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Abstract

This article establishes sufficient conditions for a linear-in-time bound on the non-asymptotic

variance of particle approximations of time-homogeneous Feynman-Kac formulae. These formulae

appear in a wide variety of applications including option pricing in finance and risk sensitive

control in engineering. In direct Monte Carlo approximation of these formulae, the non-asymptotic

variance typically increases at an exponential rate in the time parameter. It is shown that a linear

bound holds when a non-negative kernel, defined by the logarithmic potential function and Markov

kernel which specify the Feynman-Kac model, satisfies a type of multiplicative drift condition and

other regularity assumptions. Examples illustrate that these conditions are general and flexible

enough to accommodate two rather extreme cases, which can occur in the context of a non-compact

state space: 1) when the potential function is bounded above, not bounded below and the Markov

kernel is not ergodic; and 2) when the potential function is not bounded above, but the Markov

kernel itself satisfies a multiplicative drift condition.

Keywords: Feynman-Kac Formulae; Non-Asymptotic Variance; Multiplicative Drift Condition.

1 Introduction

On a state space X endowed with a σ-algebra B (X) let M be a Markov kernel and let U : X → R

be logarithmic potential function. Then for x ∈ X, consider the sequence of measures {γn,x;n ≥ 1}
defined by

γn,x (ϕ) := Ex

[

exp

(
n−1∑

k=0

U (Xk)

)

ϕ (Xn)

]

, (1.1)

for a suitable test function ϕ and where Ex denotes expectation with respect to the law of a Markov

chain {Xn;n ≥ 0} with transition kernel M , initialised from X0 = x.

Feynman-Kac formulae as in (1.1) arise in a variety of application domains. In the case that U is

non-positive, the quantity γn,x (1) can be interpreted as the probability of survival up to time step n of a
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Markovian particle exploring an absorbing medium [Del Moral and Miclo, 2003, Del Moral and Doucet,

2004]; the particle evolves according to M and at time step k it is killed with probability exp (U (Xk)).

Another application is the calculation of expectations at a terminal time with respect to jump-diffusion

processes which may or may not be partially observed (e.g. Jasra and Doucet [2009]). In particular,

for option pricing in finance, there are a variety of options, (e.g. asian, barrier) which can be written

in the form (1.1) where the potential function arises from the pay-off function/change of measure

and the Markov kernel specifies finite dimensional marginals of some partially observed Lévy process

(e.g. Jasra and Del Moral [2011]). It is remarked that in this latter example, the finite dimensional

marginals can induce a time-homogeneous Markov chain that is not necessarily ergodic. Furthermore,

functionals as in (1.1) arise in certain stochastic control problems, where one considers the bivariate

process {Xn = (Yn, An);n ≥ 0} with Yn being a controlled Markov chain and {An;n ≥ 0} a control

input process. In some cases the transition kernelM can be expressed as M1(yn, dan)M2(yn, an, dyn+1)

with M1 corresponding to the control law or policy and M2 to the controlled process dynamics. In a

risk-sensitive optimal control framework 1
n log γn,x (1) arises as a cost function one aims to minimise

with respect to an appropriate class of policies; see [Whittle, 1990, Di Masi and Stettner, 1999] for

details. In such problems it is common to choose U(y, a) to be unbounded above, e.g. U is usually

chosen to be a quadratic for linear and Gaussian state space models [Whittle, 1990]. More generally

(1.1) arises as a special case of a time-inhomogeneous Feynman-Kac formulae studied by Del Moral

[2004].

The non-negative kernel Q (x, dy) := exp (U(x))M(x, dy), defines a linear operator on functions

Q (ϕ) (x) :=
∫
Q (x, dy)ϕ (y) and (1.1) can be rewritten as γn,x (ϕ) = Qn (ϕ) (x), where Qn denotes the

n-fold convolution of Q. In the applications described above, Feynman-Kac formulae as in (1.1) typi-

cally cannot be evaluated analytically. However, they may be approximated using a system of interact-

ing particles [Del Moral, 2004]. These particle systems, also known as sequential Monte Carlo methods

in the computational statistics literature (e.g. Doucet et al. [2001]), have themselves become an ob-

ject of intensive study, see amongst others [Crisan and Bain, 2008, Del Moral et al., 2009, van Handel,

2009, Chopin et al., 2011, Del Moral et al., 2011] and references therein for recent developments in a

variety of settings.

The present work is concerned with second moment properties of errors associated with the particle

approximations of {γn,x}. In order to obtain bounds on the relative variance, we control certain tensor-

product functionals of these particle approximations, recently addressed by Cérou et al. [2011], using

stability properties of the operators {Qn;n ≥ 1}. These stability properties are themselves derived

from the multiplicative ergodic and spectral theories of linear operators on weighted ∞-norm spaces

due to Kontoyiannis and Meyn [2003, 2005]; this is one of the main novelties of the paper. By doing so

we obtain a linear-in-n relative variance bound under assumptions on Q which are weaker than those

relied upon in the literature to date and which readily hold on non-compact spaces. Furthermore, to

the knowledge of the authors, these are the first results which establish

• that a linear-in-n bound holds under conditions which can accommodate Q defined in terms of

a non-ergodic Markov kernel M ,

• that any form of non-asymptotic stability result for particle approximations of Feynman Kac

formulae holds under conditions which can accommodate U not bounded above.
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1.1 Interacting Particle Systems

Let N ∈ N be a population size parameter. For n ∈ N, let ζ
(N)
n :=

{

ζ(N,i)
n ; 1 ≤ i ≤ N

}

be the n-th

generation of the particle system, where each particle, ζ(N,i)
n , is a random variable valued in X. Denote

ηNn :=
1

N

∑N
i=1 δζ(N,i)

n

. The generations of the particle system
{

ζ
(N)
n ;n ≥ 0

}

form a X
N -valued Markov

chain: for x ∈ X, the law of this chain is denoted by PN
x and has transitions given in integral form by:

P
N
x

(

ζ
(N)
0 ∈ dy

)

=

N∏

i=1

δx
(
dyi
)
,

P
N
x

(

ζ(N)
n ∈ dy

∣
∣
∣ ζ

(N)
n−1

)

=

N∏

i=1

(
ηNn−1Q(dyi)

ηNn−1Q(1)

)

, 1 ≤ k ≤ n, (1.2)

where dy = d
(
y1, . . . yN

)
, 1 is the unit function and for some test function ϕ, ηNn (ϕ) :=

1

N

∑N
i=1 ϕ

(

ζ(N,i)
n

)

(here the dependence of ηNn on x is suppressed from the notation). These transition probabilities cor-

respond to a simple selection-mutation operation: at each time step N particles are selected with

replacement from the population, on the basis of “fitness” defined in terms of eU , followed by them

each being mutating in a conditionally-independent manner according to M .

The empirical measures
{
γNn,x;n ≥ 0

}
, defined by

γNn,x (ϕ) :=

n−1∏

k=0

ηNk
(
eU
)
ηNn (ϕ) , n ≥ 1,

and γN0,x := δx, are taken as approximations of {γn,x}. It is well known that EN
x

[
γNn,x (ϕ)

]
= γn,x (ϕ)

[Del Moral, 2004, Chapter 9], where EN
x denotes expectation with respect to the law of the N -particle

system.

1.2 Standard Regularity Assumptions for Stability

Recent work on analysis of tensor product functionals associated with
{
γNn,x;n ≥ 0

}
, [Del Moral et al.,

2009], has lead to important results regarding higher moments of the error associated with these

particle approximations; in a possibly time-inhomogeneous context Cérou et al. [2011] have proved a

remarkable linear-in-n bound on the relative variance of γNn,x(1). In the context of time-homogeneous

Feynman-Kac models, the assumptions of Cérou et al. [2011] are that

sup
x∈X

U(x) < ∞ (1.3)

and that for some m0 ≥ 1, there exists a finite constant c such that

Qm0 (x, dy) ≤ cQm0 (x
′, dy) , ∀ (x, x′) ∈ X

2. (1.4)
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The result of Cérou et al. [2011] is then of the form:

N > c (n+ 1) =⇒ E
N
x





(

γNn,x(1)

γn,x(1)
− 1

)2


 ≤ c
4

N
(n+ 1) , ∀x ∈ X. (1.5)

where c is as in (1.4). The efficiency of the particle approximation is therefore quite remarkable: a

natural alternative scheme for estimation of γn,x(1) is to simulate N independent copies of the Markov

chain with transition M and approximate the expectation in (1.1) by simple averaging, but the relative

variance in that case typically explodes exponentially in n. The restriction is that (1.4) rarely holds

on non-compact spaces. The present work is concerned with proving a result of the same form as

(1.5) under assumptions which are more readily verifiable when X is non-compact. The main result

is summarized after the following discussion of (1.3)-(1.4) and how they relate to the assumptions we

consider.

