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Abstract The goal of this paper is to design a new
control algorithm for open-loop control of complex
systems. This control approach is based on a genealogical
decision tree for both regulation and tracking control
problems. The idea behind this control strategy consists
of associating Gaussian distributions to both the norms
of the control actions and the tracking errors. This
stochastic search model can be interpreted as a simple
genetic particle evolution model with a natural birth and
death interpretation. It converges on probability. A
numerical example dealing with the control of a fluidized
bed combustion power plant illustrates the feasibility and
the performance of this control algorithm.
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1 Introduction

Control of complex systems has attracted the interest of
many researchers. Lately, several workshops, research

cluster/networks projects, and summer schools have
been dedicated to dynamics and control of complex
systems. There is no commonly accepted definition for
such systems. A complex system can be characterized by
the lack of information (time varying or stochastic sys-
tems [1], etc.), nonlinear behavior, or by the fact that it is
impossible to associate one of available control ap-
proaches to the considered system. Complex systems are
difficult to control. The linear control theory, which is
well stated, does not permit the derivation of control
strategies for these kind of systems. Indeed, the state of
nonlinear systems analysis is not nearly complete. The
control and modeling of such systems requires a deep
understanding and experience of a large spectrum of
modeling and control techniques.

Complex systems can be classified into two main
categories: continuous and batch systems. In the fine
chemistry, many processes are operating in batch
mode, are repetitive in nature and operate over a fixed
time interval. The iterative learning control approach
[2] incorporates past control information (such as
tracking errors and control input signals) from previ-
ous runs into the construction of the present control
action.

The complexity of a system does not correlate with
its scale. Indeed, it is, for example, more easy to derive
a control policy for an industrial phosphate drying
furnace of 40 m long, than for a rapid thermal system
used in semiconductor wafer fabrication process [3].
Note also that the complexity can derive from multiple
simple dynamic components that interact in varying
and complex ways. For different reasons (improved
conversion and selectivity, heat integration benefits and
avoidance of azeotropes, etc.), chemical engineers are
now concerned with process intensification [4], which
generally leads to very simple systems. For example,
the manufacturing of methyl acetate is usually done in
a plant consisting of a chemical reactor and nine dis-
tillations columns. This manufacturing can be done in
a single reactive distillation. The resulting reactive
distillation process is very simple and more economical.
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Compared to controlling a set consisting of a reactor, a
number distillation columns, pumps, and heat
exchangers, it is relatively easy to control a single dis-
tillation column.

The development of high performance digital com-
puters and later evolutionary algorithms [5] has intro-
duced new tools for optimizing and controlling
complex systems. Genealogical decision trees possess
several properties that make them particularly attrac-
tive for applications to modeling and control of com-
plex systems. Among these properties are their
flexibility, robustness and applicability to both linear
and non linear systems, and for both continuous and
batch processes. On the other hand, their asymptotic
behavior with respect to the time horizon or the par-
ticle system size is nowadays well understood. These
recent results allow us to quantify with precision their
ability to solve any optimal control problem which can
be interpreted in terms of a nonlinear filtering problem.
The first heuristic schemes of these control particle
models appeared in [6]; some recent results were re-
ported in [7]. One objective of the present article is to
connect these tree based models with the recently
developed asymptotic analysis [8]. This control algo-
rithm falls within the areas of mathematical population
genetics and interacting particle systems.

The control approach suggested in this paper is
suitable for processes for which there exist no on-line
sensors for the controlled outputs (semiconductors
manufacturing, chemistry, biotechnology, etc.), or on-
line analyzers (concentration measurement, etc.) are very
expensive and need high maintenance costs. Soft sensors
and the inferential control approach [9] have been ded-
icated to solve these process control problems where the
outputs measurements are available only off-line. Soft
sensors are based on models relating the desired con-
trolled variable to some easily measured variables. The
inferential control approach is mainly based on the
prediction of the process outputs over the interval sep-
arating two successive measurements, or on the on-line
measured variables which are correlated to the con-
trolled variables. Notice that the interval between two
measurements is usually not constant. Indeed, some
measurements are carried out in laboratory. As a con-
sequence, the efficiency of soft sensors and inferential
control approaches are limited by the adopted model for
the sensor, and the characteristics and the behavior of
the predictor of the outputs. Open-loop control is em-
ployed extensively for the execution of fast movements
where feedback propagates too slowly, for example, to
affect the motor response in human voluntary movement
[10]. To our knowledge, there exist no algorithms for
solving general open-loop tracking control problems.

