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Particle Filter Theory and 
Practice with Positioning 
Applications 

FREDRIK GUSTAFSSON, Senior Member, IEEE 
Linkoping University 
Sweden 

The particle filter (PF) was introduced in 1993 as a numerical 

approximation to the nonlinear Bayesian filtering problem, and 

there is today a rather mature theory as well as a number of 

successful applications described in literature. This tutorial 

serves two purposes: to survey the part of the theory that is most 

important for applications and to survey a number of illustrative 

positioning applications from which conclusions relevant for the 

theory can be drawn. 

The theory part first surveys the nonlinear filtering problem 

and then describes the general PF algorithm in relation to 

classical solutions based on the extended Kalman filter (EKF) and 

the point mass filter (PMF). 'TIming options, design alternatives, 

and user guidelines are described, and potential computational 

bottlenecks are identified and remedies suggested. Finally, the 

marginalized (or Rao-Blackwellized) PF is overviewed as a 

general framework for applying the PF to complex systems. 

The application part is more or less a stand-alone tutorial 

without equations that does not require any background 

knowledge in statistics or nonlinear filtering. It describes a 

number of related positioning applications where geographical 

information systems provide a nonlinear measurement and where 

it should be obvious that classical approaches based on Kalman 

filters (KFs) would have poor performance. All applications are 

based on real data and several of them come from real-time 

implementations. This part also provides complete code examples. 
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I .  I NTROD U CTION 

A dynamic system can in general terms be 
characterized by a state-space model with a hidden 
state from which partial information is obtained by 
observations. For the applications in mind, the state 
vector may include position, velocity, and acceleration 
of a moving platform, and the observations may come 
from either internal onboard sensors (the navigation 
problem) measuring inertial motion or absolute 
position relative to some landmark or from external 
sensors (the tracking problem) measuring for instance 
range and bearing to the target. 

The nonlinear filtering problem is  to make 
inference on the state from the observations. In the 
Bayesian framework, this is done by computing 
or approximating the posterior distribution for the 
state vector given all avai lable observations at that 
time. F or the applications in mind, this  means that 
the position of the platform is  represented with a 
conditional probability density function (pdf) given 
the observations. 

Classical approaches to Bayesian nonlinear 
filtering described in literature include the following 
algorithms: 

1 )  The Kalman filter (KF )  [l, 2] computes the 
posterior distribution exact ly for linear Gaussian 
systems by updating finite-dimensional stati stics 
recursively. 

2) F or nonlinear, non-Gaussian models, the KF 
algorithm can be applied to a linearized model with 
Gaussian noi se with the same fir st- and second-order 
moments. This  approach is commonly referred to as 
the extended Kalman filter (E KF )  [3,4]. This may 
work well but without any guar antees for mildly 
nonlinear systems where the true posterior is unimodal 
Gust one peak) and essentially symmetric. 

3)  The unscented Kalman filter (UKF )  [5,6] 
propagates a number of point s in the state space 
from which a Gaussian distribution is fit at each 
time step. UKF is known to accomodate also the 
quadratic term in nonlinear models, and is  often 
more accurate than EKF. The divided difference filter 
(DDF )  [7] and the quadrature Kalman filter (QKF )  
[8] are two other variants of this  principle. Again, 
the applicability of these filters i s  limited to unimodal 
posterior distributions. 

4) Gaussian sum Kalman filters (GS-KFs) [9] 
represent the posterior with a Gaussian mixture 
distribution. Filters in this  class can handle multimodal 
posteriors. The idea can be extended to KF 
approximations like the GS-Q KF in [8]. 

5) The point mass filter (PMF ) [ 10, 9] grids 
the state space and computes the posterior over this 
grid recursively. PMF applies to any nonlinear and 
non-Gaussi an model and is able to represent any 
posterior distribution. The main limiting factor is the 
curse of dimensionality of the grid size in higher state 
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Fig. 1 .  Evolution over time of research on PFs. Graph shows number of papers in Thomson/ISI database that match search on 
"particle filter" OR "sequential Monte Carlo" (upper curve), "particle filter" OR "sequential Monte Carlo" AND "application" 

(middle curve), and number of citations of [ 15 ]  (lower curve) . 

dimensions and that the algorithm itself is of quadratic 
complexity in the grid size. 

It should be stressed that both EKF and UKF 
approximate the model and propagate Gaussian 
distributions representitive of the posterior while the 
PMF uses the original model and approximates the 
posterior over a grid. The particle filter (PF) also 
provides a numerical approximation to the nonlinear 
filtering problem similar to the PMF but uses an 
adaptive stochastic grid that automatically selects  
relevant grid points in the state space, and in contrast 
to the PMF, the standard PF has linear complexity in 
the number of grid points. 

The first traces of the PF date back to the 1950s 
[11 , 12] , and the control community made some 
attempts in the 1970s [ 13 ,  14]. However, the PF 
era started with the seminal paper [ 15] , and the 
independent developments  in [ 16 ,  17]. Here, an 
important resampling step was introduced. The timing 
for proposing a general solution to the nonlinear 
filtering problem was perfect in that the computer 
development enabled the use of computationally 
complex algorithms in quite realistic problems. Since 
the paper [ 15] the research has steadily intensified; 
see the article collection [ 18] , the surveys [ 19-22] , 
and the monograph [23]. Fig. I i llustrates how 
the number of papers increases exponentially each 
y ear, and the same appears to be true for applied 
papers. The PFs may be a serious alternative for 
real-time applications classically approached by 
the (E)KF. The more nonlinear model, or the more 
non-Gaussian noise, the more potential PFs have, 
especially in applications where computational 
power is rather cheap, and the sampling rate i s  
moderate. 

Positioning of moving platforms has been a 
technical driver for real-time applications of the 
PF in both the signal processing and the robotics 
communities. F or this reason, we spend some time 
explaining several such applications in detail and 
summarizing the experiences of using the PF in 
practice. The applications concern positioning of 
underwater (UW) vessels , surface ships , cars , and 
aircraft using geographical information systems (GIS) 
containing a database with features of the surrounding 
landscape. These applications provide conclusions  
supporting the theoretical survey part. 

In the robotics community,  the PF has been 
developed into one of the main  algorithms 
(fastS LAM) [24] for solving the simultaneous 
localization and mapping (SLAM) problem 
[25-27]. This can be seen as an extension of the 
aforementioned applications ,  where the features in 
the GIS are dynamically detected and updated on 
the fly. Visual tracki ng has turned out to be another 
important application for the PF. MUltiple targets are 
here tracked from a video stream alone [28-30] or by 
fusion with other information, for instance, acoustic 
sensor s [3 1]. 

The common denominator of these applicat ions 
of the PF is the use of a low-dimensional state 
vector consisting of horizontal position and course 
(three-dimensional pose). The PF performs quite 
well in a three-dimensional state space. In higher 
dimensions the curse of dimensionality quite soon 
makes the particle representation too sparse to 
be a meaningful representation of the posterior 
distribution. That is , the PF is not practically useful 
when extending the models to more realistic  cases 
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with 

1) motion in three dimensions (six-dimensional 
pose) , 

2) more dynamic states (accelerations ,  unmeasured 
velocities ,  etc.) , 

3) or sensor biases and drifts. 

A technical enabler for such applications is the 
margin alized PF (MPF), also referred to as the 
Rao-Blackwellized PF (RBPF). It allows for the 
use of high-dimensional state-space models as long 
as the (severe) nonlinearities only affect a small 
subset of the states. In this way the structure of the 
model is utilized so that the particle filter is used 
to solve the most difficult tasks ,  and the (E)KF is 
used for the (almost) linear Gaussian states. The 
fastS LAM algorithm is in fact a version of the MPF, 
where hundreds or thousands of feature points in 
the state vector are updated using the (E)KF. The 
need for the MPF in the list of applications will 
be motivated by examples and experience from 
practice. 

This tutorial uses notation and terminology that 
should be familiar to the AES community, and it 
deliberately avoids excessive use of concepts from 
probability theory, where the main tools here are 
Bayes' theorem and the marginalization formula 
(or law of total probability). There are explicit 
comparisons and references to the KF, and the 
applications are in the area of target tracking and 
navigation. For instance, a particle represents a 
(target )  state trajectory; the (target) motion dynamics 
and sensor observation model are assumed to be in 
state-space form, and the PF algorithm is split into 
time and measurement updates. 

The PF should be the nonlinear filtering algorithm 
that appeals to engineers the most since it intimately 
addresses the system model. The filtering code is 
thus very similar to the simulation code that the 
engineer working with the application should already 
be quite familiar with. F or that reason, one can 
have a code-first approach, starting with Section IX 
to get a complete simulation code for a concrete 
example. This section also provides some other 
exam ples using an object-oriented programming 
framework where models and signals are represented 
with objects , and can be used to quickly compare 
different filters , tunings ,  and models. Section X 
provides an overview of a number of applications 
of the PF, which can also be read stand-alone. 
Section XI extends the applications to models of 
high s tate dimensions where the MPF has been 
applied. The practical experiences are summarized in 
Section XII. 

H owever, the natural structure is to start with an 
overvi ew of the PF theory as found in  Section I I ,  
and a summary of the MPF theory is provided in  
Section VIII , where the selection of  topics is strongly 
influenced by the practical experiences in Section XII. 

I I .  N O N L I N EAR FI LTE R I N G  

A. Models a n d  Notation 

Applied nonlinear filtering is based on discrete 
time nonlinear state-space models relating a hidden 
state xk to the observations Yk: 

xk+l = f(xk' vk)' vk rv PVk' Xl rv PX] ( 1  a) 

( 1b) 

Here k denotes the sample number, vk is a stochastic 
noise process specified by its known pdf Pv ' which 
is compactly expressed as vk rv PVk. Similarly ek is an 
additive measurement noise also with known pdf P e • 

The first observation is denoted Yl' and thus the fir;t 
unknown state is Xl where the pdf of the initial state is 
denoted Px . The model can also depend on a known 
(control) idput Uk' so f(xk,uk, vk) and h(xk , uk) , but 
this dependence is omitted to simplify notation. The 
notation sl:k denotes the sequence sl, s2 , . . .  , sk (s is one 
of the signals x, v , y ,e) ,  and ns denotes the dimension 
of that signal. 

In the statistical literature, a general Markov model 
and observation model in terms of conditional pdfs are 
often used 

(2a) 

(2b) 

This is in a sense a more general model. For 
instance, (2) allows implicit measurement relations 
h(Yk ,xk ,ek) = 0 in (1b) , and differential algebraic  
equations that add implicit state constraints to ( 1a). 

The B ayesian approach to nonlinear filtering is 
to compute or approximate the posterior distribution 
for the state given the observations. The posterior 
is denoted p(xk I Yl:k) for filtering, p(xk+m I Yl:k) for 
prediction, and p(xk-m I Yl:k) for smoothing where 
m > 0 denotes the prediction or smoothing lag. The 
theoretical derivations are based on the general model 
(2) , while algorithms and discussions are based on 
(1). Note that the Markov property of the model (2) 
implies the formulas P(xk+l I xl:k , Yi:k) = P(xk+l I xk) 
and P(Yk I Xl:k'YI:k-l) = P(Yk I xk) , which are used 
frequently. 

A linearized model will tum up on several 
occasions and is obtained by a first-order Taylor 
expansion of ( 1) around xk = xk and vk = 0: 

xk+l = f(xk , 0) + F (xk)(xk - xk) + G(xk)vk (3a) 

(3b) 

where 
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and the noise is represented by their second-order 
moments 

COV(Xl) = Po. 

