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Abstract. This paper covers stochastic particle methods for the numerical so-
lution of the nonlinear filtering equations based on the simulation of interacting
particle systems. The main contribution of this paper is to prove convergence of
such approximations to the optimal filter, thus yielding what seemed to be the
first convergence results for such approximations of the nonlinear filtering equa-
tions. This new treatment has been influenced primarily by the development of
genetic algorithms (J. H. Holland [11], R. Cerf [2]) and secondarily by the pa-
pers of H. Kunita and L. Stettner [12, 13]. Such interacting particle resolutions
encompass genetic algorithms. Incidentally, our models provide essential insight
for the analysis of genetic algorithms with a non-homogeneous fitness function
with respect to time.
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1. Introduction

The basic model for the general nonlinear filtering problem consists of a non-
linear plant X with state noise W and nonlinear observation Y with observation
noise V . Let (X,Y ) be the Markov process taking values in S ×R and defined
by the system:

F(X | Y )

{
X ∼ (ν,K)

Yn = h (Xn) + Vn, n ≥ 1,
(1.1)

where S = Rd, d ≥ 1, h : S → R and Vn are independent random variables
having a density gn with respect to the Lebesgue measure. The signal process X
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that we consider, is assumed to be a temporally homogeneous Markov process
on S with transition probability kernel K and initial probability measure ν. We
assume that the observation noise V and the state plant X are independent. For
simplicity, the observation process Y is taken real valued, the extension to vector
observation processes is straightforward. One can study filtering problems in
more general settings. We choose not to do so here, and prefer to focus on the
central ideas. The methods used in this paper can be extended, if desired.

The filtering problem is concerned with estimating a functional of the state
process using the information contained in the observation process Y . The
information is encoded in the filtration defined by the sigma algebra generated
by the observations Y1, . . . , Yn. Let f be an integrable Borel test function from S
into R. The best estimate of Xn given the observations up to time n, is the
conditional expectation

πn(f)
def
= E(f(Xn) | Y n), Y n

def
= (Y1, . . . , Yn).

With the notable exception of the linear-Gaussian situation, general optimal
filters have no finitely recursive solution [3]. This paper covers stochastic particle
methods for the numerical solution of the nonlinear filtering equations based on
the simulation of interacting particle systems. Such algorithms are an extension
of the Sampling/Resampling (S/R) principles introduced by Gordon, Salmon
and Smith in [10] and independently by Del Moral, Noyer, Rigal and Salut
in [4] and [5]. Several examples of practical problems that can be solved using
these methods, are given in [1] and [8], including problems in Radar/Sonar signal
processing and GPS/INS integration. Such particle nonlinear filters will differ
from the others [6, 7] in the way they store and update the information that is
accumulated through the resampling of the positions.

We start by giving some general notation and we recall some basic facts
related to the theory introduced by Kunita and Stettner [12, 13]. In Section 3
we introduce the interacting particle approximation and we design a natural
stochastic basis for the convergence study. In Section 4 we describe recursive for-
mulas for the conditional distributions and the context that we are interested in.
We propose a natural framework which allows to explicitly formulate mean error
bounds in terms of the likelihood functions related to the resampling/selection
procedure. The hardest point of our program is contained in Section 5: the
convergence study of our algorithm requires a specific development because of
the difficulty to compute mean error estimates which are essential to perform
convergence rates. The key idea is to introduce in the mean square error es-
timates a martingale with unit mean, using the functions gn. This martingale
approach simplifies drastically! The evaluation of the convergence rates is dis-
cussed in Section 6. This last section contains our main result: we prove that
the interacting particle filters converge to the conditional distribution, as the
number of particles tends to infinity. The convergence rate estimates arise quite
naturally from the results and associated methodologies of Sections 5 and 6.
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2. Non linear filtering equation

2.1. General notations

Before starting the description of the nonlinear filtering equation, let us first
introduce some general notation.

Let C(S) be the space of bounded continuous functions on S with norm
‖f‖∞ = supx∈S |f(x)|. Let P(S) be the space of all probability measures on S
in which the weak topology is induced:

lim
n→+∞

µn = µ in P(S) ⇐⇒ for all f ∈ C(S) lim
n→+∞

∫
f µn =

∫
f µ.

Let µ ∈ P(S), f ∈ C(S) and, let K1 and K2 be two Markov kernels. We will
use the standard notation

µK1(dy) =

∫
µ(dx)K1(x, dy) K1K2(x, dz) =

∫
K1(x, dy)K2(y, dz)

K1f(x) =

∫
K1(x, dy) f(y) µf =

∫
µ(dx) f(x).

With m ∈ P(S2) we associate two measures m and m ∈ P(S) as follows,

for all f ∈ C(S) : mf =

∫
m(dx1, dx2) f(x2), mf =

∫
m(dx1, dx2) f(x1).

With a Markov kernel K and a measure µ ∈ P(S) we associate a measure µ×
K ∈ P(S2) by setting

for all f ∈ C(S2) : (µ×K)f =

∫
µ(dx1)K(x1, dx2) f(x1, x2).

Finally we denote by C(P(S)) the space of bounded continuous functions F :
P(S)→ R.

2.2. Recursive filters and Bayes’ formula

In this section we describe recursive expressions for the conditional dis-
tribution of Xn and (Xn, Xn+1) given the observations Y n = (Y1, . . . , Yn).
Let (Ω = Ω1 × Ω2, Fn,P) be the canonical space for the signal observation
pair (X,Y ). Therefore P is the probability measure on Ω corresponding to the
filtering model F(X | Y ), when

• ν is the probability measure of X0;

• the marginal of P on Ω1 is the law of X;

• Vn = Yn − h(Xn) is a sequence of independent random variables with
densities gn.
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We use E(·) to denote expectation with respect to P on Ω. To clarify the
presentation, we will also write

mn+1 = πn ×K. (2.1)

Using Bayes’ Theorem, we see that the conditional distribution of Xn given the
observations up to time n is given by

πn = ρn(πn−1, Yn) n ≥ 1 π0 = ν, (2.2)

where

ρn(µ, y)f =

∫
f(x) gn(y − h(x)) (µK)(dx)∫
gn(y − h(x)) (µK)(dx)

(2.3)

for all f ∈ C(S), µ ∈ P(S), y ∈ R and n ≥ 1. Much more is true. Follow-
ing Kunita and Stettner [12, 13], the above description enables us to consider
the conditional distributions πn as a (σ(Y n),P)-Markov process with infinite
dimensional state space P(S) and transition probability kernel Πn defined by