The remainder of this paper is organized as follows:
the control problem is formulated in the next section.
The control algorithm under consideration is described
in Sect. 3, and its analysis is given in Sect. 4. Section 5
presents a numerical example. Some concluding remarks
ends this paper.

2 Problem formulation

Let us consider a complex system described by the fol-
lowing time-varying state representation:

Xn ¼ Fn Xn�1;Unð Þ; with Xn 2 RS ; n ¼ 1; T ; X0; ð1Þ

where Xn is a column vector. The control sequence is
assumed to be a P-dimensional column vector and it is
denoted by

Un 2 RP :

The output sequence is given by aQ-dimensional equation
of the form

Yn ¼ hn Xnð Þ; Yn 2 RQ: ð2Þ

In the above displayed formulae, the index n and X0

represent the time and the initial states, respectively. Let
An and Bn be symmetric and semi-definite positive
covariance matrices. The control objective (finite hori-
zon T) is given by

JT U1; . . . ;UTð Þ ¼
XT

n¼1
Unk k2An

þ
XT

n¼1
Yn � Y ref

n

�� ��2
Bn

ð3Þ

where Y ref
n 2 RQ represents the reference (desired) tra-

jectories, and ||U||A=UT A�1U.
Our objective is to find the sequence of controls

actions that minimizes this cost function in open-loop
control.

3 Control algorithm

Let X0 be the fixed initial states. In what follows, we
shall present the different steps related to a decision tree
based algorithm. This particle search technique can be
interpreted as the historical process associated with a
genetic type evolution model.

The idea behind this control algorithm consists of
associating Gaussian distributions to both the norms of
the control actions and the tracking errors, i.e.,

Unk k2 �! 1ffiffiffiffiffiffi
2p
p exp �b

2
Unk k2An

� �

Yn � Y ref
n

�� ��2 �! 1ffiffiffiffiffiffi
2p
p exp �b

2
Yn � Y ref

n

�� ��2
Bn

� �
:

ð4Þ

The parameter b is similar to the inverse of the temper-
ature in simulated annealing optimization algorithms.
Indeed, for large value of b, the probability distribution
will have the form of a hair pin.

This duality between cost/performance functions and
probability measures can obviously be extended to more
general situations. For instance, for bang/bang control
problems the cost function is rather given by an
expression of the form

340



JT U1; . . . ;UTð Þ ¼
XT

n¼1
anUn þ

XT

n¼1
Yn � Y ref

n

�� ��2
Bn

with control sequences U1,...,UT taking values in {0,1},
and for some strictly positive sequence of parameter a n.
In this context the duality is given as above by replacing
the Gaussian distribution (4) by the distribution of a
random variable Un which takes the value 0 with prob-
ability

pn ¼
1

1þ expðanÞ

and 1 with probability 1�pn. In other words, the Gaussian
distribution (4) is replaced by Pr(Un=0)=1�
Pr(Un=1)=pn.

Step 1 The first transition can be decomposed into two
traditional mutation/selection genetic type mechanisms.
The mutation procedure consists of sampling randomly
a sequence of decisions, and the selection stage consists
of selecting randomly the best fitted decisions. These two
steps can also be interpreted as local prediction and
updating search mechanisms.

Step 1.0 (Local prediction of the optimal control)
Compute N independent and identically distributed
normal variables N 0;A1ð Þ

U1
1 ;U

2
1 ; . . . ;UN

1 :

These control values lead to a series of N outputs

Y 1
1 ¼ h1 X 1

1

� �
; Y 2

1 ¼ h1 X 2
1

� �
; . . . ; Y N

1 ¼ h1 X N
1

� �
;

with

X i
1 ¼ F1 X0;Ui

1

� �
; i ¼ 1;N :

Step 1.1 (Local selection of the control toward the
tracking trajectory) In order to simplify the notations,
let us introduce the following terms

pi
1 ¼

exp � b
2 Y ref

1 � Y i
1

�� ��2
B1

� �

PN
j¼1 exp �

b
2 Y ref

1 � Y j
1

�� ��2
B1

� � : ð5Þ

for i=1,...,N where
P

i=1
N p1

i=1.
Generate N independent and identically distributed

random variables Û1
1 ; Û

2
1 ; . . . ; ÛN

1 according to the fol-
lowing discrete distribution (see Appendix A)

p1 ¼
XN

i¼1
pi
1dUi

1
;

where du is the Dirac measure at the control value u 2 RP :
In other words, for each k ¼ 1;N ; each random control
Û k

1 takes the value U1
i with probability equal to p1

i .
The implementation of these control actions leads to

X̂ 1
1 ¼ F1 X̂0; Û1

1

� �
¼) Ŷ 1

1 ¼ h1 X̂ 1
1

� �
; X̂0 ¼ X0

X̂ 2
1 ¼ F1 X̂0; Û2

1

� �
¼) Ŷ 2

1 ¼ h1 X̂ 2
1

� �

..

