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Abstract Sequential and Quantum Monte Carlo methods, as well as genetic type
search algorithms can be interpreted as a mean field and interacting particle approx-
imations of Feynman-Kac models in distribution spaces. The performance of these
population Monte Carlo algorithms is related to the stability properties of nonlinear
Feynman-Kac semigroups. In this paper, we analyze these models in terms of Do-
brushin ergodic coefficients of the reference Markov transitions and the oscillations
of the potential functions. Sufficient conditions for uniform concentration inequal-
ities w.r.t. time are expressed explicitly in terms of these two quantities. Special
attention is devoted to the particular case of Boltzmann-Gibbs measures’ sampling.
In this context, we design an explicit way of tuning the temperature schedule with
the number of Markov Chain Monte Carlo iterations.

Introduction

Sequential and Quantum Monte Carlo methods (abbreviate SMC and QMC) are
stochastic algorithms to sample from complex high-dimensional probability dis-
tributions. These stochastic simulation techniques are of current use in numerical
physics [21, 2, 1] to compute ground state energies. They are also used in statis-
tics, signal processing and information sciences [4, 12, 11, 14] to compute posterior
distributions of partially observed signal or unknown parameters. In evolutionary
computing literature, these Monte Carlo methods are used as natural population
search algorithms for solving optimization problems. From the pure mathematical
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viewpoint, these advanced Monte Carlo methods coincide with mean field particle
interpretations of Feynman-Kac (abbreviate FK) models. For a thorough discussion
on FK models we refer the reader to the monograph [10], and references therein. The
principle (see also [12] and the references therein) is to approximate a sequence of
target probability distributions (ηn)n by a large cloud of random samples termed
particles or walkers. The algorithm starts with N independent samples from η0 and
then alternates two types of steps: an acceptance-rejection scheme equipped with a
recycling mechanism, and a sequence of free exploration of the state space.

In the recycling stage, the current cloud of particles is transformed by randomly
duplicating and eliminating particles in a suitable way, similarly to a selection step
in models of population genetics. In the Markov evolution step, particles move in-
dependently of each other (mutation step).

This method is often used for solving sequential problems, such as filtering (see
e.g., [11]). In other interesting problems, these algorithms also turn out to be effi-
cient to sample from a single target measure η . In this context, the central idea is
to find a judicious interpolating sequence of measures (ηk)0≤k≤n with increasing
sampling complexity, starting from some initial distribution η0, up to the terminal
one ηn = η . Consecutive measures ηk and ηk+1 are sufficiently similar to allow for
efficient importance sampling and/or acceptance-rejection sampling. The sequen-
tial aspect of the approach is then an ”artificial way” to introduce the difficulty of
sampling gradually. Large population sizes allow to cover several modes simultane-
ously. This is an advantage compared to standard MCMC methods. These sequential
samplers have been used with success in several application domains, including rare
events simulation (see [5]), stochastic optimization and Boltzmann-Gibbs measures
sampling ([12]).

Up to now, SMC and QMC algorithms have been mostly analyzed using asymp-
totic (i.e. when number of particles N tends to infinity) techniques, notably through
central limit theorems and large deviation principles (see for instance [9, 15],
[17, 14, 16], [23], [7], [11], [4] and [10] for an overview). Our work relates to less
studied non-asymptotic problems, and follows those based on Markov kernels’ mix-
ing properties (see for instance [6], [17] and [10]). We emphasize that other inde-
pendent approaches, such as Whiteley’s ([27]) or Schweizer’s ([26]), based on, e.g.,
drift conditions, hyper-boundedness, or spectral gaps, lead to convergence results
that may also apply to non-compact state spaces. To our knowledge, these tech-
niques are restricted to non-asymptotic variance theorems and they cannot be used
to derive uniform and exponential concentration inequalities.

