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Abstract: A new approach based on a genealogical decision tree is suggested for solving
an open-loop tracking problem. The algorithm associates Gaussian distributions
to both the norms of the control actions and the tracking errors. It solves the
optimization problem sequentially, using random resampling from a population of
solutions. This stochastic search model can be interpreted as a simple genetic particle
evolution model with a natural birth and death interpretation. It converges in
probability. Two numerical examples, dealing with rapid thermal processing and
robotics, illustrate the feasibility and the performance of this control algorithm.
Copyright c° IFAC 2005

Keywords: Monte Carlo method, optimal control, optimization problems,
population-based search.

1. INTRODUCTION

Advances in population-based evolutionary algo-
rithms have introduced new tools for optimimiz-
ing and controlling complex systems (Ikonen and
Najim, 2002) (Zalzala and Fleming, 1997). This
paper considers an algorithm that falls within
the area of mathematical population genetics and
interacting particle systems.
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Genealogical decision trees belong to stochastic
search models (Najim et al., 2004). Their flexibil-
ity, robustness, and applicability to both linear
and non linear systems, and for both continu-
ous and batch processes, make them particularly
attractive for applications to optimization and
control of complex systems. The first heuristic
schemes of these control particle models first ap-
peared in (Del Moral, 1997). Their asymptotic
behavior with respect to the time horizon or the
particle system size is today well understood (Del
Moral, 2004); allowing us to quantify with pre-
cision their ability to solve any optimal control
problem which can be interpreted in terms of a



nonlinear filtering problem. Lately, genealogical
decision trees have been introduced for solving
open-loop tracking control problems (Ikonen et

al., 2004).

This paper suggests a control approach based on
the extensive use of a process model. This ap-
proach is potential, e.g., for processes for which
there exist no on-line sensors for the controlled
outputs (semiconductors manufacturing, chem-
istry, biotechnology, etc.), or on-line analysers
(concentration measurement, etc.) are very ex-
pensive and have high maintenance costs. Soft
sensors and inferential control approaches have
been dedicated to solve this type of process control
problems where the outputs measurements are
available only o®-line. Soft sensors are based on
models relating the desired controlled variable to
some easily measured variables. The essence of the
inferential control approach is in the prediction of
the process outputs over the interval separating
two successive measurements. As a consequence,
the e±ciency of soft sensors and inferential control
approaches is limited by the adopted model for
the sensor, or the characteristics of the predictor
of the outputs.

This paper is organized as follows. The control
problem is formulated in the next section; followed
by a description of the optimization and control
algorithms under consideration, and an analysis of
the optimization scheme. Finally, we illustrate the
performance of these schemes with two simple nu-
merical examples related to tra jectory following.
Some concluding remarks end this paper.

2. PROBLEM FORMULATION

Consider any non-linear time-varying dynamic
system, described by the following state equa-
tions:

½
Xn = Fn (Xn"1,Un)

Yn = hn (Xn)
, (1)

where Xn = [Xn,1,Xn,2, ..., Xn,S]
T 2 RS , Un

= [Un,1, Un,2, ..., Un,P ]
T 2 RP , Yn = [Yn,1, Yn,2,

...,Yn,Q]
T 2 RQ. Index n = 1,T represents the

sampling instant. X0 represents the fixed initial
state at instant n = 0. Let An and Bn be
symmetric and semi-definite positive covariance
matrices. The control ob jective in a finite horizon
of length T is given by

JT (U1, ...,UT ) = (2)
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where Yref
n 2 RQ represents the reference (de-

sired) tra jectories, and kUk2A = UTA"1U.

Our ob jective is to find the sequence of control
actions that will minimize this control objective
for open-loop control.

3. OPTIMIZATION OF THE CONTROL
SEQUENCE

Having formulated the control problem, the con-
trol algorithm can now be presented. Gaussian
distributions are associated to both the norms of
the control actions and the tracking errors, i.e.,
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The parameter ¯ is similar to the inverse of the
temperature in simulated annealing optimization
algorithms. Indeed, for large value of ¯ , the prob-
ability distribution will have a form of a hair pin.

