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Abstract

In this paper we consider the continuous time filtering problem and we estimate
the order of convergence of an interacting particle system scheme presented by the
authors in previous works. We will discuss how the discrete time approximating
model of the Kushner-Stratonovitch equation and the genetic type interacting par-
ticle system approximation combine. We present quenched error bounds as well as
mean order converge results.
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1 Introduction

1.1 Background and Motivations

The aim of this work is the design of an interacting particle system approach for
the numerical solving of the continuous time non linear filtering problem.
Recently intense interest has been aroused in the non linear filtering theory com-
munity concerning the connections between non linear estimation, measure valued
processes and branching and interacting particle systems. The evolution of this
material may be seen quite directly through the list of referenced papers.

Let us briefly survey some different approaches and motivate our work.
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In [17, 18], [19] and [23] the authors proposed a preliminary time discretization
scheme of the optimal filter evolution. Then they solved the discrete time approx-
imating model by using Monte-Carlo simulations or spatial quantizations of the
signal. In these works special attention was paid to study the rate of convergence of
the time discretization scheme to the continuous time original model. The Monte-
Carlo particle approach described therein consists of independent particles weighted
by exponentials. Unfortunately the above Monte Carlo approximation is not effi-
cient mainly because the particles are independent of each other and the growth of
the exponential weights are difficult to control as time goes on.

In [5, 8] a way was proposed to regularize these exponential weights and a natural
ergodic assumption was introduced on the signal semigroup under which the parti-
cle approximation converges in law to the optimal filter uniformly with respect to
time.

All the above Monte Carlo approximations are the crudest of the random particle
system approaches.

It has recently been emphasized that a more eflicient approach is to use interacting
and branching particle systems to numerically solve the filtering problem.

In [1, 2] a branching particle system approximation for the filtering problem of dif-
fusions is studied. Although these works give some insight into the connections
between branching particle systems and non linear filtering, they entirely rely on
two assumptions:

First it is assumed that the continuous semigroup of the signal is explicitly known
in the sense that we can exactly simulate random transitions according to this semi-
group. Further it is assumed that the stochastic integrals arising in the Girsanov
exponentials are readily accessible without further work.

It can be argued that in practice the signal semigroup and the above stochastic inte-
grals are not known exactly and another level of approximation is therefore needed.
In [6, 7, 9, 10]and [14] different interacting particle systems approximations for the
discrete time filtering problem are studied. Here again it is assumed that we can ex-
actly simulate random transitions according to the semigroup of the signal and the
Girsanov exponentials are exactly known. Even if these particle methods provide
essential insight for solving quite general discrete time non linear filtering problem
they do not applied directly to the continuous time case.

The aim of this work is to extend the genetic type interacting particle system ap-
proach introduced in [6, 7, 9] and [14] to handle continuous time filtering problems.
A crucial practical advantage of our approximating model is that it does not in-
volves stochastic integrals and the transition probability kernel which govern our
algorithm is chosen so that we can exactly simulate its random transitions. Our
construction is also explicit, the recursions have a simple form and they can easily



be simulated on a computer.

In contrast to [1, 2] we use a preliminary discrete time and measure valued approx-
imating model for the Kushner-Stratonovitch equation. This time discretization
scheme was introduced by Picard in [23]. The study of time discretization approxi-
mating models is still a active research area. The most accurate work in this subject
seems to be [18]. In this work the authors extend their study to the time discretiza-
tion problem of non linear filtering of signals driven by not necessarily white signals.
As pointed out in [18] and [23] the resulting discrete time and measure valued model
also characterize the evolution in time of the optimal filter for a suitably defined
discrete time filtering problem. It follows that the branching and interacting parti-
cle system approaches presented in [6, 7, 9] and [3] can be applied to this discrete
time approximating model.

We study how the time discretization and the particle system approximating mod-
els combinate and provide explicit quenched and mean error bounds for the global
approximating scheme.

The paper has the following structure:

In Section 2 we introduce the continuous time non linear filtering model and the
discrete time approximating model under study.

In Section 3 we introduce the interacting particle system approximating model
and we study the order of convergence to the solution of the so-called Kushner-
Stratonovitch equation. Firstly we present two different approaches to obtain
quenched error bounds. Then we apply these strategies to study mean error bounds
and the resulting order of convergence for the Fortet-Mourier distance (see for in-
stance [13]).



1.2 Description of the Model and Statement of some
Results

To clarify the presentation all the processes considered in this work are indexed on
the compact interval [0,1] C IR,.

The basic model for the continuous time non linear filtering problem consists of a
time homogeneous Markov Process {(X, Y;) : ¢t € [0, 1]} taking values in IR? x IR?,
p,q > 1. We assume that Yy = 0 and Xy is a random variable with law v.