The present work consists in estimating explicitly the stability properties of FK
semigroup in terms of the Dobrushin ergodic coefficient of the reference Markov
chain and the oscillations of the potential functions. We combine these techniques
with non-asymptotic theorems on Lp error bounds ([17]) and some useful concentra-
tion inequalities ([18]). Another contribution is to provide parameter tuning strate-
gies that allow to deduce some useful uniform concentration inequalities w.r.t. the
time parameter. These results also apply to non-homogeneous FK models associated
with cooling temperature parameters.
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In a preliminary section, we recall a few essential notions related to Dobrushin
coefficients or FK semigroups, as well as a couple of important non-asymptotic re-
sults we use in the further development of the article. The second part is concerned
with the semigroup stability analysis of these models. We also provide a couple of
uniform Lp-deviations and concentration estimates. We end the article with an ap-
plication of these results to Boltzmann-Gibbs models associated with a decreasing
temperature schedule. In this context, SMC and QMC algorithms can be interpreted
as a sequence of interacting simulated annealing (abbreviate ISA) algorithms. The
detailed proofs of the results presented in this article will be presented in a forthcom-
ing publication dedicated to adaptive particle algorithms (see [20] for a preliminary
version).

1 Preliminaries

1.1 Notations

Let (E,r) be a complete, separable metric space and let E be the σ -algebra of Borel
subsets of E. Denote by P(E) the space of probability measures on E. Let B(E) be
the space of bounded, measurable, real-valued functions on E. Let B1(E)⊂B(E)
be the subset of all bounded by 1 functions.

If µ ∈ P(E), f ∈ B(E) and K,K1,K2 are Markov kernels on E, then µ( f )
denotes the quantity

∫
E f (x)µ(dx), K1.K2 denotes the Markov kernel defined by

K1.K2(x,A) =
∫

E
K1(x,dy)K2(y,A),

K. f denotes the function defined by

K. f (x) =
∫

E
K(x,dy) f (y)

and µ.K denotes the probability measure defined by

µ.K(A) =
∫

E
K(x,A)µ(dx).

For any f ∈B(E), denote by osc( f ) the quantity ( fmax− fmin). For any x ∈ E,
the Dirac measure centered on x is designated by δx.
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1.2 The Feynman-Kac Measure-Valued Model

Consider a sequence of probability measures (ηn)n, defined by an initial measure
η0 and recursive relations:

∀ f ∈B(E), ηn( f ) =
ηn−1 (Gn×Mn. f )

ηn−1(Gn)

for positive functions Gn ∈B(E) and Markov kernels Mn with Mn(x, ·) ∈P(E)
and Mn(·,A) ∈B1(E). This is the sequence of measures we wish to approximate
with the SMC algorithm. In an equivalent way, (ηn)n can be defined by the relation:

ηn = φn(ηn−1)

where φn : P(E)→P(E) is the FK transformation associated with potential func-
tion Gn and Markov kernel Mn and defined by

φn(ηn−1) = ψGn(ηn−1).Mn

with
ψGn(ηn−1)(dx) :=

1
ηn−1(Gn)

Gn(x) ηn−1(dx)

The next formula provides an interpretation of the Boltzmann-Gibbs transformation
in terms of a nonlinear Markov transport equation

ΨGn(ηn−1)(dy) =
(
ηn−1Sn,ηn−1

)
(dy) :=

∫
ηn−1(dx)Sn,ηn−1(x,dy)

with the Markov transition Sn,ηn defined below

Sn,ηn−1(x,dy) = εn.Gn(x) δx(dy)+(1− εn.Gn(x)) ΨGn(ηn−1)(dy),

(for any constant εn > 0 so that εn.Gn ≤ 1). This implies

ηn = ηn−1Kn,ηn−1 with Kn,ηn−1 = Sn,ηn−1Mn

Therefore, ηn can be interpreted as the distributions of the random states Xn of a
Markov chain whose Markov transitions

P
(
Xn+1 ∈ dy | Xn = x

)
:= Kn+1,ηn(x,dy)

depend on the current distribution ηn = Law
(
Xn
)
.

An important point (FK semigroup structure, see e.g., [17]) is that the semigroup
transformations

φp,n := φn ◦φn−1 ◦ ...◦φp+1

admit a comparable structure as each of the φk, i.e. for any integers p < n, there exist
a positive function Gp,n ∈B(E) and a Markov kernel Pp,n so that:
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∀ f ∈B(E), ∀µ ∈P(E), φp,n(µ). f =
µ (Gp,n×Pp,n. f )

µ(Gp,n)
(1)

1.3 The Associated Interacting Particle System

In SMC and QMC algorithms, we approximate the measures ηn by simulating an
interacting particle system (ζn)n =

(
ζ 1

n , . . . ,ζ
N
n
)

n of size N so that

η
N
n =

1
N ∑

1≤i≤N
δζ i

n
→N↑∞ ηn

Of course, the main issue is to make precise and to quantify this convergence.
We start with N independent samples ζ0 = (ζ 1