The condition of (1.4) and its variants are very common in the filtering literature on exponential

stability of the optimal filter and its particle approximations, see for example [Del Moral and Guionnet,

2001, Le Gland and Oudjane, 2004] and references therein. It can be interpreted as implying a uniform

bound on the relative oscillations of the total mass of Qm0 , i.e.,

Qm0 (1) (x)

Qm0 (1) (x
′)

≤ c, ∀ (x, x′) ∈ X
2, (1.6)

and this is very useful when controlling various functionals which arise when analysing the relative

variance as in (1.5), (see Cérou et al. 2011, Proof of Theorem 5.1). However one may take the inter-

pretation of (1.4) in another direction: it implies immediately that there exist finite measures, say β

and ν, and ǫ > 0 such that

Qm0 (x, dy) ≤ β (dy) , Qm0 (x, dy) ≥ ǫν (dy) , ∀x ∈ X. (1.7)

In the case that U = 0 (i.e Q = M is a probabilistic kernel) and M is ψ-irreducible and aperiodic,

this type of minorization over the entire state space X implies uniform ergodicity of Q, which is

in turn equivalent to Q satisfying a Foster-Lyapunov drift condition with a bounded drift function

[Meyn and Tweedie, 2009, Theorem 16.2.2]. In the scenario of present interest, where in general

U 6= 0, one may take V : X → [1,∞) to be defined by V (x) = 1, for all x, and then when (1.3) holds,

it is trivially true that there exists δ ∈ (0, 1) and b < ∞ such that Q satisfies the multiplicative drift

condition,

Q
(
eV
)

≤ eV (1−δ)+bIX , (1.8)

where IX is the indicator function on X. Q may then also be viewed as a bounded linear operator on the

space of real-valued and bounded functions on X endowed with the ∞-norm, which is norm-equivalent

[in the sense of Meyn and Tweedie, 2009, p.393] to ‖ϕ‖eV := supx∈X

|ϕ(x)|
expV (x)

, with V any bounded

weighting function.

As explained in the next section, the interest in writing (1.7)-(1.8) is that conditions expressed
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in this manner have natural generalisations in the context of weighted ∞-norm function spaces with

possibly unbounded V .

1.3 Setting and Main Result

Del Moral [2004, (e.g. Chapter 4 and Section 12.4)] and Del Moral and Doucet [2004] address the

setting in which {Qn;n ≥ 1} is considered as a semigroup of bounded linear operators on the Banach

space of real-valued and bounded functions on X, endowed with the ∞-norm, and Del Moral and Miclo

[2003] address the L2 setting, connecting stability properties of the measures{γn,x} and their normal-

ized counterparts to the spectral theory of bounded linear operators on Banach spaces.

Kontoyiannis and Meyn [2003, 2005] have developed multiplicative ergodic and spectral theories of

operators of the formQ in the setting of weighted ∞-norm spaces; a function space setting which has al-

ready proved to be very fruitful for the study of general state-space Markov chains [Meyn and Tweedie,

2009, Chapter 16] without reversibility assumptions. The reader is referred to [Kontoyiannis and Meyn,

2003, 2005] for extensive historical perspective on this spectral theory and related topics, including

(of particular relevance in the present context) the theory of non-negative operators due to Numellin

[2004, Chapter 5]. The work of [Kontoyiannis and Meyn, 2003, 2005, Meyn, 2006] is geared towards

large deviation theory for sample path ergodic averages n−1
∑n−1

k=0 U(Xk) under the transition M and

in that context it is natural to state separately assumptions on M and U . By contrast, when studying

the particle systems described above, we are not directly concerned with such sample paths, but rather

the relationship between the properties of the particle approximations
{
γNn,x

}
and their exact counter-

parts {γn,x}. Some of the results of Kontoyiannis and Meyn [2003, 2005] will be applied to this effect,

but starting from assumptions expressed directly in terms of Q which reflect the scenario of interest.

The core assumptions in the present work (see section 2.2 for precise statements) are that for some

constants m0 ≥ 1, δ ∈ (0, 1) and all d ≥ 1 large enough,

Qm0 (x, dy) ≥ ǫdνd (dy) , ∀x ∈ Cd, (1.9)

Q
(
eV
)

≤ e(1−δ)+bdICd , (1.10)

with V unbounded and Cd := {x : V (x) ≤ d} ⊂ X a sublevel set. It is noted that one recovers the

minorization and drift of (1.7)-(1.8) in the case that V is bounded and Cd = X. It will be illustrated

through examples in section 4, that (1.9)-(1.10) can be satisfied in circumstances which allow M to

be non-ergodic. Furthermore, it will also be demonstrated that, in contrast to (1.3), conditions (1.9)-

(1.10) can be satisfied with U not bounded above, subject to strong enough assumptions on M and a

restriction on the growth rate of the positive part of U .

The main result obtained in the present work (Theorem 3.2 in section 3) is a bound of the form:

N > c1 (n+ 1) ≥ φ(x) =⇒ E
N
x





(

γNn,x (1)

γn,x(1)
− 1

)2


 ≤ c2
4

N
(n+ 1)

v2+ǫ(x)

h20(x)
,

with

φ(x) := c1

(⌈
1

B1
log

[

B2
0

v(x)

h0(x)

]⌉

+ 1

)

,
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and where v(x) = eV (x), and B0, B1, c1, c2 are constants which are independent of N , n and x. In

this display h0 is the eigenfunction associated with the principal eigenvalue of Q and the constant B1

is directly related to the size of the spectral gap of Q. Verification of the existence of h0 along with

various other spectral quantities plays a central role in the proofs.

We note that Del Moral and Doucet [2004], Cérou et al. [2011] also consider the case in which

expU(x) may touch zero and the former are also directly concerned with approximation of the eigen-

value λ corresponding to h0 via the empirical probability measures
{
ηNn
}
. These issues are beyond the

scope of the present article but the study by the authors of these and related issues in a more general

time-inhomogeneous setting is underway. It is also remarked that Cérou et al. [2011] consider a more

general type of particle system, which involves an accept/reject evolution mechanism. The approach

taken here is also applicable in that context, but for simplicity of presentation we only consider the

selection-mutation transition in (1.2).

The remainder of the paper is structured as follows. Section 2 is largely expository: it introduces

various spectral definitions and the main assumptions of the present work and goes on to show how these

assumptions validate the application of multiplicative ergodicity results of Kontoyiannis and Meyn

[2005]. It is stressed that much of the content of this section is included in order to make clear

the similarities and differences between the setting of interest and the main stated assumptions and

results of Kontoyiannis and Meyn [2005]. Section 3 deals with the variance bounds for the particle

approximations. Numerical examples are given in section 4. Many of the proofs of the results in

Section 2 are in Appendix A. Some proofs and lemmas for the results in Section 3 can be found in

Appendix B.

2 Multiplicative Ergodicity

2.1 Notations and Conventions

Let X be a state space and B(X) be an associated countably generated σ-algebra. We are typically inter-

ested in the case X = Rdx , dx ≥ 1, but our results are readily applicable in the context of more general

non-compact state-spaces. For a weighting function v : X → [1,∞), and ϕ a measurable real-valued

function on X, define the norm ‖ϕ‖v := supx∈X
|ϕ(x)| /v(x) and let Lv := {ϕ : X → R; ‖ϕ‖v <∞} be

the corresponding Banach space. Throughout, when dealing with weighting functions we employ an

lower/upper-case convention for exponentiation and write interchangeably v ≡ eV .

For K a kernel on X×B (X), a function ϕ and a measure µ denote µ(ϕ) :=
∫
ϕ(x)µ(dx), Kϕ(x) :=

∫
K(x, dy)ϕ(y) and µK(·) :=

∫
µ(dx)K(x, ·). Let P be the collection of probability measures on

(X,B(X)), and for a given weighting function v : X → [1,∞) let Pv denote the subset of such measures

µ such that µ(v) <∞. For 0 ≤ ℓ < m the (m− ℓ)-fold iterate of K is denoted:

Km−ℓ = K . . .K
︸ ︷︷ ︸

m−ℓ times

,

and when ℓ = 0 it is suppressed from the notation and we write Km ≡ Km−0. By convention we set

K0 = Id.
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The induced operator norm of a linear operator K acting Lv → Lv is

9K9v := sup

{‖Kϕ‖v
‖ϕ‖v

;ϕ ∈ Lv, ‖ϕ‖v 6= 0

}

= sup {‖Kϕ‖v ;ϕ ∈ Lv, |ϕ| ≤ v} .

The spectrum of K as an operator on Lv, denoted by Sv(K), is the set of complex z such that

[Iz −K]
−1

does not exist as a bounded linear operator on Lv. The corresponding spectral radius of

K, denoted by ξv(K), is given by

ξv(K) := sup {|z| ; z ∈ Sv(K)} = lim
n→∞

9Kn91/n
v ,

where the limit always exists by subadditive arguments, but may be infinite. The following definitions

are from Kontoyiannis and Meyn [2005].