ΠnF (µ) =

∫
F (ρn(µ, y)) gn(y − h(z)) (µK)(dz) dy

for any bounded continuous function F : P(S) −→ R and µ ∈ P(S). In other
words, with some obvious abuse of notation

dp(yn, xn, xn−1 | πn−1)

= gn(yn − h(xn)) dyn πn−1(dxn−1)K(xn−1, dxn) (2.4)

p(yn/πn−1) =

∫
gn(yn − h(xn)) (πn−1 K)(dxn) (2.5)

Now, the construction of the recursive expression for the conditional distribution
of (Xn, Xn+1) given the observations Y n, is a fairly immediate consequence
of (2.1) and (2.2). Using the above notation one easily gets

mn+1 = Φn(mn, Yn) n ≥ 1 m0 = ν ×K, (2.6)

where

Φn(m, y)f =

∫
f(x1, x2) gn(y − h(x1))m(dx0, dx1)K(x1, dx2)∫

gn(y − h(z1))m(dz0, dz1)
(2.7)

for all f ∈ C(S2), µ ∈ P(S) and y ∈ R.

3. Interacting particle systems

3.1. Description of the algorithm

The particle system under study will be a Markov chain with state space SN ,
where N ≥ 1 is the size of the system. The N -tuple of elements of S, i.e. the
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points of the set SN , are called systems of particles and they will be mostly
denoted by the letters x, y, z. Given the observations Y = y, we denote by
(x̂n, xn+1)n≥0 the P(S2)-Markov process defined by the transition probabilities

P̃[y]

{
(x̂0, x1) ∈ d(z0, z1)

}
=

N∏
p=1

m0(dzp0 , dz
p
1)

P̃[y]

{
(x̂n, xn+1) ∈ d(z0, z1)

∣∣ (x̂n−1, xn) = (x0, x1)
}

=

N∏
p=1

Φn

( 1

N

N∑
i=1

δ(xi
0,x

i
1)
, yn

)
(d(zp0 , z

p
1)). (3.1)

By the very definition of m0 and Φn we also have the following.

Initial Particle System

P̃[y]{x̂0 = dx} =

N∏
p=1

ν(dxp),

Sampling/Exploration

P̃[y]{xn = dx | x̂n−1 = z} =

N∏
p=1

K(zp, dxp),

Resampling/Selection

P̃[y]{x̂n = dx | xn = z} =

N∏
p=1

N∑
i=1

gn(yn − h(zi))∑N
j=1 gn(yn − h(zj))

δzi(dx
p).

Finally one gets a sequence of particle systems

x̂n−1 = (x̂1n−1, . . . , x̂
N
n−1) −→ xn = (x1n, . . . , x

N
n ) −→ x̂n = (x̂1n, . . . , x̂

N
n ).

It is essential to remark that the particles x̂in are chosen randomly and indepen-
dently from the population {x1n, . . . , xNn } by the law πNn defined by the likelihood
functions and the present measurement Yn. Namely

πNn =

N∑
i=1

gn(yn − h(xin))∑N
j=1 gn(yn − h(xjn))

δxi
n

(3.2)

Then it moves to xin+1 using the transition probability kernel K. In other words,
the SN -valued Markov chain x̂n = (x̂1n, . . . , x̂

N
n ) is obtained through overlapping

another chain x̂n = (x1n, . . . , x
N
n ), representing the successive particles obtained
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by exploring the probability space with the transitions K. More precisely, the
motion of particles is decomposed into two stages:

x̂n
Sampling/Exploration
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ xn

Resampling/Selection
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ x̂n+1. (3.3)

The algorithm constructed in this way, will be called an interacting particle
filter. The terminology interacting is intended to emphasize, that the particles
are not independent and it differs from the particle resolutions introduced in [7]
and [6].

Remark 3.1. The formulated algorithm permits generalisation in the case that
the selecting procedure is used from time to time. In practical situations, a sim-
ple way to do this consists of introducing a resampling schedule. For instance,
we may choose to resample the particles, when fifty percent of the weights is
lower than AN−p for a convenient choice of A > 0 and p ≥ 2.

To point out the connection with genetic algorithms and to so emphasize the
role of the likelihood functions gn, assume further that

1. the state space S is finite;

2. the Markov transition kernels Kl(x, z) are governed by a parameter l
with Kl(x, z)→ 1x(z), as l tends to infinity;

3. a noise observation Vn, also governed by a parameter l, with distribution

dPVn (v) =
exp (−V (v) log l) dv∫
exp (−V (u) log l) du

;

4. homogeneous series of observations with respect to time

for all n ≥ 1 Yn = y V (y − h(x))
def
= f(x).

The corresponding Exploration and Selection mechanisms are governed by a
parameter l and they take the following form:

Pr
{
x(l)n = dx

∣∣ x̂(l)n = z
}

=

N∏
p=1

Kl(z
p, xp)

Pr
{
x̂(l)n = x

∣∣ x(l)n−1 = z
}

=

N∏
p=1

N∑
i=1

l−f(z
i)∑N

j=1 l
−f(zj)

1zi(x
p).

For this very special situation, Cerf [2] gives several conditions on the rate of

decrease of the perturbations 1/ log l(n), to ensure that all particles x̂
(l(n)),i
n
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visit the set of global maxima of the fitness function f in finite time, when the
number of particles N is greater than a critical value.

Unfortunately there is a critical lack of theoretical results on the convergence
of such algorithms for numerically solving the nonlinear filtering equations.

The crucial question is of course, whether the empirical random measure

1

N

N∑
i=1

δ
x̂i
n

converges to the conditional distribution πn, when the size of the particle system
is growing. This is positively answered in Theorem 6.2 Section 6. We will show
that for every bounded Borel test function f : S → R and for n ≥ 1

lim
N→+∞

E
(∣∣∣ 1

N

N∑
i=1

f(x̂in)− πn(f)
∣∣∣) = 0. (3.4)

We give a new and detailed analysis of this problem. These results are
largely recent, although the question of local convergence occurs in [5]. Unlike
genetic algorithms it should be emphasized that we are not necessarily trying to
exactly recover the unknown state variables. The conditional distribution gives
the conditional minimum variance estimate, but the error does not in general
converge to zero as time tends to infinity (see Kunita [12]).