The classical filtering problem can be summarized as to find the conditional distri-
bution of the signal X at time ¢ with respect to the observations Y up to time ¢.
Namely

mf = E(f(X)/Y) V] € Co(IRr) (1)

where Y¢ is the filtration generated by the observations Y up to time ¢.

Here we will only consider the case where the signal X is a diffusion and the obser-
vation {Y; : ¢ € [0, 1]} is solution of the Ito-type differential equation

dY, = h(X,) dt + dV; (2)

where h @ IRP — IR? is a bounded continuous function and {V; : ¢t € [0,1]} is a
standard ¢g-dimensional Brownian motion independent of {X; : ¢ € [0,1]}.

As mentioned in the introduction our approximating model is obtained by first in-
troducing a time discretization scheme of the basic model. To this end we introduce
a sequence a meshes {(fg,...,tar) : M > 1} given by

tn:% ne{0,..., M}

Then, to obtain a computationally feasible solution we will use the following natural
assumptions:

(H1) For any M > 1 there exists a transition probability kernel PM) gych that

M2\ - K .
sup B (X, — X /7)) < — K < o0
tel0,1] ( ! ! ) M

where {Xt(i\/[) :n=0,..., M} is the time homogeneous Markov chain with transi-
tion probability kernel PM) and such that XéM) = Xo.

(H2) We can exactly simulate random variables according to the law PM)(z, )
for any z € IRP.



The interacting particle system will by a Markov chain {&, : n = 0,...,M}
with product state space (ﬂ%p)N, where N > 1 is the size of the system. The points
of the set (IRP)" are called particle systems and when there is no confusion they
will be denoted by the letters z and z.

Our approximating model is then described by

Py (&, € dz) = H (dz?)
P
N N
Py(&, €de/é,  =2) = H Z gtn (AY;,, 2

PM) (2 daP)
] 1 9%, (A}/tnv Z])

where

o dz = dz' x ... x dz"V is an infinitesimal neighbourhood of the point z =

(zt,...,2N) € (IRA)N
o AY; =Y, Y, |

e The weight functions g,{‘f are given by

9 (y,2) = exp ( |h2(]\}|2 + h(Z)*’y) Y(y,z)IR? x IRP.

Let us denote by {x" : ¢ € [0,1]} the empirical measures associated with
{&, : n=20,..., M} and given by

N
1
M,N
=1

Under some natural regularity conditions the particle density profiles (3) will con-
verge to the optimal filter. The aim of the paper is to discuss the order of conver-
gence when the time discretization parameter M = M(N) depends on the size N
of the system.

It is now convenient to introduce some notation. We will denote by M;(IR") the
set of all probability measures on IRP furnished with the weak topology. We recall
that the weak topology is generated by bounded continuous functions and we write
Cy(IRP) for the space of these functions with the supremum norm

11l = sup [f(z)].

ze IR’

The main purpose of the paper is to prove the following theorem.



Theorem 1.1 Under some regularity conditions for any bounded test function f
we have

M(N) < VN = sup E(|mf — n?™Np)) <

. 4
tef0,1) N1/4 ( )

When the test function f is sufficiently reqgular and if p = g = 1 then we have

Cte(f
M(N) < NV = sup B(jmef "V gy < Q) (5)
tel0,1)

2 Discrete time approximating model for the
Kushner-Stratonovitch equation

2.1 Formulation of the Non Linear Filtering Problem

The basic model for the continuous time filtering problem consists of an IRP x IR?-
valued Markov process {(X,Y;) : t € [0,1]} strong solution on a probability space
(Q, F, P) of the Ito-type stochastic differential equations

d)(t = a(Xt)dt + b()(t)dﬂt
dY, = h(X,)dt+ dV,

where

1. a:IRP — IRP, b : IRP — IRP*™ and h : IR? — IR? are bounded and Lipschitz
continuous functions.

2. {(Be, Vi) : t €]0,1]} is a (JR™ x IR?)-valued standard Brownian motion.

3. Yo = 0 and Xj is a random variable independent of {(8;, Vi) : t € [0,1]} with
law v so that E(]Xg|?) < oo.

The problem of assessing the conditional expectations is of course related to that
of recursively computing the random distributions {m; : ¢ € [0, 1]} which provide
all statistical information about the state variables {X; : ¢ € [0, 1]} obtainable
from the observations. The first step in this direction consists of obtaining a more
tractable description of the conditional expectations .

Introducing Z; such that

1 1
loth:/ h*(XS)dYS—%/ h(X,)[2ds € 0,1],
0 0

it is well known that the orignal probability measure P is equivalent to a so called
reference probabilily measure Fy given by

P=7ZF,.