0 , . . . ,ζ
N
0 ) from η0. The particle

dynamics alternates two genetic type transitions.
During the first step, every particle ζ i

n evolves to a new particle ζ̂ i
n randomly

chosen with the distribution

SηN
n
(ζ i

n,dx) := εn+1.Gn+1(ζ
i
n) δζ i

n
(dx)+

(
1− εn+1.Gn+1(ζ

i
n)
)

ΨGn+1(η
N
n )(dx)

with the updated measures

ΨGn+1(η
N
n ) =

N

∑
j=1

Gn+1(ζ
j

n )

∑
N
k=1 Gn+1(ζ k

n )
δ

ζ
j

n

This transition can be interpreted as an acceptance-rejection scheme with a recycling
mechanism. In the second step, the selected particles ζ̂ i

n evolve randomly according
to the Markov transitions Mn+1. In other words, for any 1 ≤ i ≤ N, we sample a
random state ζ i

n+1 with distribution Mn+1

(
ζ̂ i

n,dx
)

.
Denote respectively by P(·) and E(·) probabilities and expectations taken with

respect to the random variables (ζ i
n)n,i and (ζ̂ i

n)n,i.

1.4 Dobrushin Ergodic Coefficients

The Dobrushin coefficient β (K) ∈ [0,1] of a Markov kernel K on E, is defined by:

β (K) = sup{K(x,A)−K(y,A) | x,y ∈ E, A ∈ E },

or in an equivalent way:

β (K) = sup{‖K(x, ·)−K(y, ·)‖tv | x,y ∈ E}
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where ‖µ−ν‖tv denotes the total variation distance between the measures µ and ν .

The parameter β (K) caracterizes mixing properties of the Markov kernel K. Note
that the function β is an operator norm, in the sense that β (K1.K2)≤ β (K1).β (K2),
for any couple of Markov kernels K1, K2. Further details on these ergodic coeffi-
cients can be found in the monograph [10].

Estimating these coefficients is generally a difficult task (related to the large field
of Markov chains’ stability), since their definition involves a supremum over every
pair (x,y) ∈ E2 and every set A ∈ E . However, here is a first remark: if a Markov
kernel K satisfies the ergodic total variation convergence Km(x, ·)→ µ uniformly
w.r.t. x ∈ E when m tends to infinity, then β (Km) tends to zero.

In the particular case of a finite state space E, the Dobrushin ergodic coefficient
of a Markov kernel K on E is given by the formula

β (K) =
1
2

sup

{
∑
l∈E
|K(i,{l})−K( j,{l})| ; i, j ∈ E

}
,

which implies it is calculable as soon as the probability of the elementary transitions
K(i,{l}) are known. This formula can provide a approximation of β (K) in the case
of an infinite but simple (low dimensional) state space E, that one can discretize.

In practice, the property β (K) < 1 is easily met as soon as the state space E is
compact. Typically, any Markov kernel of the form

K(x,dy) = h(x,y)m(dy)

where h is a positive, continuous function on E2 and m a reference measure on E,
satisfies β (K)< 1. Otherwise, in some other particular situations, one can explicitly
estimate β (K). For instance, if E = Rd and

K(x,dy) ∝ e−α|y−a(x)|dy

for some α > 0 and some bounded function a : E → E, then for all x,x′ ∈ E we
have

K(x,dy)
K(x′,dy)

= eα(|y−a(x′)|−|y−a(x)|) ≤ eα·osc(a)

⇒ K(x,dy)≤ e−α·osc(a)K(x′,dy). This clearly implies β (K)≤ (1− e−α·osc(a)).

The reader will also find in [17] an estimate of β (K2) in the following case

K(x,dy) ∝ e−
1
2 |y−a(x)|2dy,
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when the function a is constant outside some compact set F ⊂ E. Finally, the case
of the Metropolis-Hastings kernel will be recalled page 11.

1.5 Some Non-Asymptotic Results

To quantify the FK semigroup stability properties, it is convenient to introduce the
following parameters.

Definition 1. For any integers p < n, we set

bn := β (Mn) and bp,n := β (Pp,n).

gn := sup
x,y∈E

Gn(x)
Gn(y)

and gp,n := sup
x,y∈E

Gp,n(x)
Gp,n(y)

.