Let us consider the following scheme. At instant
n, carry out N independent and identically dis-
tributed normal vectors Ui

n » N (0,An), i =
1,N :

U
1
n,U

2
n , ...,U

N
n .

Using the model (Fn , hn) we evaluate that these
control values lead to N outputs:

(
X
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for i = 1, N . At n = 1, the initial states bXi
0 are

given by X0.

In order to simplify the notations, let us introduce
the following term
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We have
PN

i=1 p
i
n = 1, and pn can be interpreted

as a probability measure. Let us then generate N
independent and identically distributed random
vectors bU1

n,
bU2
n, ...,

bUN
n according to the distribu-

tion

pn (u) =
NX

i=1

pin±Ui
n
,

where ±u is the Dirac measure at the control value
u 2 RP . In other words, for each j = 1, N ,
each random control bUj

n takes the value U
i
n with

probability equal to pin. This can be seen as
a resampling procedure. The implementation of
these control actions leads to
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for j = 1, N . The procedure is repeated for all
n = 2, T . A mechanization of the procedure is
given in the appendix.

3.1 A genealogical decision tree model

The stochastic search model suggested in the pre-
vious section can be interpreted as a simple ge-
netic particle evolution model. These evolutionary
algorithms have a natural birth and death inter-
pretation.

More precisely, each controlled state bXi
n results

from the selection of a random control action, say
bUi
n = U

j
n for some j. That is, we have that

bXi
n = Fn

³
bXj
n"1,U

j
n

´
.

In this case, we can interpret the state bXj
n"1 as

the parent of the individual bXi
n at level n¡1, and

we denote bXi
n"1,n =

bXj
n"1.

In the same way, the parent individual bXj
n"1

results from the selection of a random control
action, say bUj

n"1 = U
k
n"1 , for some k, that is

we have that

bXj
n"1 = Fn"1

³
bXk
n"2,U

k
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´
.

Arguing as above, we can interpret the state
bXk
n"2 as the parent of the individual

bXj
n"1, and

therefore, as the ancestor of the individual bXi
n at

level n ¡ 2, bXi
n"2,n = bXk

n"2.

Running back in time, we can trace the complete
ancestral line of the current individual

bXi
0,nÃ¡ ...

Ã¡ bXi
n"2,n =

bXk
n"2

Ã¡ bXi
n"1,n =

bXj
n"1

Ã¡ bXi
n,n = bXi

n.

We define, in the same way, the ancestral decision
line of the corresponding control actions
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At the final horizon time n = T , we obtain the
approximating optimal open-loop control actions
as our solution to minimize the control objective:
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where the index label I is chosen so that
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4. ASYMPTOTIC ANALYSIS

There exist many results on the asymptotic anal-
ysis of the genetic evolutionary models presented
above. In advanced signal processing, for instance,
these interacting particle algorithms and their ge-
nealogical tree models provide a powerful stochas-
tic and adaptive grid approximation for solving
nonlinear filtering and smoothing problems.

The main idea is to translate the cost function
as the likelihood of a conditional probability. This
gives a duality between optimal regulation and
optimal filtering. This idea can be seen as an ex-
tension of the fact that the optimal Kalman—Bucy
filter gives the right answer in both situations, as
soon as the models are linear and quadratic.

The signal disturbance filtering problem is given
by the equations

½
Xn = Fn (Xn"1,Wn)
Yn = hn (Xn ) +Vn

,

where Wn and Vn are independent centered
Gaussian random vectors, with respective covari-
ance matrices An/¯ and Bn/¯ . In our optimal
control/tracking context —and in some sense— we
can prove that, for any time horizon n, we have
for any bounded and measurable function 'n on
RP#n:

1

N

NX

i=1

'n

³
bUi
1,n, bUi

2,n, ..., bUi
n,n

´
(4)

!
N$1

E {'n (W1,W2, ...,Wn)|

Y1 = Y
ref
1 , ...,Yn = Y

ref
n }.

To find the control actions which minimize the
considered control objective, it is equivalent to
look for the most likely actions W.