In addition, under Fy, {(8:,Y:) : t € [0,1]} is a (IR™ X IR%)-valued standard
Brownian motion and, Xg is a random variable with law v, independent of (3,Y).
The following well known result gives a functional integral representation for the
conditional expectations (2.1), which is known as the Kallianpur-Striebel formula:

i f = pilJ) VfeCCy(IRP) Vtelo,1] (6)

pe(1)
with pi(f) = Eo(f(Xye) Z:e/V5) = EY (f(Xy) Zy).
We use EY (.) to denote the integration of the Brownian paths {3; : t € [0,1]} and
the variable Xj.
Let us recall the connections between continuous time non linear filtering problems
and measure valued Markov processes.

The so-called un-normalized {p; : t € [0,1]} can also be defined as the measure
valued solution of the Zakai equation

o0y =)+ [ oLy dst [ o) av,

for all f in the domain D(L) of the infinitesimal Kolmogorov differential operator
L associated with the diffusion {X; : ¢t € [0,1]}.

Using the above, one can prove that {m; : ¢ € [0,1]} is therefore a (Y, P)-Markov

process taking values in the space of all probability measures on IRP and solution of
the Kushner-Stratonovitch equation

m() =)+ [ ) dst [ mes) - m 0w () @Y, - (s

forall f € D(L) and ¢t € [0, 1].



2.2 Time Discretization Scheme

As pointed out in the introduction our approximating model is obtained by first
approximating the original model by a discrete time and measure valued process.
The treatment that follows is standard and it is essentially contained in [17, 18]
and [22].

In view of (6) the optimal filters {my, : n=0,..., M} can be written as

EY (Z1,_, (Hy, [)(X+,_,))
EY (Zy,_, (Hy,1)(Xt,_,))

Ttn f =
where H;  is the finite transition measure on IR given by

Hy f(z) / Hy, (z,d2) [(2) = EY (F(X0,) g, (X,Y)/Xo,_, = 2)

1 [tn
log g, (X,Y) = /t W) Y= 5 [ h(X) P d (7)
n—1 n—1

If, for any transition measure H and any probability measure 7 on IRP we denote
by mH the finite measure so that for any bounded continuous function f € Cy(IRP),

whi(f) = [ =(do) (H])(a),

then, given the observations, the dynamics structure of the conditional distributions
{m, : n=0,...,M} is defined by the recursion

Tt He, ()

Tty (f) = ﬂ-tn_lth(l)

n=1,...,.M with m, = .

Solving the above dynamical system is in general an enormous task as it is non linear,
involves integrations over the whole state space IR? and stochastic integrations.
2.2.1 Time discretization of the stochastic integral

To approximate the stochastic integrals (7) it is convenient to note that, in a sense
to be given,

1
log ¢, (X,Y) ~ h*(z) AY;, — 5|h($)|2 At, with At, =t, —t,_1.
At, ~0

In this connection, a first step to obtain a computationally feasible solution consists
in replacing H;, by the approximating multiplication operator

(H{! ) (@) = gin (Y, 2) (P f)(2)



where {P; : t € [0,1]} is the continuous semigroup of the signal X and for any
observation g%(AY}n, .) : IR? — IRy is the positive and continuous function given

by

1
GO, ) = exp (1°(0) AV, — SIh@)) with A, =Y, =Y.,

Remark 2.1:
The choice of the approximating function g;f\f given above is not unique. We can
also use the functions §i\f given by

~ . ) 1 1
G, (AYy,,2) = 14 1 (2)AYy, + S |h(2) ] (IAYMI2 - M) .

The function h being bounded we can choose M large enought so that

|h| < VM and  gM(AY;,,2) >0  Vz € IR

From now on we denote by {7;, : n = 0,..., M} the solution of the resulting
approximating discrete time model

M (8)

T, = UM(AY,,, 7, )P n=1,...,M
o = V

where for any probability measure 7 on IRP and for any f € Cy(IRP)

/ f(z) M (AY,,, 2) 7 (dz)

/ gi\f(AY}n yz) m(dz)

Elementary manipulations show that the solution of the latter system is given by
the formula

n

/ F(@n) ﬁggk”(Ann,xk_l) T P (2h-1, day) v(dao)

k=1 k=1 b
%tnf: n = n = * (9)
/ H gi\f(AY}n,xk_l) H Pﬁ(xk_l,dxk) v(dzg)
k=1 k=1

Remark 2.2:
It appears from the above that an equivalent way to compute recursively in time the
multiple integrals arising in (12) consists of solving the discrete time and measure



valued dynamical system (8).

Let us also remark that each transition 7;,_, ~ 7, is decomposed into two separate
mechanisms

- (1) Moner o~ (2) M/ a~xr ~

Ty, —— Yo (AY, 7 ) —— Wy (AY,, Ftn_l)Pﬁ.
The first one is usually called the “updating” transition. The transformation \Il% (Y, )
is a Bayes’ rule which depends on the current observation data AY;,.
The second one is called the “prediction” transition because it does not depend on
the observations but on the semigroup of the signal.
As we shall see in the forthcoming development our interacting particle approxi-
mating scheme is also decomposed into the same kind of transitions.

