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Abstract

We present a continuous time model of maturation and survival, obtained as the limit
of a compartmental evolution model when the number of compartments tends to infinity.
We establish in particular an explicit formula for the law of the system output under inho-
mogeneous killing and when the input follows a time-inhomogeneous Poisson process. This
approach allows the discussion of identifiability issues which are of difficult access for finite
compartmental models. The article ends up with an example of application for anticancer
drug pharmacokinetics/pharmacodynamics.
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Introduction

Compartmental models are widely used in biology and medicine for the modelling of evolution
phenomena. In particular, these models are very usual in the pharmacokinetics/pharmacodynamics
analysis of toxic effects of anticancer drugs on white blood cells. Several mathematical and com-
putational aspects of such models remain untouched. For instance, at least for catenary chain

1



models, there is no rigorous rule for the choice of the number of compartments, and many
identifiability issues are not elucidated. In the present study, we consider the limit of a dis-
crete family of compartmental models when the number of compartments tends to infinity.
The obtained limit looks simpler. It provides explicit formulas for the mean occupation of the
compartment of interest, and allows the discussion of important identifiability issues. Roughly
speaking, we replace a finite catenary chain of compartments with time-inhomogeneous rates by
a two compartments time-inhomogeneous model with lag. Much of the article is devoted to the
mathematical derivation and analysis of these models. We hope that beyond the mathematical
aspects, the main results – illustrated on a simple example at the end of the article – may serve
the quantitative biologists.

This study is in the spirit of previous works of Jacquez & Simon and Schuhmacher & Thieme.
Mathematically speaking, the mean occupation of the compartment of interest appears as the
expectation of an underlying stochastic process. This process is a time-inhomogeneous M/M/∞
queue, with an explicit biological interpretation of its input and output rates. This leads to a
nice explicit Binomial-Poisson formula for the instantaneous law. In a way, our approach can
be seen as a complement and extension of the boxcartrain models considered for example in [13]
and [27], see also [14] and [18] and references therein. It is also closely linked with “binomial
catastrophe models”, cf. for instance [7] and references therein. The novelty is mainly the space-
time inhomogeneous killing, the stochastic interpretation in terms of Feynman-Kac’s formulæ,
and the computation of the output occupation law when the input follows a time-inhomogeneous
Poisson process. The formulas that we derive provides a good compromise between computer
time and numerical errors, without loss in interpretation, as suggested by the example presented
at the end of the article. However, pharmacokinetics/pharmacodynamics populational aspects
are outside the scope of this work, and will make hopefully the matter of a forthcoming article.

Outline of the rest of the article. The rest of the article is organised as follows.
In Section 1, we briefly introduce the time-inhomogeneous deterministic compartmental sys-

tems with linear rates. In particular, we present two stochastic interpretations in terms of
particles. The first one is based on interacting time-inhomogeneous M/M/∞ queueing systems,
whereas the second is based on the occupation of independent random walks on the graph of
compartments, subject to birth and death. These interpretations are at the heart of the results
of Section 2 regarding limits of catenary chains of compartments.

In section 2, we present a time-inhomogeneous maturation and survival model, and the
related counting processes. We show how a finite catenary chain of compartments leads, when the
number of compartments tends to infinity, to a simple time-inhomogeneous two compartments
model with lag. The main result is given by Theorem 2.4. We show how Feynman-Kac’s
formulas leads to simple explicit integral formulas for the compartment of interest, and allows
the discussion of identifiability issues in Section 2.3.4.

In Section 3, the results of Sections 1 and 2 are illustrated on a simple example related to
anticancer drug toxicity pharmacokinetics/pharmacodynamics context. Namely, we provide a
comparison between classical finite catenary chains of compartments in one hand, and our two
compartmental limit with lag in the other hand.

Notations and conventions. In the sequel, we denote by R+ the non negative half line
[0,+∞). For a set A, we denote by IA the indicator function defined by IA(x) = 1 if x ∈ A and
IA(x) = 0 otherwise. We denote by L(X) the law of the random variable X, by L(X |Y ) the
conditional law of X given Y , and by E(X |Y ) the conditional expectation of X given Y . We
use in addition the classical associated maps L(X|Y = y) and E(X|Y = y). We denote by P(λ),
the Poisson distribution with mean λ ∈ R+, by E(λ) the exponential distribution of mean 1/λ,
and by B(n, p) the binomial distribution of size n ∈ N and parameter p ∈ [0, 1]. In particular,
B(1, p) is the Bernoulli distribution pδ1 + (1− p)δ0 and B(n, p) = B(1, p)∗n where ∗ denotes the
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convolution.

1 Finite compartmental systems with time-dependent linear rates

Consider a system of compartments indexed by the finite set I. Each compartment contains a
quantity of matter. As we will see in the sequel, the amount of matter can be represented by
a discrete number, or by a real number, depending on the interpretation chosen. The matter
is the subject of transfers between compartments. It can also be created (external inflow) or
destroyed (outflow) in each compartment.

The reader may find an accessible introduction to simple compartmental systems with several
examples in the recent book [22] by Matis and Kiffe, see also [17] and references therein. The
study of the total amount of matter in the system is for instance addressed in [16], see also
[21]. The reader may find a study of time-delayed compartmental systems in [23] and [18] and
references therein. The literature regarding the stochastic interpretations of time-inhomogeneous
compartmental systems is less rich. Let us recall the essential aspects of finite compartmental
systems with linear rates.

1.1 Deterministic systems and linear ordinary differential equations

We consider here that the amount of matter is represented by a non-negative real number. Let
Qi(t) be the amount of matter in compartment i at time t > t0, where t0 is the initial time. We
denote by Q(t) the vector i ∈ I 7→ Qi(t), and we identify the set R

I with R
n where n := card(I).