• A pole z0 ∈ Sv(K) is of finite multiplicity n if

– for some ǫ1 > 0 we have {z ∈ Sv(K); |z − z0| ≤ ǫ1} = {z0} ;

– and the associated projection operator

J :=
1

2πi

∫

∂{z:|z−z0|≤ǫ1}

[Iz −K]−1 dz,

can be expressed as a finite linear combination of some {si} ⊂ Lv and {νi} ⊂ Pv,

J =

n−1∑

i,j=0

mi,j [si ⊗ νj ] ,

where [si ⊗ νj ] (x, dy) = si(x)νj(dy).

• K admits a spectral gap in Lv if there exists ǫ0 > 0 such that Sv (Q) ∩ {z : |z| ≥ ξv (Q)− ǫ0} is

finite and contains only poles of finite multiplicity.

• K is v-uniform if it admits a spectral gap and there exists a unique pole λ ∈ Sv (Q) of multiplicity

1, satisfying |λ| = ξv (Q).

• K has a discrete spectrum if for any compact set B ⊂ C \ {0}, Sv (Q) ∩B is finite and contains

only poles of finite multiplicity.

• K is v-separable if for any ǫ > 0 there exists a finite rank operator K̂ǫ such that 9K − K̂ǫ9v ≤ ǫ

2.2 Multiplicative Ergodic Theorem

In this section we present the main assumptions and state some results from Kontoyiannis and Meyn

[2005] (see also Kontoyiannis and Meyn [2003]).

2.2.1 Assumptions

(H1) The semigroup {Qn;n ≥ 1} is ψ-irreducible and aperiodic (see Meyn [2006, Section 2.1]).
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(H2) There exists an unbounded V : X → [1,∞), constants m0 ≥ 1, δ ∈ (0, 1) and d ≥ 1 with the

following properties.

For each d ≥ d, there exists ǫd > 0 and νd ∈ Pv such that Cd := {x : V (x) ≤ d} is (m0, ǫd, νd)-

small for Q, i.e.

Qm0(x, ·) ≥ ICd
(x)ǫdνd(·), ∀x ∈ X. (2.1)

with νd (Cd) > 0. Furthermore Qm0 (Cd) (x) > 0 for all x ∈ X. There also exists bd < ∞ such

that the following multiplicative drift condition holds:

Q
(
eV
)

≤ eV (1−δ)+bdICd . (2.2)

(H3) U : X → R is such that

U+ := max (U, 0) ∈ LV .

(H4) There exists t0 ≥ 1 and for each d ≥ d there exists a measure βd, such that βd
(
eV
)
<∞ and

Px

(
Xt0 ∈ A, τCc

d
> t0

)
≤ βd (A) , x ∈ Cd, A ∈ B(X),

where Px denotes the law of the Markov chain {Xn} with transitionM and τA := inf {n ≥ 1 : Xn ∈ A}.

Remark 2.1. We take care to emphasize the following differences and similarities between the above

assumptions and the setting of Kontoyiannis and Meyn [2005].

• Assumption (H2) equation (2.2) applies directly to the Q kernel, whereas Kontoyiannis and Meyn

[2005] impose a multiplicative drift condition on M . The key issue is that the multiplicative drift

condition for Q is the essential and implicit ingredient of Lemma B.4 of Kontoyiannis and Meyn

[2005], and as we shall see in section 4, under the conditions that U is bounded above but not

bounded below, assumption (H2) can hold without geometric drift assumptions on M . A related

phenomenon is considered by Meyn [2006] in order to obtain “one-sided” large deviation principles

for ergodic sample-path averages for the chain with transition M .

• Assumption (H2) requires the sublevel sets of V to be small for Q and this is exploited in Lemma

A.1. The explicit m0-step minorisation condition makes it easy to bound below the spectral

radius of Q, see Lemma 2.1. In the setting of Kontoyiannis and Meyn [2003] the spectral radius

of Q is bounded below by 1 as U is assumed centered with respect to the invariant probability

distribution for M . In the present context, this centering assumption is unnatural, especially as

we want to consider some situations where such an invariant probability does not exist.

• Assumption (H3) is weaker than the corresponding assumption in the statement of [Kontoyiannis and Meyn,

2005, Theorem 3.1]. However, (H3) coincides with the first part of [Kontoyiannis and Meyn,

2005, Equation 73], which combined with (H1), (H2) and (H4) in Lemma 2.2 below, is enough

to prove that Q has a discrete spectrum in Lv.
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• As shown in [Kontoyiannis and Meyn, 2005, Theorem 3.4] and [Kontoyiannis and Meyn, 2003],

a MET can be proved without (H4), but at the cost of restrictions on the class of functions to

which U belongs which are a little unwieldy.

2.2.2 Results

We now give a collection of results which are used to prove the MET, Theorem 2.2. The proofs are

given in Appendix A. It is remarked that the steps in the proof Theorem 2.2 are effectively the same

as part of the proof of Theorem 3.1 of Kontoyiannis and Meyn [2005], our starting assumptions are

stated differently.

The following preparatory lemma establishes that the Feynman-Kac formula (1.1) is well defined

and presents bounds on the spectral radius of Q.

Lemma 2.1. Assume (H2). Then for all x ∈ X, n ≥ 1, ϕ ∈ Lv:

0 < |γn,x (ϕ)| <∞. (2.3)

and for all d ≥ d:

ǫdνd (Cd) ≤ ξv (Q) <∞, (2.4)

where d is as in (H2).

To clarify how assumptions (H1)-(H4) connect with the results of Kontoyiannis and Meyn [2005]

we next present a lemma regarding the v-separability of Q which is a stepping stone to the MET.

Observe that the multiplicative drift condition (H2) implies that Q can be approximated in norm to

arbitrary precision by truncation to the sublevel sets of V , in the sense that for fixed d and any r ≥ 1,

ICc
r
Q
(
eV
)

≤ eV−δr+bd , (2.5)

and then with Q̂ := ICrQ, it follows immediately that 9Q− Q̂9v ≤ e−δr+bd . In the following lemma,

which combines [Kontoyiannis and Meyn, 2005, Lemmata B.3-B.5] and is included here for complete-

ness, the density assumption (H4) plays a key role in establishing that iterates of this truncation of Q

can be approximated by a finite rank kernel.

Lemma 2.2. Assume (H1)-(H4). Then Q2t0+2 is v-separable, where t0 is as in (H4).

The following theorem makes a key connection between v-separability and a discrete spectrum.

Theorem 2.1. [Kontoyiannis and Meyn, 2005, Theorem 3.5] If the linear operator Q : Lv → Lv is

bounded and Qt0 : Lv → Lv is v-separable for some t0 ≥ 1, then Q has a discrete spectrum in Lv.

Under (H2) Q is indeed bounded, so has a discrete spectrum in Lv and then by definition it also

admits a spectral gap in Lv. Fixing arbitrarily θ > ξv (Q) and d ≥ d, we may consider the resolvent
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and corresponding potential operators, defined respectively by

R := [Iθ −Q]
−1

=

∞∑

k=0

θ−k−1Qk, (2.6)

H :=
[

IλR −
(

R− θ(−m0−1)ǫdICd
⊗ νd

)]−1

=
∞∑

k=0

λ−k−1
R

(

R− θ(−m0−1)ǫdICd
⊗ νd

)k

, (2.7)

where λR := 1/ (θ − ξv (Q)) and ǫd, Cd, νd, are as in (H2). The dependence of R and H on θ and d is

suppressed from the notation. Also then consider the function h on X defined (with the same d as in

H) by

h(x) := H (ICd
) (x), ∀x ∈ X. (2.8)

We can now state and prove the MET:

Theorem 2.2. Assume (H1)-(H4). Then there exists a maximal and isolated eigenvalue λ, with

λ = ξv (Q), an eigenfunction h0 ∈ Lv and an eigenmeasure µ0 ∈ Pv satisfying

Qh0 = λh0, µ0Q = λµ0,

and µ0 (h0) = 1. The eigenfunction is a normalisation of h given in (2.8), in the sense that for the

same d taken in the definition of h, we have

h0 :=
H (ICd

)

µ0H (ICd
)

with µ0 :=
νdH

νdH (1)
. (2.9)

Furthermore, there exist constants B0 < ∞ and B1 > 0 such for any ϕ ∈ Lv, any n ≥ 1 and any

x ∈ X,

∣
∣λ−nγn,x(ϕ)− h0(x)µ0(ϕ)

∣
∣ ≤ ‖ϕ‖v B0e

−nB1v(x). (2.10)

Proof. We give only a sketch proof, as it is essentially that of Theorem 3.1 of Kontoyiannis and Meyn