(3d) 

F or instance, the EKF recursions are obtained by 
linearizing around the previous estimate and applying 
the KF equations ,  which gives 

Kk = ltlk_lHT(Xklk_l) 
A TA l 

x (H(Xklk-l)ltlk-IH (Xklk-l) + Rk)- (4a) 

Xklk = Xklk-l + Kk(Yk -hk(Xklk-I» (4b) 

ltlk = ltlk-l -KkH(Xklk-l)ltlk-1 (4c) 

Xk+llk = f(Xklk' 0)  (4d) 

It+llk = F (Xklk)ltlkFT (Xklk) + G(Xklk)QGT (Xklk) ' 
(4e) 

The recursion is initialized with xllo = Xo and lilo = 
Po, assuming the prior p(xl) '" N(xo' Po)· The EKF 
approximation of the posterior filtering distribut ion 
is then 

(5) 

where N(m,P) denotes the Gaussian density function 
with mean m and covariance P. The special case 
of  a linear model is covered by (3) in  which case 
F (xk) = Ft, G(xk) = Gk, H(xk) = Hk; using these and 
the equalities f(xk'O) = Fkxk and h(xk) = Hkxk in (4) 
gives the standard KF recursion. 

The neglected higher order terms in the Taylor 
expansion imply that the EKF can be biased and that 
it tends to underestimate the covariance of the state 
estimate. There is a variant of the EKF that also takes 
the second-order term of the Taylor expansion into 
account [32]. This is done by adding the expected 
value of the second-order term to the state updates 
and its covariance to the state covariance updates. 
The UKF [5, 6] does a similar correction by using 
propagation of systematically chosen state points 
(called s igma points) through the model. Related 
approaches include the DDF [7] that uses Sterling's 
formula to find the sigma points and the QKF [8] that 
uses the quadrature rule in numerical integration to 
select the sigma points. The common theme in EKF, 
UKF, DDF, and QKF is that the nonlinear model is 
evaluated in the current state estimate. The latter filters 
have some extra points in common that depend on the 
current state covariance. 

UKF is closely related to the second-order EKF 
[33]. Both variants perform better than the EKF in 
certain problems and can work well as long as the 
posterior distribution is unimodal. The algorithms are 
prone to diverge, a problem that is hard to mitigate  
or  foresee by analytical methods. The choice of state 

coordinates is therefore crucial in EKF and UKF (see 
[34 , ch. 8.9.3] for one example) while this choice 
does not affect the performance of the PF (more than 
potential numerical problems). 

B. Bayesian Fi lter ing 

T he Bayesian solution to computing the posterior 
distribution P(xk I Yl:k ) of the state vector, given past 
observations ,  is given by the general Bayesian update 
recursion: 

( I ) - P(Yk I xk)P(xk I Yl:k-l) P xk Yl:k - P(Yk I Yl:k-l) (6a) 

(6c) 

This classical result [35 , 36] is the cornerstone in 
nonlinear Bayesian filtering. The first equation follows 
directly from Bayes' law, and the other two follow 
from the law of total probability, using the model 
(2). T he first equation corresponds to a measurement 
update, the second is a normalization constant , and the 
third corresponds to a time update. 

T he posterior distribution is the primary output 
from a nonlinear filter, from which standard measures 
as the minimum mean square (MMS) est imate xrMS and its covariance IktrS can be extracted and 

compared with EKF and UKF outputs: 

XWS = J xkP(xk I Yl:k )dxk (7a) 

RMMS - J( AMMS)( AMMS)T ( I )d klk - Xk - Xk Xk -Xk P Xk Yl:k Xk· 
(7b) 

F or a linear Gaussian model, the KF recursions in (4) 
also provide the solut ion (7) to this Bay esian problem. 
However, for nonlinear or non-Gaussian models there 
is in general no finite-dimensional representation of 
the posterior distribut ions similar to (XWs ,1k�MS). 
That is why numerical approximations are needed. 

C. The Poi nt Mass Fi lter 

Suppose now we have a deterministic grid {xi}f:l 
of the state space Rnx over N points , and that at time 
k, bas ed on observations Yl:k-l' we have computed the 
relat ive probabilites (assuming distinct grid points) 

(8) 

satisfying ��l W�lk-l = 1 (note that this is a relative 
normalization with respect to the grid points). The 
notation x� is introduced here to unify notation with 
the PF, and it means that the state xk at t ime k visits 
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the grid point Xi. The predict ion density and the ftrst 
two moments can then be approximated by 

N 
P(Xk I Yl:k-l) = Lwilk-lO(Xk - xi) i=l 

N 
xklk-l = E(Xk) = Lwilk-lxi 

lllk-l = cOV(Xk) 
N 

i=l 

(9a) 

(9b) 

= L Wilk-l (xi - xklk-l ) (xi - xklk_1 )T. i=l 

Here , o(x) denotes the Dirac impulse function. The 
Bayesian recursion (6) now gives 

N 
P(xk I Yl:k) = L: P(Yk I xi)wilk-l O(xk - xi) i=l , k , 'V 

(9c) 

N 
ck = LP(Yk I xi)wilk-l 

(10a) 

(lOb) 
i=l 
N 

P(xk+l I Yl:k) = LwilkP(Xk+l I xi)· (10c) 
i= l 

Note t hat the recursion starts with a discrete 
approximation (9a) and ends in a continuous 
distribution (lOc). Now, to close the recursion, the 
standard approach is to sample (lOc) at the grid 
points Xi, which computationally can be seen as a 
multidimensional convolution, 

N 
Wi+llk = P(Xi+l I YI:k) = Lw{lkP(xi+l l.xfc), 

j=l 
i = 1 , 2, . . .  ,N .  (11) 

This is the principle of the PMF [9 , 10] , whose 
advantage is its simple implementat ion and tuning (the 
engineer basically only has to consider the size and 
resolution of the grid). The curse of dimensionality 
limits the application of PMF to small models (nx 
less than two or three) for two reasons: the ftrst one 
is that a grid is an inefficiently sparse representat ion 
in higher dimensions , and the second one is that 
the multidimensional convolution becomes a real 
bottleneck with quadratic complexity in N .  Another 
practically important but difficult problem is to 
translate and change the resolution of the grid 
adaptively. 

I I I .  THE PARTICLE FI LTER 

A.  R elation to the Poi nt Mass Fi lter 

The PF has much in common with the PMF. Both 
algorithms approximate the posterior distribution with 

a discrete density of the form (9a), and they are both 
b ased on a direct applicat ion of (6) leading to the 
numerical recursion in (10). However, there are some 
major differences: 

I) The deterministic grid xi in the PMF is replaced 
with a dynamic stochastic grid xi in the PF that 
changes over time. The stochastic grid is a much more 
efftcient representation of the state space than a ftxed 
or adaptive deterministic grid in most cases. 

2) The PF aims at estimating the whole trajectory 

x\:k rather than the current state xk. That is , the PF 
generates and evaluates a set {xLk}f: 1 of N different 
trajectories. This affects (6c) as follows: 

P(�:k+l I Yl:k) = P(Xi+l I xLk'Yl:k) P(xLk I Yl:k) , ... '� 
p(.xi+ [ Ixi) W�lk 

(12) 
= WilkP(xi+l I x�). (13) 

Comparing this to (lOc) and (11) ,  we note th at 
the double sum leading to a quadratic complexity 
is avoided by this trick. However, this quadratic 
complexity appears if one wants to recover the 
marginal distribution P(xk I Yl:k) from p(x\:k I Yl:k)' 
more on this in Section I I IC. 

3) The new grid in the PF is obtained by sampling 
from (lOc) rather than reusing the old grid as done in 
the PMF. The original version of the PF [15] samples 
from (lOc) as it stands by drawing one sample each 
from p(xk+ 1 I xi) for i = 1 , 2, . . .  , N .  More generally, 
the concept of importance sampling [37] can be 
used. The idea is to introduce a proposal density 

q(xk+1 I xk'Yk+l)' which is easy to sample from, and 
rewrite (6c) as 

P(xk+1 I Yl:k) = r P(xk+l I xk)P(xk I Yl:k)dxk iIRnx 
l ( I  ) P(xk+l I xk) = q xk+l xk'Yk+l ( I ) JRn, q xk+l xk'Yk+l 
X p(xk I Yl:k)dxk. (14) 

The trick now is to generate a sample at random from 

x�+l ,....., q(xk+l I Xi,Yk+l) for each particle , and then 
adjust the posterior probability for each part icle with 
the importance weight 

As indicated, the proposal distribution q(�+l I xi'Yk+l) 
depends on the last state in the particle trajectory .xi:k' 
but also the next measurement Yk+l. The simplest 
choice of proposal is to use the dynamic model itself 
q(x�+l I x�'Yk+l) = P(�+l I xD leading to Wi+llk = 
Wilk. The choice of proposal and its actual form are 

discussed more thoroughly in Sect ion V. 
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4) Resampling is a crucial step in the PF. Without 
resampling, the PF would break down to a set 
of independent simulations yielding trajectories 

xLk with relative probabilities wi. Since there 
would then be no feedback mechanism from 
the observations to control the simulations, they 
would quite soon diverge. As a result, all relative 
weights would tend to zero except for one that 
tends to one. This is called sample depletion, 
sample degeneracy, or sample impoverishment. 
Note that a relative weight of one Wilk � 1 is not 
at all an indicator of how close a trajectory is 
to the true trajectory since this is only a relative 
weight. It merely says that one sequence in the 
set {xLk};:1 is much more likely than all of the 
other ones. Resampling introduces the required 
information feedback from the observations, so 
trajectories that perform well will survive the 
resampling. There are some degrees of freedom 
in the choice of resampling strategy discussed in 
Section IVA. 

B. Algorithm 

The PF algorithm is summarized in Algorithm 1 .  It 
can be seen as an algorithmic framework from which 
particular versions of the PF can be defined later on. 
It should be noted that the most common form of the 
algorithm combines the weight updates ( 1 6a, d) into 
one equation. Here, we want to stress the relations to 
the fundamental Bayesian recursion by keeping the 
structure of a measurement update (6a)-( 10a)-( 16a), 
normalization (6b)-( 10b)-( 1 6b), and time update 
(6c)-( 10c)-( 16c, d). 

ALGORITHM 1 Particle Filter Choose a proposal 
distribution q(xk+1 I xI:k'Yk+I)' resampling strategy, and 
the number of particles N. 

Initialization: Generate x; f'V PXo' i = 1 ,  . . .  , N  and 
let wilo = liN. 

Iteration For k = 1 , 2, . . . .  
1 )  Measurement update: For i = 1 , 2, . . .  , N, 

i _I i (y I i) Wklk - -wklk-1P k Xk ck 
where the normalization weight is given by 

N 

ck = L Wilk-IP(Yk I xi)· i=1 

( 1 6a) 

( 1 6b) 

2) Estimation: The filtering density is approximated 
A N · . 

by p(xl:k I Yl:k) = Li=1 wk1k8(xl:k - x'l:k) and the mean 

(7a) is approximated by xl:k � L;:'I wilkxLk' 
3) Resampling: Optionally at each time, take 

N samples with replacement from the set {xLk};:1 
where the probability to take sample i is wklk and let 

wilk = liN. 

4) Time update: Generate predictions according to 
the proposal distribution 

xi+ 1 f'V q(xk+1 I Xi,Yk+I) 
and compensate for the importance weight 

i _ i p(xi+ 1 I xD wk+llk - wklk q(� I Xi Y ) ' k+1 k' k+1 

C. Pred iction,  Smoothi ng,  and Margi nals 

( 1 6c) 

( 1 6d) 

Algorithm 1 outputs an approximation of the 
trajectory posterior density p(xl:k I YI:k) ' For a filtering 
problem, the simplest engineering solution is to just 
extract the last state xi from the trajectory A:k and use 
the particle approximation 

N 

p(xk I YI:k) = L Wilk8(Xk - xi)· ( 1 7) 
i=1 

Technically this is incorrect, and one may overlook 
the depletion problem by using this approximation. 
The problem is that in general all paths x{:k-I can lead 
to the state x� . Note that the marginal distribution is 
functionally of the same form as (6c) . The correct 
solution taking into account all paths leading to x� 
leads (similar to ( 1 1 )) to an importance weight 

N . . . 

i Lj=1 �lkP(x'k+ 1 I xi) wk+llk = i i ( 1 8) q(xk+1 I xk'Yk+l) 
that replaces the one in ( 1 6d) . That is, the marginal PF 
can be implemented just like Algorithm 1 by replacing 
the time update of the weights with ( 1 8) .  Note that the 
complexity increases from O(N) in the PF to O(N2) 
in the marginal PF, due to the new importance weight. 
A method with O(N log(N)) complexity is suggested 
in [38] . 