Let us consider the dynamics of (Q(t))t>t0 described by the system of linear ordinary differential
equations

∀i ∈ I, ∀t > t0, ∂tQi(t) = λi(t) +
∑

j,i

ρj,i(t)Qj(t) − Qi(t)



κi(t) +
∑

j 6=i

ρi,j(t)



, (1)

with initial condition Q(t0). Such a dynamics is described by figure 1. Here λi(t) is a creation
rate for compartment i (inflow), κi(t) is the destruction rate for compartment j (outflow), and
ρi,j(t) with i 6= j is the transfer rate from compartment i to compartment j. These rates are
non-negative. Apart from the λi rates, the rates κi and ρi,j act proportionally to the content of
the compartment that gives matter. Notice also that a κi with negative values might mimic a
proportional auto-inflow. In vector/matrix language, the dynamics of Q(t) is of the form

∂tQ(t) = M(t)Q(t) + λ(t), (2)

where λ(t) denote the “vector” (λi(t); i ∈ I), and where M(t) is the matrix defined by

Mi,j(t) :=

{

ρj,i(t) if i 6= j

−
∑

k 6=i ρi,k(t) − κi(t) if i = j

for any i, j ∈ I. The traditional theory of linear ordinary differential equations gives

Q(t) = R(t, t0)Q(t0) +

∫ t

t0

R(t, u)λ(u) du

for any t > t0, where the resolvent R is the solution of the matrix linear differential equation
R(t0, t0) = I and ∂tR(t, t0) = M(t)R(t, t0) for any t > t0. In the literature related to compart-
mental systems, M is sometimes referred as the “transfer matrix”. When M does not depend
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on time, R(v, u) = exp((v − u)M). This matrix exponential can be explicitly computed in very
special situations where for example card(I) is small or where M has a nice structure. Usually,
the method consists to diagonalise M, which leads to an expression of the solution as a linear
combination of log-linear functions related to the spectrum of M. There is no simple closed
formula for Q(t) when the rates depend on time.

κi(t)

ρi,j(t)

λi(t)

ρj,i(t)

Qi(t) Qi(t)

Qj(t)ρj,i(t)

Qi(t)ρi,j(t)

Qi(t)κi(t)

λi(t)

Figure 1: The left hand side diagram shows the flows in a compartmental system. Here, the
transfer rates and the outflow depends linearly on the content of the compartment that gives
matter. In contrast, the inflow does not depend on the content of the compartments. It is
customary to make the Qi(t) and Qj(t) parts of the rates implicit, as show in the right hand
side diagram.

Example 1.1 (Finite catenary chain of compartments). It corresponds to a finite system
of n compartments, labelled by I = {1, . . . , n}, for which λi ≡ 0 if i 6= 1, and ρi,j ≡ 0 if j 6= i+1.
It is customary to abridge λ1 by λ and ρi,i+1 by ρi. In such a compartmental system, there is
only one external inflow with rate λ at the left extremity of the chain. Moreover, the interaction
of a compartment is limited to its right neighbour. The topology of this compartmental system
is depicted in figure 2. The matrix M is band diagonal, which makes possible yet tedious the
explicit computation of its exponential, when the rates do not depend on time.

κn(t)

ρ1(t) ρi(t)ρi−1(t)

κi(t)κ1(t)

ρn(t)λ

Q1(t) Qn(t)Qi(t)

Figure 2: Finite catenary chain of n compartments with single inflow at the chain head.

1.2 Stochastic interpretation

Let us consider a finite system of n compartments, labelled by I, and with rates λ, κ, and ρ.
In the stochastic interpretation, each compartment contains particles, and we denote by N i

t the
number of particles in compartment i ∈ I at time t > t0. The particles are indistinguishable,
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and can be created, destroyed, or can move from one compartment to another, according to a
Markovian dynamics of the vector Nt := (N i

t ; i ∈ I). For a good choice of Markovian dynamics,
the average number E(Nt |Nt0 = x) of particles per compartment is the solution of a system of
linear differential equations with initial condition x. The reader may find an excellent reference
for Markov processes and related topics in the book [8] by N. Ethier and G. Kurtz.

Theorem 1.2. Let I be a finite set. Let (Nt)t>t0 be a time-inhomogeneous Markov process
with state space E := N

I , and generators (Lt)t>t0 . Assume in addition that for any t > t0, the
function x ∈ E 7→ At(x) :=

∑

y∈E Lt,x,yy is affine. For any x ∈ E, and any t > s > t0, let
Q(s, t, x) := E(Nt |Ns = x). Then Q is the solution of the linear differential equation

∂tQ(s, t, x) = At(Q(s, t, x)),

for any t > s > t0, with initial condition Q(s, s, x) = x.

Proof. For any t > s > t0 and any function f : E → R, let Ps,t(f) be the function E → R

defined by Ps,t(f)(x) := E(f(Nt) |Ns = x). In particular, Ps,s(f) = f . The Markovianity of the
process is captured by the Chapman-Kolmogorov equation which writes Ps,u(Pu,t(f)) = Ps,t(f)
for any t > u > s > t0. Recall that Lt acts linearly on f as a matrix. We denote by Ltf the
function E → R defined by (Ltf)(x) :=

∑

y∈E Lt,x,yf(y). The definition of L gives

(Ltf)(x) := lim
ε→0+

Pt,t+ε(f)(x) − Pt,t(f)(x)

ε
.

This yields, by using the Chapman-Kolmogorov equation, to the “forward equation”

∂tPs,t(f)(x) := lim
ε→0+

Ps,t+ε(f)(x) − Ps,t(f)(x)

ε
= Ps,t(Lt(f))(x).

The desired results follows immediately by considering the ad-hoc f function. Namely, for any
i ∈ I, consider the function defined by f(x) = xi for any x ∈ E. One has (Ltf)(x) = At(x)i.
Since At in affine and Ps,t is Markov, they commute and we get Pt(Ltf)(x) = At(Ps,t(f)(x))i.

Notice that the Chapman-Kolmogorov equation which appears in the proof of theorem 1.2
gives also the “backward” equation ∂sPs,t(f)(x) = −Ls(Ps,t(f))(x), which yields the system of
linear differential equations

∂sQ(s, t, x) = −
∑

y∈E

Ls,x,yQ(s, t, y)

with initial condition Q(s, s, x) = x. When the process is time-homogeneous, Lt do not depend
on time anymore and Ps,t = Pt0,t0+t−s. Thus, in that case, Pu(L(f)) = L(Pu(f)) for any u > t0,
which makes the forward and backward equations identical up to a sign.