.

X̂ N
1 ¼ F1 X̂0; ÛN

1

� �
¼) Ŷ N

1 ¼ h1 X̂ N
1

� �
:

Step 2 Step 2.0 (Local prediction of the optimal con-
trol at the second step) As in the first step, we generate a
series of independent and identically normally distrib-
uted ðN 0;A2ð ÞÞ random variables

U1
2 ;U

2
2 ; . . . ;UN

2 :

These control values lead to a series of N outputs

X 1
2 ¼ F2 X̂ 1

1 ;U
1
2

� �
¼) Y 1

2 ¼ h X 1
2

� �

..

.

X N
2 ¼ F2 X̂ N

1 ;U
N
2

� �
¼) Y N

2 ¼ h X N
2

� �
:

Step 2.1 (Local selection of the control toward the
tracking trajectory) Generate

Û1
2 ; Û

2
2 ; . . . ; ÛN

2

according to

XN

i¼1
pi
2dUi

2
; with pi

2 ¼
exp � b

2 Y ref
2 � Y i

2

�� ��2
B2

� �

PN
j¼1 exp �

b
2 Y ref

2 � Y j
2

�� ��2
B2

� � :

Now suppose that the selected control sequence is given
by

Û1
2 ; Û

2
2 ; . . . ; ÛN

2

� �
¼ Ui1

2 ;U
i2
2 ; . . . ;UiN

2

� �

for some index sequence i1,...,iN in [1, N]. These control
actions lead to

X̂ 1
2 ¼ F2 X̂ i1

1 ;U
i1
2

� �
¼) Ŷ 1

2 ¼ h X̂ 1
2

� �

..

.

X̂ N
2 ¼ F2 X̂ iN

1 ;U
iN
2

� �
¼) Ŷ N

2 ¼ h X̂ N
2

� �
:

Step 3 Repeat Step 2 for n=3, 4, ..., T. Appendix B
gives a pseudo-code mechanization of the algorithm.

3.1 A genealogical decision tree model

This stochastic search model can be interpreted as a
simple genetic particle evolution model. These evolu-
tionary algorithms have a natural birth and death
interpretation. More precisely, each controlled state X̂ i

n
results from the selection of a random control action,
say Û i

n ¼ Uj
n; for some j. That is, we have that
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X̂ i
n ¼ Fn X̂ j

n�1;U
j
n

� �
:

In this case,we can interpret the state X̂ j
n�1 as the parent of

the individual X̂ i
n at level (n�1). In the same way, the parent

individual X̂ j
n�1 results from the selectionof a randomcontrol

action, say Û j
n�1 ¼ Uk

n�1; for some k, that is we have that

X̂ j
n�1 ¼ Fn�1 X̂ k

n�2;U
k
n�1

� �
:

Arguing as above, we can interpret the state X̂ k
n�2 as

the parent of the individual X̂ j
n�1; and therefore, as the

ancestor of the individual X̂ i
n at level (n�2). Running

back in time, we can trace the complete ancestral line of
the current individual

X̂ i
1;n �� � � �X̂ i

n�2;nð¼ X̂ k
n�2Þ �X̂ i

n�1;nð¼ X̂ j
n�1Þ �X̂ i

n;n

¼ X̂ i
n:

We define in the same way, the ancestral decision line
of the corresponding control actions

Û i
1;n �� � � �Û i

n�2;nð¼ Û k
n�2Þ �Û i

n�1;nð¼ Û j
n�1Þ �Û i

n;n

¼ Û i
n:

At the final horizon time T, we obtain the approximat-
ing optimal open-loop control actions

Û I
1;T �� � � �Û I

T�2;T �Û I
T�1;T �Û I

T ;T ¼ Û I
T ;

where the index label I is chosen so that

inf
i¼1;N

Jn Û i
1;n; Û

i
2;n; . . . ; Û i

n;n

� �

¼ Jn Û I
1;n; Û

I
2;n; . . . ; Û I

n;n

� �
:

4 Asymptotic analysis

There exist many results on the asymptotic analysis of
the genetic evolutionary models presented in this article.
For instance, in advanced signal processing, these
interacting particle algorithms, and their genealogical
tree models, provide a powerful stochastic and adaptive
grid approximation for solving nonlinear filtering and
smoothing problems. In our optimal control/tracking
context and in some sense, we can prove that, for any
time horizon n, we have for any bounded and measur-
able function un on RP�n

1

N

XN

i¼1
un

�
Û i

1;n; Û
i
2;n; . . . ; Û i

n;n

�
!

N!1
E
	
un W1;W2; . . . ;Wnð Þj

Y1 ¼ Y ref
1 ; . . . ; Yn ¼ Y ref

n



: ð6Þ

The conditional expectation in the above display corre-
sponds to the conditional distribution of the signal dis-
turbance filtering problem given by the equations

X w
n ¼ Fn X w

n�1;Wn
� �

Yn ¼ hn X w
n

� �
þ Vn

; ð7Þ

where Wn and Vn are independent centered Gaussian
random vectors, with respective covariance matrices An/
b and Bn/b.

To find the control actions which minimize the con-
sidered control objective is equivalent to look for the
most likely actions Wn. To understand the duality be-
tween this filtering model and the control problem dis-
cussed in this work, we observe that

PrððW1;W2; . . . ;WnÞ 2 dðw1;w2; . . . ;wnÞ

jY1 ¼ Y ref
1 ; . . . ;Yn ¼ Y ref

n Þ

¼ 1

Zn
exp �b

2

Xn

k¼1
wkk k2Ak

þ
Xn

k¼1
Y ref

k � hk X w
k

� ��� ��2
Bk

 ! !

� dw1 � � �dwn

¼ 1

Zn
exp �b

2
Jnðw1; . . . ;wnÞð Þ

� �
dw1 � � �dwn;

ð8Þ

where d (w1, w2, ..., wn) stands for an infinitesimal neigh-
borhood of the perturbation sequence ðw1;w2; . . . ;wnÞ 2
RP�n;Zn is a normalizing constant, and dwk represents the
Lebesgue measure on RP : Loosely speaking, the above
expression indicates that the conditional probability mass
is concentrated around the optimal control sequence.
The approximation result (6) can be used to estimate the
desired control sequence.

To get one step further in our discussion, let us
denote by ln the conditional distribution defined in (8).
Using Theorem 8.3.3 in [8], if we let ln

� q be the q-tensor
product of the measure ln, then we know that

Law Û i
1;n; Û

i
2;n; . . . ; Û i

n;n

� �

i¼1;q

� �
� l�q

n

����

����
tv
� q2

N
cðnÞ

for some finite constant c(n), and for any q<N, and any
time horizon n. In the above display, ||l � m||tv stands for
the total variation distance between two probability
measures l and m defined by

l� mk ktv¼ sup

Z
ðlðdxÞ � mðdxÞÞf ðxÞ

����

����; f : fk k\1

� 
:

The rationale behind this result is that the first q decision
control lines,

Û i
1;n; Û

i
2;n; . . . ; Û i

n;n

� �
; i ¼ 1; . . . ; q;

are asymptotically independent with the same distribu-
tion (8).

It is out of the scope of this paper to provide a
detailed analysis of these genealogical tree simulation
models. For a more thorough discussion we refer the
reader to [8]. These models can be interpreted as a
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mean field particle interpretation of the flow of condi-
tional distributions introduced in (8). This probabilistic
interpretation also provides a stochastic and adaptive
grid approximation of the desired conditional distri-
butions. This random grid is more refined on control
regions with high probability mass. These regions cor-
respond to low and minimal energy control actions. In
this sense, the genealogical tree models provide a
powerful technique to track the optimal decision se-
quence. In this connection, we observe that the gene-
alogical particle decision tree consists of approximate
samples according to the conditional distribution (8).
As a consequence, the probability to have high energy
controls is exponentially small. In this sense, the former
particle search algorithm avoids the generation of high
energy decisions.