A crucial practical advantage of the approximating model (8) is that it does not
involves stochastic integrations. We recall that in practical situations the observa-
tional data are often sampled with a constant period of a given length ﬁ In our
approximating model the exponential weights {g%(AYtn, ) : n=0,..., M} have
an explicit and an analytic expression so that then can readily be computed when
the observations {Y;, : n=0,..., M} are received.

Of course the difficulty in solving (8) lies in computing, recursively in time, a series
of integrations over the whole state space IRP. It is therefore tempting to use the in-
teracting particle system approximations introduced in [3] and [7, 9]. Unfortunately
we do not know how to simulate random transitions according to the semigroup of
the signal and another kind of approximation is therefore needed.

2.2.2 Approximation of the signal semigroup

Under the assumptions (H1) and (H2) we now introduce a final discrete time and
measure valued approximating model.

Firstly it is worth noting that an example of an approximating Markov chain
{Xt(iw) : n = 0,..., M} satisfying these assumptions is given by the classical
Euler scheme

(M)

X (M) (M)

= xM YN (=t )+ (XM (B, =Bi)  m=1,...,M (10)

- tn—1

+a(X

with XM = X

This scheme is the crudest of the discretization scheme that can be used in our
settings. Other time discretization schemes for diffusive signals are described in full
detail in [21] and [25].

Once again we fix the observations and we note finally that {ﬂ'% :n=0,...,M}

10



the solution of the discrete time and measure valued dynamical system

[ (11)

M = gM(AY,,,7M ) n=1,...,M
Ty

v

where qb%(AYtn, .) is defined by the formula

oM(AY,,, m) L wM(AY,,, 7) PO

for any probability measure 7 on IRP.
Arguing as before, we see that the solution of the above system is given by

[ 1) TLodt Yy i) TT PO (s, dee) vl
T /= po -
/ H gi‘]\g(AY}kvxk—l) H P(M)(xk_l,d.rk) I/(d:ﬁo)

(12)

The error bound caused by the discretization of the time interval [0, 1] and the ap-

proximation of the signal semigroup is well understood (see for instance Proposition
5.2 pp. 31 [17], Theorem 2 in [22], Theorem 4.2 in [18] and also Theorem 4.1 in [4]).
More precisely we have the well known result.

Theorem 2.3 ([18]) Let [ be a bounded test function on IRP satisfying the Lips-
chilz condition

|f(z) = [(2)| < k(f) o - =]
Then

sup B (|mf -} ]) <
tefo,1)

AT+ () (13)

2o

where C' is some finite constant.

3 Interacting Particle System Model

3.1 Description of the genetic type particle algorithm

Even if it looks innocent, the dynamical system (11) involves at each step several
integrations over the whole state space IRP. Therefore it is necessary to find a new
strategy to solve the former integrals recursively in time.

Now we introduce a particle system approximating model for the numerical solv-
ing of (11). The genetic-type algorithm presented in the forthcoming development
was introduced in [6, 9] in discrete time settings and further developed in [7, 10, 11].

11



Namely, the interacting particle system associated to (11) consists of a Markov
chain {&, : n=0,..., M} with product state space (IRP)", where N > 1 is the

size of the system and defined by

—=
<
—_
QL
&
3

PY(gto S dCL‘) =

3
Il
—

M
oAy, LS5 (de)

=1

=

Py (&, €de/é,, =2) =

3
Il
—

where dz = dz' x ... x dz is an infinitesimal neighborhood of the point z =

(zt,...,2N) € (RPN
Let us remark that

L& Y gAY, )
qb]\f Y, = > 6,:)= ( = 0 pM)
' ( N ZZ:; ) ’LZ:; Zé\]:l g%(AYtnv Z])

and therefore the transitions of the systems may be written

Y AV 2)__ pon) i gy

Py (&, € dz/&,_, = H Z
Using the above observations we see that the particles evolve according two separate
mechanisms
Updating -~ Prediction
gt'n—l — gtn—l — gtn'

More precisely an equivalent formulation is the following

e Initial Particle System

N
Py (&, € dz) = [ v(da?)
p=1

e Updating

AYtn? )

N N
Py gn—l €da/&, , =z) = i (dxP
(o € el =) = LS ol oy 0

e Prediction

N
PY (ftn € d.f/gtn_l = H d.’Ep

p=1

12



As pointed out in [6] we see that this particle approximation belongs to the class
of algorithms called genetic algorithms which guide natural evolution: the explo-
ration/Mutation is the prediction step and the Selection transition correspond to
the updating procedure. These algorithms were introduced by Holland in 1975 [15]
to handle global optimization problems on a finite state space.