Let us give now an Lt matrix on E such that At is exactly the affine function of the deter-
ministic compartmental system (2) constructed from the triplet of rates λ(t), κ(t) and ρ(t). We
identify the countable space E := NI with Nn where n := card(I). We denote by e1, . . . , en the
canonical basis of R

n, embedded in E. For any x, y ∈ E with x 6= y, we set

Lt,x,y :=























λi(t) if y = x + ei for i ∈ I (birth of a particle)

xiρi,j(t) if y = x − ei + ej for i 6= j in I (transfert of a particle)

xiκi(t) if y = x − ei for i ∈ I (death of a particle)

0 otherwise

. (3)
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The diagonal terms are such that the sum over each line is zero. The transition related to ρ can
equivalently expressed as xjρj,i(t) if y = x− ej + ei for j 6= i. Recall that Nt is an n-components
vector which represents the amount of particles in each of the n compartments at time t. A
simple computation shows that for any x ∈ E and any i ∈ I,

At(x)i :=
∑

y∈E

Lt,x,yyi = λi(t) +
∑

j∈I,j 6=i

xjρj,i(t) − xi



κi(t) +
∑

j∈I,j 6=i

ρi,j(t)



. (4)

We recognise immediately the equation (2) of the deterministic compartmental system.

1.2.1 Interpretation as interacting M/M/∞ queues

The generator (3) suggests an interpretation of the process (Nt)t>t0 as an n-dimensional M/M/∞
queueing system with interactions. In such a picture, each particle is a client, and each compart-
ment is an M/M/∞ queue. The quantity N i

t is thus the number of customers in the ith queue at
time t. For each compartment i ∈ I, and in absence of interaction (ρ ≡ 0), the arrival rate is λi,
and the service rate is κi. Since the queue is M/M/∞, each new client gets immediately its own
dedicated server, which explains the coefficient xiκi in L. The interaction ρ allows the clients to
move from queue i to queue j with rate xiρi,j. Thus, in presence of interactions, the arrival rate
in queue i is λi +

∑

j xjρj,i and the service rate is xiκi +xi
∑

j ρi,j. The clients in the queues are
not ordered since these queues are of M/M/∞ type. The random vector Nt gives the number of
clients in each queue at time t. The dynamics of (Nt)t>t0 can be thus interpreted as n interacting
M/M/∞ queues, e.g. as n interacting birth and death processes on N. These interacting queues
can be seen as special Markovian Petri networks, e.g. interacting particle systems, cf. [6] and
[20]. For the reader familiar with queueing systems, we emphasise that these interacting queues
are not in tandem and that they do not constitute Jackson networks. However, in statistical
mechanics, they constitute a zero-range dynamics on the graph of compartments.

In particular, with such an interpretation in mind, a one compartment system is equivalent
to a single M/M/∞ queue. More generally, a catenary chain of n compartments is equivalent
to a system of n interacting M/M/∞ queues, in which only the first one has an external inflow,
the others being inflowed by the clients that leave the preceding queue due to the interaction.

M/M/∞ queue M/M/∞ queue

Random walks

Graph of compartments

Figure 3: The two stochastic interpretations of finite compartmental systems with linear rates.
Interacting M/M/∞ queues versus independent random walks on the graph of compartments
subject to birth and death.
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1.2.2 Interpretation as independent particles on the graph of compartments

We remove now the indistingishability of the particles assumed in the interpretation of the
process (Nt)t>t0 generated by (3). We claim then that Nt is the occupation vector of the
compartments at time t for a superposition of independent particles moving in I. These particles
are subject to birth (λ rate) and death (κ rate), in addition to their motion in the system of
compartments viewed as an oriented graph with n vertices. This graph is a subset of I × I, and
ρi,j ≡ 0 means that the edge (i, j) does not exist in the graph.

For simplicity, let us consider for the moment a finite catenary chain of n compartments as
in example 1.1, and let us assume in addition that the rates do not depend on time. In such
a compartmental system, there is only one external inflow with rate λ at the left extremity of
the chain. Moreover, the interaction of a compartment is limited to its right neighbour. This
orientation suggests the consideration of a Markovian dynamics (Xt)t>T of one particle which
starts at compartment 0 at time T , and moves from left to right, with rate ρ. The elimination
rate κ can be incorporation by the addition of an external cemetery state c 6∈ I to the system
of compartments. The generator of this single particle dynamics is given by

Li,j :=











ρi if j = i + 1

κi if j = c

0 otherwise

for any i 6= j in I ∪{c}. The diagonal terms of the matrix L are such that the sum over each line
is zero. Assume now that independent copies of such particles start their motion according to
a Poisson point process on R of intensity λ. In other words, the initial times T are distributed
according to the Poisson point process, and the particles are independent and independent of
the point process. Let Zi

t be the number of these independent particles that are in compartment
i at time t. Let us denote Zt := (Z1

t , . . . , Zn
t ), which is a random vector belonging to N

n. The
absence of memory of exponential laws and the interpretation of the generator as exponential
clocks in competition leads to the following expression for the generator of (Zt): for any x 6= y
in N

n,

Lx,y :=























λ if y = x + e1

xiρi if y = x − ei + ei+1 for some 1 6 i 6 n − 1

xiκi if y = x − ei for some 1 6 i 6 n

0 otherwise

.

This is exactly the generator (3) of (Nt) corresponding to our assumptions on the rates and on
I. Notice that when n = 1 (trivial graph), we just have constructed the M/M/∞ queue from
independent particles with survival rate κ, arriving according to an independent Poisson point
process of intensity λ. When n > 1 and ρ ≡ 0, the process consists in n independent M/M/∞
queues.

Such an interpretation is actually not specific to catenary chains of compartments. It can be
extended to any oriented graph (compartments topology), by considering n independent Poisson
point processes, one for each external inflow. The independence of the particles moving on the
graph is a consequence of the linearity in x of the coefficients related to the ρ rates in Lx,y. The
single particle dynamics involves the ρ rates for its motions. The κ rates are incorporated by the
addition of an external cemetery state to the system, whereas the λ rates are incorporated by
using an independent Poisson point process and independent copies of the particle. It is known
that adding an external cemetery state leads to Feynman-Kac type formulas related to a very
simple potential, cf. [5] for instance.
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We have thus two stochastic interpretations of the dynamics (3) of (Nt), as presented by
figure 3. The first one is “vertical” and corresponds to interacting birth and death processes
in N (M/M/∞ queues subject to interactions), whereas the second one is “horizontal” and
corresponds to independent particles moving on the graph of compartments (random walks on
I subject to birth and death). Both hold for time-dependent rates.