Such particle nonlinear filters differ from those introduced in [7] and [6].
It clearly encompasses the genetic algorithms introduced by Holland [11] and
recently developed by R. Cerf [2]. An advantage of this procedure is, that it
simultaneously explores the probability space using the a priori Markov kernel
and updates the information that is accumulated through resampling of the
positions. In introducing such adaptation/selection laws, the particle system
acquires certain configurations, so as to represent an estimate of the conditional
distribution. They provide a natural procedure for a system of particles to sense
its environment through their likelihood functions and the observations.

It is clear that such particle resolutions could be formulated in an natural way
in other contexts as neural networks, model parameter identification, optimal
control ([9]).

3.2. The associated Markov process

Next we shall proceed to model such interacting particle procedure and the
nonlinear filtering problem on a natural stochastic basis. In the preceding para-
graph we have remarked on the fact that the particles coincide with the support
of random measures that estimate the conditional distribution. A convenient
tool for analysing the modelling of such interacting particle systems is the split-
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ting transition kernel

P(S2)
CN−→

{ 1

N

N∑
i=1

δxi : xi ∈ S2
}
⊂ P(S2), (3.5)

defined for every F ∈ C(P(S2)), η ∈ P(S2) and N ≥ 1, by

CNF (η) =

∫
F (m) CN(η, dm)

def
=

∫
S2N

F
( 1

N

N∑
i=1

δxi

)
η(dx1) . . . η(dxN). (3.6)

The interpretation of CN is the following: by starting with a measure η ∈ P(S2),
the next measure is the result of sampling N independent random variables xi

with common law η

η
CN−→ m =

1

N

N∑
i=1

δxi .

Given a series of observations Y = y, we observe that the random empirical
measures

mN
n+1 =

1

N

N∑
i=1

δ
(x̂i

n,x
i
n+1

)

are the result of sampling N independent random variables with common law

Φn(mN
n , yn) = πNn ×K =

N∑
i=1

gn(yn − h(xin))∑N
j=1 gn(yn − h(xjn))

δxi
n
× K.

The above observation enables us to consider the empirical measures mN
n as a

canonical P(S2)-valued Markov process (Ω′, βn, P̃[y]), by setting

P̃[y]{mN
1 ∈ dη} = CN (Φn(m0, yn), dη)

P̃[y]{mN
n+1 ∈ dη | mN

n = µ} = CN (Φn(µ, yn), dη). (3.7)

Now we design a stochastic basis for the convergence of our particle approxima-
tions. To capture all randomness we list all outcomes into the canonical space
defined as follows.

1. Recall (Ω, Fn,P) is the canonical space for the signal observation pair
(X,Y ).

2. We define Ω̃ = Ω′×Ω and F̃n = βn×Fn and, for every ω̃
def
= (ω1, ω2, ω3) ∈

Ω̃, we define

mN
n (ω̃) = ω1

n, Xn(ω̃) = ω2
n, Yn(ω̃) = ω3

n.
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3. For every A ∈ βn and B ∈ Fn, we define P̃ as follows:

P̃{A×B} def
=

∫
B

P̃[Y (ω)](A) dP(ω). (3.8)

As usual we use Ẽ (·) to denote the expectation with respect to P̃, and Ẽ[y] (·)
to denote the expectation with respect to P̃[y]. With some obvious abuse of
notation we have

dp̃(mN
1 , . . . ,m

N
n , y1, . . . , yn)

=

n∏
k=1

CN
(
Φk−1(mN

k−1, yk−1), dmN
k

)
dp (y1, . . . , yn) ,

with the convention Φ0(mN
0 , y0) = ν ×K.

4. General recursive formulas

In this section we shall adopt an unconventional model for the conditional
distributions. The choice is dictated by our desire to have very simple rela-
tionships between the likelihood functions and the conditional distributions.
Initially, this will require a quite different setup from the one used in Sections 2
and 3, but in the end of our investigations will resemble more and more the
models presented in Section 2.

The setting is the same as in Section 3.1. In particular, unless otherwise
stated, we assume the observation data to be a fixed series of real numbers Y =
y.

This assumption enables us to consider the conditional distribution πn as a
probability parametrised by the observation parameters y1, . . . , yn, . . .. There-
fore, when the context is unambiguous, we will often write for brevity gn(x)
instead of gn(yn−h(xn)). Using this notation, an alternative notation for (2.2)
is the recursive formula

πnf =
πn−1K( f gn)

πn−1K(gn)
, for all f ∈ C(S).

4.1. Likelihood functions analysis

The proof of the convergence (3.4) involves

1. the Maximum Log-likelihood functions given by

Vn/p(y) = sup
xp∈S

log

∫
S

(p(yn, . . . , yp+1 | xp+1)

p(yn, . . . , yp+1 | yp)

)2
dp(xp+1 | xp), (4.1)

p+ 1 ≤ n

Vn(y) =

n∑
p=1

Vp/p−1(y), (4.2)
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where

• p(yn, . . . , yp+1 | yp) denotes the density under P of the distribution
of (Yn, . . . , Yp+1) conditionally on Y p = (Y1, . . . , Yp),

• p(yn, . . . , yp+1 | xp+1) denotes the density under P of the distribution
of (Yn, . . . , Yp+1) conditionally on Xp+1,

• dp(xp+1 | xp) = K(xp, dxp+1);

2. the conditional expectations for 0 ≤ p ≤ n− 1, given by

f (p)n (xp) = E (f(Xn) | Xp, Yp+1, . . . , Yn) (xp, yp+1, . . . , yn). (4.3)

The functions Vn/p represent Log-likelihood functions on the observation process
Y and they are closely related to the resampling/selection mechanism of our
algorithm. This relationship is due to the fact, that the selection mechanism is
formulated in terms of the fitness functions and of

p(yn | xn) = gn(yn − h(xn)) (4.4)

p(yn, . . . , yp | xp) =

∫
S

p(yn, . . . , yp+1 | xp+1) dp(xp+1 | xp). (4.5)

Example 4.1.
1. Assume here that state and observation processes (X,Y ) are given by the
linear dynamics

Xn = AXn−1 +Wn (4.6)

Yn = C Xn + Vn, (4.7)

where Xn ∈ R, Yn ∈ R, Y0 = 0, A and C are real numbers and X0, Wn

and Vn are normally distributed with means 0 and respective non-negative co-
variances Q0, Q and R. The conditional densities of Yn given Xn and Y n−1 =
(Y1, . . . , Yn−1), are given by

p(yn | xn) = gn(yn − C xn) =
1√

2π|R|
exp

(
− 1

2
(yn − C xn)2R−1

)
p(yn | yn−1) =

1√
2π|C2 Pn/n−1 +R|

× exp
(
− 1

2
(yn − C A X̂n−1)2(C2 Pn/n−1 +R)−1

)
,

with the well known measurement update equations

X̂n
def
= E(Xn | Y n) = AX̂n−1 +Kn (Yn − C AX̂n−1)