The situation is different when dealing with non linear filtering problems mainly
because there is no temperature parameter which tends to zero and the state space
is not finite.

A crucial practical advantage of the genetic type approximating introduced above
is that it leads to an empirical measure valued approximating model

MN def 1 i Predlctlon
Moy Z% —— gy NZ%H

—1

The convergence of the genetic type interacting particle system under study to the
solution of the time discretization approximating model (11) has been studied in [6,
7, 9]; quenched large deviations principles are developed in [10] and the associated
fluctuations are presented in [11].

3.2 Error bounds and order of convergence

The aim of this section is to study the convergence of the particle density profiles
to the solution of the Kushner-Stratonovitch equation as the number of particles
N — oo and the time discretization parameter M — oo.

A rough structure is as follows. In Section 3.2.1 we present two different ways to
obtain quenched error bounds for the convergence of the genetic type approximating
model to the solution of the discrete time and measure valued dynamical system
(11) as N is growing. This section is based in general on a previous work of one of
the authors [6, 7]. Here we present a simplified proof that captures the main ideas.
We also emphasize that our strategy can be used to get explicit quenched error
bounds for the more general branching and interacting particle systems presented
in [3] or [1, 2].

In Section 3.2.2 we study the convergence of the particle approximating model to
the solution of the Kushner-Stratonovitch equation and we propose several orders of
convergence depending on the choice of the time dicretization parameter M = M(N)
with respect to the number of particles V.

The situation is different in continuous time settings and the quenched error bounds
presented in Section 3.2.1 cannot be used directly. Nevertheless we will see that the
strategy used to obtain these quenched error bounds can be nested to easily produce
the order of convergence.

13



3.2.1 Quenched error bounds

To motivate our work we begin with a quenched error which can easily be derived
from the very definition of the interacting particle system approximating model.

Proposition 3.1 For any bounded measurable function f on IRP such that ||f|| < 1
and for any M > 1 we have P.a.s.

su Ey(|7M M < — C M,Y 14
n:O,..P,M Y(| tnf tn f|) \/ﬁ ( ) ( )
with
2
ogcoa,v) = I 4oy 3 jay, | (15)
n=1
Proof:

Let us fix in what follows the observation process Y. In addition, to clarify
the presentation, we simplify the notations suppressing, when there is no possible

confusions, the observation parameter Y, the index parameters t and M, so that we

simply note g, ¢n, P, 7, and 7 1nstead of g;" M(AY;,, ), (b%(AYtn, .), PM), 77%
M, N
and m,
To prove the quenched error bound (14) the key idea is to introduce the composite
mappings
def

¢n/p—e¢no¢n 10. O¢p—|—1 VOSPSTLSM
with the convention ¢/, = Id.
A clear backward induction on the parameter p(< n) leads to the formula

T\ Gn/p (Pojp
() f = (s (B ) (16)
(gn/p)

where, for any f € C4(IRP) and 0 < p<n <M

P (gn/p (Pn/pf))
P (9012

In/p—1 — 9p P(gn/p) Pn/p—lf =

with the conventions g,,/, =1 and F,;, = Id.
For later use we immediately notice that for any = € IRP

with

def 1A

. def
S exp (—||h]|AY;, | - LT

) and A, = exp (||h|||AY:,]).

14



More generally, from the definition of the functions g,/, we note the following in-
equality for future use:

with
def n ) n—p lI2
togy E exp (-] Y 14, - PR,
g=p+1
def n
Ansp = exp( A Z |AY,,)
g=p+1

Using the above notation we have the decomposition
L ED S CANC A VETNCRCARNT)
p=0

with the convention ¢g(7Y,) = v.
By using the formula (16) we see that each term

|¢n/p(ﬂ-g]9\7)f - an/p(qbp(ﬂ-g])\f—l))ﬂ
is bounded by

Ans N N N N

™ AR CARFARRLAF A AR )

where fi and f; are some bounded measurable functions on IRP such that || f1]|, || f2|| <
1 and with the convention that A,,, = a,;, = 1.

By recalling that 71']]9\7 is the empirical measure associated to N conditionally inde-
pendent random variables with common law obp(ﬂ']]ov_l) we have the quenched error

bound
1

Ey (|7 ] = 6,(m)L1) /1) <

for any bounded measurable function f with || f|| < 1.