2 A continuous stochastic maturation model

In the sequel, we consider a time-inhomogeneous stochastic maturation model with killing,
which provides a Poisson-Binomial formula for the occupation law of the maturation system.
The probability of survival in such a model can be for instance the probability of traversal
of a finite catenary chain of compartments. We show that this probability has a nice explicit
formula when the length of the chain tends to infinity. Such a result is in accordance with the
stochastic interpretation of finite compartmental systems presented in Section 1, in terms of
time-inhomogeneous M/M/∞ queues.

2.1 Counting mature particles under killing and Poisson production

Consider a maturation system in which the maturation takes a deterministic duration τ > 0.
A particle which begins its maturation at time T ∈ R achieves its maturation at time T + τ .
We say that T + τ is the maturation time of the particle. Assume in addition that the particle
can die during the maturation process, with probability 1 − p(T ), where p(T ) ∈ [0, 1] is a
deterministic real number which may depend on T . In such a maturation with killing scheme,
a particle which begins its maturation at time T ∈ R can either die with probability 1 − p(T ),
or survive with probability p(T ) and achieve its maturation at time T + τ . Now, consider
independent particles which begin their maturation at times T0, T1, . . . These particles survive
with probabilities p(T0), p(T1), . . ., and achieve their maturation at times M0 = T0 + τ,M1 =
T1 + τ, . . .

Proposition 2.1. Suppose that T0, T1, . . . are random and distributed according to a Poisson
process with intensity λ : R → R+. Assume that this random process is independent from the
maturation process of the particles. The maturation times M0,M1, . . . follow a Poisson point
process on R with intensity λ∗ : R → R+ given by

λ∗(t) := λ(t − τ)p(t − τ).

In other words, the number of mature particles produced during a bounded time interval
I ⊂ R follows a Poisson distribution with mean

∫

I
λ∗(u) du =

∫

I
λ(u − τ) p(u − τ) du.

Moreover, for any disjoint and bounded time intervals I and J , the number NI and NJ of mature
particles produced during these time intervals are independent Poisson random variables. The
reader familiar with points processes may notice that the resulting point process is thus an
inhomogeneous marked Poisson point process, with Bernoulli marks.

Proof. Consider a time interval I :=]s, t]. Let AI be the number of particles with maturation
times in the time interval I. They have started their maturation on the time interval I − τ :=
]s− τ, t − τ ]. Let NI be the number of particles that have started their maturation on the time
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interval I − τ . On the event {NI = m}, let T1, . . . , Tm ∈ I − τ the corresponding initial times.
By independence of the maturation of the particles, for any t1 < · · · < tm in I − τ ,

L(AI |NI = m,T1 = t1, . . . , Tm = tm) = B(1, p(t1)) ∗ · · · ∗ B(1, p(tm)).

Let us compute the Laplace transform of AI . For any θ ∈ R,

E(eθAI |NI = m,T1, . . . , Tm) =

m
∏

k=1

Ψ(Tk),

where Ψ(t) := 1 + (eθ − 1)p(t). On the event {NI = m}, the random vector (Λ(T1), . . . ,Λ(Tm))
follows a Dirichlet law on [0,Λ(t)]m, where Λ(w) :=

∫ w
s λ(u − τ) du. Few lines of calculus give

E(eθAI |NI = m) =

(

1

Λ(t)

∫ Λ(t)

0
Ψ(Λ−1(v)) dv

)m

.

Now, since L(NI) = P(Λ(t)), we obtain

E(eθAI ) = E(E(eθAI |NI)) = exp

(

(eθ − 1)

∫ Λ(t)

0
p(Λ−1(v)) dv

)

.

Finally, the identity
∫ Λ(t)
0 p(Λ−1(v)) dv =

∫ t
s λ(u − τ)p(u − τ) du yields L(AI) = P(

∫

Iλ
∗(u) du).

The independence of AI and AJ when I and J are disjoint time intervals follows from the same
property for NI and NJ together with the independence of maturation of the particles.

Let us assume now in addition that independently, each mature particle survives after mat-
uration during a random duration with intensity µ : R+ → R+. In other words, given that
a mature particle is still alive at time s, and if S is its remaining survival duration, then
P(S > t) = exp(−

∫ t
s µ(w) dw) for any t > s. The following Theorem expresses the law of the

number Nt of mature particles still alive at time t ∈ R+. Figure 4 gives a schematic view of the
system.

Theorem 2.2. For any times 0 6 s 6 t and any m ∈ N,

L(Nt |Ns = m) = B(m,α(s, t)) ∗ P(β(s, t))

where

α(s, t) := exp

(

−

∫ t

s
µ(w) dw

)

and β(s, t) :=

∫ t

s
λ(u − τ)p(u − τ)α(u, t) du.

In particular, E(Nt |Ns = m) = mα(s, t) + β(s, t) for any 0 6 s 6 t and any m ∈ N.

Notice that there are three sources of randomness here, which are supposed independent: the
initial time of maturation, the survival during the maturation, and the survival duration after
maturation. The resulting counting process (Nt)t>0 is a time-inhomogeneous M/M/∞ queue.

Proof. Let m ∈ N and t > s. Consider the event {Ns = m}. Let Bt be the number of these
m mature particles still alive at time t (recall that they were mature at time s). Let At be
the number of mature particles still alive at time t and which have achieved their maturation
on the time interval [s, t]. Since the particles are independent, the random variables At and
Bt are independent, and L(Nt |Ns = m) = L(Bt) ∗ L(At). The m initial mature particles are
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independent, and each of them are sill alive at time t with probability α(s, t). Consequently,
the random variable Bt follows the binomial law B(m,α(s, t)) = B(1, α(s, t))∗m of size m and
parameter α(s, t).

It remains to show that L(At) = P(β(s, t)). Consider a particle which achieved its mat-
uration at time T ∈ [s, t]. It is still alive at time t with probability α(T, t). Let Mt be the
number of particles which have achieved their maturation on the time interval [s, t]. On the
event {Mt = k}, let T1 6 · · · 6 Tk be the corresponding maturation times. For any t1 6 · · · 6 tk
in [s, t],

L(At |Mt = k, T1 = t1, . . . , Tk = tk) = B(1, α(t1, t)) ∗ · · · ∗ B(1, α(tk, t)).