[2005]. As established in Lemma 2.1, under our assumptions ξv (Q) < ∞. In addition, as mentioned

aboveQ is bounded on Lv has a discrete spectrum and admits a spectral gap in Lv. By the minorization

condition of (H2) one can obtain a minorization condition for R of (2.6):

R(x, dy) ≥ θ(−m0−1)ǫdICd
(x)νd(dy)

and hence one can apply Proposition 2.8 of Kontoyiannis and Meyn [2005]. This proposition establishes

that Q is v-uniform and that h ∈ Lv is an eigenfunction for Q with eigenvalue λ = ξv (Q) (i.e. it is

maximal and isolated, by the v−uniformity). The normalization is justified by the finiteness, under our

assumptions, of the associated quantities. The eigenmeasure is easily obtained by similar arguments

to the proof of Proposition 4.5 of Kontoyiannis and Meyn [2003].
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To obtain (2.10) one may define the twisted kernel:

P̌ (x, dy) := λ−1h−1
0 (x)Q(x, dy)h0(y), (2.11)

which can be seen to be well defined as a Markov kernel, as λ is strictly positive and finite and (H2)

implies h0 is everywhere finite and strictly positive. Furthermore one observes immediately that P̌

admits π̌, defined by π̌(ϕ) = µ0 (h0ϕ) /µ0 (h0) = µ0 (h0ϕ), as an invariant probability distribution. By

Lemma A.1 in Appendix A one can apply Theorem 3.4 of Kontoyiannis and Meyn [2005] to the Markov

chain associated to the twisted kernel, (in the notation of of Theorem 3.4 of Kontoyiannis and Meyn

[2005], take g ≡ ϕ/h0, F ≡ 0). This results in the bound (2.10), which completes the proof.

Remark 2.2. Upon dividing through by h0, the equation (2.10) of the MET may be viewed as a

probabilistic, geometric ergodic theorem for the twisted chain associated to the kernel (2.11) and the

modified test function ϕ/h0, with a naturally modified drift function v̌ = eV̌ proportional to v/h0. See

Lemma A.1 in Appendix A.

Remark 2.3. The constant B1 in equation (2.10) is directly related to the size of the spectral gap of

Q, see [Kontoyiannis and Meyn, 2003, Proof of Theorem 4.1].

3 Non-Asymptotic Variance

3.1 Tensor Product Functionals

The various tensor product functionals considered in the remainder of this paper require some addi-

tional notation. For a measurable function F on X
2 and a weighting function v : X → [1,∞), we define

the norm‖F‖v,2 := supx,y∈X2 |F (x, y)| / (v(x)v(y)) and denote Lv,2 :=
{

F : X2 → R; ‖F‖v,2 <∞
}

the

corresponding function space. For two functions ϕ1, ϕ2 ∈ Lv, we denote by ϕ1 ⊗ ϕ2 ∈ Lv,2 the tensor

product function defined by ϕ1 ⊗ ϕ2(x, x
′) := ϕ1(x)ϕ2(x

′). Let K : X×B(X) → R+ be a kernel on X.

The two-fold tensor product operator corresponding to K is defined, for any F ∈ Lv,2, by

K⊗2 (F ) (x, x′) :=

∫

X2

K(x, dy)K(x′, dy′)F (y, y′).

The iterated operator notation of the previous section is carried over so that for indices 0 ≤ ℓ < m,

K⊗2
ℓ,m (F ) (x, x′) = K⊗2 . . .K⊗2

︸ ︷︷ ︸

m−ℓ times

(F )(x, x′).

Corresponding to the particle empirical measures of section 1.1, for n ≥ 1, we introduce the tensor

product empirical measures (or 2-fold V−statistic):

(
ηNn
)⊗2

:=
1

N2

∑

1≤i,j≤N

δ(ζi
n,ζ

j
n),

(
γNn,x

)⊗2
:= γNn,x(1)

2
(
ηNn
)⊗2

.

Following the definition of Cérou et al. [2011], the coalescent integral operator D, acting on func-

11



tions on X
2, is defined by

D (F ) (x, x′) = F (x, x) , (x, x′) ∈ X
2.

For any 0 ≤ s ≤ (n+ 1), we denote by In,s := {(i1, ..., is) ∈ Ns
0; 0 ≤ i1 < . . . < is ≤ n} the set of

coalescent time configurations over a horizon of length n+ 1 and for (i1, ..., is) ∈ In,s and x ∈ X, the

nonegative measure Γ
(i1,...is)
n,x on

(
X
2,B

(
X
2
))

, and its normalised counterpart Γ̄
(i1,...,is)
n,x , are defined by

Γ(i1,...,is)
n,x := γ⊗2

i1,x
DQ⊗2

i1,i2
D . . .Q⊗2

is−1,is
DQ⊗2

is,n
, Γ̄(i1,...is)

n,x :=
Γ
(i1,...,is)
n,x

γn,x(1)2
, (3.1)

for s ≥ 1, and for s = 0, Γ
(∅)
n,x (F ) := γ⊗2

n,x (F ) and Γ̄
(∅)
n,x (F ) := η⊗2

n (F ). We refer the reader to

Cérou et al. [2011, Section 3.] for a helpful visual representation of the integrals in the transport

equation (3.1). We have already checked in Lemma 2.1 that the Feynman-Kac formula (1.1) is well

defined under our assumptions in the Lv setting, which validates the denominator of (3.1).

When Theorem 2.2 holds, we will denote by Ěx expectation with respect to the law of the twisted

Markov chain
{
X̌k; k ≥ 0

}
, i.e that with transition kernel P̌ as in equation (2.11) and initialised from

X̌0 = x.

3.2 Non-Asymptotic Variance

In this section we give our main result. The proof is detailed in section 3.3. The following additional

assumption imposes some further restrictions on the function class considered, but this is not overly

demanding, considering that we will be dealing with coalesced tensor product quantities.

(H5) Let V and d̄ be as in assumption (H2). There exists 0 < ǫ0 < ǫ and for all d ≥ d̄, there exists

b∗d <∞ such that

Q
(

e(1+ǫ)V
)

≤ e(1+ǫ)V−(1+ǫ0)V+b∗dICd .

The following theorem is due to Cérou et al. [2011] .

Theorem 3.1. [Cérou et al., 2011, Proposition 3.4] For any n ≥ 1, x ∈ X and N ≥ 1 the following

expansion holds:

E
N
x





(

γNn,x (1)

γn,x(1)
− 1

)2




=
n+1∑

s=1

(

1− 1

N

)(n+1)−s
1

Ns

∑

(i1,...,is)∈In,s

[

Γ̄(i1,...is)
n,x (1⊗ 1)− 1

]

, (3.2)

where EN
x denotes expectation w.r.t. the law of the N -particle system.

It is remarked that there is a different error decomposition in [Chan and Lai, 2011], which can hold

to any order under appropriate regularity conditions; one would conjecture that this decomposition

can also be treated, but this is not considered here. The main result of this section is the following

theorem, whose proof is postponed.
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Theorem 3.2. Assume (H1)-(H5). Then there exists c1 < ∞ and c2 < ∞ depending only on the

quantities in (H1)-(H5) such that for all x ∈ X,

N > c1 (n+ 1) ≥ φ(x) =⇒ E
N
x





(

γNn,x (1)

γn,x(1)
− 1

)2


 ≤ c2
4

N
(n+ 1)

v2+ǫ(x)

h20(x)
,

with

φ(x) := c1

(⌈
1

B1
log

[

B2
0

v(x)

h0(x)

]⌉

+ 1

)

,

and where B0 and B1 are as in Theorem 2.2.

3.3 Construction of the Proof

In the following Section, we detail the argument to prove Theorem 3.2. To that end, we present

the essence of the argument with Proposition 3.1 and Lemma 3.1 below; the proofs of which are

in Appendix B.1. In addition, these results will rely upon technical lemmas which can be found in

Appendix B.2.

The proof of Theorem 3.2 is constructed in the following manner. By Theorem 3.1) we have the

decomposition (3.2) in terms of the operators
{

Γ̄
(i1,...is)
n,x

}

. The proof in Cérou et al. [2011] focuses

upon controlling these expressions via the regularity conditions mentioned in section 1.2; our proof

will do the same, except under (H1)-(H5).