Thanks to previous propagation of chaos estimate,
one can prove easily the following convergence in
probability

lim
N!1

inf
i¼1;qðNÞ

Jn Û i
1;n; Û

i
2;n; . . . ; Û i

n;n

� �

¼ inf
U1;...;Un

Jn U1; . . . ;Unð Þ

for any increasing sequence of block sizes q Nð Þ ¼
o

ffiffiffiffi
N
p� �

; where inf Jn stands for the essential infinimum
of the control objective function Jn with respect to the
Lebesgue measure onRP�n: To prove this claim, we note
that for any d>0

Pr

�
inf

i¼1;qðNÞ
Jn

�
Û i

1;n; Û
i
2;n; . . . ; Û i

n;n

�

> inf
U0;...;Un

Jn U1; . . . ;Unð Þ þ d

�

� q2ðNÞ
N

cðnÞ

þ 1� ln Jn\ inf
U1;...;Un

Jn U1; . . . ;Unð Þ þ d

� �� �qðNÞ
:

5 Numerical example

Let us illustrate the behavior of the genealogical decision
tree approach in the design of an optimal control se-
quence for a fluidized bed combustion (FBC) power
plant. The simulations were based on a model of a saw-
dust fired FBC power plant.

5.1 FBC process

A schematic drawing of a FBC power plant is shown
in Fig. 1. The combustion chamber contains a large
quantity of finely divided particles (called bed material)
such as sand. The primary combustion air lifts these
particles until they form a turbulent bed which behaves
like a boiling fluid. The fuel is added to the bed and the

mixture of sand and fuel is kept in constant movement
by the primary air. The fuel ignites almost immediately,
and the heat released as the material burns maintains the
bed temperature; the turbulence keeps the temperature
uniform through the bed.

The heat released in combustion is captured by heat
exchangers and used for the generation of electricity,
steam, or both. The steam generation system of a boiler
consists of a drum system (drum with water tubes) and a
superheater system (superheaters with attemperators).
The drum is fed by the feed water generated by the water
supply system. The water is evaporated by the heat
released in combustion and the fresh steam out of the
drum goes through the superheaters.

In general, FBC plants are distinguished by low
average combustion temperatures (�850�C), high
combustion efficiency �95%, flexibility to different
fuels and changes in fuel quality, low NOx emissions,
easy SO2 reduction, high excess air levels (30%),
intermediate particle sizes (1–3 mm), long residence
times of fuel particles (several minutes), and vigorous
particle motion (which dominates heat transfer and
reaction processes). The fluidized bed boiler is partic-
ularly suitable when it is intended to use widely dif-
fering fuels with varying heat values. This is the case
when using fuels with low heat values (together with
coal as a support fuel), coal with high sulphur content,
fuels which contain a high proportion of fines, etc. The
lighter fractions of the fuel can be returned to the
reactor through separators. Multi-fuel capability is also
due to the ability to alter the heat transfer coefficient
by shifting bed inventory from the lower to the upper
furnace. The plant units range from small units of less
than 3 MW up to over 550 MW for biomass fuels and
1,000 MW using coal.

A process model has been developed for the plant,
consisting of seven differential equations describing the
fuel inventories, temperatures, and oxygen concentra-
tions in the bed and freeboard of the furnace, as well as
the generated superheated steam power. The model is
given in Appendix C (see also [11]). The parameters of
the model were fine-tuned according to measurements
from a 25 MW district heating plant using saw-dust as
main fuel. Earlier studies include modeling and control
of fuel inventory [12] and modeling and optimization of
flue gas emissions (see, e.g., [13]), among many others
(see [14] and references from there).

5.2 Control of FBC

The product of the process is the superheated steam,
often further converted into district heat and/or electri-
cal power. Typically, the power level (steam pressure) is
feedback controlled using the fuel feed rate. The fuel
feed rate gives a set point for the primary air, in order to
maintain safe stoichiometric and fluidization conditions
in the bed. The oxygen level is kept at a constant level
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using the O2-trim, which manipulates the secondary air
flow.

The flue gas O2 measurement can also be used to
give a fast indication of the combustion conditions, and
further in calculation of the combustion power. The
fuel inventory models the amount of unburned char in
the bed, which, depending on fuel and furnace condi-
tions, is more or less instantly available for combus-
tion. Therefore it can potentially serve as a control
element during transients, such as load and fuel chan-
ges. The formation of fuel inventory depends heavily
on the fuel (char, wood, peat, etc.) and its properties
(such as the fuel particle size distribution). The power
and O2 are typically measured on-line, whereas the fuel
inventory cannot be measured during normal operation
(see [12]). A model based control approach is therefore
required.