Let us compute the Laplace transform of At. For any θ ∈ R, we get

E
(

eθAt |Mt = k, T1 = t1, . . . , Tk = tk

)

=
k
∏

i=1

Ψ(ti),

where Ψ(ti) := 1 + (eθ − 1)α(ti, t) is the Laplace transform of B(1, α(ti, t)). Now, we write

E(eθAt |Mt = k) = E(E(eθAt |Mt = k, T1, . . . , Tk)).

For any v in [s, t], let Λ(v) :=
∫ v
s λ(u − τ)p(u − τ) du. According to the preceding Proposition,

L(Mt) = P(Λ(t)) and the random vector (Λ(T1), . . . ,Λ(Tk)) follows a Dirichlet law on [0,Λ(t)]k .
After few lines of calculus, this yields

E
(

eθAt |Mt = k
)

=

(

1

Λ(t)

∫ Λ(t)

0
Ψ(Λ−1(u)) du

)k

,

and

E(eθAt) = E(E(eθAt |Mt)) = exp

(

(eθ − 1)

∫ Λ(t)

0
α(Λ−1(u), t) du

)

.

Consequently, L(At) = P(β(s, t)), since

∫ Λ(t)

0
α(Λ−1(u), t) du =

∫ t

s
λ(u − τ)p(u − τ)α(u, t) du = β(s, t).

2.2 Modelling the maturation process itself for one particle

Let us consider a single particle which begins its maturation at time T ∈ R. This section is
devoted to the modelling of the maturation and survival process itself, by mean of a Markovian
dynamics on the time interval [T,+∞). In particular, it provides an explicit formula of the
probability of survival during maturation p(T ).

2.2.1 Finite state model

We begin by considering a maturation model which consists in n + 1 maturation steps, with
possible killing. More precisely, define the finite set

S(n) := {0, 1, . . . , n} ∪ {c}

10



Input Output
Maturity

time T time T + τ

Elimination with probability 1 − p(T ) Elimination with rate µ

Lag τ

Figure 4: Schematic view of a maturation system with killing. Recall that τ is the maturation
duration. The quantity p(T ) is the survival probability of a particle which has begun its matu-
ration at time T . The quantity µ is the survival rate of a mature particle. The left hand side
compartment (LC) corresponds to a Poisson deformation box with lag, whereas the right hand
side compartment (RC) corresponds to an M/M/∞ like counting process. The output of the
LC is a point process which serves as an input for the RC.

where c 6∈ {0, 1, . . . , n} will serve as a cemetery state. The maturation of the particle is modelled
by a motion from state 0 to state n. State n corresponds to “maturity”. The killing rate is
modelled by a function

κ(n) : R × {0, . . . , n} → R+

which is smooth in the first variable (time). This killing rate may thus vary in time and in
space. The maturation rate is modelled by a constant positive real number ρ(n). Consider now

the continuous time Markov process (X
(n)
t )t>T with state space S(n), and generator given for

any i 6= j in S(n) and any t > T by

(L
(n)
t )i,j =











ρ(n) if i 6= c and j = i + 1

κ(n)(t, i) if i 6= c and j = c

0 otherwise

. (5)

The diagonal terms of the matrix L(n) are such that the sum over each line is 0. The dynamics of

the maturation process (X
(n)
t )t>T can be read directly on the expression of the generator above.

Namely, at time t and from state i, the process can only move to state i+1 with rate ρ(n), or die
(being killed) with rate κ(t, i) and placed in the cemetery state c from which it cannot escape.
The maturation steps are depicted by figure 5. In absence of killing, i.e. when κ(n) ≡ 0, the

process (X
(n)
t )t>T is a simple Poisson process of intensity ρ(n), stopped when it reaches state n.

In such a maturation with killing model, we are interested in the mean occupation of the
state n for a Poissonian number of such processes evolving independently. One can define p(T )
as the probability of hitting state n starting from state 0:

p(T ) = P(∃t > T ;X
(n)
t = n |X

(n)
T = 0) and µ(t) = κ(n)(t, n).

However, the corresponding maturation time is random, depends on T , and is given by

τ = inf{t > T ;X
(n)
t = n}

on the event {X
(n)
T = 0,∃t > T ;X

(n)
t = n}. We will see in the sequel that letting n tends to ∞

provides a very simple explicit formula for p(T ) and makes τ deterministic, without any loss in
interpretation.
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µ(t) = κ(n)(t, n)κ(n)(t, i)

ρ(n)

κ(n)(t, 0)

ρ(n) ρ(n) ρ(n)

maturity

Figure 5: A catenary chain of compartments with one-way flow and possible killing, used as a
maturation model maturation (or evolution) rate ρ(n), and killing rate κ(n). The down arrows
lead to the cemetery state, which is not represented here.

2.2.2 Continuous state limit model

It is possible to express the law of (X(n))t>T by mean of a Feynman-Kac formula. Rather that
using this approach, we prefer to consider now the limit process obtained by letting the number
of compartments n tends to ∞. We will use a scaling which corresponds to the convergence

{

0

n
,
1

n
, . . . ,

n

n

}

→ [0, 1].

Namely, assume that ρ(n) = nρ for some positive constant ρ. Assume that

lim
n→∞

sup
i∈{0,...,n};t∈R

∣

∣

∣
κ(n)(t, i) − κ(t, i/n)

∣

∣

∣
= 0

for some bounded piecewise continuous function

κ : R × [0, 1] → R+.

Theorem 2.3. Let x ∈ [0, 1]. On the event {X
(n)
T = ⌊nx⌋}, and with the convention c/n = c, the

rescaled process (n−1 X
(n)
t )t>T converges in law, when n goes to ∞, toward the Markov process

(Xt)t>T with state space S := [0, 1] ∪ {c} defined for any T 6 s 6 t by

L(Xt |Xs = x) =

{

p(s, t, x) δx(t−s) + (1 − p(s, t, x)) δe if x 6= c

δc if x = c
,

where x(u) := min(1, x+ρ(u−T )), p(u, v, x) := exp
(

−
∫ v
u κ(w, x(w − u)) dw

)

, and p(u, v, c) := 0
for any x 6= c.

