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Abstract. In this paper an original interacting particle system approach is developed for study-
ing Markov chains in rare event regimes. The proposed particle system is theoretically studied
through a genealogical tree interpretation of Keynman-Kac path measures. The algorithmic imple-
mentation of the particle system is presented. An efficient estimator for the probability of ocurrence
of a rare event is proposed and its variance is computed. Applications and numerical implemen-
tations are discussed. First, we apply the particle system technique to a toy model (a Gaussian
random walk), which permits to illustrate the theoretical predictions. Second, we address a physi-
cally relevant problem consisting in the estimation of the outage probability due to polarization-mode
dispersion in optical fibers.
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1. Introduction. The simulations of rare events has become an extensively
studied subject in queueing and reliability models [19], in particular in telecommuni-
cation systems. The rare events of interest are long waiting times or buffer overflows
in queueing systems, and system failure events in reliability models. The issue is usu-
ally the estimation of the probability of occurence of a rare event (such as the failure
of a system), and we shall focus mainly on that point. But our method will be shown
to be also efficient for the analysis of the cascade of events leading to such a rare
event, in order to exhibit the typical physical path that the system uses to achieve
the rare event.

Standard Monte Carlo (MC) simulations are usually prohibited in these situations
because very few (or even zero) simulations will achieve the rare event. The general
approach to speeding up such simulations is to accelerate the occurrence of the rare
events by using importance sampling (IS) [19, 31]. In IS the system is simulated using
a new set of input probability distributions, and unbiased estimates are recovered by
multiplying the simulation output by a likelihood ratio. The tricky part in IS is to
properly choose the twisted distribution. The user is expected to guess a more or less
correct twisted distribution otherwise IS may completely fail. Our aim is to propose a
more elaborate scheme that will select the twisted distribution in an adaptative way,
without any operation of the user. The method consists in simulating an interacting
particle system (IPS) with selection and mutation steps [6]. This interacting particle
methodology is closely related to a class of Monte Carlo acceptance/rejection simula-
tion techniques used in physics and biology. These methods were first designed in the
fifties to estimate particle energy transmission [18], self avoiding random walks, and
macromolecule evolutions [30]. The application model areas of these particle methods
now have a range going from advanced signal processing, including speech recogni-
tion, tracking, and filtering, to financial mathematics and telecommunication [12].
The present paper is devoted to new applications towards rare event estimation.

The idea is the following one. Consider a E-valued Markov chain (Xp)0≤p≤n

with non-homogeneous transition kernels Kp. The problem consists in estimating the
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probability PA of occurence of a rare event of the form {V (Xn) ∈ A} where V is some

function from E to R. The IPS consists of a set of N particles (X
(i)
p )1≤i≤N evolving

from time p = 0 to p = n. The initial generation at p = 0 is a set of independent
copies of X0. The updating from the generation p to the generation p + 1 is divided
into two stages.
1) The selection stage consists in choosing randomly and independently N particles

amongst (X
(i)
p )1≤i≤N according to a weighted Boltzmann-Gibbs particle measure,

with a weight function that is varying monotoneously with V . Thus, particles with
low scores are killed, while particles with high scores are multiplied. Note that the
total number of particles is kept constant.
2) The mutation step consists in mutating independently the particles according to
the kernel Kp. Note that the true transition kernel is applied, in contrast with IS.
The description is rough in that the IPS actually acts on the path level. The math-
ematical tricky part consists in proposing an estimator of the probability PA and
analyzing its variance. The variance analysis will provide useful information for a
proper choice of the weight function.

The paper is organized as follows. Section 2 contains all the theoretical results
formulated in an abstract framework. We give a summary of the method and present
a user-friendly implementation in Section 3. We consider a toy model (a Gaussian
random walk) in Section 4 to illustrate the theoretical predictions on an example
where all relevant quantities can be explicitly computed. Finally, in Section 5, we
apply the method to a physical situation emerging in telecommunication.

2. Simulations of rare events by interacting particle systems.

2.1. Introduction. In this section, we design an original IPS approach for an-
alyzing of Markov chains evolving in rare event regime.

In the first subsection 2.2, we use a natural large deviation perspective to exhibit
natural changes of reference measures under which the underlying process is more
likely to enter in a given rare level set. This technique is more or less well known. It
often offers a powerful and elegant strategy for analyzing rare deviation probabilities.
Loosely speaking, the twisted distributions associated to the deviated process repre-
sent the evolution of the original process in the rare event regime. In MC Markov chain
literature, these changes of measure strategy is also called the importance sampling
(IS) technique.

In Subsection 2.3, we present a Feynman-Kac formulation of twisted reference
path distributions. We examine a pair of Gaussian models for which these changes of
measures have a nice explicit formulation. In this context, we initiate a comparison
of the fluctuation-error variances of the “pure” MC and the IS techniques. In general,
the twisted distribution suggested by the physical model is rather complex, and its
numerical analysis often requires extensive calculations. The practioners often need to
resort to another “sub-optimal” reference strategy, based on a more refined analysis of
the physical problem at hand. The main object of this section is to complement this
IS methodology, with presenting a genetic type particle interpretation of a general and
abstract class of twisted path models. Instead of hand crafting or simplified simulation
models this new particle methodology provides a powerful, and very flexible way, to
produce samples according to any complex twisted measures dictated by the physical
properties of the model at hand. But, from the strict practical point of view, if there
exists already a good specialized IS method for a specific rare event problem then our
IPS methodology may not be the best tool for that application.
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In Subsection 2.4, we introduce the reader to a new developing genealogical tree
interpretation of Feynman-Kac path measures. For a more thorough study on this
theme we refer to the monograph [6], and references therein. We connect this IPS
methodology with rare event analysis. Intuitively speaking, the ancestral lines asso-
ciated to these genetic evolution models represent the physical ways that the process
uses to reach the desired rare level set.