The quantities gp,n, and respectively bp,n, reflect the oscillations of the potential
functions Gp,n, and respectively the mixing properties of the Markov transition Pp,n
associated with the FK semigroup φp,n described in (1). Several contraction inequal-
ities of φp,n w.r.t. the total variation norm or different types of relative entropies can
be derived in terms of these two quantities (see for instance [10]).

The performance analysis developed in this article is partly based on the two
non-asymptotic inequalities presented below.

The following Lp error bound for all f ∈B1(E) is proved in [17]:

E
(∣∣ηN

n ( f )−ηn( f )
∣∣p)1/p

≤
Bp√

N

n

∑
k=0

gk,nbk,n (2)

where Bp designates an universal constant.
In the further development of the article we also use the following exponential

concentration inequality derived in [18]. For all f ∈B1(E) and any ε > 0 we have:

−1
N

logP
(
|ηN

n ( f )−ηn( f )| ≥ rn

N
+ ε

)
≥ ε2

2

[
b?nβ n +

√
2rn√
N

+ ε

(
2rn +

b?n
3

)]−1

(3)
where rn, β n and b?n are constants so that:

rn ≤ ∑
n
p=0 4g3

p,nbp,n

βn
2 ≤ ∑

n
p=0 4g2

p,nb2
p,n

b?n ≤ sup
0≤p≤n

2gp,nbp,n
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2 General Feynman-Kac semigroup analysis

Equations (2) and (3) provide explicit non-asymptotic estimates in terms of the
quantities gp,n and bp,n. Written this way, they hardly apply to any SMC’ param-
eters tuning decision, since the only known or calculable objects are generally the
reference Markov chain Mp and the elementary potential functions Gp. We thus have
to estimate gp,n and bp,n in terms of the gp and bp.
By construction (see Lemma 2.1 in [13]), Gp,n and Pp,n satisfy the following back-
ward relations: 

Gp−1,n = Gp×Mp.Gp,n

Pp−1,n. f =
Mp.(Gp,n×Pp,n. f )

Mp.Gp,n

with the initial definitions Gn,n = 1 and Pn,n = Id. By combining these formulae
with Dobrushin ergodic coefficient estimation techniques, we obtain the following
lemma:

Lemma 1. For any integers p≤ n, we have:

gp,n−1 ≤
n

∑
k=p+1

(gk−1)
k−1

∏
i=p+1

(bigi)

bp,n ≤
n

∏
k=p+1

bk.gk,n

(4)

To obtain uniform bounds w.r.t. time n (in the case of the Lp norm), we notice
that

n

∑
p=0

n

∏
k=p+1

bkgk−1,n <+∞ =⇒
n

∑
p=0

gp,nbp,n <+∞

This naturally leads to a sufficient condition of the following type:

bk×gk−1,n ≤ a with 0 < a < 1

for any k < n, which ensures:

∀ f ∈B1(E), E
(∣∣ηN

n ( f )−ηn( f )
∣∣p)1/p

≤
Bp√

N
1

1−a
(5)

More generally, this condition ensures uniform bounds for βn
2
, b?n and rn :

βn
2 ≤ 4

1−a2 b?n ≤ 2 rn ≤
4

1−a
· sup

p,n
g2

p,n

bearing in mind that the gp,n are bounded in the cases of interest. We then fix 0 <
a < 1 and the objective is to find conditions on the bp so that bkgk−1,n ≤ a. This
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parameter a is to be chosen according to the error we allow ourselves to commit, and
the number N of particles involved, with bounds explicited above. In order to explicit
relevant and applicable conditions, we study two typical cases of assumptions on the
potential functions Gp. The first one being that the gp are bounded (Theorem 1), the
second one being that the gp tend to 1 (Theorem 2).

Theorem 1. Under the assumption ∀p ∈ N,gp ≤M, where M is a constant, condi-
tion

bp ≤
a

M(1+a)
(6)

ensures the Lp error bound (5), as well as the following concentration inequality:

∀y≥ 0, ∀ f ∈B1(E), P
(
|ηN

n ( f )−ηn( f )| ≥ r?1N + r?2y
N2

)
≤ e−y

with 
r?1 = 9

2
M2

(1−a)3 +

√
8√

1−a2
+ 18M2

(1−a)2
√

N

r?2 = 18 M2

(1−a)2 +

√
8√

1−a2
+ 18M2

(1−a)2
√

N

Let us now consider the case where gp tends decreasingly to 1. We define

α =
a

1−a
> 0 so that a =

α

1+α

Theorem 2. Under the assumption gp −→p→∞ 1 (decreasingly), if the sequence bp
satisfies for any p≥ 1,

bp ≤
gα

p −1

gα+1
p −1

−→ a and bp ≤
a

gα+1
p
−→ a

then the Lp error bound (5) is satisfied, as well as the following concentration
inequalities :