Proof. Consider the natural inclusion πn : S(n) → S defined by πn(i) = i/n for any i ∈ {0, . . . , n}
and πn(c) = c. By this way, any function f : S → R induces naturally a function f(πn) from
S(n) to R, and one has

L
(n)
t (f(πn))(i) = nρ

(

f

(

i + 1

n

)

− f

(

i

n

))

+ κ

(

t,
i

n

)(

f(c) − f

(

i

n

))

.

By using suitable continuity arguments based on Taylor’s formulas, one can show that the

Markov process (n−1 X
(n)
t )t>T converges in law, when n goes to ∞, toward the Markov process

(Xt)t>T with state space S := [0, 1] ∪ {c} and infinitesimal generators

Lt(f)(x) =

{

ρf ′(x) + κ(t, x)(f(c) − f(x)) if x 6= c

0 if x = c
(6)
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defined for continuous functions f : S → R which are smooth on [0, 1] and vanish at the
boundaries. One can find detailed techniques of such limiting procedures in [8] for example. The
obtained generator Lt above is the addition of a deterministic constant drift term ρf ′(x) together
with a random space-time inhomogeneous killing term κ(t, x)(f(c) − f(x)). A Feynman-Kac
formula or a direct check gives the desired expression of the law. Actually, the addition of
a cemetery state corresponding to a killing term to a Markov process always gives rise to a
Feynman-Kac formulae, cf. [5] and [19]. In some ways, our case (6) is the simplest one since we
add a killing term to a deterministic generator (constant drift).

The interpretation in terms of the position Xt of the particle is quite clear: the particle is
moving from left to right on the interval of positions [0, 1] at constant speed ρ. The particle
stops its motion when (and if) it reaches the right extremity of [0, 1]. At any time t ∈ R+

and any position x ∈ [0, 1], it can be killed (and thus placed in the cemetery state c) with
rate κ(t, x). A particle is mature when it reaches the right extremity 1 of [0, 1]. The positions
[0, 1) correspond to the steps of maturation. For any t ∈ R and any x ∈ [0, 1], let us define
g(t, x) := κ(t, x)I[0,1)(x) and µ(t) := κ(t, 1) in such a way that

κ(t, x) = g(t, x)I[0,1)(x) + µ(t)I{1}(x). (7)

Function g gathers the killing rate during maturation, whereas function µ captures the killing
rate after maturation. In the settings of Section 2.1, the process (Xt)t>T corresponds to a
maturation model for which

µ(t) = κ(t, 1) and p(T ) = p(T, T + τ, 0) = exp

(

−

∫ τ

0
g(T + w, ρw) dw

)

, (8)

where the “maturation time” τ is deterministic, independent of t, and given by

τ :=
1

ρ
. (9)

When the particle is not killed, i.e. on the event {XT = 0,∃s > 0;Xs = 1}, τ is exactly the
deterministic duration taken by the particle to reach state 1 from state 0 (at constant speed ρ).

2.3 The resulting counting process

Consider the maturation system with killing modelled by the (Xt) process introduced above,
with maturation speed ρ and killing rate κ : R × [0, 1] → R+ as in (7). The maturation takes a
deterministic time τ given by (9). A particle which begins its maturation at time T can either
die with probability 1−p(T ) where p(T ) is as in (8), or survive with probability p(T ) and achieve
its maturation at time T +τ . Now, consider independent particles which begin their maturation
at times T0, T1, . . . These particles survive with probabilities p(T0), p(T1), . . ., and achieve their
maturation at times M0 = T0 + τ,M1 = T1 + τ, . . . provided that the corresponding p(Ti) are
non null. The survival durations after maturation of the mature particles are i.i.d. random
variables with common rate µ : R+ → R+ where µ(t) := κ(t, 1). Suppose that the initial times
T0, T1, . . . are random and distributed according to an independent Poisson point process on R

with intensity λ : R → R+. For any t > 0, let Nt be the number of mature particles still alive
at time t. Theorem 2.2, together with (8) and (9), yields the following result.

Theorem 2.4. For any 0 6 s 6 t and any m ∈ N, L(Nt |Ns = m) = B(m,α(s, t)) ∗ P(β(s, t)),
where

α(s, t) := exp

(

−

∫ t

s
µ(w) dw

)
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and

β(s, t) :=

∫ t−τ

s−τ
λ(u) exp

(

−

∫ τ

0
g(u + w, ρw) dw

)

α(u + τ, t) du.

In particular, for any 0 6 s 6 t and any m ∈ N,

E(Nt |Ns = m) = mα(s, t) + β(s, t). (10)

The process (Nt)t>0 is a time inhomogeneous M/M/∞ queue, which is a particular birth
and death process, cf. [26, 1, 29]. In an M/M/∞ queue, each client is immediately served by
an independent dedicated server. When g ≡ 0 and µ is constant, one has p ≡ 1, and (Nt)t>0 is
in that case an M/M/∞ queue with input intensity λ and constant output intensity µ. When
in addition λ is constant, the symmetric invariant measure of this queue is the Poisson law
P(λ/µ). In a way, the M/M/∞ queue with constant intensities is for the Poisson process what
the Ornstein-Uhlenbeck process is for Brownian motion, cf. [26, Theorem 6.14].

The role played by the M/M/∞ queueing processes in our model is due to the independency
of the particles in the definition of (Nt)t>0. One can alternatively consider a non independent
killing after maturation, which can lead for example to an M/M/1 type queueing process. Un-
fortunately, the law at fixed time of such a process, even for the time-homogeneous case, is far
more complex than the simple formula obtained in the M/M/∞ case, cf. [28] and [26].

Remark 2.5 (Negative values of κ and input rate amplification heuristics). The ex-
pression of β above still makes sense even when κ takes negative values on [0, 1). In that case,
the quantity p(u) = exp

(

−
∫ τ
0 g(u + w, ρw) dw

)

may exceed 1, and thus cannot be interpreted as
a “survival probability”. Such negative values can be seen in a way as a sort of “amplification”
of the input rate instead of a killing, and can be incorporated into λ. Beware that it does not
correspond to an immigration of particles in the counting process. It appears as a distortion of
the input rate of the counting process.

n

ρ ρ

κ(t, n)

10

κ(t, 1)κ(t, 0)

ρ

elimination (cemetery state c)

Poisson input

Maturity

Figure 6: Catenary chain of compartments with Poisson input, one-way flow (ρ), and space-
time-inhomogeneous killing (κ). Its limit when n tends to infinity is given by figure 4.
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2.3.1 Case without killing after maturation

Assume that µ ≡ 0 (no killing after maturation). In that case, α(s, t) = 0 for any 0 6 s 6 t,
and the formula for β(s, t) boils down to

β(s, t) =

∫ t−τ

s−τ
λ(u) exp

(

−

∫ τ

0
g(u + w, ρw) dw

)

du.