The marginal PF has found very interesting 
applications in system identification, where a gradient 
search for unknown parameters in the model is 
applied [39, 40] . The same parametric approach 
has been suggested for SLAM in [4 1 ]  and optimal 
trajectory planning in [42] . 

Though the PF appears to solve the smoothing 
problem for free, the inherent depletion problem of 
the history complicates the task, since the number 
of surviving trajectories with a time lag will quickly 
be depleted. For fixed-lag smoothing p(xk-m:k I 
Yl:k)' one can compute the same kind of marginal 
distributions as for the marginal PF leading to another 
compensation factor of the importance weight. 
However, the complexity will then be O(Nm+ 1 ) .  
Similar to the KF smoothing problem, the suggested 
solution [43]  is based on first running the PF in the 
usual way and then applying a backward sweep of a 
modified PF. 
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The prediction to get P(Xl:k+m I Yl:k) can be 
implem ented by repeating the time update in 
Algorithm 1 m times .  

D. Read i ng Advice 

The reader may at this stage continue to 
Section IX to see MATLAB ™ code for some 
illustrative examples , or to Section X to read about the 
results and experiences using some other applicat ions ,  
or proceed to the subsequent sections that discuss the 
following issues: 

1 )  The tuning possibilities and different versions 
of the b asic PF are discussed in Section IV. 

2) The choice of proposal distribution is crucial 
for performance, just as in any classical sampling 
algorithm [ 37] ,  and this is discussed in Section V.  

3) Performance in terms of convergence of the 
approximation p(X\:k I Yl:k) ---7 p(x\:k I Y\:k) as N ---7 00 
and relat ion to fundamental performance bounds are 
discussed in Section VI . 

4) The PF is computat ionally quite complex , and 
some potential bottlenecks and possible remedies are 
discussed in Section VII. 

IV. TUN I NG 

The number of particles N is the most immediate 
design parameter in the PE There are a few other 
degrees of freedom discussed below. The overall goal 
is to avoid sample depletion, which means that only 
a few particles ,  or even only one, contribute to the 
state estimate. The choice of proposal distribution is 
the most intricate one, and it is discussed separately in 
Section V. How the resampling strategy affects sample 
deplet ion is discussed in Sect ion IVA. The effective 
number of samples in Sect ion IVB is an indicator of 
sample deplet ion in that it measures how efficiently 
the PF is utilizing its particles .  It can be used to 
design proposal distributions ,  depletion mitigation 
tricks ,  and resampling algorithms and also to choose 
the number of particles .  It can also be used as an 
online control variable for when to resample. Some 
dedicated tricks are discussed in Sect ion Ive . 

A. Resampl i ng 

Without the resampling step, the basic PF would 
suffer from sample deplet ion. This means that after 
a while all particles but a few will have negligible 
weights . Resampling solves this problem but creates 
another  in that resampling inevitably destroys 
information and thus increases uncertainty in the 
random sampling. It is therefore of interest to start 
the resampling process only when it is really needed. 
The following options for when to res ample are 
possible. 

1) The standard version of Algorithm 1 is termed 
sampling importance resampling (SIR), or bootstrap 
PF, and is obtained by resampling each time. 

2) The alternative is to use importance sampling, 
in which case resampling is performed only when 
needed. This is called sampling importance sampling 
(SIS) .  Usually, resampling is done when the effective 
number of samples ,  as will be defined in the next 
section, becomes too small. 

As an alternative, the res amp ling step can be replaced 
with a sampling step from a distribution that is fitted 
to the particles after both the t ime and measurement 
update. The Gaussian PF (GPF ) in [44] fits a 
Gaussian distribution to the particle cloud after 
which a new set of part icles is generated from this 
distribution. The Gaussian sum PF (GSPF ) in [45] 
uses a Gaussian sum instead of a distribution. 

B. Effective N u m ber of Samples 

An indicator of the degree of depletion is the 
effective number of samples ,l defined in terms of the 
coefficient of variation Cv [ 1 9, 46, 47] as 

N - N = N 
= 

N eff -
1 + c�(w1Ik) Var(w1Ik) 1 + N2Var(w1Ik) · 

1 + . 2 (E(wk1k» 
(19a) 

The effective number of samples is thus at its 
maximum Neff = N when all weights are equal W�lk = 
liN, and the lowest value it can attain is Neff = 1 ,  
which occurs when w�lk = 1 with probability liN and 

w�lk = 0 with probability (N - l)IN. 
A logical computable approximation of Neff is 

provided by 

(l9b ) 

This approximation shares the property 1 :::; !jeff :::; N 
with the definit ion (l9a) .  The upper bound Neff = N is 
attained when all particles have the same weight and 

the lower bound Neff = 1 when all the probability mass 
is devoted to a single particle. 

The res�pling condition in the PF can now be 

defined as Neff < Nth . The threshold can for instance be 

chosen as Nth = 2N 1 3. 

C. Tricks to Mitigate Sample Depletion  

The choice of proposal distribution and resampling 
strategy are the two available instruments to avoid 
sample deplet ion problems . There are also some 
simple and more practical ad hoc tricks that can be 
tried as discussed below. 

I Note that the literature often defines the effective number of 
samples as N /0 + Var(wk

lk
»' which is incorrect. 
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One important trick is to modify the noise models 
so the state noise and/or the measurement noise 
appear larger in the filter than they really are in the 
data generating process. This technique is called 
"jittering" in [48] ,  and a similar approach was 
introduced in [ 1 5] under the name "roughening." 
Increasing the noise level in the state model ( la) 
increases the support of the sampled particles, which 
partly mitigates the depletion problem. Further, 
increasing the noise level in the observation model 
( 1b) implies that the likelihood decays slower for 
particles that do not fit the observation, and the chance 
to resample these increases. In [49] , the depletion 
problem is handled by introducing an additional 
Markov Chain Monte Carlo (MCMC) step to separate 
the samples. 

In [ 1 5] ,  the so-called prior editing method is 
discussed. The estimation problem is delayed one 
time step so that the likelihood can be evaluated 
at the next time step. The idea is to reject particles 
with sufficiently small likelihood values, since they 
are not likely to be resampled. The update step is 
repeated until a feasible likelihood value is received. 
The roughening method could also be applied before 
the update step is invoked. The auxiliary PF [50] is a 
more formal way to sample such that only particles 
associated with large predictive likelihoods are 
considered; see Section VF. 

Another technique is regularization. The basic idea 
to is convolve each particle with a diffusion kernel 
with a certain bandwidth before resampling. This 
will prevent multiple copies of a few particles. One 
may for instance use a Gaussian kernel where the 
variance acts as the bandwidth. One problem in theory 
with this approach is that this kernel will increase the 
variance of the posterior distribution. 

V. CHOICE OF PROPOSAL D I STRI BUTION 

In this section we focus on the choice of proposal 
distribution, which influences the depletion problem 
significantly, and we outline available options with 
some comments on when they are suitable. 

First note that the most general proposal 
distribution has the form q(x\:k 1 Y\:k). This means 
that the whole trajectory should be sampled at each 
iteration, which is clearly not attractive in real-time 
applications. Now, the general proposal can be 
factorized as 

(20) 

The most common approximation in applications 
is to reuse the path x\:k_1 and only sample the new 
state xk , so the proposal q(xI:k 1 Y\:k) is replaced by 
q(xk 1 x\:k_1 'YI:k)· The approximate proposal suggests 
good values of xk only, not of the trajectory x\:k. 

For filtering problems this is not an issue, but for 
smoothing problems the second factor becomes 
important. Here, the idea of block sampling [5 1 ]  is 
quite interesting. 

Now, due to the Markov property of the model, the 
proposal q(xk 1 X\:k_1 'Y\:k) can be written as 

q(xk 1 xl:k-I'Y\:k) = q(xk 1 xk-l'Yk)· (2 1 )  

The following sections discuss various approximations 
of this proposal and in particular how the choice of 
proposal depends on the signal-to-noise ratio (SNR). 
For linear Gaussian models, the SNR is in loose 
terms defined as I IQI I/ I IRI I; that is, the SNR is high 
if the measurement noise is small compared with the 
signal noise. Here, we define SNR as the ratio of the 
maximal value of the likelihood to the prior, 

SNR ex 
maxXk P(Yk 1 xk) . maxxkP(xk 1 xk-l) 

For a linear Gaussian model, this gives SNR ex Jdet(Q)1 deteR). 
In this section we use the weight update 

i i P(Yk 1 X:C)p(x� 1 xLI) Wklk ex Wk-Ilk-I q(x 1 xf y) k k-\' k 

(22) 

(23) 

combining ( l6a) and ( l6b). The SNR thus indicates 
which factor in the numerator most likely to change 
the weights the most. 

Besides the options below that all relate to (2 1 ), 
there are many more ad hoc-based options described 
in the literature. 

A. Opti mal Sampli ng 

The conditional distribution includes all 
information from the previous state and the current 
observation and should thus be the best proposal to 
sample from. This conditional pdf can be written as 

i . P(Yk 1 xk)P(xk 1 xLI) q(Xk 1 Xk_1 'Yk) = P(xk 14-1 'Yk) = 
(y 1 i ) . P k Xk_1 

(24a) 

This choice gives the proposal weight update 

w�lk ex wLl lk-IP(Yk 1 X:C-I). (24b) 

The point is that the weight will be the same whatever 
sample of x� is generated. Put in another way, the 
variance of the weights is unaffected by the sampling. 
All other alternatives will add variance to the weights 
and thus decrease the effective number of samples 
according to ( l9a). In the interpretation of keeping 
the effective number of samples as large as possible, 
(24a) is the optimal sampling. 

The drawbacks are as follows:  

1)  It  is generally hard to sample from this 
proposal distribution. 
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2) It is generally hard to compute the weight 
update needed for this proposal distribution, since it 
would require integrating over the whole state space, 

P(Yk 1 xLI) = J P(Yk 1 Xk)P(Xk 1 xLI)dxk· 
One important special case when these steps actually 
become explicit is a linear and Gaussian measurement 
relation, which is the subject of Section VE. 

B. Prior Sampli ng 

The standard choice in Algorithm 1 is to use 
the conditional prior of the state vector as proposal 
distribution 

q(Xk 1 xLI'Yk) = P(Xk 1 xLI) (25a) 
where p(xk 1 xLI) is referred to as the prior of xk for 
each trajectory. This yields 

Wklk = Wklk-IP(Yk 1 xi) = wLI1k-IP(Yk 1 4)· 
(25b) 

This leads to the most common by far version of 
the PF (SIR) that was originally proposed in [ 1 5 ] .  It 
performs well when the SNR is small, which means 
that the state prediction provides more information 
about the next state value than the likelihood function. 
For medium or high SNR, it is more natural to sample 
from the likelihood. 

C. L i kel ihood Sampli ng 

Consider first the factorization 

i i p(xk 1 xLI) p(xkl xk-I'Yk)=P(Ykl xk_I'Xk) ( 1 i ) P Yk Xk_1 

= p(y 1 X )p(xk 1 xLI) . (26a) k k P(Yk 1 Xk_l) 
If the likelihood P(Yk 1 xk) is much more peaky than 
the prior and if it is integrable in xk [52] , then 

(26b) 

That is ,  a suitable proposal for the high SNR case is 
based on a scaled likelihood function 

(26c) 

which yields 

(26d) 

Sampling from the likelihood requires that the 
likelihood function P(Yk 1 xk) is integrable with respect 
to xk [52] . This is not the case when nx > ny. The 
interpretation in this case is that for each value of Yk' 
there is a infinite-dimensional manifold of possible xk 
to sample from, each one equally likely. 

>< 1  
1Bt 
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Fig. 2. Illustration of (24a) for scalar state and observation 

model. State dynamics moves particle to xk = I and adds 
uncertainty with variance I, after which observation 

Yk = 0.7 = xk + ek is taken. Posterior in this high SNR example is 
here essentially equal to likelihood. 
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Fig. 3. Illustration of (24a) for two-dimensional state and scalar 
observation model. State dynamics moves particle to xk = (1, I)T 

and adds correlated noise, after which an observation 
Yk = 0.7 = (1,O)xk + ek is taken. Posterior in this high SNR 

example corresponds roughly to likelihood in one dimension (XI) 
and prior in the other dimension (x2). 