E

Collecting the above inequalities one concludes that for any n =0,..., M
2 A 2 A
N Z n/p n/0
ﬂ-n - 7Tn S = 1 + n .
Y (l ! f|) \/N(pzo an/p) \/N( an/O)

This yields

4M Ao
su Ey (|7 f - T < —
n:O,..P,M Y (| nd f|) - VN apr/o

= ——¢€X —+2 h E AY

15



and the proof of Proposition 3.1 is completed. ]

The term % in the right hand side of (14) expresses the fact that our interact-
ing particle algorithm has M steps and at each step the approximating empirical
measure consists of N particles. We can obtain a sharper quenched error bound
if we use the “martingale approach” presented independently in [6] and [2]. More
precisely we have the following result

Theorem 3.2 For any bounded measurable function [ on IR such that || f]] < 1
and for any M, N > 1 we have P.a.s.

M
sup By (|nl f - m, " f]) < 2V2) | 5 C(MLY) (18)
n=0,...,
with
_ Il

M
= B+ o)) Y 1AV, |

n=1

log C'(M,Y)
Proof:

Once again we fix the observation Y and we use of simplified notations intro-
duced in the proof of Proposition 3.1.

Before getting down to serious business it is useful to note that the dynamical
system (11), the composite mappings ¢,,/, and the recursive formulas (16) remain
the same if we replace all the functions ¢, by the “normalized” ones

g def gn
n/n-t ﬂ-n—l(gn) 7

but in this situation the functions g, /, are defined by the recursion
In/p—1 = Ipjp—1 PlOnsp) P=1,...,n

with the convention g,,/, = 1.

Using the above notation we clearly have
Tp(Gnyp) = 1 Vo <p<n. (19)

To see this it suffices to note that m,_1(g,/,—1) = 1 and, for any 1 < p < n we have

Tp—1 (gp/p—l P(gn/p))
Tp—1 (gp/p—l)

ﬂ-p(gn/p) = = 7Tp—l(gn/p—l)'

16



On the other hand, when using these“normalized” functions we have the “normal-
ized” bounds
1
By < 9np(2) < By 0<p<n<M
with

def -
log By = 2[R]| Y- |AY,]

n/p
g=p+1

2M (20)

To clarify the presentation for any bounded test function f we write f,/, for the
functions given by

Tt = Gnyp Pusp(f) p=0,...,n.
Arguing as before we have

ﬂ-p(fn/p):ﬂ—n(f) VOSPSH

To see this it suffices to note that (19) and the recursive formula (16) implies that

Tp (gn/p (Pn/pf))
o (9211

As in [6] the next step is to introduce the random sequence {U, : n=0,...,M}
defined by

m(f) = =73 (9nsp (Pasp) = 7l us)-

n—1

= H ﬂ-zjav(gp-i—l/p)

p=0

with the standard convention [[5 = 1 and the decomposition

Zn: ( 2 Fnpp) = Up—ampi (fugpm 1)) + 75 (fus0)- (21)

p=1

Using the fact that

LA (gp/p—l (an/p))

77119\7—1 (gp/p—l)

7Tg])v—l(fn/p—l) = 7"-]]9\7—1(“»719/19—1) = W]]o\il(gp/p—l) Qﬁp(ﬂg])\f—l)(fn/p)

we arrive at
N N
Up—l ﬂ-p—l(fn/p—l) = Up qbp(ﬂ-p—l)(fn/p)v
so that (21) may be rewritten in the more tractable form

Up 7N (f) = 7nf = Un 7 (f) = 70(fno)

n

= 2 Up (w3 ) = 00(m 1) (Fup)

p=0

17



with the convention ¢o(7?,) = v.

Using the fact that U, only depends on the random empirical measures (w7
up to time (p — 1) we have that

B (0 w00 =) = 32 B (0F (5 )~ 50 ) ).
Recalling that

By (5 Uu) = 60 50 ) = 3050) (s = 005 )

and using the bounds (20) one gets

By (U m¥ (1) = muf ) < 3 By (U2, (m)0)(72,) (22)
p=0
2 n
< VIS~ By (026, 1)(62,)
p=0
and
o3 P n
Y(|Un ﬁg(f)_ﬂnfp) < ZH q/q 1 n/p— Z p/O
< Bl 1%
This implies that
By (IeN() = mafl) < By (|Un 7N () =7 f1) + 17 By (U = 1))

IN

1 M
2/ B0 IS < M\/; COLY) |/l

and completes the proof of the theorem. |

3.2.2 Order of convergence

For any n = 0,...,M — 1 and ¢t € [t,,t,4+1) We denote by 7Tin

measures associated with the system & , namely

un 1
ﬂ-t ! = ﬁz (ngn
=1

the empirical

18



In view of Theorem 3.2 we may ask whether we can deduce the convergence of
{#MN e o, 1)} to the solution of the Kushner Stratonovich equation. This
question has of course a positive answer but the error bounds obtained using these
quenched results are not really satisfactory. More precisely Theorem 3.2 has the
following immediate consequence.