In that case, t ∈ R+ 7→ β(s, t) is non decreasing since the main integrand does not depend on t.
This is not surprising since the particles are never killed after maturation. Hence, on {Ns = 0},
the process t ∈ R+ 7→ Mt is non decreasing, and in particular its expected value β(s, t) is non
decreasing too. When λ is constant and g ≡ 0, we recover a simple Poisson process of intensity
λ.

2.3.2 Case without killing during maturation

Assume that g ≡ 0 (no killing during maturation). In that case, the formula for β(s, t) for
0 6 s 6 t boils down to

β(s, t) =

∫ t−τ

s−τ
λ(u)α(u + τ, t) du.

When in addition both λ and µ are constant, we recover the standard time-homogeneous
M/M/∞ queue with input rate λ and service rate µ, for which

α(s, t) = e−(t−s)µ and β(s, t) =
(

1 − e−(t−s)µ
)λ

µ
. (11)

The Poisson measure P(λ/µ) is a stationary distribution of (Nt)t>0 in that case.

2.3.3 Partial killing during maturation and constant killing after maturation

Let us consider now the particular case where λ is constant, and κ is of the form

k(t, x) = g(t)I[0,δ)(x) + µI{1}(x), (12)

where δ ∈ [0, 1], where µ ∈ R+, and where g : R+ → R+ is a smooth function. It corresponds to a
time dependent killing before the maturation stage δ, and to a constant killing after maturation.
No killing is made between maturation stage δ and full maturation. The formula for β(s, t)
when 0 6 s 6 t boils down to

β(s, t) = λ

∫ t−τ

s−τ
exp

(

−µ(t − τ − u) −

∫ δτ

0
g(u + w) dw

)

du. (13)

When g ≡ 0, this formula reduces to the classical M/M/∞ average queue length (11). Assume
instead that function g in (12) only vanishes at infinity. Then the two formulas (13) and (11) for
β are equivalent when t goes to +∞. In particular, the Poisson measure P(λ/µ) is a stationary
distribution of (Nt)t>0 in that case. One can see on figure 7 that this Poisson equilibrium is
quickly reached. It is possible to quantify the speed of convergence in total variation norm or
in entropy, cf. [26] and [2].
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Figure 7: The plots represent the average number E(Nt |N0 = 0) of Theorem 2.4, and the killing
function g. This example corresponds to the case (12) with λ(t) = IR+

(t), α = 1
2 , µ ≡ 1, ρ = 1,

and g(t − 10) = (e−t/10 − e−t/2)IR+
(t). One can observe on the plot of the average number of

particles three main time phases. The first phase corresponds to an ascendancy to a Poisson
equilibrium before the action of the drug via g. The second phase corresponds to a decrease due
to the action of the killing via function g (delayed by the time lag is τ = ρ−1 = 1). In the third
phase, the killing action decreases and the Poisson equilibrium is reached again.

2.3.4 Identifiability and invariance by some transformations

The dynamics of N := (Nt)t>0 is fully described by the quadruple (τ, µ, g, λ), where τ := 1/ρ.
It is quite natural to ask about the injectivity of the map

(τ, µ, g, λ) 7→ L(N |N0).

According to Theorem 2.4, the law L(N |N0) is completely prescribed by the triple (τ, µ, λg),
where λg : R → R+ is defined by

λg(t) := λ(t)p(t) = λ(t) exp

(

−

∫ τ

0
g(t + w, ρw) dw

)

.

Thus, the couple (λ, g) cannot be identified, since it acts on the dynamics via the compound λg.
The action of g can be compensated by λ and vice versa. Namely, suppose that g can be written
g = g1 + g2, where g1 and g2 are non-negative functions. Then, the two models corresponding
respectively to (τ, µ, g, λ) and (τ, µ, g2, λg1

) are indistinguishable. The extreme case corresponds
to (τ, µ, 0, λg), for which the entire killing function g is merged into the input rate function λ.
Let us analyse some special cases. For any θ > 1, let us consider the transformation which
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replaces (λ, g) by (λθ, gθ) defined by

λθ := θλ and gθ := g + ρ log(θ).

Function µ and parameter ρ are left unchanged, and one can check that λθ
gθ = λg. Therefore,

the dynamics is invariant by this transformation: the models corresponding to (τ, µ, g, λ) and
(τ, µ, gθ, λθ) are indistinguishable, despite their distinct physiological meanings. A multiplicative
perturbation of the input intensity λ corresponds to an additive perturbation of the killing
function g during maturation. Hence, one can decide to normalise the parametrisation by
taking for example λ ≡ 1.

3 A pharmacokinetics/pharmacodynamics example in cancerol-
ogy

Catenary chains of compartments, as depicted in figure 5, are widely used in the literature by
kineticists for the modelling of anticancer drug toxicity, see for instance [9, 10, 11], [4, 12], [3]
and references therein. Most anticancer drugs have toxic effects on white blood cells (myelosup-
pression). Neutrophils are particular white blood cells used as toxicity markers. The catenary
chain of compartments models the maturation process of neutrophils in the bone marrow. Each
maturation stage corresponds to a specific position in the chain. The killing rate during mat-
uration corresponds to the drug toxicity on neutrophils. The last compartment of the chain is
the only observed (blood), and the others correspond to hidden positions (bone marrow). In
practice, the input and transit rates in the catenary chain of compartments are unknown pa-
rameters. The goal of the kineticist is thus to control the content of the last compartment by his
action on the anticancer drug dosage regimen. Consider for simplicity that both the production
rate λ, the transit rate ρ, and the elimination rate in blood µ are constant. The killing rate κ
depends typically on the time profile q : R+ → R of the anticancer drug concentration in blood
(i.e. kinetics). The first step of the Pharmacokinetics/Pharmacodynamics study is to find, for
a given kinetics, the best values of the parameters in view of the data (in blood). This first step
can be addressed in several ways.