Kn
def
= C Pn/n−1 (C2 Pn/n−1 +R)−1

Pn/n−1
def
= E

(
Xn − E(Xn/Y

n−1)
)2

= A2 Pn−1/n−1 +Q

Pn−1/n−1
def
= E

(
Xn−1 − E(Xn−1/Y

n−1)
)2

=
(
P−1n−1/n−2 + CR−1C

)−1
.
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In this very special situation

Vn/n−1(Y ) ≤ log
[ |C2Pn/n−1 +R|

|R|
exp

(
(Yn − CAX̂n−1)2(C2Pn/n−1 +R)−1

)]
.

Further manipulations yield

Vn/p(Y ) ≤ log
[ n∏
k=p

|C2Pk/k−1 +R|
|C2Sk−p +R|

exp
(
(Yk − CAX̂k−1)2(C2Pk/k−1 +R)−1

)]
,

with S0 = 0 and, for A 6= 1,

E
(

(Xk − E (Xk/Xp))
2
)

= Sk−p =
1−Ak−p

1−A
Q.

2. Let X be a discrete time Markov process belonging to a finite discrete set S
and assume that the observation noise Vn is a sequence of independent, random
variables with

dpVn (v) =
exp (−Un)∫

exp (−Un(v)) dv
Un : S → R+.

In this hidden Markov model, Vn/n−1(Y ) ≤ 2 supx∈S Un (Yn − h(x)).

The functions (4.1), (4.3) and (4.5) will be used in our analysis of the con-
vergence (3.4). This analysis requires a specific development, because of the
difficulty of estimating mean errors. For instance we have

Ẽ[y]

(( 1

N

N∑
i=1

f(x̂in)
)2)

= Ẽ[y]

(
(mN

n+1f)2
)

=
1

N
Ẽ[y](π

N
n (f2)) +

(
1− 1

N

)
Ẽ[y]

(
(πNn f)2

)
=

1

N
Ẽ[y]

(
πNn (f − πNn f)2

)
+ Ẽ[y]

(
(πNn f)2

)
.

Thus, Chebyshev’s inequality and convenient estimates of

Ẽ[y]

(
(πNn f)2

)
= Ẽ[y]

(( N∑
i=1

gn(yn − h(xin))∑N
j=1 gn(yn − h(xjn))

f(xin)
)2)

(4.8)

would give a complete answer concerning convergence in L0(P̃[y]). Unfortu-

nately, it is difficult to estimate (4.8) or even Ẽ[y]

(
πNn f

)
.

Accordingly, in order to point out the connections between (4.3) and (4.5)
and to so emphasize the role of the Log-likelihood functions Vn/p, we first in-
troduce a natural framework in which the relationship between (4.3) and (4.5)
is made explicit. The recursive expressions described in the next section, will
be used repeatedly for the convergence (3.4) in the last part of the paper.
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4.2. Recursive formulas

The main purpose of this section is to introduce recursive expressions for
(4.3) and (4.5). The technical approach presented here, is to work with the
same given sequence of observations Y = y. The conditional distributions πn
and the conditional expectations (f

(p)
n )1≤p≤n will be formulated as a probabil-

ity and a sequence of functions parametrised by the observation parameters y.
The recursive formulas described in this section, will show how the sequence

of observations scales the updates of both πn and f
(p)
n . Our constructions will

be explicit and the recursions will have a simple form. First, let us give some
details on the use of Bayes’ formula in our setting. With some obvious abuse of
notation, we have for all 1 ≤ p ≤ n the recursion

p(yn, . . . , yp | xp) = p(yp | xp)p(yn, . . . , yp+1 | xp)

= p(yp | xp)
∫
p(yn, . . . , yp+1 | xp+1) dp(xp+1 | xp)

p(yn, . . . , yp | xp)
p(yn, . . . , yp | yp−1)

=
p(yp | xp)
p(yp | yp−1)

∫
p(yn, . . . , yp+1 | xp+1)

p(yp+1 | yp)
dp(xp+1 | xp)

p(yn, . . . , y1) = p(yn | yn−1) p(yn−1 | yn−2) · · · p(y2 | y1) p(y1).

To clarify the presentation, we introduce for all 0 ≤ p ≤ n the following defini-
tions

1. g
(p)
n (xp) = p(yn, . . . , yp | xp)

2. gn/p−1(xp) = p(yn, . . . , yp | xp)/p(yn, . . . , yp | yp−1).

With a slight abuse of notation we will often write gn(xn) instead of g
(n)
n (xn) =

p(yn | xn). It is now easily checked from the above remarks, that

gn/p−1(xp) = g(p)n (xp)

∫
πp(dzp−1)K(zp−1, dzp) g

(p)
n (zp) (4.9)

g(p)n (xp) = gp(xp)

∫
K(xp, dxp+1) g(p+1)

n (xp+1) (4.10)

gn/p−1(xp) = gp/p−1(xp)

∫
K(xp, dxp+1) gn/p(xp+1). (4.11)

Summarising, we have the backward recursive formulas.

Proposition 4.1. For every 0 ≤ p < n− 1

g(p)n = gp (K g(p+1)
n )

gn/p−1 =
g
(p)
n

πp−1Kg
(p)
n

(4.12)

gn/p−1 = gp/p−1 K(gn/p).
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We will adopt the conventions π−1K = ν and g
(0)
0 = 1.

Moreover, by the very definition of πn and πNn , one gets

πn(f) =

∫
f(z) gn(yn − h(z)) mn(dz)∫
gn(yn − h(z)) mn(dz)

πNn (f) =

N∑
i=1

gn(yn − h(xin))∑N
j=1 gn(Yn − h(xjn))

f(xin). (4.13)

For brevity we will write

πn(f) =
mn (gn f)

mn (gn)
, πNn (f) =

mN
n (gn f)

mN
n (gn)

.