Corollary 3.3 For any bounded Lipschitz test function f such that

|f(2) = F(2)| < k(f) |& = 2]

we have that

C
o B (Imef = m 1) < 2 (11 + K0 +2\foH\r C(M.Y)

5 2gM ) IM
SR + 20l L5 < log B (COM, YY) < Sallal + 208y [ (23

where the finile constant C is the one given in Theorem 2.3

and

Proof:

In a first place we note that
E(|mf =" 1) < E(Imef = 7M7) + B (17 - 7"V 1))

Thus, in view of Theorem 2.3 and Theorem 3.2 it remains to check (23).
To clarify the presentation we will only treat the case p = ¢ = 1 since the extension
to the vector case is straightforward.

By definition of the observation process Y we first note that

5H [§

log C(M,Y) = +2HhHZ [AVz, |-

n=1

On the other hand, it is well known that for any Gaussian variable U with E(U) =0
and F(U?) =1 we have that

2 a?
E(exp (a|U])) < [14 « — | exp Va > 0.

Applying this inequality and using the fact that

M
<1—|—\/LM) <expavM Ya > 0,

19



and after some elementary manipulations one gets

, 2M
log E(C(M,Y)) < 5l|All? +21[hlly ==

This yields

M
sup E(|xMf - zMN < (C{— exp (Cov M
tE[OI,)l) (| t f t f|) > IW P( 2 )

with
2
Cy = dexp (5||R]|*) and C’g:QHh”\/;.

Using Jensen’s inequality we also have that
, 5(|h[)* 2M
tog £(C(0, ) > [ A gy, 2201

The extension to the vector case is a clear consequence of the following chain of
inequalities. If we write

AV, = (AVE,. AV e
then we have
q 1/2 q
AV, = E:MWﬂﬂ <> |Aavy
r=1 r=1

exp (a B(|AV,,]) < E(exp(a|AV,)) < E (exp(a|AVL]))  Va>o.

Remark 3.4:
In view of (23) one cannot expect to obtain a better error bound using the above
lemma. Roughly speaking the exponential term (23) represents the mean growth
rate of the increasing sequence of variables {C(M,Y) : M > 1}.

We now present the main result of this section.

Theorem 3.5 For any bounded Lipschitz test function [ such that
|f(x) = f(2)| < k(f) o — 2]

we have that

M,N Ch M
e E (s = A1) < 5 (IR + G5

/1] (24)

20



where Cy is the finile constant defined in theorem 2.3 and Cy = 2v/2 exp (12||R])?).
In addition, if p=q =1 and a, b, f, h are four times continuously differentiable with
bounded derivatives then we have

1 M
sup E (|mf — xMN <Cte| —+4/— 1. 25

Proof:
In view of (13) is suffices to check that

sup B (jn ) = xNf)) < M\/%rfuexpuzuhu?). (26)

te[0,1)

The proof of (26) relies strongly on the proof of Theorem 3.2. To clarify the pre-
sentation all notations introduced in the proof of Theorem 3.2 are in force.
We will also simplify the notation suppressing the time parameter ¢ and writing X,

&, and AY,, instead of Xy, , &, and AY;, .

Our immediate goal is to replace the quenched error bounds in (22) by some explicit
mean error bounds.

If we denote g, /, the “unormalized” functions given by

gn/p = 9p+1 P(gn/p-l-l) (27)

with the convention g, ,, =1, we have the relation

n—1
In/p(€) = Gy (@) /H Tq(9g+1) -
9=p
Using the fact that || P, f|| < [|f|| and g, > 1 one can easily check that

Upp(mp ) (fnyp) < UR AP 65 (m000) (30 s) -

Up to now we have considered the observation records as a fixed series of parame-
ters. OQur aim is now to produce some mean error bounds. To this end is it necessary
to evaluate the mean of the terms in the right hand side of (22).

The key idea consists in using in a first stage the reference probability measure Fp.
This approach was presented by two of the authors in [1, 2]. Recalling that under
Fy the observation process Y is a standard Brownian motion the random sequence
{AY, : n > 0} can be considered as a sequence of i.i.d. and IR?-valued Gaussian
variables with zero mean and E ((AY;)*(AYy)) = M~ I,y,.

21



In what follows we denote by Ey(.) the expectation associated with Fj.

the above notation and the Cauchy-Schwartz inequality we arrive at

Bo (U26p(m0)(2),)) < 111" Bo (U2) o (7t,(60)) -

To complete the proof of the theorem it remains to estimate the terms
Eo(U2)  and By (gh,(6h).

In view of (27) we clearly have for any z € IRP

Eo (72),(60) /&b =) < o (g31(X,) g8 (Xn1) [Xp =2 ) .

