and T S

k accordingly.

endwhile

let P̃ be the proportion of trajectories that actually hit R.

Output

estimate the probability of the rare event by P̂2 = P̃ .(K
N

)m.

5



The fact that the number of iterations is not fixed should not be a problem, as it is very unlikely, for N

reasonably large, to be different from the ratio of logarithms b log � (TM≤T0)
log K−log N

c+ 1.
For simplicity we run all the trajectories up to the time they hit A0. In fact, if we do not need the trajectories
after hitting R, we just stop them at their first hitting time TA0

∧ TR. In that case, the simulation time is
exactly the same as it would be using algorithm 1.
Note that the complexity is only increased by the need to sort the supremums, that is by an N log N (in the
mean) term if we use a Quicksort algorithm.
We should also mention that the idea of using quantiles to construct the level sets was already presented
in [6]. But unlike in algorithm 2, the trajectories used to find the level sets were thrown away, and a classical
splitting algorithm was then used.

3.2 Convergence results

The use of quantiles in the algorithm adds complex dependencies between trajectories and makes it unsuitable
for Feynman-Kac representation. So there is no easy approach to show convergence results and so far only
partial results have been obtained.
We consider here the framework of [3], where some partial convergence results are proved.
The most restrictive assumption is that the state space is � . We consider a strong Markov process starting
at some fixed x0 > 0. We assume that X has a.s. continuous trajectories. We assume that 0 is an attractive
point and M >> 0 is a barrier the process is very unlikely to reach. We would like to estimate the probability
that the process reaches M before 0. We define

T0 = inf{t ≥ 0, Xt = 0},

and
TM = inf{t ≥ 0, Xt = M}.

We further assume that the distribution function F of the random variable S = sup0≤t≤T0
Xx0

t is continuous.
Under this set of assumptions, we have the almost sure convergence:

P̂2(N, K)
a.s.−→ �

(TM ≤ T0) as N → +∞,

and with K = bpNc for some fixed p > 0.
Furthermore, we have the following CLT type result. Let us define r as r =

�
(TM ≤ T0).p

−q with q =

b log � (TM≤T0)
log p

c. We have

√
N(P̂2(N, K)− �

(TM ≤ T0))
D−→ N(0, σ2), as N → +∞,

where the asymptotic variance is

σ2 =
�

(TM ≤ T0)
2.(q

1− p

p
+

1− r

r
).

Assume that
�

(TM ≤ T0) = pq for some q ∈ �
, that is r = 1. It is remarkable then that this expression

for the variance is exactly the same as equation (5), with the optimal choice for the levels, i.e.
�

(Th ≤
TA0
|Th−1 ≤ TA0

) = p for all k (see [10] for a discussion of this optimality).
We did not succeed to prove that the estimate P̂2(N, K) is unbiased, because from numerical evidence it is
not. But as discussed in the next section, the bias is small compared with the standard deviation.

3.3 Numerical results

3.3.1 Brownian motion with drift

Let B denote the standard Brownian motion. Let X
(µ)
t = Bt + µt be the Brownian motion with drift µ. We

note Ha,b = H = min {s > 0, X
(µ)
s /∈ [a, b]}. The expression of the probability of reaching b before a starting
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Figure 1: Bias and standard deviation

from x ∈ [a, b] is given in [1]:

Px( X
(µ)
H = b ) = eµ(b−x) sinh ( (x− a)|µ| )

sinh ( (b− a)|µ| ) .

This explicit and simple expression makes the Brownian motion with drift a good non trivial candidate to
compute the bias of our estimator given by algorithm 2.
Figure 1 shows the computed bias and standard deviation of P̂2(K, K) as functions of N , with K = N/2,
in logarithmic scales. The other parameters are µ = −1, a = 0, b = 10, x = 1, making a true rare event
probability of 1.317 × 10−8. The computation was carried out for N varying from 30 to 3, 000. For each
value, the bias and variance were estimated from 300 runs. The figure clearly shows that the bias is small
compared with the standard deviation for reasonably large N . From this we can conjecture that the bias is
of order N−1 when the standard deviation is of order N− 1

2 .
Concerning the choice of K, from this and several other numerical computations it seems that good choices
are in the range N/2 ≤ K ≤ 3N/4.

3.3.2 Self avoiding walks

We have implemented this with self-avoiding walks in Z
2, which is a simplified model for molecular chains

(for more informations see [13, 8]). A saw is simply a random walk on Z
2, conditioned on the fact that it

never visited twice the same site. The proportion of such trajectories upon all possible chains decreases very
fast with its length n, making it a very rare event. See [12] for a monograph on saw. We can then calculate
the probability of having long chains and draw some of them using algorithm 2 (see examples in figure 2).
The function Φ here is simply the length of the chain before it hits itself1. As in the historical paper [13] we
focused on the extension of the chain. The extension of a saw X of length n is defined as

s(n) = � [X(n)2].

1To fit exactly in the framework of algorithm 2, one has to extend the state: if X is the saw, then we apply the algorithm
to Yn = ({Xk , k ≤ n}, n) and Φ(Yn) = n
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Figure 2: saw in Z
2 of length 1000 and 1500,

the estimated probabilities are respectively of order 10−204 and 10−305.

It is proved that the limit

lim
n→+∞

s(n)

nγ

exists and is finite for some γ > 0. But in Z
2 the exact value of γ is still unknown, and it is conjectured

[12] that γ = 3/2. In figure 3, we present estimates of s(n) as a function of n. These were computed for
n ≤ 150with N = 150, 000, and K = 50, 000. To estimate γ we decided to remove the beginning because we
are not yet in the asymptotic regime. Keeping the values for 50 ≤ n ≤ 150, and fitting the logarithms with
a simple linear regression, we found γ ' 1.511, which is compatible with the conjecture.

4 Conclusion

The first algorithm presented is strictly better than ordinary importance splitting because it is unbiased,
its convergence is well understood, it has asymptotically the same variance, and virtually needs the same
amount of computation, but without the need to tune the branching rates.
The second algorithm is less understood, but still promising from both partial convergence results and
numerical computations. It is better than the first one if there is an obvious choice for Φ.
The question of the choice of Φ is still open.
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