Continuing in the same vein, we derive the conditional expectations f
(p)
n ,

introduced in (4.3).
Using Bayes’ rule we have for all 1 ≤ p ≤ n the following basic equation

dp(xn, xp | xp−1, yp, . . . , yn)

= dp(xn | xp, yp+1, . . . , yn) dp(xp | xp−1, yp, . . . , yn)

= dp(xn | xp, yp+1, . . . , yn)
p(yn, . . . , yp | xp)
p(yn, . . . , yp | xp−1)

dp(xp | xp−1).

By the same line of arguments, for all 1 ≤ p ≤ n, we get

dp(xn, xp, xp−1 | yn)

= dp(xn | xp, yp+1, . . . , yn) dp(xp, xp−1 | yn)

= dp(xn | xp, yp+1, . . . , yn)
p(yn, . . . , yp | xp)
p(yn, . . . , yp | yp−1)

× dp(xp | xp−1)dp(xp−1 | yp−1).

Thus we arrive at

πnf =

∫
πp−1(dxp−1) K(xp−1, dxp) f

(p)
n (xp) g

(p)
n (xp)∫

πp−1(dxp−1) K(xp−1, dxp) g
(p)
n (xp)

, (4.14)

for all f ∈ C(S), 1 ≤ p ≤ n. Additionally we have

f (p−1)n (xp−1) =

∫
K(xp−1, dxp) f

(p)
n (xp) g

(p)
n (xp)∫

K(xp−1, dxp) g
(p)
n (xp)

, (4.15)

for all f ∈ C(S), 1 ≤ p ≤ n. Summarising, our conditional expectations f
(p)
n

can be described as follows.
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Proposition 4.2. For every f ∈ C(S), the conditional expectations (f
(p)
n )1≤p≤n

satisfy the recursive formula. For every f ∈ C(S) and 1 ≤ p ≤ n

f (p−1)n
def
=

K(f
(p)
n gn/p−1)

K(gn/p−1)
=
K(f

(p)
n g

(p)
n )

K(g
(p)
n )

, for all 1 ≤ p ≤ n. (4.16)

Moreover, for every f ∈ C(S) and 1 ≤ p ≤ n

πnf =
(πp−1K)

(
f
(p)
n g

(p)
n

)
(πp−1K)

(
g
(p)
n

) =
(πp−1K)

(
f
(p)
n gn/p−1

)
(πp−1K)

(
gn/p−1

) . (4.17)

We will adopt the convention f
(−1)
n

def
= ν(f

(0)
n g

(0)
n )/ν(g

(0)
n ).

5. Mean square estimates

In this section we analyse the structure of the Log-likelihood functions Vn/p,
whilst pointing out explicit bounds. Our next objective is to estimate the con-
vergence rate and mean errors. We shall do this now, beginning with some
lemmas that will be used repeatedly in this section.

Lemma 5.1. Let f : S −→ R be any integrable Borel test function, and let
n ≥ 0 and N ≥ 1.
We have P̃-a.e.

Ẽ[Y ]

(
mN
n+1f | βn

)
= πNn f Ẽ[Y ]

(
mN
n+1f | βn

)
= πNn Kf (5.1)

Ẽ[Y ]

(
(mN

n+1f)2 | βn
)

=
1

N
πNn (f2) +

(
1− 1

N

)
(πNn f)2 (5.2)

Ẽ[Y ]

(
(mN

n+1f)2 | βn
)

=
1

N
πNn K(f2) +

(
1− 1

N

)
(πNn Kf)2. (5.3)

Proof. It suffices to note that

Ẽ[Y ]

(
mN
n+1f | βn

)
=

∫
m(f) CN (πNn ×K, dm) = πNn f

Ẽ[Y ]

(
mN
n+1(f)2/βn

)
=

∫
(mf)2 CN (πNn ×K, dm)

=
1

N
πNn (f2) +

(
1− 1

N

)
(πNn f)2

Ẽ[Y ]

(
mN
n+1f | βn

)
=

∫
m(f) CN (πNn ×K, dm) = πNn Kf

Ẽ[Y ]

(
mN
n+1(f)2 | βn

)
=

∫
(mf)2 CN (πNn ×K, dm)

=
1

N
πNn K(f2) +

(
1− 1

N

)
(πNn Kf)2.
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2

Next we derive a technical recursive formula in p, for the expressions

Ẽ[Y ]

(
mN
p+1(gn/p f

(p+1)
n ) | βp

)
0 ≤ p ≤ n− 1.

Lemma 5.2. Let f : S −→ R be any integrable Borel test function and let
n ≥ 0 and N ≥ 1. For every 0 ≤ p ≤ n− 1 we have the recursion

Ẽ[Y ]

(
mN
p+1(gn/p f

(p+1)
n ) | βp

)
= πNp K

(
gn/p f

(p+1)
n

)
=

mN
p (gn/p−1 f

(p)
n )

mN
p (gp/p−1)

, P̃-a.e. (5.4)

Proof. Using the inductive definition of f
(p)
n , gn/p and Lemma 5.1, we have

Ẽ[Y ]

(
mN
p+1(gn/pf

(p+1)
n ) | βp

)
= πNp K(gn/pf

(p+1)
n )

=
mN
p

(
gp/p−1K(gn/pf

(p+1)
n )

)
mN
p (gp/p−1)

=
mN
p

(
gn/p−1 f

(p)
n

)
mN
p (gp/p−1)

.

2

5.1. Martingale approach

For estimating mean square errors, the key idea is to introduce a (P̃, F̃n)-
martingale UN , using the functions gn/n−1 and the random measures mN

n . More
precisely, we define UNn as follows.

Definition 5.1. We denote by UN the stochastic process defined by

UN0 = 1, UNn = mN
n (gn/n−1) UNn−1, for all n ≥ 1. (5.5)

In other words,

UNn =

n∏
k=1

( 1

N

N∑
i=1

gk/k−1(xik)
)
.

Lemma 5.3. UNn is a (P̃, F̃n)-martingale with Ẽ(UNn ) = 1 and P̃-a.s.
Ẽ[Y ](U

N
n ) = 1.

Proof. The first statement follows by recalling that

gn/n−1(x) =
gn(x)

πn−1Kgn
=
gn(Yn − h(x))

p(Yn | Y n−1)
.
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This gives P̃-a.s.

Ẽ(UNn | F̃n−1) = UNn−1

∫
m(gn/n−1) CN

(
πNn−1 ×K, dm

)
dp(yn | Y n−1)

= UNn−1

∫
gn(yn − h(z)) (πNn−1K)(dz) dyn = UNn−1

and the first assertion follows. To prove Ẽ[Y ](U
N
n ) = 1, the above discussion

goes through with some minor changes. Indeed, P̃-a.s.