Throughout the remainder of this paper, let V ∗ : X → [1,∞) is defined by

V ∗(x) := V (x) (1 + ǫ)− log h0(x) + log ‖h0‖v(1+ǫ) , (3.3)

where ǫ as in (H5). We proceed with the following key proposition:

Proposition 3.1. Assume (H1)-(H5). Then there exists c < ∞ depending only on the quantities in

(H1)-(H5) such that for all n ≥ 1, 0 ≤ s ≤ n+ 1, (i1, ...is) ∈ In,s, F ∈ Lv1/2,2 and x ∈ X,

Γ̄(i1,...is)
n,x (F ) ≤ ‖F‖v1/2,2 c

s+1 v(x)

h0(x)

Ěx

[
∏

k∈{i1,...,is−1}
v
(
X̌k

)
v∗
(
X̌is

)]

Ěx

[
1/h0

(
X̌n

)]2 , (3.4)

with the conventions that the product in the numerator is unity when s ≤ 1, and in the case of s = 0,

is = 0. In the above displays, v is as in (H2), h0 ∈ Lv is eigenfunction as in Theorem 2.2 and v∗ = eV
∗

is as in (3.3).

This result connects the operators
{

Γ̄
(i1,...is)
n,x

}

with expectations of the Lyapunov functions v and

v∗ and the eigenfunction, w.r.t. the twisted chain. Given this Proposition, one needs to control the

numerator and denominator. The latter can be achieved by the MET of Theorem 2.2 and the former

via the following:

Lemma 3.1. Assume (H1)-(H5). Then there exists c <∞ depending only on the quantities in (H1)-
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(H5) such that for any n ≥ 1, 1 ≤ s ≤ n+ 1, (i1, ..., is) ∈ In,s,

Ěx




∏

k∈{i1,...,is}

v
(
X̌k

)
v∗
(
X̌n+1

)



 ≤ cs+1v∗(x), ∀x ∈ X, (3.5)

where v∗ is as in (3.3).

We now proceed with the proof of Theorem 3.2.

Proof. [Proof of Theorem 3.2] By Proposition 3.1 and Lemma 3.1 we have that there exists a finite

constant c depending only on the quantities in (H1)-(H5) such that

Γ̄(i1,...is)
n,x (1⊗ 1) ≤ cs+1 v(x)

h0(x)
v∗(x)

1

Ěx

[
1/h0

(
X̌n

)]2 . (3.6)

Using the fact that Ěx

[
1/h0

(
X̌n

)]
= γn,x(1)/[λ

nh0(x)] we appeal to (2.10) of the MET of Theorem

2.2 as follows. Without loss of generality, it can be assumed that B0 > 1. Then for all x ∈ X

n ≥
⌈

1

B1
log

[

B2
0

v(x)

h0(x)

]⌉

⇒ 1−B0e
−B1n

v(x)

h0(x)
≥ B0 − 1

B0
⇒ Ěx

[
1/h0

(
X̌n

)]
≥ B0 − 1

B0
. (3.7)

Throughout the remainder of the proof the left-most inequality in (3.7) is assumed to hold. Then

combining (3.7) with (3.6) and recalling the definition of v∗ we then have that there exists c0 < ∞
such that

Γ̄(i1,...is)
n,x (1⊗ 1) ≤ c0c

s+1 v
2+ǫ(x)

h20(x)
.

Proceeding by the essentially the same argument as in [Cérou et al., 2011, Proof of Theorem 5.1], we

use the identity:
n+1∑

s=1

∑

(i1,...,is)∈In,s

∏

j∈{i1,...,is}

aj =

[
n∏

s=0

(1 + as)

]

− 1,

which holds for any n ≥ 1 and {as; s ≥ 0}, to establish via Theorem 3.1 that

E
N
x





(

γNn,x (1)

γn,x(1)
− 1

)2


 ≤ c0c
v2+ǫ(x)

h20(x)

n+1∑

s=1

(

1− 1

N

)(n+1)−s
1

Ns

∑

(i1,...,is)∈In,s

cs

= c0c
v2+ǫ(x)

h20(x)

(

1− 1

N

)n+1
[(

1 +
c

N − 1

)n+1

− 1

]

≤ c0c
v2+ǫ(x)

h20(x)

[(

1 +
c

N − 1

)n+1

− 1

]

.

Then exactly as in [Cérou et al., 2011, Proof of Corollary 5.2],

N > 1 + c (n+ 1) ⇒
(

1 +
c

N − 1

)n+1

− 1 ≤ 2

N − 1
c (n+ 1) ≤ 4

N
c (n+ 1) .
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This completes the proof.

4 Examples

This section gives some discussion and examples of circumstances in which the assumptions can be

satisfied. In particular we focus on the drift assumption of (H2). It seems natural to consider two

general cases: those in which it is not assumed, or it is assumed, that the Markov kernel M itself

satisfies a multiplicative drift condtion.

4.1 Cases without a multiplicative drift assumption on M

In this situation, the decay of the potential function plays a key role in establishing the multiplicative

drift condition, illustrated as follows.

Lemma 4.1. Assume that there exists V : X → [1,∞) unbounded such that 9M9v < ∞ and the

sublevels of V are small for M . If for any finite d, infx∈Cd
U(x) > −∞, and there exists d1 such

that supx∈Cd1
U(x) < ∞ and for some δ1 ∈ (0, 1), supx∈Cc

d1

U(x)/V (x) ≤ −δ1, assumption (H2) is

satisfied.

Proof. We have

Q
(
eV
)
(x) ≤ exp (V (x) + U(x) + log9M9v) , ∀x ∈ X.

As V is unbounded, for any δ ∈ (0, δ1) there exists d large enough such that for all x ∈ X and d ≥ d,

ICc
d
(x)Q

(
eV
)
(x) ≤ exp (V (x)(1 − δ)) , ICd

(x)Q
(
eV
)
(x) ≤ exp

(

d+ sup
y∈Cd

U(y) + log9M9v

)

,

which is enough to verify the drift part of (A2). The minorization part is direct.

In the extensive literature on drift for Markov kernels there are several conditions which guarantee

the existence of v such that 9M9v <∞. For example, any M satisfying the polynomial drift condition

of ? automatically satisfies 9M9v < ∞ for the same v upto a factor of e. However, ergodicity of M

is not necessary, as illustrated in the following simple example.

4.1.1 Gaussian Random Walk

Let X := R and U and M be defined by

U(x) := −x2, M(x, dy) :=
1√
2π

exp

(

− (y − x)2

2

)

dy,

where dy denotes Lebesgue measure. With ψ Lebesgue measure, the ψ-irreducibility and aperiodicity of

{Qn;n ≥ 1} is immediate. For the drift and minorization conditions of (H2), elementary manipulations

show that equation (2.2) holds with V (x) = x2/ (2 (1 + δ0))+1 for suitable δ0 > 0 and solutions of the

minorization condition (2.1) are also easily obtained. Condition (H3) is trivially satisfied because U is
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Figure 4.1: Top: Gaussian random walk model. Bottom: ergodic autoregression model. Left: Relative
variance vs. initial condition x0, at times �, n = 20; ×, n = 40; ∗, n = 60; ⋄, n = 80; ◦, n = 100. Right:
Relative variance vs. n, from initial conditions (dashed) x0 = 0, (solid - top) x0 = 4, (solid - bottom)
x0 = 10.

non-positive. The density assumption (H4) is satisfied with βd the restriction of Lebesgue measure to

Cd. Assumption (H5) holds for ǫ small enough and ǫ0 = ǫ/2.

It is generally not easy to obtain or estimate values for the constants in Theorem 3.2. In the

numerical examples below, we consider a fixed value of N and consider the relative variance as a

function of the n and the initial condition x.

The numerical results of Figure 4.1 show estimates of EN
x





(

γNn,x (1)

γn,x(1)
− 1

)2


 with fixed N =

2000, for various x and n, with in each case the expectation approximated by averaging over 2 × 104

independent simulations of the particle system. For this model γn,x(1) can be computed analytically,

and this exact value was used in the estimates. The linear growth of the relative variance and its

dependence on the initial point x is apparent from the figure.

4.2 Cases with a multiplicative drift assumption on M

The following Lemma shows that condition (H2) holds for suitable U when M itself satisfies a multi-

plicative drift condition.

Lemma 4.2. Assume that there exists V : X → [1,∞) unbounded, δ1 > 0, d1 ≥ 1 and for each d ≥ d1
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there exists bd <∞ such that

M
(
eV
)

≤ eV (1−δ1)+bdICd , (4.1)

and the set Cd = {x;V (x) ≤ d} is small for M . Then if U+ ∈ LV , limr→∞

∥
∥ICc

r
U+
∥
∥
V
= 0 and for all

finite d, infx∈Cd
U(x) > −∞ assumption (H2) holds.

Proof. Due to the drift condition (4.1), for any δ ∈ (0, δ1),

Q
(
eV
)

≤ exp
(
V (1− δ)− (δ1 − δ)V + U+ + bdICd

)
,

and due to limr→∞

∥
∥ICc

r
U+
∥
∥
V
= 0, there exists d such that for all d ≥ d,

Q
(
eV
)
≤ exp

(
V (1− δ) + b̄dICd

)
,

where b̄d := bd + d ‖U+‖V , which verifies the drift part of (H2). The minorization part is immediate

from the assumptions that Cd is small for M and U(x) is bounded below on Cd.