To understand the duality between this filtering
model and the control problem discussed in this
work, we observe that:
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where d (w1, ...,wn) stands for an infinitesimal
neighborhood of the perturbation sequence (w1,
..., wn) 2 RP#n, Zn is a normalizing constant,
and dwk represents the Lebesgue measure on RP .
Loosely speaking, the above expression indicates
that the conditional probability mass is concen-
trated around the optimal control sequence. The
approximation result (4) can be used to estimate
the desired control sequence.

One can prove easily the following convergence in
probability

lim
N$1

inf
i=1,q(N)

Jn

³
bUi
1,n,

bUi
2,n , ...,

bUi
n,n

´

= inf
U1 ,...,Un

Jn (U1, ...,Un )

for any increasing sequence of block sizes q (N ) =

o
³p
N
´
, where inf Jn stands for the essential

infinimum of the control objective function Jn
with respect to the Lebesgue measure on RP#n.

5. NUMERICAL EXAMPLES

Let us here illustrate the operation of the con-
trol algorithm with two simulated examples. The
first example concerns Rapid Thermal Processing
(RTP); the second case examines a single link
manipulator. In both cases, given a desired tra-
jectory and the initial state at zero, the task was
to find (in open loop) the optimal control sequence
that would minimize the control objective (2).
Incremental control was considered in both cases
(i.e., the sequence of changes in the applied control
action was optimized), and the process model was
assumed to be known. Some guidelines for the
selection of algorithm parameters An, Bn, N and
¯ are discussed in (Ikonen et al., 2004).

5.1 Example 1 — Rapid thermal processing

Reduction of product and process variation has
become a critical component of competitiveness
in today’s manufacturing industries. RTP systems
play an important role in semiconductors man-
ufacturing such as annealing, oxidation, chemi-
cal vapor deposition, etc. Many phenomenological

models have been developed and used for the
design, optimization and control of RTP systems
(Edgar et al., 2000) (Bordeneuve et al., 1991)
(Norman, 1992).

Chemical Vapour Deposition (CVD) is a tech-
nique for creating thin films on silicon wafers.
Gaseous reactants are deposited onto a substrate,
and we are interested in the depth of the deposited
material onto the substrate. There exists no on-
line sensors for this depth measurement. Instead,
very precise phenomenological models (Fayolle et
al., 1996)(Kleijn, 1996) have been developed for
CVD reactors. The simulation of these models is
very time consuming (several hours on big com-
puters), consequently, they can not be used as soft
sensors. Neverthless, based on these models, the
presented control algorithm can be easily used for
the control of the depth of the deposited material
onto the substrate.

In order to achieve uniform processing and a high
level of reproducibility of phenomena, the wafer
temperature has to track a pre-specified temper-
ature tra jectory. Many control approaches rang-
ing from adaptive predictive to iterative learn-
ing control have been experienced (Bordeneuve
et al., 1991) (Schaper et al., 1999) (Choi and
Do, 2001). These approaches are based on linear
or on feedforward neural models.

There is no assumption on the RTP model in the
open loop tracking control approach presented in
this paper, given that the model can be expressed
in the form given by equation (1). Indeed, any
type of model can be easily used for control pur-
poses. A simple nonlinear continuous time model
(Gorinevsky, 2002) for such thermal processing
has two states: furnace temperature TF and part
temperature TP :

·
T F = buu¡ c1

¡
T4F ¡ T

4
P

¢
¡ c2 (TF ¡ TA)

·
T P = c3

¡
T 4F ¡ T 4P

¢
,

where u is the heating intensity (control input),
TP is the part temperature (the system output
to be controlled), and TA is the ambient tem-
perature. The parameter values were taken from
(Gorinevsky, 2002): bu = 1000, c1 = 1.1 · 10"10,
c2 = 0.8 and c3 = 1.5 · 10"9, as well as the desired
control goal (a trajectory consisting of constant
and ramp phases). TA was taken to be 20

&C.