D. I llustrations 

A simple linear Gaussian model is used to 
illustrate the choice of proposal as a function of 
SNR. Fig. 2 illustrates a high SNR case for a scalar 
model, where the information in the prior is negligible 
compared with the peaky likelihood. This means that 
the optimal proposal essentially becomes a scaled 
version of the likelihood. 

Fig. 3 illustrates a high SNR case for a 
two-dimensional state, where the observation 
dimension is smaller than the state space. The optimal 
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proposal can here be interpreted as the intersection of 
the prior and likelihood. 

E. Optimal Sampli ng with L inearized Li keli hood 

The principles illustrated in Figs. 2 and 3 can 
be used for a linearized model [43] ,  similar to the 
measurement update in the EKF (4ef). To simplify 
the notation somewhat, the process noise in ( 1 a) is 
assumed additive xk+ l = !(xk) + vk. Assuming that 
the measurement relation ( 1  b) is linearized as (3b) 
when evaluating (24a), the optimal proposal can be 
approximated with 

q(xk I XL1'Yk) = N(f(xLl ) + K�(Yk - y�), 
(HVRkHi + QL1)t ) (27a) 

where t denotes pseudoinverse. The Kalman gain, 
linearized measurement model, and measurement 
prediction, respectively, are given by 

Ki Q ui,T(RiQ Ri,T + R )-1 k = k-1Hk k k-l k k 

y� = h(f(xLl ))· 
The weights should thus be multiplied by the 
following likelihood in the measurement update: 

(27b) 

(27c) 

(27d) 

(27e) 

The modifications of (27) can be motivated intuitively 
as follows. At time k - 1 ,  each particle corresponds 
to a state estimate with no uncertainty. The EKF 
recursions (4) using this initial value gives 

Xk-1Ik-1 ",N(4_1'0)::::} (28a) 

xklk-1 = !(4-1 ) (28b) 

lllk-l = Qk-l (28c) 

Kk = Qk_1H[(HkQk_1H[ + Rk)-1 (28d) 

xklk = xklk-l + Kk(Yk - h(Xklk-l )) (28e) 

llik = Qk-l - KkHkQk-l · (28f) 

We denote this sampling strategy OPT-EKF. To 
compare it with standard SIR algorithm, one can 
interpret the difference in terms of the time update. 
The modification in Algorithm 1 assuming a Gaussian 
distribution for both process and measurement noise, 
is to make the following substitution in the time 
update 

4+1 = !(x�) + v� 
SIR : v� '" N(O,Qk) 

(29a) 

(29b) 

OPT-EKF : v� E N(K�+ l (Yk+ l - h(f(x�))) , 
(Hi�lRtlHi+ l + Qk)t). 

and measurement update 

SIR : W�lk = WL1Ik-1N(Yk - h(x�) ,Rk) 

(29c) 

(29d) 

OPT-EKF : W�lk = WL11k-1N(Yk - h(f(4-1))' 
HiQk-1HV + Rk) 

(2ge) 

respectively. For OPT-SIR, the SNR definition can be 
more precisely stated as 

We make the following observations and 
interpretations on some limiting cases of these 
algebraic expressons: 

(30) 

1 )  For small SNR, K� � 0 in (27b) and 

(HVRkHi + QL1 )t � Qk-l in (29c), which shows 
that the resampling (29c) in OPT-EKF proposal 
approaches (29b) in SIR as the SNR goes to zero. 
That is, for low SNR the approximation approaches 
prior sampling in Section VB. 

2) Conversely, for large SNR and assuming 
Hi invertible (implicitly implying ny � nx) ' then 

(HV RkHl + QL1 )t � Hi,-l RkHi,-T in (29c) . Here, 
all information about the state is taken from the 
measurement, and the model is not used; that is, for 
high SNR the approximation approaches likelihood 
sampling in Section VC. 

3)  The pseudoinverse t is used consequentlr in 
the notation for the proposal covariance (HV RkHl + 

QL1)t instead of inverse to accomodate the following 
cases :  

a) singular process noise Qk-l ' which is the case 
in most dynamic models including integrated 
noise, 

b) singular measurement noise Rk, to allow 
ficticious measurements that model state 
constraints. For instance, a known state 
constraint corresponds to infinite information 
in a subspace of the state space, and the 
corresponding eigenvector of the measurement 
information H1RkHV will overwrite the prior 
information QL1. 

F. Auxiliary Sampli ng 

The auxiliary sampling proposal resampling 
filter [50] uses an auxiliary index in the proposal 
distribution q(xk, i I Yl:k). This leads to an algorithm 
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that first generates a large number M (typically 
M = ION) of pairs {x;{,ij}f=,I. From Bayes' rule, we 
have 

p(xk,i I Yl:k)""'" P(Yk I xk)P(xk,i I Yl:k-I) (3 Ia) 

= P(Yk I xk)P(xk I i'Yl:k_I)P(i I YI:k-l ) 
(3 Ib) 

= P(Yk I xk)P(xk Ixi-l)wLl 1k-l · (3 I c) 

This density is implicit in xk and thus not useful as 
an proposal density, since it requires xk to be known. 
The general idea is to find an approximation of 

P(Yk I xLI) = J P(Yk I xk)P(xk I xLI)dxk· A simple 
though useful approximation is to replace xk with its 
estimate and thus let P(Yk I xL I) = P(Yk I iD above. 
This leads to the proposal 

q(xk,i I Y!:k) = p(Yk I ii)p(xk Ixi-l )wLl1k-l · 
(3 I d) 

Here, Xi = E(xk I xL I) can be the conditional mean 
or Xi '" P(xk I xLI) a sample from the prior. The new 
samples are drawn from the marginalized density 

X;{""'" P(Xk I Y!:k) = 2:p(xk,i I Y!:k)· (3 Ie) 

To evalute the proposal weight, we first take Bayes 
rule which gives 

q(xk,i I Y!:k) = q(i I YI:k)q(xk I i'Yl:k)· (3 1f) 

Here, another choice must be made. The latter 
proposal factor should be defined as 

q(xk I i'Yl:k) = P(xk I xLI)· (3 I g) 

Then, this factor cancels out when forming 

q(i I Yl:k) ex P(Yk I Xi)wLl 1k-l. (3 Ih) 

The new weights are thus given by 

i iJ P(Yk I x;{)p(x;{ I xLI) Wklk = Wk-Ilk-I 
(-j .j I ) q Xk,l Yl:k 

(3 I i) 

Note that this proposal distribution is a product of 
the prior and the likelihood. The likelihood has the 
ability to punish samples xi that give a poor match 
to the most current observation, unlike SIR and SIS 
where such samples are drawn and then immediately 
rejected. There is a link between the auxiliary PF 
and the standard SIR as pointed out in [53] ,  which 
is useful for understanding its theoretical properties . 

VI.  THEORETICA L  P ERFORMANCE 

The key questions here are how well the PF 
filtering density P(XI:k I Yl:k) approximates the true 
posterior p(xl:k I Yl:k)' and what the fundamental mean 
square error (MSE) bounds for the true posterior are. 

A. Convergence I ssues 

The convergence properties of the PF are well 
understood on a theoretical level, see the survey [54] 
and the book [55 ] .  The key question is how well a 
function g(xk) of the state can be approximated g(Xk) 
by the PF compared with the conditional expectation 
E(g(xk»' where 

(32) 

N 
g(Xk) = J g(xk)P(xl :k I Yl:k)dxl :k = 2: wi1kg(xi)· 

i=1 

(33)  
In short, the following key results exist. 

I) Almost sure weak convergence 

N
lim p(Xl:k I Yl :k) = p(xl:k I Yl:k) (34) 
->00 

in the sense that limN->oo g(Xk) = E(g(xk». 
2) MSE asymptotic convergence 

E(g(Xk) - E(g(Xk»)2 :<:; Pk IIg�k)llsup (35) 

where the supremum norm of g(xk) is used. As shown 
in [55] using the Feynman-Kac formula, under certain 
regularity and mixing conditions, the constant Pk = 

P < 00 does not increase in time. The main condition 
[54, 55] for this result is that the unnormalized weight 
function is bounded. Further, most convergence results 
as surveyed in [56] are restricted to bounded functions 
of the state g(x) such that Ig(x)1 < C for some C. The 
convergence result presented in [57] extends this to 
unbounded functions, for instance estimation of the 
state itself g(x) = x, where the proof requires the 
additional assumption that the likelihood function is 
bounded from below by a constant. 

In general, the constant Pk grows polynomially 
in time, but does not necessarily depend on the 
dimension of the state space, at least not explicitly. 
That is, in theory we can expect the same good 
performance for high-order state vectors. In practice, 
the performance degrades quickly with the state 
dimension due to the curse of dimensionality. 
However, it scales much better with state dimension 
than the PMF, which is one of the key reasons for the 
success of the PF. 

B. Nonl inear F i lteri ng Performance Bound 

Besides the performance bound of a specific 
algorithm as discussed in the previous section, there 
are more fundamental estimation bounds for nonlinear 
filtering that depend only on the model and not on 
the applied algorithm. The Cramer-Rao Lower Bound 
(CRLB) lklk provides such a performance bound for 

IEEE A&E SYSTEMS MAGAZINE VOL. 25, NO. 7 JULY 20 10 PART 2: TUTORIALS-GUSTAFSSON 63 



any unbiased estimator Xklk' 
cov(Xklk) � ��RLB . (36) 

The most useful version of CRLB is computed 
recursively by a Riccati equation which has the same 
functional form as the KF in (4) evaluated at the true 
trajectory xt:k' 

RCRLB _ RCRLB RCRLBH( o)T klk - klk-l - klk-l Xk 
X (H(Xv���B HT (xV + Rk)-l H(XV���B 

(37a) 

��1fuB 
= F (XV��RLB FT (xV + G(xVQkG(x"l. (37b) 

The following remarks summarize the CRLB theory 
with respect to the PF: 

I) For a linear Gaussian model 

xk+ l = Fkxk + Gkvk' vk rvN(O,Qk) (38a) 

Yk = Hkxk + ek' ek rv N(O,Rk) (38b) 

the KF covariance � Ik coincides with lk�RLB. That is, 
the CRLB bound is attainable in the linear Gaussian 
case. 

2) In the linear non-Gaussian case, the covariances 
Qk' Rk, and Po are replaced with the inverse intrinsic 
accuracies I;/, I;,/ and I�l, respectively. Intrinsic 
accuracy is defined as the Fisher information 
with respect to the location parameter, and the 
inverse intrinsic accuracy is always smaller than the 
covariance. As a consequence of this, the CRLB 
is always smaller for non-Gaussian noise than for 
Gaussian noise with the same covariance. See [58] 
for the details. 

3) The parametric CRLB is a function of the true 
state trajectory x�:k and can thus be computed only in 
simulations or when ground truth is available from a 
reference system. 

4) The posterior CRLB is the parametric CRLB 
averaged over all possible trajectories lkf�stCRLB = 

E(lkf:reRLB). The expectation makes its computation 
quite complex in general. 

5) In the linear Gaussian case, the parametric and 
posterior bounds coincide. 

6) The covariance of the state estimate from 
the PF is bounded by the CRLB . The CRLB theory 
also says that the PF estimate attains the CRLB 
bound asymptotically in both the number of particles 
and the information in the model (basically the 
SNR). 

Consult [59] for details on these issues. 

V I I .  COM PLEXITY BOTILE N ECKS 

It is instructive and recommended to generate a 
profile report from an implementation of the PE Quite 

often, unexpected bottlenecks are discovered that can 
be improved with a little extra work. 

A. Resampl ing 

One real bottleneck is the resampling step. This 
crucial step has to be performed at least regularly 
when Neff becomes too small. 