4.2.1 Ergodic Autoregression

For this example we consider the lag-1 autoregressive Markov kernel,

M(x, dy) :=
1√
2π

exp

(

− (y − αx)
2

2

)

dy,

for fixed |α| < 1. Elementary manipulations then show that, for δ0 > 0 and d large enough, M satisfies

(4.1) with V (x) = x2/ (2 (1 + δ0)) + 1. Also M readily admits minorization on the sublevel sets Cd.

To complete the specification of Q consider the potential function U(x) = |x|, which clearly sat-

isfies (H3). Lemma 4.2 shows that (H2) is satisfied. The density assumption (H4) is satisfied for βd

proportional to Lebesgue measure restricted to Cd. Again it is straightforward to check that (H5) is

satisfied for ǫ > 0 small enough and ǫ0 = ǫ/2.

Figure 4.1 also shows estimates of the relative variance obtained by simulation for this model with

α = 0.4 and using N = 104 particles, averaged over 104 independent realizations. Again the linear

growth of the variance is apparent, but there appears to be less variation with respect to the initial

condition than in the random walk example.

4.2.2 Cox-Ingersoll-Ross Process

The Cox-Ingersoll-Ross (CIR) process, [Cox et al., 1985], is a diffusion process that is typically used

in financial applications to capture mean-reverting behaviour and state-dependent volatility, which is

thought to be typical in many real scenarios. The process is defined via the stochastic differential

equation:

dXt = θ (µ−Xt) dt+ σ
√

XtdWt
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where {Wt} is standard Brownian motion, θ > 0 is the mean-reversion rate, µ > 0 is the level of

mean-reversion and σ > 0 is the volatility. We assume that
2θµ

σ2
> 1 so that the process is stationary

an never touches zero.

Throughout the remainder of section 4.2.2, for ∆ > 0 we denote by M∆ the transition probability

from any time t to t+∆ of the CIR process with parameters θ, µ, σ. The following lemma identifies a

drift function for M∆, exhibiting a trade-off between growth rate of the drift function specified by a

parameter s, the parameters of the CIR process and the time step size ∆.

Lemma 4.3. For s > 0 and ∆ > 0, consider the candidate drift function V : R+ → [1,∞), defined by

V (x) := 1 +
4θsx

σ2 (1− e−θ∆)
. (4.2)

Then subject to the conditions:

s ∈
(

0,
1− e−θ∆

2

)

, δ ∈
(

0,
e−θ∆

1− 2s

)

, d ≥ 1− 2θµ log (1− 2s) /σ2

e−θ∆/ (1− 2s)− δ
=: d, (4.3)

the following multiplicative drift condition is satisfied:

M∆
(
eV
)

≤ eV (1−δ)+bdICd ,

with V as in (4.2) and bd :=
de−θ∆

1− 2s
− 2θµ

σ2
log (1− 2s) + 1.

Proof. For t ≥ 0 define

ct :=
2θ

σ2 (1− e−θt)
, κ :=

4θµ

σ2
,

and the scaled process Zt := 2ctXt. Conditional onX0 = x, Zt has a non-central chi-square distribution

with degree of freedom κ and non-centrality parameter taking the value 2ctxe
−θt [Cox et al., 1985].

We then have for any x ∈ X,

M∆
(
eV
)
(x) = Ex [exp (sZ∆)] exp(1)

= exp

[

2c∆xs

(
e−θ∆

1− 2s

)

− κ

2
log (1− 2s) + 1

]

≤ exp

[

V (x)

(
e−θ∆

1− 2s

)

− κ

2
log (1− 2s) + 1

]

.

where the equalities hold due to the existence of the moment generating function Ex [exp (sZt)], for

s < 1/2, which is satisfied under the conditions of (4.3). Under these conditions we also then have for

d ≥ d and x /∈ Cd,

M∆
(
eV
)
(x) ≤ exp

[

V (x) (1− δ)− d

(
e−θ∆

1− 2s
− δ

)

− κ

2
log (1− 2s) + 1

]

≤ exp [V (x) (1− δ)] ,
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Figure 4.2: Cox-Ingersoll-Ross process. Relative variance vs. n, from initial conditions x0 = 0.1
(dashed), x0 = 1 (solid - bottom), x0 = 3 (dot-dashed), x0 = 10 (solid top).

and for x ∈ Cd,

M
(
eV
)
(x) ≤ exp

[

d

(
e−θ∆

1− 2s

)

− κ

2
log (1− 2s) + 1

]

= exp (bd) .

We will consider as an example the case where the Markov chain {Xn} the skeleton of the CIR

process over a discrete time grid of spacing ∆ and U(x) := α log x for some fixed α. Lemmata 4.2 and

4.3 establish that (H2)-(H3) are satisfied and one can check (H4)-(H5) are satisfied similarly to the

previous example.

Figure 4.2 displays estimates of the relative variance for this model, computed via simulation, when

∆ = 0.01, (i.e. M ≡ M0.01), α = 0.01, θ = 10, µ = 1, and σ = 0.1. This was obtained using N = 103

particles, averaged over 3 × 103 independent realizations. Again the linear growth of the relative

variance is present for different initial conditions. Note one may interpret γ100,x(1) as the geometric

mean Ex[
∏99

k=0X
1/100
k ], which can be used for prediction in a variety of financial application.

5 Summary

In this paper we have established a linear-in-n bound on the non-asymptotic variance associated with

particle approximations of time-homogeneous Feynman-Kac formulae, under assumptions that can be

verified on non-compact state-spaces.

There are several possible extensions to this work. Firstly, to consider non-homogeneous Feynman-
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Kac formula, which occur routinely in applications such as filtering and Bayesian statistics. Secondly,

an important developing area in the analysis of sequential Monte Carlo methods is the case when

the dimension of the state-space can be very large [Beskos et al., 2011]. Such analysis has relied on

classical geometric drift conditions and it would be interesting to consider the role of multiplicative

drift conditions in this context.
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A Proofs and Auxiliary Results for Section 2

Proof. [Proof of Lemma 2.1] Fix any d ≥ d. The lower bound of (2.3) is due to eU(x) > 0 for all x.

The upper bound of (2.3) is an immediate consequence of the inequality Q
(
eV
)
/eV ≤ ebd , implied by

(2.2).

For the upper bound of (2.4), use the standard inequality ξv (Q) ≤ 9Q9v and then also due to the

drift condition in (2.2), 9Q9v < ∞. Now consider the lower bound. It is claimed that for any k ≥ 3

and 1 ≤ j ≤ k − 1,

Qkm0

(
eV
)
(x) ≥ Q(k−j)m0

(ICd
) (x)ǫjdνd (Cd)

j−1 νd
(
eV
)
, ∀x ∈ X, (A.1)

where m0 is as in (H2). For each k, the claim is verified by induction in j; fix k ≥ 3 arbitrarily. For

j = 1,

Qkm0

(
eV
)
(x) ≥ Q(k−1)m0

(
ICd

Q
(
eV
))

(x) ≥ Q(k−1)m0
(ICd

) (x)ǫdνd
(
eV
)

which initializes the induction. Now assume that (A.1) holds at rank 1 ≤ j < k − 1. Then at rank

j + 1, applying the induction hypothesis

Qkm0

(
eV
)
(x) ≥ Q(k−j−1)m0

(ICd
Q (ICd

)) (x)ǫjdνd (Cd)
j−1 νd

(
eV
)

≥ Q(k−j−1)m0
(ICd

) (x)ǫj+1
d νd (Cd)

j
νd
(
eV
)
, ∀x ∈ X,

where (2.1) has been applied, thus the claim is verified.

Now applying (A.1) with j = k − 1 gives,

Qkm0

(
eV
)
(x)

eV (x)
≥ Qm0 (ICd

) (x)

eV (x)
ǫk−1
d νd (Cd)

k−2
νd
(
eV
)
> 0, ∀x ∈ X,

which implies that

9Qkm09
1/(km0)
v ≥ ǫ

1−1/(km0)
d νd (Cd)

1−2/(km0) νd
(
eV
)1/(km0)

[

sup
x∈X

Q (ICd
) (x)

eV (x)

]1/(km0)

.