Ẽ[Y ](U
N
n ) = Ẽ[Y ]

(
mN
n (gn/n−1)UNn−1

)
= Ẽ[Y ]

(
Ẽ[Y ](m

N
n (gn/n−1) | βn−1)UNn−1

)
. (5.6)

Now, using the inductive definition of gn/p, we obtain

Ẽ[Y ](m
N
n gn/n−1 | βn−1) = mN

n−1(gn/n−2)/mN
n−1(gn−1/n−2).

Then (5.6) gives

Ẽ[Y ](U
N
n ) = Ẽ[Y ](m

N
n−1(gn/n−2) UNn−2)

= Ẽ[Y ]

(
Ẽ[Y ](m

N
n−1(gn/n−2) | βn−2)UNn−2

)
.

This procedure can be repeated. Using the recursive formulas described in
Section 4.2, we note that

Ẽ[Y ](U
N
n ) = Ẽ[Y ]

(
Ẽ[Y ](m

N
p (gn/p−1) | βp−1)UNp−1

)
Ẽ[Y ](m

N
p (gn/p−1) | βp−1) = mN

p−1(gn/p−2)/mN
p−1(gp−1/p−2).

Then
Ẽ[Y ](U

N
n ) = Ẽ[Y ]

(
Ẽ[Y ](m

N
p−1(gn/p−2) | βp−2)UNp−2

)
.

Using backward induction in p, the result follows from the fact that

Ẽ[Y ]

(
mN

1 (gn/0)
)

= νK(gn/0) = 1.

2

The analysis of UN is a powerful tool to study the convergence rate of
our interacting particle filter. That is, introducing the process UN makes the
calculation of mean errors possible, then these estimates will be reinterpreted
back. As a typical example we have the following lemma.

Lemma 5.4. For any integrable Borel test function f : S −→ R, we have

Ẽ[Y ]

(
UNn mN

n+1 (f − πnf)
)

= 0, P̃-a.e. (5.7)
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Proof. Using Lemma 5.3, this is equivalent to proving

Ẽ[Y ]

(
UNn mN

n+1f
)

= πnf.

Now, using Lemma 5.1 and the fact that f
(n)
n = f , note that

Ẽ[Y ](U
N
n mN

n+1f) = Ẽ[Y ]

(
Ẽ[Y ](m

N
n+1f | βn)UNn

)
Ẽ[Y ](m

N
n+1f | βn) = πNn f = mN

n (gn/n−1 f)/mN
n (gn/n−1).

Then

Ẽ[Y ](U
N
n mN

n+1f) = Ẽ[Y ]

(
UNn−1 m

N
n (gn/n−1f

(n)
n )

)
.

Now, using backward induction in 1 ≤ p ≤ n − 1 and the recursive formulas
described in Section 4.2, we have

Ẽ[Y ]

(
UNp mN

p+1(gn/p f
(p+1)
n )

)
= Ẽ[Y ]

(
UNp Ẽ[y]

(
mN
p+1(gn/p f

(p+1)
n ) | βp

))
Ẽ[Y ]

(
mN
p+1(gn/p f

(p+1)
n ) | βp

)
= mN

p (gn/p−1 f
(p)
n )/mN

n−1(gp/p−1).

Hence

Ẽ[Y ]

(
UNn mN

n+1f
)

= Ẽ[Y ]

(
UNp−1 m

N
p (gn/p−1 f

(p)
n )

)
.

The result finally follows from the recursive formulas described in Section 4.2
and the fact that

Ẽ[Y ]

(
mN

1 (gn/0 f
(1)
n )
)

= νK(gn/0 f
(1)
n ) =

νK(gn/0 f
(1)
n )

νK(gn/0)
= πnf.

2

5.2. Mean square estimates

To prove the convergence (3.4), it clearly suffices to prove that

lim
N→+∞

Ẽ[Y ]

(
(UNn − 1)2

)
= 0 = lim

N→+∞
Ẽ[Y ]

((( 1

N

N∑
i=1

f(x̂in)− πnf
)
UNn

)2)
.

(5.8)
The main purpose of this section is to provide a way for estimating the rate of
convergence of (5.8) in terms of the log-likelihood functions Vn/p. Such compu-
tations are at the heart of the development. They will drastically simplify the
evaluation of the convergence rates discussed in the last section.
We first quote the following result.

Proposition 5.1. For every series of observations y ∈ RN,
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1. for all 0 ≤ p < n,

Vn/p(y) ≤ Vn/n−1(y) + Vn−1/n−2(y) + · · ·+ Vp+1/p(y) ≤ Vn(y);

2. for every 0 ≤ k ≤ n and 0 ≤ p0 < · · · < pk−1 < pk = n, we have

k∑
l=1

Vpl/pl−1
(y) ≤ Vn(y).

Proof. The proof is a straightforward computation using that

gn/p = K(gn/p+1) gp+1/p

implies
Vn/p(y) = log ‖K(g2n/p)‖∞ ≤ Vn/p+1(y) + Vp+1/p(y).

2

Next we want to develop explicit formulas for expressing the effect of the
population size and the observation likelihood functions on the mean square
errors (5.8). The following propositions will be used repeatedly in the last
section.

Proposition 5.2. For every N ≥ 1 and n ≥ 0 we have P̃-a.e.

1. Ẽ[Y ]

(
(UNn − 1)2

)
≤

n∑
k=1

1

Nk

(
1− 1

N

)n−k
×

∑
0≤p0<···<pk=n

exp
( k∑
l=1

Vpl/pl−1
(Y )
)
,

2. Ẽ[Y ]

(
(UNn − 1)2

)
≤

(
1−

(
1− 1

N

)n)
eVn(Y ).

Proof. Inequality 2 is clearly a consequence of inequality 1 and Proposition 5.1.
Let us prove inequality 1. Using Lemma 5.3

Ẽ[Y ]

(
(UNn − 1)2

)
= Ẽ[Y ]

(
(UNn )2

)
− 1.