Figure 1 illustrates the solution found by the
genealogical decision tree optimization procedure
(N = 5000, An = 0.032, Bn = 202, ¯ = 1).
The part temperature follows closely the desired
tra jectory. The furnace temperature is within ac-
ceptable limits, and the control manipulations ap-
pear realizable. Overall, the results resemble those
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Fig. 1. Rapid thermal processing. The part tem-
perature (TP [&C], solid line) follows very
closely the desired trajectory (thin solid line),
consisting of ramps followed by constant out-
put phases. The two lines are almost indis-
tinguishable. The upper plot shows also the
furnace temperature (TF, dashed line); the
lower plot shows the sequence of control ac-
tions (heating intensity u).

obtained in (Gorinevsky, 2002) using an iterative
learning scheme.

5.2 Example 2 — Single link manipulator

Among other areas, the genealogical decision tree
control algorithm can find wide applications in
robotics. Note that based on the Lagrangian and
Newton—Euler formalisms, models of robots can
easily be derived.

The following model for a single link manipulator
was considered (Becerra, 2004)

··
µ = ¡

g

l
sinµ ¡

v

ml2

·
µ +

1

ml2
u,

where µ is the angular position, m is the mass
of the end of rod element, l is the length of the
rod, v is the friction coe±cient at the pivot point,
and u is the applied torque at the pivot point.
Let m = 2 kg, l = 1 m, v = 6 kgm2/s. Denoting

x1 := µ and x2 :=
·
µ the model can be written in

the state space form, with states x1 and x2, and
output y := x1.
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Fig. 2. Single link manipulator control. The angle
of the robot arm (x1 [rad], solid line) fol-
lows closely the desired trajectory (thin solid
line), consisting of steps of random amplitude
(from 0 to 10s) followed by a sinusoid wave
(from 10 to 20s). The upper plot shows also
the state x2 (dashed line); the lower plot
shows the sequence of control actions (applied
torque).

Figure 2 illustrates the solution found by the
genealogical decision tree optimization procedure
(N = 500, An = 22, Bn = 0.12, ¯ = 1). The
angle of the robot arm follows closely the desired
tra jectory and the control actions remain within
acceptable limits.

6. CONCLUSIONS

In this paper, a novel algorithm for open-loop
tracking control of complex systems was pre-
sented, and illustrated by two numerical exam-
ples. This control algorithm is based on a powerful
approach: the genealogical decision tree. The idea
behind the control strategy consists of associat-
ing Gaussian distributions to both the norms of
the control actions and the tracking errors. The
resulting stochastic search technique can be inter-
preted as a simple genetic particle evolution model
with a natural birth and death interpretation. It
converges in probability.



The considered open-loop control strategy is well
suited for a multitude of batch processes for
which on-line sensors are not available, are too
expensive, or can not be adapted for the mea-
surement of di®erent controlled variables. Indeed,
models of these processes are often readily avail-
able, whereas the complex dynamics commonly
exhibited by the models make the application
of standard optimization routines unsatisfactory.
Two simulation examples illustrated the approach
in semiconductor manufactoring (rapid thermal
processing) and robotics (single link manipulator
control).
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APPENDIX

Let us assume that the plant model is given by

xn+1 = f (xn,un) , yn = g (xn) .

The following pseudo-code implements the algo-
rithm:

for n = 1 : T

for i = 1 : N
if n == 1, Initialize xi = x0, y

i = g (x0) and
JiT = 0; end
Generate random u

i » N (0,An).
Store action to a list vin = u

i.

Evaluate JY =
°°yrefn ¡ y i

°°2
Bn
, JU =

°°ui
°°2
An

and J iT = J
i
T + JY + JU .

Set weight piun = exp
³
"¯
2
JY

´
.

end
For all i = 1 : N : Compute resampling probabil-
ities: pi = piun/

PN
i=1 p

i
un.

Resample: For all i = 1 : N : Select bIi = k such
that Pr (k = j) = pj.

For all i 2 bI: Compute model for next n: xi =
f
¡
x
i,ui

¢
; y i = g

¡
x
i
¢
.

Death and birth. For all j = 1 : N : Replace xj,

y
j, vjn and J

j
T by x

bIj , ybIj , vbIjn and J
bIj
T .

end

Find i! = argmini J
i
T . The solution for the opti-

mal control sequence is vi
¤

T .
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