Multivariable control of the FBC plant can be
considered starting from linear static descriptions
(using the relative gain array method) or linear(ized)
dynamic models using the multivariable state space
generalized predictive control (GPC). These approaches
for FBC were considered in [11]. For a restricted class
of nonlinear systems, an inverse-model based approach
can be considered. For a general nonlinear control
design, approaches such as cell-to-cell mapping [15] or
controlled Markov chains [16] can be applied, leading
to dynamic programming problems. These approaches
rely on discretization of state-space, however, and are
impractical when the dimensions of the system increase.
The genealogical decision tree attempts to solve the
optimization problem using a randomized model-based
approach.

5.3 Simulations

In the simulations using the genealogical decision tree
approach, a three-input three-output multiple-input
multiple-output (MIMO) open-loop control problem
was considered. The control inputs were chosen to be the
fuel feed rate [kg/s], the primary air flow, and the sec-
ondary air flow [Nm3/s], which are typically used in the
control of this type of plant. The fuel inventory [kg], flue
gas oxygen [Nm3/Nm3], and the superheated steam
power [MW] were the controlled variables.

The control objective consisted of two phases: (a) An
increase in fuel inventory from initial steady state 150–
300 kg following a 10 min ramp trajectory; (b) An in-
crease of the load from 21 to 26 MW following a 10 min
ramp trajectory. During the load change, the flue gas
oxygen was to be kept at a constant 3.1%.

An incremental control was used in the optimization,
i.e., the control action applied to the plant was given by

Vn ¼ Un þ Vn�1;

where Vn was the plant input vector [fuel feed, primary
air, secondary air], and the increment, Un, was optimized
using the genealogical decision tree scheme.

In general, the following parameters need to be set:
An and Bn (cost function weight matrices), N (number of
particles, i.e., decisions lines in parallel), and b (inverse
temperature).

• Selection of An and Bn: In the simulations, An and Bn

were taken to be diagonal (no prior knowledge on the
relation between inputs, output costs were fully de-
coupled). The distribution of the i.i.d. random vectors

board, WV

bed
WC , CB

throat

Flue gas oxygen CF

heat exchangers

stack

Throat temperature

Freeboard temperature TF

Secondary air flow F2

Fuel feed QC

Bed temperature TB

Primary air flow F1

free

Fig. 1 Fluidized-bed
combustion (FBC) power plant
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Un
i will always be zero mean, the matrix An effects the

covariance of the distribution. A large An distributes
the realizations wider across the search space RP ; but
will also increase the costs in the control objective JT.
Setting the diagonal elements of Bn equal gives an
equal and time-invariant emphasis on the error at the
outputs. A reasonable initial guess in tuning the Bn

can be obtained by selecting the diagonal elements in
Bn so that a suitable importance in the cost is obtained
(balance between the output deviation and control
terms in the cost function).

• Parameter N: With small N, only a rough control se-
quence will be obtained, while with large N the ran-
domness in the optimization disappears. A large N
will result in unfeasible computational burden, how-
ever. For the model and the implementation consid-
ered, N up to several thousands was calculated with
little effort on a standard office PC. Most of the
computational load was due to numerical integration
of the plant differential equations.

• The parameter b can be seen as a scaling parameter.
For large values of b, the distribution for Û i

n will be
sharp; small positive values of b result in more vari-
ability in the different ancestral decision lines. For an
initial guess, b=1 should give reasonable values,
provided that the An and Bn were tuned as described
above. Clearly, the selection of b is inversely related to
the scale of Bn. The selection of b is also linked with
that of N, in that for large values of b a large N may
be needed in order to have sufficient variability in the
search space.

In the FBC simulations, the algorithm parameters were
set to An=(1/20) diag [42, 42, 122], Bn=diag [502, 0.0022,
12], b=1, based on the scales of the variables, the pop-
ulation size was set to N=10,000. Setting the control
interval to 15 s results in trajectories of length T=130.

Figures 2, 3, and 4 show the plant inputs and outputs
in a typical simulation. Figure 2 shows the fuel feed rate
control sequence, QC, and the primary and secondary air
flows, F1 and F2. The main characteristics of the fuel
feed rate follow the trajectory for power demand (dotted
line in Fig. 4). The requirement for a constant flue gas
oxygen (dotted line in Fig. 3) results in that the air flow
levels increase simultaneously with the fuel feed rate.
The control sequences for QC, F1, and F2 appear real-
izable, even if some filtering could be useful so as to
reduce jittering.