Taking k → ∞ is enough to verify (2.4), as limn→∞ 9Qn9
1/n
v always exists by subadditivity.
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Proof. [Proof of Lemma 2.2] Set r ≥ d arbitrarily and let Q̂ := ICrQ, where the dependence of Q̂ on r

is suppressed for notational convenience. Then under (H3),

Q̂t0+1(x,A) = Ex

[
t0∏

n=0

ICr (Xn) exp (U (Xn)) IA (Xt0+1)

]

≤ exp
(
rt0
∥
∥U+

∥
∥
V

)
Ex

[
t0∏

n=0

ICr (Xn) exp (U (Xt0)) IA (Xt0+1)

]

, ∀x ∈ X, A ∈ B(X),

and therefore under (H4),

Q̂t0+1(x,A) ≤ β∗
r (A) := exp

(
rt0
∥
∥U+

∥
∥
V

)
∫

Cr

βr(dy)Q(y,A), ∀x ∈ X, A ∈ B(X). (A.2)

Lemma B3 of [Kontoyiannis and Meyn, 2005] then implies that Q̂2t0+2 is v-separable. Upon considering

the difference Q2t0+2 − Q̂2t0+2

[
(Q2t0+2 − Q̂2t0+2)(ϕ)

]
=

2t0+1∑

n=0

[
Q2t0+2−nQ̂n −Q2t0+n+1Q̂n+1

]
(ϕ)

applying the sub-multiplicative property of the operator norm and using (2.5) which implies that

9Q− Q̂9v → 0 as r → ∞ one can conclude by the above arguments.

The following lemma considers the twisted kernel P̌ defined in (2.11).

Lemma A.1. Assume (H1)-(H4). Then there exists δ0 ∈ (0, δ), d0 ≥ 1 and for any d ≥ d0, there

exists b̌d <∞ such that

P̌
(

eV̌
)

≤ eV̌−δ0V+b̌dICd , (A.3)

sup
x∈Cd

eV̌ (x) < ∞, (A.4)

where V̌ : X → [1,∞) is defined by V̌ (x) := V (x) − log h0(x) + c with c =: log ‖h0‖v. Furthermore,

there exists ρ < 1, depending only on d0 and δ0, and for any d ≥ d0 there exists b̌′d <∞ such that

P̌
(

eV̌
)

≤ ρeV̌ + b̌′dICd
. (A.5)

Proof. Under the assumptions of the lemma, we have already seen via [Kontoyiannis and Meyn, 2005,

Proposition 2.8] that the twisted kernel is well defined. First consider, (A.3); under (H2), setting

δ0 ∈ (0, δ), for any d ≥ d,

P̌

(
eV

h0

)

= λ−1h−1
0 Q

(
eV
)

≤ exp (V − log h0 − δ0V − (δ − δ0)V − logλ+ bdICd
) .

As V is unbounded, there exists d0 such that for all d ≥ d0, equation (A.3) holds with b̌d := bd− logλ.
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For (A.4) by iteration of the eigenfunction equation, we have that for any d ≥ d0,

h0(x) = λ−m0Qm0 (h0) (x) ≥ ǫdνd (h0) , ∀x ∈ Cd

where we apply the minorization part of (H2) to obtain the inequality.

To obtain (A.5), first when x /∈ Cd, one can use (A.3), which implies that P̌
(

eV̌
)

(x) ≤ eV̌ (x)−δ0V (x) ≤
eV̌ (x)−δ0d so that (A.5) holds with ρ := e−δ0d0 . Equation (A.3) then shows that holds for x ∈ Cd with

b̌′d := exp(d− log ǫd − log νd (h0) +b̌d + log ‖h0‖v).

B Proofs and Auxiliary Results for Section 3

B.1 Proofs

Proof. [Proof of Proposition 3.1] The starting point of the proof is to write, using the definition of the

twisted kernel,

Γ̄(i1,...is)
n,x (F ) =

λ−2nΓ
(i1,...,is)
n,x (F )

λ−2nγn,x (1)
2 =

λ−2nΓ
(i1,...,is)
n,x (F )

h20(x)Ěx

[
1/h0

(
X̌n

)]2 .

Thus in order prove (3.4), we need to prove

λ−2nh−2
0 (x)Γ(i1,...,is)

n,x (F ) ≤ ‖F‖v1/2,2 c
s+1 v(x)

h0(x)
Ěx




∏

k∈{i1,...,is−1}

v
(
X̌k

)
v∗
(
X̌is

)



 ,

for each n ≥ 1, 0 ≤ s ≤ n+1 and each possible configuration of the coalescent time indices (i1, ..., is) ∈
In,s. Throughout the remainder of the proof, c denotes a finite and positive constant, whose value

may change on each appearance but depends only the constants in (H1)-(H5).

We first address the case s = 0. We then have Γ
(∅)
n,x (F ) = γ⊗2

n,x (F ) = Q⊗2
0,n (F ) (x, x) ≤ ‖F‖v1/2,2Q

⊗2
0,n(v⊗

v)(x, x) and therefore (recall v̌ from lemma A.1)

λ−2nh−2
0 (x)Γ(∅)

n,x (F ) ≤ ‖F‖v1/2,2 λ
−2nh−2

0 (x)Q⊗2
0,n(v ⊗ v)(x, x)

≤ c ‖F‖v1/2,2 P̌
⊗2
0,n (v̌ ⊗ v̌) (x, x)

≤ c ‖F‖v1/2,2

v(x)

h0(x)
v∗(x). (B.1)

where the final inequality follows by iteration of the geometric drift condition (A.5) and the definition

of v∗. For the case s = 1, i1 = 0, note that Γ
(∅)
n,x (F ) = Γ

(0)
n,x (F ) and re-use (B.1).

For the case s = 1, i1 > 0, Lemma B.3 applied with k = 0, ℓ = i1,m = n implies

λ−2nQ⊗2
0,i1

DQ⊗2
i1,n

(

v1/2 ⊗ v1/2
)

(x, x) = λ−2nDQ⊗2
0,i1

DQ⊗2
i1,n

(

v1/2 ⊗ v1/2
)

(x, x′)

≤ cv(x)h0(x)Ěx

[
v∗
(
X̌i1

)]
.
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Noting that Γ
(i1)
n,x (F ) ≤ ‖F‖v1/2,2Q

⊗2
0,i1

DQ⊗2
i1,n

(
v1/2 ⊗ v1/2

)
(x, x), this shows that

λ−2nh−2
0 (x)Γ(i1)

n,x (F ) ≤ c ‖F‖v1/2,2

v(x)

h0(x)
Ěx

[
v∗
(
X̌i1

)]
, (B.2)

which concludes the treatment of the case s = 1, i1 > 0.

We now address the cases s > 1. It is claimed that there exists a finite constant c such that for

any n ≥ 1, (x, x′) ∈ X
2, F ∈ Lv1/2,2, 1 < s ≤ n+ 1, and any (i1, . . . , is) ∈ In,s, (one can remove F by

using F ∈ Lv1/2,2 and hence replace it with v1/2 ⊗ v1/2)

λ−2(n−i1)DQ⊗2
i1,i2

. . . DQ⊗2
is−1,is

DQ⊗2
is,n

(

v1/2 ⊗ v1/2
)

(x, x′)

≤ cs+1v(x)h0(x)Ěx




∏

k∈{i2−i1,...,is−1−i1}

v
(
X̌k

)
v∗
(
X̌is−i1

)



 , (B.3)

with the convention that the product is equal to unity when s = 2. For a given n, the claim is proved

by backward induction through the coalescent time indices. The inductive hypothesis is that at rank

1 ≤ j ≤ s− 1,

λ−2(n−ij)DQ⊗2
ij ,ij+1

. . . DQ⊗2
is−1,is

DQ⊗2
is,n

(

v1/2 ⊗ v1/2
)

(x, x′) (B.4)

≤ cs−j+1v(x)h0(x)Ěx




∏

k∈{ij+1−ij ,...,is−1−ij}

v
(
X̌k

)
v∗
(
X̌is−ij

)



 ,

with the convention that the product equals unity when j + 1 = s. When this hypothesis holds, we

have at rank j − 1:

λ−2(n−ij−1)DQ⊗2
ij−1,ij

. . . DQ⊗2
is−1,is

DQ⊗2
is,n

(

v1/2 ⊗ v1/2
)

(x, x′)

≤ cs−j+2v(x)h0(x)





∫

P̌ij−1,ij (x, dy) v(y)Ěy




∏

k∈{ij+1−ij ,...,is−1−ij}

v
(
X̌k

)
v∗
(
X̌is−ij

)









= cs−j+2v(x)h0(x)Ěx




∏

k∈{ij−ij−1,...,is−1−ij−1}

v
(
X̌k

)
v∗
(
X̌is−ij−1

)



 ,

where the inequality follows from applying the induction hypothesis and then Lemma B.2, noting that

v ≥ 1. Now consider (B.4) at rank j = s− 1: the left hand side is

λ−2(n−is−1)DQ⊗2
is−1,is

DQ⊗2
is,n

(

v1/2 ⊗ v1/2
)

(x, x′),

and Lemma B.3 implies that (B.4) does indeed hold at rank s− 1. This concludes the inductive proof

of (B.3).