The resampling can be efficiently implemented 
using a classical algorithm for sampling N ordered 
independent identically distributed variables according 
to [60] , commonly referred to as Ripley' s method: 

function [x,w]=resample(x,w) 

% Multinomial sampling with Ripley's method 

u=cumprod(rand(l ,N). A (1.1 [N: -1: 1]»; 

u=fliplr(u) ; 

wc=cumsum(w) ; 

k=l; 

for i=l:N 

while(wc(k)<u(i» 

k=k+1; 

end 

ind(i)=k; 

end 

x=x(ind,:); 

w=ones (1 , N) • IN; 

The complexity of this algorithm is linear in the 
number of particles N ,  which cannot be beaten if 
the implementation is done at a sufficiently low 
level. For this reason this is the most frequently 
suggested algorithm also in the PF literature. 
However, in engineering programming languages such 
as MATLAB TM, vectorized computations are often an 
order of magnitude faster than code based on "for" 
and "while" loops. 

The following code also implements the 
resampling needed in the PF by completely avoiding 
loops. 

function [x,w]=resample(x,w) 

% Multinomial sampling with sort 

u=rand(N, 1); 

wc=cumsum(w) ; 

wc=wc/wc(N) ; 

[dum,ind1]=sort([u;wc]); 

ind2=find(ind1<=N); 

ind=ind2-(O:N-1)'; 

x=x(ind,:) ; 

w=ones (1, N) ./N; 

This implementation relies on the efficient 
implementation of sort. Note that sorting is of 
complexity N log2(N) for low-level implementations, 
so in theory it should not be an alternative to Ripley' s 
method for sufficiently large N .  However, as Fig. 4 
illustrates, the sort algorithm is a factor of five faster 
for one instance of a vector-oriented programming 
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Fig. 4. Computational complexity in vectorized language of two 
different resampling algorithms: Ripley and sort. 

language. Using interpreters with loop optimization 
reduces this difference, but the sort algorithm is still 
an alternative. 

Note that this code does not use the fact that 
wc is already ordered_ The sorting also gets further 
simplified if the sequence of uniform numbers is 
ordered. This is one advantage of systematic or 
stratified sampling [ 1 6] ,  where the random number 
generation is replaced with one of the following 
lines: 

% Stratified sampling 

u=([O:N-l ) '+(rand(N,l » )/N; 

% Systematic sampling 

u=([O:N-l ) '+rand(l » /N; 

Both the code based on sort and for, while are 
possible. Another advantage with these options is 
that the state space is more systematically covered, so 
there will not be any large uncovered volumes existing 
at random. 

B. Li keli hood Evaluation and Iterated Measurement 
Updates 

The likelihood evaluation can be a real bottleneck 
if not properly implemented. In the case that 
there are several independent sensors, an iterated 
measurement update can be performed. Denote the 
M sensor observations yi , for j = 1 , 2, ... , M. Then, 
independence directly gives 

M 
p(Yk I xk) = II p(yi I xk)· 

j= l 
This trick is even simpler than the corresponding 
iterated measurement update in the KF. 

(39) 

However, this iterated update is not necessarily 
the most efficient implementation. One example is 
the multivariate Gaussian distribution for independent 

measurements 

Yk . = h . (xi) + ek . , ,J J ,J 

The likelihood is given by 

(40) 

P(Yk I xi} ex e -O.5�� 1 (Yk,j - h/xDf R;;:) (Yk,j - h/xD) 
(4 1 a) 

M 
= II e-O.5(yk.j -hj (xDlRk.; (Ykrhj(x�» . (4 1b) 
j= l 

The former equation with a sum should be used to 
avoid extensive calls to the exponential function. Even 
here, the process for vectorizing the calculations in the 
sum for all particles in parallel is not trivial. 

C. Time Update Sampli ng 

Generating random numbers from nonstandard 
proposals may be time consuming. Then, 
remembering that dithering is often a necessary 
practical trick to tune the PF, one should investigate 
proposals including dithering noise that are as simple 
as possible to sample from. 

D. Fu nction Evaluations 

When all issues above have been dealt with, the 
only thing that remains is to evaluate the functions 
f(x, v) and hex). These functions are evaluated a large 
number of times, so it is worthwile to spend time 
optimizing their implementation. An interesting idea is 
to implement these in dedicated hardware taylored to 
the application. This was done using analog hardware 
in [6 1 ]  for an arctangens function, which is common 
in sensor models for bearing measurements. 

E. PF versus E KF 

The computational steps of EKF (4) and SIR-PF 
( 1 6) are compared with the KF in Table I. The EKF 
requires only one function evaluation of f(x, v) 
and hex) per time step, while the PF requires N 
evaluations. However, if the gradients are not available 
analytically in the EKF, then at least another nx 
evaluations of both f(x, v) and hex) are needed. These 
numbers increase when the step size of the numeric 
gradients are adaptive. Further, if the process noise 
is not additive, even more numerical derivatives are 
needed. However, the PF is still roughly a factor N /nx 
more complex. 

The most time consuming step in the KF is the 
Riccati recursion of the matrix P. Here, either the 
matrix multiplication F P in the time update or the 
matrix inversion in the measurement update dominate 
for large enough models .  Neither of these are needed 
in the PF. The time update of the state is the same. 

The complexity of a matrix inversion using 
state-of-the-art algorithms [62] is O(n;.376) .  The 
matrix inversion in the measurement update can be 
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TABLE I 
Comparison of EKF in (4) and SIR-PF in (16): Main 

Computational Steps 

Algorithm Extended Kalman filter 

Time update F = 
8f(x, v) 

G = 
8f(x, v) 

8x ' 8v 

Measurement 

update 

Estimation 

Resampling 

x : = f(x, O) 

P : = FPFT + GQGT 

H = 
8h(x) 

8x 

K = PHT (HPHT + R)- I 

x : = x + K(y - h(x)) 

P : = P - KHP 

x = x  

Particle filter 

N 
x = L wixi 

i= 1  

N 
xi � L wi6(x - xj) 

j= 1  

avoided using the iterated measurement update. The 
condition is that the covariance matrix Rk is (block-) 
diagonal. 

As a first-order approximation for large nx ' the KF 
is O(n�) from the matrix multiplication F P, while the 
PF is O(N n;) for a typical dynamic model where all 
elements of f(x, v) depend on all states, for instance 
the linear model f(x, v) = Fx + v. Also from this 
perspective, the PF is a factor N /nx computationally 
more demanding than the EKF. 

VI I I .  MARG I NALIZED PARTICLE F I LTER THEORY 

The main purpose of the marginalized PF (MPF) 
is to keep the state dimension small enough for the PF 
to be feasible. The resulting filter is called the MPF 
or the Rao-Blackwellized PF (RBPF), and it has been 
known for quite some time under different names, see, 
e.g. ,  [49, 63-68]. 

The MPF utilizes possible linear Gaussian 
substructures in the model ( 1 ). The state vector is 
assumed partitioned as xk = « xZl, (xiYl where xi 
enters both the dynamic model and the observation 
model linearly. We refer a bit informally to xi 
as the linear state and xZ as the nonlinear state. 
MPF essentially represents xZ with particles and 
applies one KF per particle. The KF provides 
the conditional distribution for xi conditioned on 
the trajectory x1:k of nonlinear states and the past 
observations. 

A. Model Structu re 

A rather general model, containing a conditionally 
linear Gaussian substructure is given by 

xZ+l = ft(xZ) + Ft(xZ)xi + GJ:(xZ)vJ: 
Xi+l = fi(xJ:) + Fi(xZ)xi + Gi(xZ)vi 
Yk = hk(xZ) + Hk(xZ)xi + ek' 

The state vector and Gaussian state noise are 
partitioned as 

vk = (:1 ) �N(O,Qk) 

( QJ: Qin ) Qk = (Qin)k Qi . 

(42a) 

(42b) 

(42c) 

(42d) 

Furthermore, x& is assumed Gaussian, xb � N(xo,Po). 
The density of XO can be arbitrary, but it is assumed 
known. The underlying purpose with this model 
structure is that conditioned on the sequence xJ:k' (42) 
is linear in xi with Gaussian prior, process noise, and 
measurement noise, respectively, so the KF theory 
applies. 

B .  Algorith m Overview 

The MPF relies on the following key factorization: 

P(XLxJ:k I Y1 :k) = p(xi I xJ:k'Yl:k)p(x1:k I Yl:k) ' (43) 

These two factors decompose the nonlinear filtering 
task into two subproblems: 

1) A KF operating on the conditionally linear, 
Gaussian model (42) provides the exact conditional 
posterior p(xi I xJ:k'Y1 :k) = N(xi ;iilk(x7�i ),P�k(x7�i»· 
Here, (42a) becomes an extra measurement for the KF 
with xk+l -ft(xZ) acting as the observation. 

2) A PF estimates the filtering density of 
the nonlinear states. This involves a nontrivial 
marginalization step by integrating over the state space 
of all xi using the law of total probability 

P(xJ:k+l I Y1 :k) = P(xJ:k I Y1 :k)P(xJ:+l I xJ:k'Y!:k) 
= P(xJ:k I Yl:k) J P(XJ:+1 I XLxJ:k'Yl:k) 

x p(xi I x1:k'Y!:k)dxi 

= p(x1:k I Yl:k) J P(xZ+ l I xi,xJ:k'Yl:k) 
X N(xi ;xilk(x7�i),P�k(x7�i»dxi. (44) 

The intuitive interpretation of this result is that the 
linear state estimate acts as an extra state noise in 
(42a) when performing the PF time update. 

The time and measurement updates of KF and PF 
are interleaved, so the timing is important. The 
information structure in the recursion is described in 
Algorithm 2. Table II summarizes the information 
steps in Algorithm 2. Note that the time index appears 
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TABLE II 
Summary of the Information Steps in Algorithm 2 for the Marginalized PF Utilizing a Linear Gaussian Substructure 

Prior 

PF TU 

KF TU 
P(xf:k I hk) '* P(xf:k+ l  I Y l :k )  

KF dyn MU 

PF MU 

KF obs MU 

Posterior 

p(xi I xf:k ,hk) '* p(xi+ 1 I xf,k ' Y l :k )  
P(xi+ l l xf:k ,hk ) '* PCxi+ l l xf:k + l ' Y l :k )  

P(xf:k + l  I Y l :k )  '* P(xf:k+ l I hk+ l )  
P(xi+ l I xf:k+ l ' hk )  '* P(xi + l  I xf,k+ l 'hk+ l )  

P(xi + l ,xf,k + 1  I Yl :k+ I ) =  P(xi + l  I xf:k+ l  ' Y l :k + I )P(xf,k + l  I YI :k+ l )  

five times in the right hand side expansion of the 
prior. The five steps increase each k one at the time 
to finally form the posterior at time k + 1 .  

ALGORITHM 2 Marginalized Particle Filter With 
reference to the standard PF in Algorithm 1 and the 
KF; iterate the following steps for each time step: 

1) PF measurement update and resampling using 
(42c) where xi is interpreted as measurement noise. 

2) KF measurement update using (42c) for each 
. I n i partlc e xl �k . 

3) PF time update using (42a) where xi is 
interpreted as process noise. 

4) KF time update using (42b) for each particle 
n,i x1 :k • 

5) KF extra measurement update using (42a) for 
h . I n i  eac partlc e X l �k . 

The posterior distribution for the nonlinear states 
is given by a discrete particle distribution as usual, 
while the posterior for the linear states is given by a 
Gaussian mixture: 

N 

p(x1:k I Y\ :k )  � L wklk8(xl:k - x:�� ) (45a) 
i = 1 

i = 1  
(45b) 

For a complete derivation, see [67] .  As demonstrated 
in [69] , standard KF and particle filtering code 
can be reused when implementing the MPF. The 
model (42) can be further generalized by introducing 
an additional discrete mode parameter, giving a larger 
family of marginalized filters ; see [68] .  

C. Complexity Issues 

In general, each KF comes with its own Riccati 
equation. However, the Riccati equation is the same if 
the following three conditions are satisfied: 

GI:(xf:) = GI: or Ft(xl:) = 0 

Gi(xk ) = Gi 

Hk (xf: )  = Hk • 

(46a) 

(46b) 

(46c) 

It is easy to verify that the Ricatti equations in this 
case only involve matrices that are the same for all 
trajectories x7�� . This implies a significant complexity 
reduction. 