Approach (I). This traditional approach involves a deterministic finite catenary chain of n
compartments, as presented in example 1.1 page 4. It is customary to model the toxic effect of the
anticancer drug on neutrophils via a killing rate κ(t, i) = γq(t) for i 6 n0 < n, κ(t, n) = µ, and 0
elsewhere. The vector Q(t) := (Q1(t), . . . , Qn(t)), which represents the number of neutrophils in
each compartments of the chain, solves a system of n ordinary differential equations (ODE). The
available data concerns only the last compartment (blood), labelled n. The function t 7→ Qn(t)
depends on the modelling parameters λ, ρ, µ, γ, n0. The main drawback of this approach is
that the number of compartments n is unknown, and that the system of equation is heavy.

Approach (II). In this approach, we circumvent the problem of the choice of n by considering
the continuous limit in n, as presented in Section 1.2. This limit procedure leads to killing rates κ
as in equation (7). More precisely, we mimic the cutoff used in the approach (I) by considering
equation (12) with g(t, x) = γq(t)I[0,δ](x) where γ > 0 and where δ ∈ [0, 1) are constants.
The continuous limit in n is constructed at the level of the stochastic interpretation. As a
consequence, the relevant quantity is the mean of the counting process of Theorem 2.4, given
by equation (10). The initial value m in (10) must be averaged with respect to the equilibrium
without drug, i.e. the Poisson measure P(λ/µ). The quantity Qn(t) of the approach (I) is thus
replaced now by the following explicit alternative quantity:

Q∞(t) := α(0, t) + β(0, t)
λ

µ
, (14)
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where the functions α and β are as in Theorem 2.4.

Remark 3.1. Actually, one can use a Hill-type transform to model the dependency of the killing
rate with respect to the drug kinetics. However, for low drug concentration values, it is customary
to simplify the approach by considering a linear dependency with a possible cutoff in space, as in
the approaches (I) and (II) above. We emphasise the fact that even if the instantaneous killing
rate depends linearly on the drug kinetics, the global killing effect is nonlinear with respect to the
kinetics.

We compare below, on a simple example, the two approaches defined above. The approach (I)
leads to the resolution of a system of ODE, whereas the approach (II) leads to the computation
of explicit integral transforms given by (14).

In order to mimic practical situations, we used a data set close to the one analysed in [3]. In
this study, an anticancer drug was administrated by 30-min intravenous infusions to patients,
on five consecutive days, cf. figure 8. For a typical patient, the drug concentration at time t
was proportional to :

q(t) =

4
∑

d=0

(

1 − e−α(t−24d)
)

I24d+[0,1/2](t) +
(

1 − e−α/2
)

e−β(t−24d−1/2)I24d+[1/2,∞](t),

with α = 1.86 and β = 0.51. For simplicity, we restrict our analysis in the sequel to a single
patient. We first analysed this dataset using approach (I) and approach (II), as described above.
Let us denote by Yj the observed neutrophils counts in blood at time tj.

Approach (I). The vector valued function t 7→ (Q1(t), . . . , Qn(t)) solves the following system
of ordinary differential equations:







































∂tQ1(t) = λ − ρQ1(t) − γq(t)Q1(t)
∂tQ2(t) = ρQ1(t) − ρQ2(t) − γq(t)Q2(t)

...
∂tQn0

(t) = ρQn0−1(t) − ρQn0
(t) − γq(t)Qn0

(t)
...

∂tQn(t) = ρQn−1(t) − µQn(t)

At time t = 0, the drug concentration q is null, and the system is at equilibrium. Consequently,
∂t=0Qi = 0 for i ∈ {1, . . . , n}. The initial condition is thus Q1(0) = · · · = Qn−1(0) = λ/ρ,
and Qn(0) = λ/µ. These systems were numerically integrated using the Fortran package
ODEpack, cf. for instance [25, 24, 15]. Models with n= 5, 10, 30 and 100 compartments were
used. For each n-compartments model, the parameters (λ, ρ, µ, γ, n0) were estimated with
ordinary least-squares :

arg inf
λ,ρ,µ,γ,n0

∑

j

(Yj − Qn(tj))
2.

Since n0 is an integer, all possible values of n0, from 1 to n − 1, were screened and the value of
n0 giving the minimum residual sum of squares was then selected.

Approach (II). The explicit expression of (14) provides the following formula for the average
number of neutrophils in blood at time t:

Q∞(t) =
λ

µ
e−µt + λeµ(t−τ)

∫ t−τ

−τ
exp

(

µu − γ

∫ δτ

0
q(u + w)dw

)

du,

where τ = 1/ρ. Since q has an easily computable primitive, the inner integral in the expres-
sion above is explicit. The outer integral was numerically evaluated using the Clenshaw-Curtis
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quadrature method. The parameters (λ, ρ, µ, γ, δ) were estimated with ordinary least-squares.
Notice that the continuous parameter δ ∈ [0, 1) plays here the role of the discrete parameter
n0 < n of the approach (I).

The curves obtained with the different models are represented in figure 8. On the whole,
the different models approximately give the same curves. Despite its appearance, t 7→ Q∞(t)
is smooth. The curves provided by the approach (I) with 100 compartments in one hand and
the approach (II) in the other hand are nearly the same. The obtained residuals sum of squares
are given in table 1. The curves are given by figure 8. The best fit was obtained with the 10-
compartments model. Models with more compartments, including the ∞ compartments model
of approach (II) give approximately the same quality of fit. The number of parameter to estimate
is the same for both approach (I) and (II). However, the estimation of n0 in approach (I) leads to
a large amount of extra ODE integration. The amounts of time needed for the ODE integration
are at least twice as long for models with more than 10 compartments than for the integral
evaluation of approach (II). Keeping in mind that such studies usually include several tens of
patients, the approach (II) that we proposed offers a reasonable alternative to compartmental
models.

5 CP 10 CP 30 CP 100 CP Continuous

Computation time 0.39 0.99 11.803 235.12 0.51
Sum of Squares 0.99 0.25 0.32 0.32 0.33

Table 1: The duration of the ODE/integral evaluation. For compartmental models, these du-
rations have been obtained as (n − 1)× duration for a single evaluation of the ODE to take
into account the screening needed to estimate n0. The obtained sum-of-squares are given in the
second row.
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