∀y≥ 0, ∀ f ∈B1(E), P
(
|ηN

n ( f )−ηn( f )| ≥
r?3(n).N + r?4(n).y

N2

)
≤ e−y

In the above displayed formulae r?3(n) and r?4(n) are defined below in terms of a
sequence un which tends to 1, as n tends to ∞:
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r?3(n) =

9.un
2(1−a) +

√
8√

1−a2
+ 18.un√

N

r?4(n) =
18.un
1−a +

√
8√

1−a2
+ 18.un√

N

Such conditions on the bp can appear to be difficult to reach since the Markov
kernels may be imposed by the application under study. However, we can deal with
this problem as soon as we can simulate a Markov kernel Kn such that ηn.Kn = ηn.
Indeed, the algorithm designer can add MCMC evolution steps next to each Mn-
mutation step, to stabilize the system. From the formal viewpoint, the target se-
quence (ηn)n is clearly also solution of the FK measure-valued equations associated
with the Markov kernels M′n =Mn.Kmn

n , where iteration numbers mn are to be chosen
loosely. This system is more stable since the corresponding b′p satisfy:

b′p ≤ bp.β (K
mp
p )≤ bp.β (Kp)

mp .

In such cases, Theorems 1 and 2 provide sufficient conditions on iteration num-
bers mp to ensure the convergence of the algorithm.

3 The Particular Case of Boltzmann-Gibbs Measures,
Interacting Simulated Annealing

Let V ∈B(E). For all β ≥ 0, denote Boltzmann-Gibbs probability measure associ-
ated with ”temperature” β and potential function V by:

µβ (dx) =
1

Zβ

e−β .V (x)m(dx),

where m is a reference measure, and Zβ a normalizing constant. It is well known that
Boltzmann-Gibbs measures’ sampling is related to the problem of minimizing the
potential function V , since µβ tends to concentrate on V ’s minimizers as temperature
β tends to infinity. One illustration is the following inequality, satisfied for all 0 <
ε ′ < ε:

µβ (V ≥Vmin + ε)≤ e−β (ε−ε ′)

mε ′
(7)

where mε ′ = m(V ≤Vmin + ε ′)> 0.

Besides, let fix a ”temperature schedule”, being a strictly increasing sequence βn
so that βn −→+∞. The sequence (ηn)n := (µβn)n admits a FK structure associated
with potential functions Gn = e−(βn−βn−1).V and Markov kernels Mn chosen as be-
ing MCMC dynamics for the current target distributions. In this context, the SMC
algorithm, used as a strategy to minimize V , can be interpreted as a sequence of
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interacting simulated annealing (abbreviate ISA) algorithms.
We propose in this section to turn the previously raised conditions on bp and gp into
conditions on the temperature schedule to use, and the number of MCMC steps. We
will then combine the concentration results of section 2 with inequality (7) to obtain
results in terms of optimization performance.

Let us fix a ”temperature schedule” (βn) and denote:

• ηn(dx) = µβn(dx) = 1
Zβn

e−βnV (x)m(dx);

• Gp(x) = e−∆p.V (x) ;
• and then gp = e∆p.osc(V ).

where ∆p are the increments of temperature ∆p = βp−βp−1. At a fixed temper-
ature β , let us consider the simulated annealing Markov kernel, designated by Kβ .
It involves a proposition kernel K(x,dy), assumed here as being fixed, according to
the following formulae (written here in the case where K is symmetric, see [3]):

Kβ (x,dy) = K(x,dy).min
(

1,e−β (V (y)−V (x))
)

∀y 6= x

Kβ (x,{x}) = 1−
∫

y6=x K(x,dy).min
(

1,e−β (V (y)−V (x))
)

Under the assumption Kk0(x, ·)≥ δν(·) for some integer k0, some measure ν and
some δ > 0, one can show (see [3]) that:

β (Kk0
β
)≤

(
1−δe−β∆V (k0)