Despite the large changes in the process, the flue gas
oxygen is kept well in the vicinity of the given set point,
and the bed and freeboard temperatures remain between
allowable limits (Fig. 3). The bed oxygen concentration,
CB, is an idealized quantity describing average bed
conditions and cannot be measured on-line.

The two desired ramp trajectories are shown in
Fig. 4. The superheated steam power, P, follows closely
the given trajectory. The plant model also gives an in-
creased bed fuel inventory as desired (bottom right plot,

WC). The fuel inventory in the freeboard, WV, is negli-
gible as it consists of volatiles.

We conclude that the genealogical decision tree
algorithm was able to find a feasible solution to the 3·3
tracking problem. The solution given by the approach is
an open-loop control sequence. In real applications,
feed-back control is required to diminish the effect of
disturbances acting on the process. A straightforward
way to use the genealogical decision tree optimization is
to add simple PI-controllers to compensate for distur-
bances (see [14]).

It is the belief of the authors that these simulations
are indicative of results that can be obtained in real
situations, and demonstrate the efficacy of this open-
loop regulation and tracking control algorithm.

6 Conclusions

A new control algorithm for open-loop control of
complex systems is suggested. The approach is based on
a genealogical decision tree for tracking control prob-
lems. The idea behind this control strategy consists of
associating Gaussian distributions to both the norms
of the control actions and the tracking errors. This
stochastic search technique can be interpreted as a simple
genetic particle evolution model with a natural birth and
death interpretation. It converges in probability. A
numerical example, drawn from FBC power plant con-
trol, illustrated the operation and good performance of
this control algorithm.

7 Appendix A: Generation of random variables
distributed according to a discrete distribution

Let us describe a way for generating the set of control
actions Û1

1 ; Û
2
1 ; . . . ; ÛN

1 according to the discrete distri-
bution p1. As an aside, the forthcoming simulation
technique is well known for simulating uniform order
statistics. Loosely speaking, this simulation method
consists of sampling a uniform and ordered sequence of
random variables

0\D1\D2\� � �\DN\1;

then duplicating the best fitted decisions U1
i in accor-

dance with the number of Dj in the interval

Xi�1

j¼1
pj
1;
Xi

j¼1
pj
1

" #
:

The uniform ordered sequence is sampled using renor-
malized exponential times. This ‘‘global’’ strategy avoids
the use of N separate tests to detect the interval where a
given uniform random variable falls. Notice that the
latter simulation method requires N2 operations to per-
form the selection/updating stage, while the one based
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on ordered statistics only requires N elementary simu-
lations.

To describe more precisely this technique, we start by
generating (N +1) random variables uniformly distrib-
uted on the interval [0,1], and consider their opposite
logarithm

� log uniform on 0; 1½ �ð Þ

which gives

R1;R2; . . . ;RNþ1

Let us now consider their cumulative sums, i.e.,

R
1 ¼ R1; R

2 ¼ R1 þ R2; . . . ; R
Nþ1 ¼ R1 þ � � � þ RNþ1;

Di ¼ R
i

R
Nþ1 :

In order to be able to associate these numbers to prob-
ability, let us scale them as follows

Di ¼ R
i

R
Nþ1 2 0; 1½ �:

Finally, the selection of the control actions is selected
according to the schematic diagram given in Fig. 5. As
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Fig. 3 FBC O2 and
temperature signals. The upper
plot shows the bed and flue gas
O2 (dashed and solid lines,
respectively). The lower plot
shows the bed and freeboard
temperatures (dashed and solid
lines)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

Q
C

 [
kg

/s
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

F
1, 

F 2 [
N

m
3 /s

]
F1

F2

t [h]

Fig. 2 FBC control signals.
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shown in the figure, we then count the number N1
j of Di

in each interval of length p1
j and we affect N1

j times the
value of the control U1

j .
This selection procedure is based on the facts that if Z

is a random variable distributed uniformly on the
interval [0,1], then the random variable �(1/k) log(1�Z)
is distributed according to an exponential law with
parameter k>0. As (1�Z) is also uniformly distributed
on the interval [0, 1], the random variable �(1/k) log(Z)
is also distributed according to the exponential law with
parameter k [1]. If S1, S2, ..., SN+1 are (N+1) inde-
pendent random variables distributed according to an
exponential law with parameter k, then the random
variable