On the other hand for any p+ 1 < ¢ < n we have that

Fo (g8(X,-0) [Xye1) < o fexp (40*(X,-1)AY,) [ X, 1)
8

8| (X,—1)|? hl|?
oxp B S

M
It follows that

_ 8(n —p)

4 (el i 2
o (74,(6))) < exp (22 ),
Let us now estimate the term Eq(U}2).

Using Jensen’s formula we can check that U? is upper bounded by
n—1 N
I, = H 7T]]9V (exp (4 lp_H))
p=0

where N
lp1(2) = lpg1(2) — mp(lpt1) and lpy1(z) = log gpt1.
Noticing that

(2) = (#(2) = Tnca (1)) AV, — 22 (1) = macn (417))

and for any a > 0 and z € IRP

* 2 2 2 h 2
log Eo (ea(h ()=7n—1(h))AY:, |7rn_1) _ (a) - 7Tn_1(h)|2 < 2a I

o
— _|B*
2M|

we arrive at

22

Using

(28)

9

7 . 16 1 33
log E <7rjf_1 <e4l”) |AY,,, .. .,AYtn_l,wn_1> <o 4|R||* + i IA|? = Vi A%



Thus, one easily gets the inequality
33 9
Eo (In) < exp { 77 [|Bl]" ) Eo (In-1),

so that
Eo (U}) <exp (33[h]2) VO <n<M. (30)

If we combine (28), (29) and (30) we conclude that
Fo (U2, () (72,)) < IR exp (7] + 411I2) = 1 exp (21]1A[12)
Hence, in view of (22) we have
M
Eo ((Ua 7 (/) = maf)?) < 257 17117 exp (21]|A]1).

Taking into consideration the inequality

o (=20 - mas)’)

IN

B ([(Un m (1) = mad) + =Y () (1 - 0)])

2 Bo (U 7 (F) = f)?) + 20112 Eo (U - 1)?)

IN

we conclude that
M
Eo (|7 (1) = maf1”) < 857 17117 exp (2L]RIP).
Finally, using the inequalities

1/ 2 1/2
£ () - ) < o (150 - w0 (57))

and

Eo ((j%’) ) = B(Z1) < exp (]2,

after some elementary manipulations we arrive at the desired mean error bound

E (=N (1) =7 fl) < 2\/5\/%!]‘\! exp (12|A]|*)

from which the end of proof of (24) is now straightforward.

When the signal X and the observation Y are real processes and the functions
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a,b, f, h are four times continuously differentiable with bounded derivatives a more
precise error bound has been obtained by Picard in [22], namely,

Cte
sup E (|mf —7Mf]) < =—
t€0,1) (l t ' l) M

Under these assumptions (25) is a clear consequence of (26) ]

Remark 3.6:
Theorem 1.1 is a clear consequence of Theorem 3.5 and the fact that

M1 M 1
il M < N2 il g M < N3,
NS VNS — M=

The basic space for the study of the weak convergence of a sequence of random
measures is the set of all probability measures on M; (IR?) denoted byM; (M, (IR?)).
On this set we can define the Kantorovitch-Rubinstein or Vasershtein metric

D(®y1, ®2) = inf E ([|py — pall7) @1, P2 € My (M (IR))

where the infimum is taken over all pair of random variables (u1, u2) such that py
has distribution ®; and w3y has distribution ®.

This metric gives to My (M, (/R?)) the topology of weak convergence. If we note
@y’N the distribution of ﬂ,}M’N and ®; the distribution of 7; the conclusions of
Theorem 3.5 yield

M,N Cte
M < VN = D@ &) < N

Concluding Remarks

We have proposed an approximating scheme for the numerical solution of the
Kushner-Stratonovitch equation. We recall that our approach is based on the use
of the classical time discretization scheme as presented in [17, 18, 22] and on the
interacting particle scheme presented in [6, 9, 7]. This yields a natural line of proof
for the convergence of our particle approximating models.

The main contribution here was to connect these two separate approximating schemes
and to propose explicit error bounds associated to this combination.

The interacting particle system approach studied in this work is one of the crudest
particle methods. For the sake of unity and to highlight issues specific to interact-
ing and branching particle system theory we mention that the same line of proof
can be used to get the convergence of more general particle schemes such as those
presented in [1, 2] and [3] .
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We also feel that our approach is more transparent and the proof of convergence is
simpler than other studies on interacting particle approximations.

We have only treated a very special case of a non linear filtering problem. It is ob-
vious that the situation becomes considerably more involved if one dispenses with
the assumption that the observation process is solution of an Ito-type differential
equation of the form (2). To deal with more general signal/observation pair it has
recently been proposed in [12] an alternative interacting particle system approach
which only uses the semigroup of the pair process {(X:, Y:) : t € [0,1]}. The idea
is to use particles which explore the whole state/observation space and to “select”
particles when their sampled observation component is close to the current obser-
vation data.
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