Hence, with the standard convention
∑
∅ = 0, it is sufficient to prove that

Ẽ[Y ]

(
(UNn )2

)
≤

n∑
k=0

1

Nk

(
1− 1

N

)n−k ∑
0≤p0<···<pk=n

exp
( k∑
l=1

Vpl/pl−1
(Y )
)
. (5.9)

The proof of (5.9) is based on backward and forward induction in n and max-
imisation techniques. Using Lemma 5.1 and the recursion in Lemma 5.2, we
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have

Ẽ[Y ]

(
(UNn )2

)
= Ẽ[Y ]

(
Ẽ[Y ]

(
mN
n (gn/n−1)2 | βn−1

)
(UNn−1)2

)
Ẽ[Y ](m

N
n (gn/n−1)2 | βn−1) ≤ 1

N
πNn−1K(g2n/n−1) +

(
1− 1

N

)
(πNn−1Kgn/n−1)2

≤ 1

N
eVn/n−1(Y ) +

(
1− 1

N

)( mN
n−1(gn/n−2)

mN
n−1(gn−1/n−2)

)2
.

Thus,

Ẽ[Y ]

(
(UNn )2

)
≤ 1

N
eVn/n−1(Y )Ẽ[Y ]

(
(UNn−1)2

)
+
(

1− 1

N

)
Ẽ[Y ]

(
Ẽ[Y ]

(
mN
n−1(gn/n−2)2 | βn−2

)
(UNn−2)2

)
.

By the same line of arguments, for every 1 ≤ p ≤ n− 1

Ẽ[Y ]

(
mN
p+1(gn/p)

2 | βp
)
≤ 1

N
eVn/p(Y ) +

(
1− 1

N

)(mN
p (gn/p−1)

mN
p (gp/p−1)

)2
Ẽ[Y ]

(
mN

1 (gn/0)2 | β0
)
≤ 1

N
eVn/0(Y ) +

(
1− 1

N

) (
νKgn/0

)2
.

Cascading in the above expression

Ẽ[Y ]

(
(UNn )2

)
≤
(

1− 1

N

)n
+

1

N

n−1∑
q=0

(
1− 1

N

)n−1−q
eVn/q(Y )Ẽ[Y ]

(
(UNq )2

)
.

Suppose the inequalities (5.9) have been proved for every q ≤ n− 1, that is

Ẽ[Y ]

(
(UNq )2

)
≤

q∑
k=0

1

Nk

(
1− 1

N

)q−k ∑
0≤p0<···<pk=q

exp
( k∑
l=1

Vpl/pl−1
(Y )
)
,

then

Ẽ[Y ]

(
(UNn )2

)
≤

(
1− 1

N

)n
+

n−1∑
k=0

(
1− 1

N

)n−(1+k)
× 1

Nk+1

∑
0≤p0<···<pk<n

exp
(
Vn/pk(Y ) +

k∑
l=1

Vpl/pl−1
(Y )
)
,

and the result follows. 2

The same techniques then establish the following result.
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Proposition 5.3. For any bounded Borel test function f : S → R, N ≥ 1 and
n ≥ 0, we have P̃-a.e.

Ẽ[Y ]

((( 1

N

N∑
i=1

f(x̂in)− πnf
)
UNn

)2)
≤ 4‖f‖2∞

n+1∑
k=1

1

Nk

(
1− 1

N

)(n+1)−k

×
∑

0≤p0<···<pk−1≤pk=n

exp
( k∑
l=1

Vpl/pl−1
(Y )
)
. (5.10)

Therefore

Ẽ[Y ]

((( 1

N

N∑
i=1

f(x̂in)− πnf
)
UNn

)2)
≤ 4‖f‖2∞

(
1−

(
1− 1

N

)n+1)
exp (Vn(Y )). (5.11)

Proof. Let us prove the first statement. For any bounded Borel test function
f : S → R, using the recursive formulas described in Section 4.2, we have

Ẽ[Y ]

(( 1

N

N∑
i=1

f(x̂in)UNn

)2)
= Ẽ[Y ]

(
(mN

n+1(f)UNn )2
)

= Ẽ[Y ]

(
Ẽ[Y ]

(
(mN

n+1f)2 | βn
)

(UNn )2
)

Ẽ[Y ]

(
(mN

n+1f)2 | βn
)
≤ 1

N
‖f‖2∞ +

(
1− 1

N

)(mN
n (gn/n−1f)

mN
n (gn/n−1)

)2
.

Then

Ẽ[Y ]

(
((mN

n+1f)UNn )2
)
≤ 1

N
‖f‖2∞Ẽ[Y ]

(
(UNn )2

)
+
(

1− 1

N

)
Ẽ[Y ]

(
(mN

n (gn/n−1f)UNn−1)2
)
. (5.12)

Arguing as above, for every 1 ≤ p ≤ n− 1 we get

Ẽ[Y ]

(
mN
p+1(gn/pf

(p+1)
n )UNp

)2)
= Ẽ[Y ]

(
Ẽ[Y ]

(
mN
p+1(gn/pf

(p+1)
n )2

∣∣ βp) (UNp )2
)

Ẽ[Y ]

(
mN
p+1

(
gn/pf

(p+1)
n

)2 ∣∣ βp)
≤ 1

N
‖f‖2∞ eVn/p(Y ) +

(
1− 1

N

)(mN
p (gn/p−1 f

(p)
n )

mN
p (gp/p−1)

)2
Ẽ[Y ]

(
mN

1

(
gn/0f

(1)
n

)2 ∣∣ β0)
≤ 1

N
‖f‖2∞ eVn/0(Y ) +

(
1− 1

N

)
(πnf)

2
.
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Using the above inequalities with expression (5.12), we conclude that

Ẽ[Y ]

(
(mN

n+1(f) UNn )2
)

≤ 1

N
‖f‖2∞

n∑
k=0

(
1− 1

N

)n−k
eVn/k(Y )Ẽ[Y ]

(
(UNk )2

)
+
(

1− 1

N

)n+1

(πnf)
2
,

with the convention Vn/n = 0. Then, using formula (5.9) we easily obtain

Ẽ[Y ]

(
(mN

n+1(f − πnf) UNn )2
)

≤ 4‖f‖2∞
N

n∑
l=0

1

N l

(
1− 1

N

)n−l ∑
0≤p0<···<pl≤pl+1=n

exp
( l+1∑
s=1

Vpl/pl−1
(Y )
)

≤ 4‖f‖2∞
n+1∑
l=1

1

N l

(
1− 1

N

)(n+1)−l ∑
0≤p0<···<pl−1≤pl=n

exp
( l∑
s=1

Vpl/pl−1
(Y )
)
.

The second statement follows from the first inequality in Proposition 5.1 and
the fact that

(
n
l

)
≤
(
n+1
l

)
. 2

6. Convergence theorems

We are now ready to prove the convergence of the interacting particle ap-
proximation described in Section 3. The following theorem is our main result,
and it states the relevant consequences of the mean square error estimates stated
in Propositions 5.2 and 5.3.