)
(8)

where ∆V (k0) is the maximum potential gap one can obtain making k0 move-
ments with K. This quantity is bounded by osc(V ). To let the bp’s tuning be possible,
it is out of the question to choose Mp = Kβp , but Mp = Kk0.mp

βp
, the simulated anneal-

ing kernel iterated k0.mp times, to obtain suitable mixing properties. The algorithm’s
user then has a choice to make on two parameters: the temperature schedule βp, and
the kernels Kk0

βp
iteration numbers mp. Note that for all b ∈ (0,1), condition bp ≤ b

is turned into
(

1−δe−βp∆V (k0)
)mp
≤ b, which can also be written:

mp ≥
log( 1

b )e
∆V (k0).βp

δ

Then, combining the concentration inequality (7), the theorems of section 2
(taken with indicator function f = 1{V≥Vmin+ε}) , and the Dobrushin ergodic co-
efficient estimation (8) we obtain the following theorem:

Theorem 3. Let us fix a ∈ (0,1). If the temperature schedule (βp) and the iteration
numbers mp satisfy one of these two conditions:

1. ∆p bounded by ∆ (e.g. linear temperature schedule) and
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mp ≥
log( e∆ .osc(V )(1+a)

a )e∆V (k0).βp

δ

2. ∆p −→ 0 (decreasingly) and mp ≥
(

osc(V ).∆p + log(
1
a
)

)
e∆V (k0).βp

δ

then for all ε > 0, and all ε ′ < ε , the proportion pN
n (ε) of particles (ζ i

n) so that
V (ζ i

n)≥Vmin + ε satisfies the inequality:

∀y≥ 0, P

(
pN

n (ε)≥
e−βn(ε−ε ′)

mε ′
+

r?i N + r?j y

N2

)
≤ e−y

where (i, j) = (1,2) in the case of bounded ∆p (taken with M = e∆ .osc(V )) and
(i, j) = (3,4) in the second one.

We then clearly distinguish two error terms: the first one,

(
e−βn(ε−ε ′)

mε ′

)
, esti-

mating the Boltzmann-Gibbs measure’s concentration around V ’s minimizers, and

the second one,
( r?i N + r?j y

N2

)
, estimating the occupation measure’s concentration

around this Boltzmann-Gibbs theoretical measure. More than providing tunings
which ensure convergence, this last concentraion inequality explicits the relative
impact of other parameters, such as probabilistic precision y, threshold t on the
proportion of particles possibly out of the area of interest, final temperature βn
or population size N. A simple equation, deduced from this last theorem, such as(

e−βn(ε−ε ′)

mε ′
=

r?i N + r?j y

N2 =
t
2

)
may be applied to the global tuning of an Interact-

ing Simulated Annealing algorithm, which is generally a difficult task.

Conclusion

It is instructive to compare the estimates of Theorem 3 with the performance analy-
sis of the traditional simulated annealing model (abbreviate SA). Firstly, most of the
literature on SA models is concerned with the weak convergence of the law of the
random states of the algorithm. When the initial temperature of the scheme is greater
than some critical value, using a logarithmic cooling schedule, it is well known that
the probability for the random state to be in the global extrema levels tends to 1,
as the time parameter tends to ∞. The cooling schedule presented in Theorem 3 is
again a logarithmic one. In contrast to the SA model, Theorem 3 allows to quan-
tify the performance analysis of the ISA model in terms of uniform concentration
inequalities, that does not depend on a critical parameter.
Like most rigorous and non-asymptotic tuning theorems, our results may not be ap-
plied directly. They highlight important principles (as uniform accessibility of all



On the convergence of Quantum and Sequential Monte Carlo methods 13

the state space after a given number of mutations) and the type of dependence in
some parameters. Otherwise, to our knowledge, our work presently provides the
most explicit non-asymptotic ISA convergence results, at least in the case |E|= ∞.
Nevertheless, the models we studied involve a deterministic sequence βn, while
choosing the sequence of increments ∆n = (βn−βn−1) in advance can cause compu-
tational problems. In practice, adaptive strategies, where increment ∆n depends on
the current set of particles ζn−1, are of common use in the engineering community
(see for instance [22, 25], [8, 19, 24]). In a forthcoming paper (see [20] for a pre-
liminary version), we try to adapt the present work to analyze one of these adaptive
tuning strategies.
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ity models via adaptive sequential Monte Carlo. Scand. J. Stat. (2008)
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