23



In the case i1 = 0, (B.3) implies that

λ−2nh−2
0 (x)Γ(i1,...,is)

n,x (F ) ≤ ‖F‖v1/2,2 c
s+1 v(x)

h0(x)
Ěx




∏

k∈{i1,...,is−1}

v
(
X̌k

)
v∗
(
X̌is

)



 .

In the case i1 > 0, we apply Lemma B.2 once more to (B.3) to yield

λ−2nDQ⊗2
0,i1

DQ⊗2
i1,i2

. . . DQ⊗2
is−1,is

DQ⊗2
is,n

(

v1/2 ⊗ v1/2
)

(x, x′)

≤ cs+2v(x)h0(x)Ěx




∏

k∈{i1,...,is−1}

v
(
X̌k

)
v∗
(
X̌is

)





from which we conclude that

λ−2nh−2
0 (x)Γ(i1,...,is)

n,x (F ) ≤ ‖F‖v1/2,2 c
s+2 v(x)

h0(x)
Ěx




∏

k∈{i1,...,is−1}

v
(
X̌k

)
v∗
(
X̌is

)



 .

This completes the proof of the proposition.

Proof. [Proof of Lemma 3.1] We first consider some bounds on iterates of the twisted kernel. Standard

iteration of the geometric drift condition in equation (B.9) shows that there exists a finite constant c1

such that

sup
0≤ℓ≤m

P̌ℓ,m (v∗) (x) ≤ c1v
∗(x), x ∈ X, (B.5)

and then due to the multiplicative drift condition in equation (B.8),

sup
0≤ℓ<m

v(x)P̌ℓ,m (v∗) (x) = sup
0≤ℓ<m

v(x)P̌ P̌ℓ+1,m (v∗) (x) ≤ c1v(x)P̌ (v∗) (x) ≤ cv∗(x), x ∈ X, (B.6)

where c := c1e
b̄d .

In order to prove (3.5) first fix arbitrarily n ≥ 1, 1 ≤ s ≤ n + 1 and (i1, . . . , is) ∈ In,s. The

proof is via a backward inductive argument through the coalescent time indices. Assume that at rank

1 < j < s,

v(x)Ěx




∏

k∈{ij+1−ij ,...,is−ij}

v
(
X̌k

)
v∗
(
X̌n+1−ij

)



 ≤ cs+1−jv∗(x). (B.7)
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Assuming (B.7) is true, then at rank j − 1,

v(x)Ěx




∏

k∈{ij−ij−1,...,is−ij−1}

v
(
X̌k

)
v∗
(
X̌n+1−ij−1

)





= v(x)

∫

P̌ij−1,ij (x, dx
′) v(x′)Ěx′




∏

k∈{ij+1−ij ,...,is−ij}

v
(
X̌k

)
v∗
(
X̌n+1−ij

)





≤ cs+1−jv(x)

∫

P̌ij−1,ij (x, dx
′) v∗(x′)

≤ cs+1−(j−1)v∗(x),

where the final inequality is due to equation (B.6). Furthermore

v(x)Ěx

[
v∗
(
X̌n+1−is

)]
= v(x)P̌is ,n+1 (v

∗) (x) ≤ cv∗(x),

where the inequality is again due to (B.6) and therefore at rank j = s− 1,

v(x)Ěx




∏

k=(is−is−1)

v
(
X̌k

)
v∗
(
X̌n+1−is−1

)



 = v(x)

∫

P̌is−1,is (x, dx
′) v(x′)Ěx′

[
v∗
(
X̌n−is

)]

≤ cv(x)

∫

P̌is−1,is (x, dx
′) v∗(x′)

≤ c2v∗(x′).

The above arguments prove that (B.7) holds at rank j = 1 and the proof of the Lemma is then also

complete as n+ 1, 1 ≤ s ≤ n+ 1 and (i1, . . . , is) ∈ In,s were arbitrary.

B.2 Technical Results

Lemma B.1. Assume (H1)-(H5).Then there exists ρ̄ < 1, d0 ≥ 1 and for any d ≥ d0 there exists

b̄d <∞ and b̄′d such that

P̌
(

eV
∗

)

≤ eV
∗−V+b̄dICd (B.8)

P̌
(

eV
∗

)

≤ ρ̄eV
∗

+ b̄′dICd
, (B.9)

where V ∗ is as in equation (3.3).

Proof. Under the assumptions of the lemma, Theorem 2.2 holds, the eigenfunction h0 ∈ Lv, and the

twisted kernel is well defined. Then under (H5), we have for any d ≥ d,

P̌

(
eV (1+ǫ)

h0

)

= λ−1h−1
0 Q

(

eV (1+ǫ)
)

≤ exp (V (1 + ǫ)− log h0 − V − ǫ0V − logλ+ b∗dICd
) .

As V is unbounded, there exists d0 such that for all d ≥ d0, equation (B.8) holds with b̄d := b∗d− logλ.
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The proof of (B.9) then follows exactly as in the proof of Lemma A.1.

Lemma B.2. Assume (H1)-(H5). Then there exists c < ∞ depending only on the quantities in

(H1)-(H5) such that for any ℓ < m and ϕ : X → R
+
0 ,

λ−2(m−ℓ)DQ⊗2
ℓ,m (ϕ⊗ v) (x, x′) ≤ cv(x)h0(x)P̌ℓ,m

(
ϕ

h0

)

(x), (x, x′) ∈ X, (B.10)

where v is as in (H2), and λ and h0 ∈ Lv are respectively the eigenvalue and eigenfunction as in

Theorem 2.2.

Proof. By standard iteration of the geometric drift condition in equation (A.5) of Lemma A.1, there

is a finite constant c such that

sup
0≤ℓ<m

P̌ℓ,m (v̌) (x) ≤ cv̌(x), x ∈ X. (B.11)

Then due to the definition of the twisted kernel and v̌ (see Lemma A.1), there exists a constant c such

that for any 0 ≤ ℓ < m, and ϕ : X → R
+
0 ,

λ−2(m−ℓ)Q⊗2
ℓ,m (ϕ⊗ v) (x, x′) = h0(x)h0(x

′)P̌⊗2
ℓ,m

(
ϕ

h0
⊗ v

h0

)

(x, x′)

≤ ch0(x)h0(x
′)P̌⊗2

ℓ,m

(
ϕ

h0
⊗ v̌

)

(x, x′)

≤ ch0(x)P̌ℓ,m

(
ϕ

h0

)

(x) v(x′), (x, x′) ∈ X
2, (B.12)

where the final inequality is due to (B.11).

Lemma B.3. Assume (H1)-(H5). Then there exists c < ∞ depending only on the quantities in

(H1)-(H5) such that for any 0 ≤ k < ℓ ≤ m and (x, x′) ∈ X
2,

λ−2(m−k)DQ⊗2
k,ℓDQ

⊗2
ℓ,m

(

v1/2 ⊗ v1/2
)

(x, x′) ≤ cv(x)h0(x)Ěx

[
v∗
(
X̌ℓ−k

)]
.

Proof. Throughout the proof c is a finite constant whose value may change on each appearance. First

consider the case ℓ < m. Noting that v ≥ 1 and applying Lemma B.2 with ϕ = v gives the following

bound,

λ−2(m−ℓ)DQ⊗2
ℓ,m

(

v1/2 ⊗ v1/2
)

(x, x′) ≤ cv(x)h0(x)P̌ℓ,m

(
v(1+ǫ0)

h0

)

(x)

≤ cv(x)h0(x)P̌ℓ,m (v∗) (x)

≤ cv(x)h0(x)Ěx

[
v∗
(
X̌m−ℓ

)]
v(x′).

A further application of Lemma B.2 with ϕ(x) = v(x)h0(x)Ěx

[
v∗
(
X̌m−ℓ

)]
and an application of
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Lemma 3.1 yields:

λ−2(m−k)DQ⊗2
k,ℓDQ

⊗2
ℓ,m

(

v1/2 ⊗ v1/2
)

(x, x) ≤ c2v(x)h0(x)Ěx

[

ĚX̌ℓ−k

[
v
(
X̌0

)
v∗
(
X̌m−ℓ

)]]

≤ c2v(x)h0(x)Ěx

[
v∗
(
X̌ℓ−k

)]
.

When ℓ = m, we have again by Lemma B.2,

λ−2(m−k)DQ⊗2
k,ℓDQ

⊗2
ℓ,m

(

v1/2 ⊗ v1/2
)

(x, x) = λ−2(m−k)Q⊗2
k,m

(

D
(

v1/2 ⊗ v1/2
))

(x, x)

= λ−2(m−k)DQ⊗2
k,m (v ⊗ 1) (x, x)

≤ cv(x)h0(x)P̌k,m

(
v

h0

)

(x)

≤ cv(x)h0(x)P̌k,m (v∗) (x)

= cv(x)h0(x)Ěx

[
v∗
(
X̌ℓ−k

)]
.

This completes the proof.
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