One important special case of (42) in practice is 
a model with linear state equations with a nonlinear 
observation which is a function of a (small) part of the 
state vector 

(47a) 

(47b) 

(47c) 

For instance, all applications in Section X fall into 
this category. In this case, step 3 in Algorithm 2 
disappears. 

The MPF appears to add quite a lot of overhead 
computations. It turns out, however, that the MPF 
is often more efficient. It may seem impossible 
to give any general conclusions, so application­
dependent simulation studies have to be performed. 
Nevertheless, quite realistic predictions of the 
computational complexity can be done with rather 
simple calculations, as pointed out in [70] . The result 
is that for the case when (46) is satisfied, MPF should 
always be more efficient, otherwise the complexities 
are comparable. 

D. Variance Red uction 

The MPF reduces the variance of the linear 
states which is demonstrated below. The law of total 
variance says that 

cov(U) = cov(E(U I V» + E(cov(U I V» . (48) 

Letting U = xi and V = X\:k gives the following 
decomposition of the variance of the PF: 

cov(xi> = cov(E(xi I xl:k» + E(cov(xi I x!:k» 
"-v-" 

PF 

N 
(49a) 

= COV(Xi lk (x7��» + L WU1Ik (x7�� ) . (49b) 
� i = 1  '-v--" 

MPF KF 
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Here, we recognize (xi I x�;�) as the Gaussian 
distribution, delivered by the KF, conditioned on the 
trajectory �;� . Now, the MPF computes the mean 
of each trajectory as xi lk (x�;� ) ,  and the unconditional 
mean estimator is simply the mean of these, 

N 
Xi1k = L w�xilk (X�;�) (50) 

; = 1  

and its covariance follows from the first term in (49b). 
The first term in (49b) corresponds to the spread of 
the mean contribution from the Gaussian mixture, and 
this is the only uncertainty in the MPF. 

The variance decomposition shows that the 
covariance for the MPF is strictly smaller than the 
corresponding covariance for the PF. This can also be 
seen as a result of Rao-Blackwell' s lemma, see, e.g. ,  
[37] , and the marginalization is commonly referred 
to as Rao-Blackwellization. This result says that the 
improvement in the quality of the estimate is given 
by the term E(cov(xi I x1:k)) .  Note that when (46) is 
satisfied, then P�lk = llik and thus 2:;:'1 WkP�lk = llik '  
That is, the KF covariance llik is a good indicator of 
how much that has been gained in using the MPF 
instead of the PF. As a practical rule of thumb, the 
gain in MPF increases as the uncertainty in the linear 
state increases in the model. Further discussions 
regarding the variance reduction property of the MPF 
are provided for instance in [49] . 

The variance reduction in the MPF can be used in 
two different ways:  

1) With the same number of particles, the variance 
in the estimates of the linear states can be decreased. 

2) With the same performance in terms of variance 
for the linear states, the number of particles can be 
decreased. 
This is schematically illustrated in Fig.  5, for the 
case when (46) is satisfied, implying that the same 
covariance matrix can be used for all particles . The 
two alternatives above are illustrated for the case when 
a PF with 10,000 particles is first applied and then 
replaced by the MPF. 

E. MPF Synonyms 

The following names have been suggested for the 
filter in this section: 

1) MPF as is motivated by the nontrivial 
marginalization step (44). 

2) "Rao-Blackwellized particle filter," as motivated 
by the variance reduction in (49) .  

3) "Mixture Kalman filter," as motivated by the 
various mixture distributions that appear, for instance 
in (45b). 

4) Another logical name would be "separable 
particle filter" in parallel to the well-established 

Covariance for linear slales 
1 2r---------�--------�----r===� 

- MPF 
PF 

1 0  -+- KF 

o�--------��--------�--------� 
1 � 1 � 1 �  1 �  

N 

Fig. 5 .  Schematic view of how covariance of linear part of state 
vector depends on number of particles for PF and MPF, 

respectively. Gain in MPF is given by KF covariance. 

separable nonlinear least squares problem. In fact, 
the special case of a static problem where only (42c) 
exists falls into this class of problems. Here, the 
weighted least squares estimate of xi is first computed 
as a function of x1:k ' which is then backsubstituted 
into the model with its estimation covariance to form 
a nonlinear least squares problem in x):k only. 

F. I llustrati ng Example 

The aim here is to illustrate how the MPF works 
using the following nonlinear stochastic system 

n _ I n n xk+ l  - xkxk + Vk 
I I I xk+ 1 = xk + Vk 
Yk = 0.2(xk)2 + ek 

where the noise is assumed white and Gaussian 
according to 

(5 I a) 

(S I b) 

(S I c) 

v = (VI: )  "VN ( (O) (0.25 0 ) )  (S I d) k 
vk 0 '  ° 10-4 

ek "V N(O, 1 ) .  (5 1 e) 

The initial state Xo is given by 

xo "VN ( (��� ) , ( �6 I
�-3 ) ) ' (5 1 f)  

This particular model was used i n  [7 1 ] ,  where it 
illustrated grid-based (point-mass) filters. Obviously, 
the states can be estimated by applying the standard 
PF to the entire state vector. However, a better 
solution is to exploit the conditionally linear, 
Gaussian substructure that is present in (5 1 ) .  The 
nonlinear process xl: is a first-order auto regressive 
(AR) process, where the linear process xi is the 
time-varying parameter. The linear, Gaussian 
substructure is used by the MPF and the resulting 
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Fig.  6. Estimated filter pdf for system (5 1 )  at time 1 0, 

P(XIO I Yl : lo) using MPF. It is instructive to see that linear state X;o 
is estimated by Gaussian densities (from the KF), and position 

along the nonlinear state xto is given by a particle (from the PF) . 

filtering density function at time 1 0, P(xlO I Yl : lo) 
before the resampling step is shown in Fig. 6 (for a 
particular realization) . In this example 2000 particles 
were used, but only 1 00 of them are plotted in 
Fig. 6 in order to obtain a clearer illustration of 
the result. The figure illustrates the fact that the 
MPF is a combination of the KF and the PF. The 
density functions for the linear states are provided 
by the KFs, which is evident from the fact that 
the marginals p(xti I Yl :k) are given by Gaussian 
densities .  Furthermore, the nonlinear state estimates 
are provided by the PF. Hence, the linear states are 
given by a parametric estimator (the KF), whereas 
the nonlinear states are given by a nonparametric 
estimator (the PF) . In this context the MPF can 
be viewed as a combination of a parametric and a 
nonparametric estimator. 

IX.  PA RTICLE F I LTER CO D E  EXAM PLES 

This section gives concrete MATLABTM-like 
code for a general SIR-PF, and applies it to a fully 
annotated simulation example. Further, object-oriented 
implementations of nonlinear filters are illustrated on 
target tracking applications . The classes and examples 
are available in the Signal and Systems Lab; URL: 
www.control.isy.liu.se/..-Ifredriklsigsyslab. 

A. Terrai n-Based Position i ng 

The following scalar state example suits three 
purposes. First, it enables intuitive graphical 
illustrations. Second, it introduces the positioning 
applications in the next section. Third, it should 
be easy to implement for interested readers for 
reproducing the example and extending the code to 
other applications. 

Consider the model 

(S2a) 

(S2b) 

� so 

o�----------�--�------�----------�--� o w w � � � ro ro 00 W � 
x 

Pig. 7. Aircraft altitude z(xk) (upper dark line) as a function of 
position xk (dots on upper dark line) and nonlinear measurement 
relation hex) (lower gray line) for the model in (52). Computed 
terrain altitude h(x ) )  is also marked, and circle is put in all grid 

points that give best match to this altitude. 

where both the state and the measurement are scalar 
valued. This model mimics a navigation problem in 
one-dimension, where Uk is a measurable velocity, 
vk unmeasurable velocity disturbance, and the 
observation Yk measures the terrain altitude, which 
is known in the database h(x) . An illustration from 
a real application is found in Fig. 6. Note that the 
terrain altitude as a measurement relation is not one 
to one, since a given terrain altitude is found at many 
different positions.  However, the observed terrain 
profile will after a short time be unique for the flown 
trajectory. 

Fig. 7 shows a trajectory, and one realization of the 
nonlinear function terrain profile h(x), generated by 
the code below. 

x=l: 100; % Map grid 

h=20+filter(l, [1 -1.8 0.8 1 1  ,randn(l,100» ; 

% Terrain altitude 

N=15; 

z=100+filter(l, [1 -1. 8 0.81 1 , randn(N, 1» ; 

% Measurement input 

u=2*ones (N, 1); % State input 

xO=20+cumsum(u); % True position 

y=z-interpl (x,h,xO); % Noisefree measurement 

yn=y+l*randn(N, 1); % Noisy measurement 

plot(xO,y,'o-b',x,h,'g',xO,z-y,'go', 

'linewidth',3) 

The horizontal line indicates where the first 
measurement is taken. There are ten different 
intersections between the terrain profile and this 
observation, where the grid point just before each 
intersection is marked in the figure. This is clearly a 
problem where the posterior is multimodal after the 
first measurement update. 
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Fig. 8 .  First two subplots: approximations of  p(xk I Y l :k) before and after resampling, respectively. Last subplot: approximations of 

p(xk+ !  I Yl :k) ' 

The following code lines define the model (52) as 
an object structure: 

m.f=inline( 'x+u', 'x', 'u'); 

m.h=inline('z-interp1(x,h,xp)','xp' ,'h', 

'x','z'); 

m.pv=ndist(0,5); m.pe=ndist(O,l); 

m.pO=udist(10,9 0); 

The pdf classes ndist and udist with the 
methods rand and pdf are assumed to be available. 
A script that both implements a version of the PF and 
also animates all the partial results is given below: 

Np= 100; w=ones (Np, 1) /Np; 

xp=rand(m.pO,Np); % Initialization 

for k=l:N; 

yp=m.h(xp,h,x, z(k» ; % Measurement pred. 

w=w.*pdf(m.pe,repmat(yn(k,:),Np,l)-yp); 

% Likelihood 

w=w/sum(w); % Normalization 

subplot(3,1,1), stem(xp,Np*w/10) 

xhat(k,: )=w(:) '*xp; % Estimation 

[xp,w]=resample(xp,w); % Resampling 

subplot(3,1,2), stem(xp,Np*w) 

v=rand(m.pv,Np); % Random process noise 

xp=m.f(xp,u(k,:)')+v; % State prediction 

subplot(3,1,3), stem(xp,Np*w) 

end 

Code examples of the function resample are 
given in Section VIlA. Fig. 8 shows the posterior 
density approximation at two time instants . Fig. 8(a) 
shows first the unnormalized weights after the 
measurement update, which with this uniform 
prior is just the likelihood function P(Yl I xo) = 

P(Yl ) ' and then follows the particle distribution 
after res amp ling (where wi = 1 /  N) and finally the 
particles after time update (which is just a translation 
with u1). 
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Fig. 9. True and estimated state as function of time. 

Fig. 8(b) illustrates the same thing after the 1 5th 
measurement. The posterior is now more clustered 
to a unimodal distribution. Fig. 9 shows the position 
error as a function of time. The break point in 
performance indicates when the multimodal posterior 
distribution becomes unimodal. 

B .  Target Tracki ng 

In an object-oriented implementation, simulation 
studies can be performed quite efficiently. The 
following example compares different filters for a 
simple target tracking model: 

(53a) 

ek ,...., N(0, 0.01l2) ·  
(53b) 
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The observation model is first linear to be comparable 
to the KF that provides the optimal estimate. The 
example makes use of two different objects : 

1 )  S ignal object where the state x l :k and 
observation Yl :k sequences are stored with their 
associated uncertainty (covariances Ikx, PI or particle 
representation) . Plot methods in this class can then 
automatically provide confidence bounds. 

2) Model objects for linear and nonlinear models, 
with methods implementing simulation and filtering 
algorithms. 