R
Nþ1 ¼ S1 þ S2 þ � � � þ SNþ1; R

N � R
N�1 ¼ SN

is distributed according to the Gamma law with
parameter (N+1) the form of which is very close to the
Poisson law, and if {SN; N ‡ 1} are independent random
variables distributed according to an exponential law
with parameter k=1, then for any c>0 the integer

random variable

M ¼ inf N � 1; S1 þ S2 þ � � � þ SNþ1 > c
� �

is distributed according a Poisson law with parameter c
[1]. Notice also that for any N‡1 the random variable

R
Nþ1

and the normalized vector

D1; . . . ;DN
� �

¼ R
1

R
Nþ1 ; . . . ;

R
N

R
Nþ1

 !

are independent, and this vector is distributed according
to an uniform statistic on the interval [0,1].

8 Appendix B: Mechanization of the algorithm

Let us assume that the plant model is given by

xnþ1 ¼ f xn; unð Þ; yn ¼ g xnð Þ:

The following pseudo-code implements the algorithm:

D1 D2 D3 D4 D5 D6 DN+1=10 DN

p1

1 p1
2

1
1

3
1

2
1

1
1

ˆˆˆ UUUU === 2
1

5
1

4
1

ˆˆ UUU ==

...

...Fig. 5 Selection of the control
actions
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Fig. 4 FBC target trajectories.
The upper plot shows the bed
fuel inventory target trajectory
(dotted line) and the simulated
trajectory (solid line). The
freeboard inventory is
negligible. The lower plot shows
the desired and simulated
superheated steam power
(dotted and solid lines,
respectively)
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9 Appendix C: Model for a fluidized bed combustor

A simple model for FBC boiler furnace can be formu-
lated based on mass and energy balances. The model
divides the furnace into two parts: the bed and the
freeboard. The control inputs of the system are the fuel
feed QC [kg/s], and the primary and secondary air flows
F1 and F2 [Nm3/s]. Measurable system outputs are the
flue gas O2 content CF [Nm3/Nm3], the bed and the
freeboard temperatures TB and TF [K], and the power
output P [MW].

The model is described by the following differential
equations. For the fuel inventory WC [kg], oxygen con-
centration CB [Nm3/Nm3], and temperature TB [K] in
bed:

dWCðtÞ
dt

¼ ð1� V ÞQCðtÞ � QBðtÞ

dCBðtÞ
dt

¼ 1

VB
½C1F1ðtÞ � XCQBðtÞ � CBðtÞF1ðtÞ�

dTBðtÞ
dt

¼ 1

cIWI
fHCQBðtÞ � aBtABt½TBðtÞ � TBt�

þ c1F1ðtÞT1 � cFF1ðtÞTBðtÞg

:

Similarly, the freeboard dynamics are given by:

dWVðtÞ
dt

¼ VQCðtÞ � QFðtÞ � QTðtÞ

dCFðtÞ
dt

¼ 1

VF
fCBðtÞF1ðtÞ þ C2F2ðtÞ

� XVQFðtÞ � CFðtÞ½F1ðtÞ þ F2ðtÞ�g
dTFðtÞ
dt

¼ 1

cFVF
fHVQFðtÞ � aFtAFt½TFðtÞ � TFt�

þ cFF1ðtÞTBðtÞ þ c2F2ðtÞT2ðtÞ
� c1½F1ðtÞ þ F2ðtÞ�TFðtÞg

:

The plant superheated steam power dynamics can be
approximated by

dPðtÞ
dt
¼ 1

smix
½PTðtÞ � P ðtÞ�:

The combustion rates can be approximated by QBðtÞ ¼
WCðtÞ

tC
CBðtÞ

C1
; QFðtÞ ¼ WV ðtÞ

tV
CFðtÞ

C2
; where tC and tV refer to the

mean particle combustion time; QTðtÞ ¼ WV ðtÞ
tTðtÞ ; tTðtÞ ¼

VF

F1ðtÞþF2ðtÞ : The heat transfer is given by PT (t)=aBt ABt

[TB (t) � TBt]+aFt AFt [TF (t) � TFt]+cF (F1+F2) (TF �
Tstack).

Find i* = arg mini J
i
T . The solution for the optimal control sequence is v i*.
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For most of the details on the considered model, the
construction of balances and tuning of the model, we
refer to [11, 12], including parameters for a 25 MW
semi-circulated district heating plant. Note that the
above model for combustion in the freeboard and
transfer into superheated steam power is slightly more
refined, however.
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