Theorem 6.1. For every N ≥ 1, n ≥ 0, any bounded Borel test function
f : S → R, T > 0, and 0 < ε < 1/2, we have

sup
n∈[0,T ]

P̃[Y ]

{∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣ > ε

}
≤ A(T, f, Y )

ε4

(
1−

(
1− 1

N

)T+1)
P̃-a.e., (6.1)

with A(T, f, Y ) = 2 sup (4‖f‖2∞, 1) eVT (Y ). Moreover,

sup
n∈[0,T ]

Ẽ[Y ]

(∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣)

≤ B(T, f, Y )
(

1−
(

1− 1

N

)T+1)1/2
P̃-a.e., (6.2)

with B(T, f, Y ) = 4‖f‖∞ eVT (Y )/2.
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Proof. Using Propositions 5.2 and 5.3 and the Cauchy – Schwarz inequality, we
have

Ẽ[Y ]

(∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣)

= Ẽ[Y ]

(∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣UNn )+ Ẽ[Y ]

(∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣(1− UNn )

)
≤ B(T, f, Y )

(
1−

(
1− 1

N

)n+1)1/2
and the inequality (6.2) follows. To prove (6.1), write

A = {UNn ≥ 1− ε} B =
{∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣ > ε

}
.

Using Proposition 5.2 and the fact that

|UNn − 1| ≤ ε, for all 0 < ε < 1

implies
UNn ≥ 1− ε,

we have

P̃[Y ]{UNn ≥ 1− ε} ≥ P̃[Y ]{|UNn − 1| ≤ ε}

≥ 1− 1

ε2
Ẽ[Y ]

(
(UNn − 1)2

)
≥ 1− 1

ε2

(
1−

(
1− 1

N

)n)
eVn(Y ).

Therefore,

P̃[Y ]{A} ≤
1

ε2

(
1−

(
1− 1

N

)n+1)
eVn(Y ).

On the other hand, proposition 5.3 gives the inequalities

P̃[Y ]{B ∩A} ≤
1

ε2
Ẽ[Y ]

(∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣2 1A

)
≤ 1

((1− ε)ε)2
Ẽ[Y ]

((( 1

N

N∑
i=1

f(x̂in)− πnf
)
UNn

)2)
≤ 4 ‖f‖2∞

((1− ε)ε)2
(

1−
(

1− 1

N

)n+1)
eVn(Y ).
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Finally, the inequality

P̃[Y ]{B} ≤ P̃[Y ]{B ∩A}+ P̃[Y ]{A} (6.3)

and the fact that 0 < ε < 1/2 implies ε < 1− ε, complete the proof. 2

Corollary 6.1. For every N ≥ 2, n ≥ 0, for any integrable Borel test function
f : S → R, T > 0, and 0 < ε < 1/2, we have

sup
n∈[0,T ]

P̃[Y ]

{∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣ > ε

}
≤ A(ε, T, f, Y )

N
, P̃-a.e., (6.4)

where A(ε, T, f, Y ) = 4T A(T, f, Y )/ε4.

Proof. From the inequality ey ≥ 1 + y, it follows that

1−
(

1− 1

N

)n+1

≤ −(n+ 1) log
(

1− 1

N

)
= (n+ 1) log

( N

N − 1

)
and that log x ≤ x− 1. Thus, we conclude that

1−
(

1− 1

N

)n+1

≤ n+ 1

N − 1
≤ 2(n+ 1)

N
≤ 4n

N

for all N ≥ 2 and for all n ≥ 1. This completes the proof. 2

Theorem 6.2. Let Y = y ∈ RN be a series of observations such that Vn(y) <
+ ∞. For every bounded Borel test function f : S → R N ≥ 1 and n ≥ 0, we
have

for all p > 0, sup
n∈[0,T ]

Ẽ[y]

(( 1

N

N∑
i=1

f(x̂in)− πnf
)p)

−→
N→+∞

0. (6.5)

Proof. Using the inequality

for all ε > 0, Ẽ[y]

(( 1

N

N∑
i=1

f(x̂in)− πnf
)p)

≤ εp + (2 ‖f‖∞)p P̃[y]

{∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣ > ε

}
and Corollary 6.1, the result follows. 2

Consider the following assumption on the observation process:

(V) for all n ≥ 0 Ẽ (Vn(Y ))
def
= α(n) < +∞. (6.6)

This assumption enables us to estimate the convergence rate of our approxima-
tions in spaces Lp(P̃) with p > 0.
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Theorem 6.3. Assume (V) is satisfied. For every bounded Borel test function
f : S → R N ≥ 1, n ≥ 0, 0 < ε < 1/2 and M > 0, we have

sup
n∈[0,T ]

P̃
{∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣ > ε

}
≤ 1

M
+
A(T,M, f, ε)

N
, (6.7)

with A(T,M, f, ε) = 8 sup (4‖f‖∞, 1) T eM α(T )/ε4.

Proof. Using Theorem 6.1

P̃
{∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣ ≤ ε}

≥ P̃
(
Vn(Y ) ≤Mα(n)

)
− A(f) eMα(n)

ε4

(
1−

(
1− 1

N

)n+1)
,

with A(f) = 2 sup (4 ‖f‖∞, 1), we get

P̃
{∣∣∣ 1

N

N∑
i=1

f(x̂in)− πnf
∣∣∣ ≤ ε}

≥ 1−
( 1

M
+
A(f) eMα(n)

ε4

(
1−

(
1− 1

N

)n+1))
.

The arguments used in the proof of Corollary 6.1 complete the proof. 2

Finally, the following corollary is derived by the same reasoning as in Theo-
rem 6.2.

Corollary 6.2. Assume V is satisfied. For every bounded Borel test function
f : S → R, N ≥ 1 and n ≥ 0, we have

for all p > 0, sup
n∈[0,T ]

Ẽ
(( 1

N

N∑
i=1

f(x̂in)− πnf
)p)

−→
N→+∞

0. (6.8)
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sité Montpellier II, Ph.D. Sciences et techniques du Languedoc.

[3] M. Chaleyat-Maurel and D. Michel (1983) Des résultats de non existence
de filtres de dimension finie. C.R. Acad. Sci. Paris, Ser. I, t. 296.

[4] P. Del Moral, G. Rigal, J.C. Noyer and G. Salut (1993) Traitement
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