The purpose of the following example is to illustrate 
how little coding is required with this object-oriented 
approach. First, the model is loaded from an extensive 
example database as a linear state-space model. It 
is then converted to the general nonlinear model 
structure, which does not make use of the fact that 
the underlying model is linear. 

mss=exlti ( 'cv2d') ; 

mnl=nl ( mss) ; 

Now, the following state trajectories are compared: 

1 )  the true state from the simulation. 
2) the CRLB computed from the nonlinear model. 
3) the KF estimate using the linear model. 
4) the EKF using the nonlinear model. 
S) the UKF using the nonlinear model. 
6) the PF using the nonlinear model. 

For all except the first one, a confidence ellipsoid 
indicates the position estimation uncertainty. 

y=simulate ( mss,lO) ;  

xhatl=kalman ( mss,y) ;  

xhat2=ekf (mnl,y) ;  

xhat3=ukf ( mnl,y) ;  

xhat4=pf ( mnl,y,'Np',lOOO) ;  

xcrlb=crlb ( mnl,y) ;  

xplot2 ( xcrlb,xhat4,xhat3,xhat2,xhatl, 

'conf',90) 

Fig. 10 validates that all algorithms provide 
comparable estimates in accordance with the CRLB. 

Now, consider the case of a radar sensor that 
provides good angle resolution but poor range. The 
measurement relation in model (S3b) is changed to 

Yk = xk - e(l ) + e 
( arctan 

(X��: - e(2) ) ) 
J(x�l ) _ e(1» 2 + (x�2) _ e(2» 2 

k 

ek ", N(O, diag(O.OOO I , O.3)) .  (S4) 

Fig. 1 1  compares EKF and PF with respect to the 
CRLB. The PF performs well, where the covariances 
fitted to the particles are very similar to the CRLB . 
The EKF is slightly biased and too optimistic about 
the uncertainty, which is a typical behavior when 
neglecting higher order terms in the nonlinearities .  

>- 3 

- 1  

� L-____ � ____ � ____________ � ____ �� ____ � -1 -0.5 0.5 1 .5 

Fig. 10_ Simulated trajectory using constant velocity 

two-dimensional motion model with position sensor, where plots 

show CRLB (darkest) and estimates from KF, EKF, UKF, and PF, 

respectively. 

-1 jadar sensor 
_2L-----�----�------------�----��----� 

-I -0.5 0.5 1.5 

Fig. 1 1 .  Simulated trajectory using constant velocity 

two-dimensional motion model with radar sensor, where plots 

show CRLB (darkest) and estimates from EKF (small ellipsoids) 

and PF, respectively_ 

However, the performance of all filters is comparable, 
and the nonlinear measurement relation does not in 
itself motivate computer-intensive algorithms in this 
case. 

C. Growth Model 

The following toy example was used in the 
original paper [ 1 S ] :  

Xk xk 
xk+ l  = -2 + 2S--2 + 8 cos(k) + vk ' 1 + xk 

vk ", N(O, 10), xo ", N(S , S) (SSa) 

(SSb) 
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Fig. 12 .  Simulated trajectory using model (55), where plots show 

CRLB (darkest) and estimates from EKF, PF, and UKF, 

respectively. Table III summarizes performance. 

It has since then been used many times in the particle 
filter literature, and it is often claimed to be a growth 
model. It is included here just because it has turned 
into a benchmark problem. The simulation code is 

m=exnl( 'pfex'); 

z=simulate(m,30); 

zcrlb=crlb(m,z); 

zekf=ekf (m, z) ; 

zukf=ukf (m, z) ; 

zpf=pf (m, z) ; 

xplot(zcrlb,zpf,zekf,zukf,'conf',90, 'view' , 

'cont','conftype',2) 

[mean(zcrlb.Px) norm(z.x-zpf.x) 

norm(z.x-zekf.x) norm(z.x-zukf.x)] ; 

The last two lines produce the result in Fig. 1 2  and 
Table III, respectively. The conclusion from this 
example is that PF performs much better than the 
UKF which in turn performs much better than the 
EKF. Thus, this example illustrates quite nicely the 
ranking of the different filters. 

X. PARTICLE F I LT E R  POS ITI O N I NG APPL ICATIONS 

This section is concerned with four positioning 
applications of underwater vessels, surface ships, 
wheeled vehicles (cars), and aircraft, respectively. 
Though these applications are at first glance quite 
different, almost the same PF can be used in all of 
them. In fact, successful applications of the PF are 
described in literature which are all based on the 
same state-space model and similar measurement 
equations. 

A. Model Framework 

The positioning applications, as well as existing 
applications of fastS LAM, are all based on the 

TABLE III 

MSE Performance of the Estimates in Fig. 1 2  for the B enchmark 

Problem in (55) 

CRLB 

8 

model [72] 

PF 

1 8  

UKF 

54 

Xk = (Xk , lk,  'l/Jk)T 

Uk = (\'k, �kl 
Xk+ ! = Xk + T\'k cos('l/Jk) 

lk+ ! = Xk + T\'k sin( 'l/Jk) 

'l/Jk+ 1 = 'l/Jk + T'l/Jk 

Yk = h(xk) + ek • 

EKF 

1 3 2  

(56a) 

(56b) 

(56c) 

(56d) 

(56e) 

(56f) 

Here, Xk , lk  denote the Cartesian position, 'l/Jk the 
course or he

.
ading, T is the sampling interval, \'k is the 

speed, and 'l/Jk the yaw rate. The inertial signals \'k and 

'l/Jk are considered as inputs to the dynamic model, and 
are given by onboard sensors. These are different in 
each of the four applications, and they are described 
in more detail in the subsequent sections. The 
measurement relation is based on a distance measuring 
equipment (DME) and a GIS . Both the DME and 
the GIS are different in the four applications, but the 
measurement principle is the same. By comparing the 
measured distance to objects in the GIS , a likelihood 
for each particle can be computed. It should here 
be noted that neither an EKF, UKF, nor KF bank 
is suited for such problems. The reason is that it is 
typically not possible to linearize the database other 
than in a very small neighborhood. 

In common for the applications is that they 
do not rely on satellite navigation systems, which 
are assumed unavailable or provide insufficient 
navigation integrity. First, the inertial inputs, DME 
and GIS, for the four applications are described. 
Conclusions con cering the PF from these applications 
are summarized in Section XII. Different ways to 
augment the state vector are described for each 
application in Section XI. The point is that the 
dimension of the state vector has to be increased 
in order to account for model errors and more 
complicated dynamics. This implies that the PF is 
simply not applicable, due to the high dimensional 
state vector. 

The outline follows a bottom-up approach, starting 
with underwater vessels below sea level and ending 
with fighter aircraft in the air. 

B .  Underwater Position i ng usi ng a Topograph ic  Map 

The goal is to compute the position of a UW 
vessel. A sonar is measuring the distance d! to the 
sea floor. The depth of the platform itself d2 can be 
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Fig. 1 3 .  Left plot is an illustration of UW vessel measuring distance dl to sea bottom, and absolute depth d2 . Sum d = dl + d2 is 

compared with a bottom map as illustrated with contours in plot to right. Particle cloud illustrates snapshot of PF from known 

validation trajectory in field trial, see [75 ] .  

o • 

• • D • 
• 

wi' 
0 -', (1+ 301 1)( • 

Fig . 14.  Rotating radar returns detections of range R at body angle B. Result of one radar revolution is conventionally displayed in 

polar coordinates as illustrated. Comparing the (R, e) detections to sea chart as shown to (right), position and course are estimated by 

PF. When correctly estimated, radar overlay principle can be used for visual validation as also illustrated in sea chart. PF has to 

distinguish radar reflections from shore with clutter and other ships, see [76] . The latter can be used for conventional target tracking 

algorithms, and collision avoidance algorithms, as also illustrated to (right), see [77 ] .  

computed from pressure sensors or from a sonar 
directed upwards. By adding these distances, the sea 
depth at the position Xk, lk is measured. This can be 
compared to the depth in a dedicated sea chart with 
detailed topographical information, and the likelihood 
takes the combined effect of errors in the two sensors 
and the map into account, see [73] .  Fig. 1 3 provides 
an illustration. 

The speed Vk and yaw rate 'lj;k in (56) are computed 
using simplified dynamic motion models based on the 
propeller speed and the rudder angle. It is important 
to note that since the PF does not rely on pure dead 
reckoning, such models do not have to be very 
accurate, see [74] for one simple linear model. An 
alternative is to use inertial measurement units (IMU) 
for measuring and computing speed and yaw rate. 

Detailed seabed charts are so far proprietary 
military information, and most applications are 
also military. As an example of civilian use, oil 
companies are starting to use unmanned UW vessels 
for exploring the sea and oil platforms,  and in this 
way they are building up their own maps. 

C. Su rface Position ing  us ing a Sea Chart 

The same principle as above can of course be 
used also for surface ships, which are constrained 
to be on the sea level (d2 = 0) . However, vectorized 
sea charts (for instance the S-57 standard) contain a 
commercially available worldwide map. 

The idea is to use the radar as DME and compare 
the detections with the shore profile, which is known 
from the sea chart conditioned on the position Xk, lk 
and course 'lj;k (most importantly, the ship orientation, 
but more on this later) ; see [73] .  The likelihood 
function models the radar error, but must also take 
clutter (false detections) and other ships into account. 

The left hand part of Fig. 14 illustrates the 
measurements provided by the radar, while the 
right hand part of the same figure shows the radar 
detections from one complete revolution overlayed on 
the sea chart. The inertial data can be computed from 
propeller speed and rudder angle using simplified 
dynamical models as above. 

American and European maritime authorities have 
recently published reports highlighting the need for a 
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Fig. 1 5 .  Left: Example of multimodal posterior represented by number of distinct particle clouds from NIRA Dynamics navigation 

system. This is caused by regular road pattern and will be resolved after sufficiently long sequence of turns .  Right: PF in embedded 

navigation solution runs in real time on pocket PC with serial interface to vehicle CAN data bus, see [80] . 

Fig. 1 6. Left figure is an illustration of an aircraft measuring distance hI to ground. Onboard baro-altitude supported INS system 

provides absolute altitude over sea level h, and difference h2 = h - hI is compared to a topographical map. Right plot shows a snapshot 

of PF particle cloud just after aircraft has left sea in upper left comer. There are three distinct modes, where the one corresponding to 

the correct position dominates. 

backup and support system to satellite navigation to 
increase integrity. The reason for this need is accidents 
and incidents caused by technical problems with the 
satellite navigation system and the risk of accidental 
or deliberate jamming. The LORAN standard offers 
one such supporting technique based on triangulation 
to radio beacons, see [78] . The PF solution here 
is a promising candidate, since it is, in contrast to 
LORAN, not sensitive to jamming nor does it require 
any infrastructure. 

D. Veh icle Position i ng us ing a Road Map 

The goal here is to position a car relative to a road 
map by comparing the driven trajecto�y to the road 
network. The speed � and yaw rate '¢k in (56) are 
computed from the angular velocities of the nondriven 
wheels on one axle using rather simple geometrical 
relations. Dead reckoning (56) provides a profile that 
fits to the road network. 

The measurement relation is in its simplest form 
a binary likelihood which is zero for all positions 
outside the roads and a non-zero constant otherwise. 
In this case, the DME is basically the prior that the 
vehicle is located on a road, and not a conventional 
physical sensor. See [72] , [79] for more details 
and Fig. 1 5  for an illustration. More sophisticated 

applications use vibrations in wheel speeds and 
vehicle body as a DME. When a rough surface is 
detected, this DME can increase the likelihood for 
being outside the road. Likewise, if a forward-looking 
camera is present in the vehicle, this can be used to 
compute the likelihood that the front view resembles 
a road or if it is rather a nonmapped parking area or 
smaller private road. 

The system is suitable as a support to satellite 
navigation in urban environments, in parking garages 
or tunnels or whenever satellite signals are likely 
to be obstructed. It is also a stand-alone solution to 
the navigation problem. Road databases covering 
complete continents are available from two main 
vendors (NavTech and TeleAtlas) . 

E .  Aircraft Pos ition i ng us ing a Topographic  M a p  

The principal approach here i s  quite similar to 
the UW positioning application and extends the 
one-dimensional example in Section IX to two 
dimensions. 

A high-end IMU is used in an inertial navigation 
system (INS) which dead �eckons the sensor data 
to speed � and yaw rate '¢k in (56) with quite high 
accuracy. Still, absolute position support is needed to 
prevent long-term drifts . 
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Parking garage 

Fig. 17 .  Navigation of car in parking garage. Results for MPF when relative wheel radii and gyro offset are added to state vector. Two 
trajectories correspond to map-aided system and EKF with same state vector, but where GPS is used as position sensor. Since GPS gets 

several drop-outs before parking garage, dead-reckoning trajectory is incorrect; see [8 1 ] .  

The DME i s  a wide-lobe, downward looking 
radar that measures the distance to the ground. The 
absolute altitude is computed using the INS and a 
supporting barometric pressure sensor. Fig. 1 6  shows 
one example just before convergence to a unimodal 
filtering density. 

Commercial databases of topographic information 
are available on land (but not below sea level), with a 
resolution of 50-200 m. 

X I .  MARG I NALIZED PARTICLE F I LTER APPL ICATIONS 

This section continues the applications in 
Section X with extended motion models where the 
MPF has been applied. 

A. U nderwater Position i ng 

Navigating an unmanned or manned UW vessel 
requires knowledge of the full three-dimensional 
position and orientation, not only the projection in 
a horizontal plane. That is, at least six states are 
needed. For control, also the velocity and angular 
velocities are needed, which directly implies at least 
a twelve-dimensional state vector. The PF cannot be 
assumed to perform well in such cases, and MPF is a 
promising approach [73 ] .  

B .  Su rface Position i ng 

There are two bottlenecks in the surface 
positioning PF that can be mitigated using the MPF. 
Both relate to the inertial measurements. First, 

the speed sensed by the log is the speed in water, 
not the speed over ground. Hence, the local water 
current is a parameter to include in the state vector. 
Second, the radar is strap down and measures relative 
to body orientation, which is not the same as 
the course 'ifJk • The difference is the so called crab 
angle, which depends on currents and wind. This can 
also be included in the state vector. Further, there is 
in our demonstrator system [76] an unknown and 
time-varying offset in the reported radar angle, which 
has to be compensated for. 

C. Veh icle Position i ng 

The bottleneck of the first generation of vehicle 
positioning PF is the assumption that the vehicle must 
be located on a road. As previously hinted one could 
use a small probability in the likelihood function 
for being off-road, but there is no real benefit for 
this without an accurate dead-reckoning ability, so 
reoccurrence on the road network can be predicted 
with high reliability. 

The speed and yaw rate computed from the 
wheel angular velocity are limited by the insufficient 
knowledge of wheel radii. However, the deviation 
between actual and real wheel radii of the two wheels 
on one axle can be included in the state vector. 
Similarly, with a yaw rate sensor available (standard 
component in electronic stability programs (ESP) 
and navigation systems),  the yaw rate drift can be 
included in the state vector. The point is that these 
parameters are accurately estimated when the vehicle 
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is on the road, and in the off-road mode, improved 
dead reckoning can be achieved. Tests in demonstrator 
vehicles have shown that the exit point from parking 
garages and parking areas are well estimated, and 
that shorter unmapped roads are not a problem; see 
Fig. 17 .  

D. Ai rcraft Position ing  

The primary role of the terrain based navigation 
(TERNAV) module is to support the INS with 
absolute position information. The INS consists 
of an EKF based on a state vector with over 20 
motion states and sensor bias parameters. The 
current bottleneck is the interface between TERNAV 
and INS . The reason is that TERNAV outputs a 
possibly multimodal position density, while the 
INS EKF expects a Gaussian observation. The 
natural idea is to integrate both TERNAV and INS 
into one filter. This gives a high-dimensional state 
vector, where one measurement (radar altitude) is 
very nonlinear. The MPF handles this elegantly, 
by essentially keeping the EKF from the existing 
INS and using the PF only for the radar altitude 
measurement. 

The altitude radar gives a measurement outlier 
when the radar pulse is reflected in trees . Tests 
have validated that a Gaussian mixture where 
one mode has a positive mean models the real 
measurement error quite well. This Gaussian mixture 
distribution can be used in the likelihood computation, 
but such a distribution is in this case logically 
modeled by a binary Markov parameter, which is 
one in positions over forest and zero otherwise. 
In this way, the positive correlation between 
outliers is modeled, and a prior from ground-type 
information in the GIS can be incorporated. This 
example motivates the inclusion of discrete states 
in the model framework. See [67] ,  [68] for the 
details. 

XI I .  SU MMARY 

This section summarizes practical experience from 
the applications in Sections X and XI with respect to 
the theorectical survey in Sections II and VIII. 

A. Real-T ime Issues 

The PF has been applied to real data and 
implemented on hardware targeted for the application 
platforms. The sampling rate has been chosen in the 
order 1-2 Hz, and there is no problem in achieving 
real-time performance in any of the applications. 
Some remarkable cases follow. 

1 )  The vehicle positioning PF was already 
implemented on a PDA using 1 5 ,000 particles in 
200 1 ;  see [79] . 

2) The aircraft positioning PF was implemented in 
ADA and shown to satisfy real-time performance on 
the onboard computer in the Swedish fighter Gripen 
in the year 2000. Real-time performance was reached, 
despite the facts that a very large number of particles 
were used on a rather old computer. 

B. Sam pl i ng Rates 

The DME can in all cases deliver measurements 
much faster than the chosen sampling rate. However, 
faster sampling will introduce an unwanted correlation 
in the observations. This is due to the fact that the 
databases are quantized, so the platform should 
make a significant move between two measurement 
updates. 

C. I m plementation 

Implementing and debugging the PF has not 
been a major issue. On the contrary, students and 
nonexperts have faced fewer problems with the PF 
than for similar projects involving the EKF. In many 
cases, they obtained deep intuition for including 
nontrivial but ad hoc modifications. There are today 
several hardware solutions reported in literature, 
where the parallel structure of the PF algorithms 
can be utilized efficiently. For instance, an FPGA 
implementation is reported in [82] , and on a general 
purpose graphics processing unit (GPGPU) in [83 ] .  
Analog hardware can further be  used to speed up 
function evaluations [6 1 ] .  

D.  Dither ing 

Both the process noise and measurement 
noise distributions need some dithering (increased 
covariance) . Dithering the process noise is a 
well-known method to mitigate the sample depletion 
problem [ 1 5 ] .  Dithering the measurement noise is 
a good way to mitigate the effects of outliers and 
to robustify the PF in general. One simple and still 
very effective method to mitigate sample depletion 
is to introduce a lower bound on the likelihood. This 
lower bound was first introduced more or less ad hoc. 
However, recently this algorithm modification has 
been justified more rigorously. In proving that the 
PF converges for unbounded functions, like the state 
xk itself, it is sufficient to have a lower bound on the 
likelihood; see [57] for details . 

E .  N u m ber of Particles 

The number of particles is chosen to be the quite 
large to achieve good transient behaviour in the 
start-up phase and to increase robustness. However, 
it has been concluded that in the normal operational 
mode the number of particles can be decreased 
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Fig. 1 8 .  RMSE performance for aircraft terrain navigation as 

function of number of particles. 

substantially (typically a factor of ten). Fig. 1 8  
shows experimental results for the terrain navigation 
application. The transient improves when going from 
N = 1200 to N = 2500, but using more particles give 
no noticable improvement after convergence. 

A real-time implementation should be designed 
for the worst case. However, using an adaptive 
sampling interval T and number of particles N is one 
option. The idea is to use a longer sampling interval 
and more particles initially, and when the PF has 
converged to a few distinct modes, T and N can be 
decreased in such a way that the complexity N IT is 
constant. 

E Choos ing the Proposa l Dens ity 

The standard SIR-PF works fine for an initial 
design. However, the maps contain rather detailed 
information about position and can be considered 
as state constraints in the limit. In such high 
signal-to-noise applications, the standard proposal 
density used in the SIR-PF is not particularly 
efficient. An alternative, that typically improves the 
performance, is to use the information available in 
the next measurement already in the state prediction 
step. Note that the proposal in its most general 
form includes the next observation. Consider for 
instance positioning based on road maps. In standard 
SIR-PF, the next positions are randomized around 
the predicted position according to the state noise, 
which is required to obtain diversity. Almost all of 
these new particles are outside the road network, and 
will not survive the resampling step. Obviously this 
is a waste of particles. By looking at how the roads 
are located locally around the predicted position, a 
much more clever process noise can be computed, 
and the particles explore the road network much more 
efficiently. 

G. Divergence Mon itor ing 

Divergence monitoring is fundamental for 
real-time implementations to achieve the required 

level of integrity. After divergence, the particles do 
not reflect the true state distribution and there is no 
mechanism that automatically stabilizes the PF. Hence, 
divergence monitoring has to be performed in parallel 
with the actual PF code, and when divergence is 
detected, the PF is reinitialized. 

One indicator of particle depletion is the effective 
number of samples Neff' used in the PF. This number 
monitors the amount of particles that significantly 
contribute to the posterior, and it is computed from 
the normalized weights . However, the unnormalized 
likelihoods are a more logical choice for monitoring. 
Standard hypothesis tests can be applied for testing 
if the particle predictions represent the likelihood 
distribution. 

Another approach is to use parallel PFs interleaved 
in time. The requirement is that the sensors are 
faster than the chosen sampling rate in the PF. The 
PFs then use different time delays in the sensor 
observations. 

The reinitialization procedure issued when 
divergence is detected is quite application dependent. 
The general idea is to use a very diffuse prior, or to 
infer external information. For the vehicle positioning 
application in [79] ,  a cellular phone operator took 
part in the demonstrator, and cell information was 
used as a new prior for the PF in case of occasional 
divergence. 

H. Performance Bou nds 

For all four GPS-free applications, the positioning 
performance is in the order of 1 0 m root mean 
square error (RMSE), which is comparable to GPS 
performance. Further, the performance of the PF has 
been shown to be close to the CRLB for a variety 
of examined trajectories.  In Fig. 1 9  two examples of 
performance evaluations in terms of the RMSE are 
depicted. On the left hand side the position RMSE 
and CRLB are shown for the UW application, and 
on the right hand side the horizontal position error is  
provided for the aircraft application. 

I .  Particle F i lter i n  E m bedded Systems 

The primary application is to output position 
information to the operator. However, in all cases 
there have been decision and control applications built 
on the position information, which indicates that the 
PF is a powerful software component in embedded 
systems as follows.  

1)  UW positioning: Here, the entire mission 
relies on the position, so path planning and trajectory 
control are based on the output from the PF. Note 
that there is hardly any alternative below sea level, 
where no satellites are reachable, and deploying 
infrastructure (sonar buoys) is quite expensive. 
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Fig. 19 .  Position RMSE for UW (left) and surface (right) applications compared to CRLB . 

2) Surface positioning: Differentiating radar 
detections from shore, clutter, and other ships is an 
essential association task in the PF. It is a natural 
extension to integrate a collision avoidance system 
in such an application, as illustrated in a sea chart 
snapshot in Fig. 14.  

3) Vehicle positioning: The PF position was also 
used in a complete voice-controlled navigation system 
with dynamic route optimization; see Fig. 1 5 .  

4) Aircraft navigation: The position from the 
PF is primarily used as a supporting sensor in the 
INS, whose position is a refined version of the PF 
output. 

J .  Margi nal ized Partic le F i lteri ng 

Finally, the MPF offers a scalable extension of 
the PF in all applications surveyed here and many 
others. MPF is applicable for instance in the following 
localization, navigation, and tracking problems: 

1) three-dimensional position spaces, 
2) motion models with velocity and acceleration 

states, 
3) augmenting the state vector with unknown 

nuisance parameters as sensor offsets and drifts. 

The FastSLAM algorithm is state of the art; 
see [24] . This algorithm applies MPF to the 
SLAM problem. FastSLAM has been applied to 
applications where thousands of two-dimensional 
landmark features are marginalized out from a 
three dimensional motion state. Further, in [84] 
a double marginalization process was employed 
to handle hundreds of landmark features and a 
24-dimensional state vector for three-dimensional 
navigation of an unmanned aerial vehicle in an 
unknown environment. 
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