In the final section 2.5, we analyze the fluctuations of rare event particle simulation
models. We discuss the performance of these interpretations on a class of warm up
Gaussian models. We compare the asymptotic error-variances of genealogical particle
models and the more traditional noninteracting IS schemes. For Gaussian models, we
show that the exponential fluctuation orders between these two particle simulation
strategies are equivalent.

2.2. A large deviation perspective. Let Xn be a Markov chain, taking values
at each time n, in some measurable state space (En, En), that may depend on the time
parameter n. Suppose we want to estimate the probability Pn(a) that Xn enters, at
a given fixed date n, into the a-level set V −1

n ([a,∞)) of a given energy like function
Vn on En, for some a ∈ R:

Pn(a) = P(Vn(Xn) ≥ a).(2.1)

To avoid some unnecessary technical difficulties, we further assume that Pn(a) > 0,
and the pair (Xn, Vn) satisfies Cramer’s condition E(eλVn(Xn)) < ∞, for all λ ∈ R.
This condition ensures the exponential decrease of the probabilities P(Vn(Xn) ≥ a) ↓
0, as a ↑ ∞. To see this claim, we simply use the exponential version of Chebychev’s
inequality to check that, for any λ > 0 we have

P(Vn(Xn) ≥ a) ≤ e−λ(a−λ−1Λn(λ)) with Λn(λ) =def. log E(eλVn(Xn))

As an aside, it is also routine to prove that the maximum of (λa−Λn(λ)), with respect
to the parameter λ > 0, is attained at the value λn(a) determined by the equation
a = E(Vn(Xn)eλVn(Xn)))/E(eλVn(Xn))). The resulting inequality

P(Vn(Xn) ≥ a) ≤ e−Λ?
n(a) with Λ?

n(a) = sup
λ>0

(λa− Λn(λ))

is known as large-deviation inequality. When the Laplace transforms Λn are explicitly
known, this variational analysis often provides sharp tail estimates. We illustrate this
observation on an elementary Gaussian model. This warm up example will be used
in several places in the further development of this article. Suppose that Xn is given
by the recursive equation

Xp = Xp−1 + Wp(2.2)

where X0 = 0 and (Wp)p∈N∗ represents a sequence of independent and identically
distributed (i.i.d.) Gaussian random variables, with (E(W1), E(W 2

1 )) = (0, 1). If we
take Vn(x) = x, then we find that Λn(λ) = λ2n/2, λn(a) = a/n, and Λ?

n(a) = a2/(2n),

from which we recover the well-known sharp exponential tails P(Xn ≥ a) ≤ e−a2/(2n).
In more general situations, the analytical expression of Λ?

n(a) is out of reach, and
we need to resort to judicious numerical strategies. The first rather crude MC method
is to consider the estimate

P N
n (a) =

1

N

N∑

i=1

1Vn(Xi
n)≥a
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based on N independent copies (X i
n)1≤i≤N of Xn. There are no difficulties to check

that the resulting error-variance is given by

σ2
n(a) = N E

[
(P N

n (a)− Pn(a))2
]

= Pn(a) (1− Pn(a))

In practice, P N
n (a) is very poor estimate mainly because the whole sample set is very

unlikely to reach the rare level.
A more judicious choice of MC exploration model is dictated by the large deviation

analysis presented above. To be more precise, let us suppose that a > λ−1Λn(λ), with
λ > 0. To simplify the presentation, we also assume that the initial value X0 = x0 is
fixed, and we set V0(x0) = 0. Let Pλ

n be the new reference measure on the path space
Fn =def. (E0 × · · · ×En) defined by the formula

dP(λ)
n =

1

E(eλVn(Xn))
eλVn(Xn) dPn(2.3)

where Pn is the distribution of the original and canonical path (Xp)0≤p≤n. By con-
struction, we have that

P(Vn(Xn) ≥ a) = E(λ)
n

[
1Vn(Xn)≥a dPn/dP(λ)

n

]

= E(λ)
n

[
1Vn(Xn)≥a e−λVn(Xn)

]
E

[
eλVn(Xn)

]

≤ e−λ(a−λ−1Λn(λ)) P(λ)
n (Vn(Xn) ≥ a)

where E
(λ)
n represents the expectation operator with respect to the distribution P

(λ)
n .

By definition, the measure P
(λ)
n tends to favor random evolutions with high potential

values Vn(Xn). As a consequence, the random paths under P
(λ)
n are much more likely

to enter in the rare level set. For instance, in the Gaussian example described earlier,
we have that

dP(λ)
n /dPn =

n∏

p=1

eλ(Xp−Xp−1)−λ2/2(2.4)

In other words, under P
(λ)
n the chain takes the form Xp = Xp−1 + λ + Wp, and we

have P
(λ)
n (Xn ≥ a) = Pn(Xn ≥ a− λn) (= 1/2 as soon as a = λn).

These observations suggest to replace P N (a) by the weighted MC model

P N,λ
n (a) =

1

N

N∑

i=1

dPn

dP
(λ)
n

(Xλ,i
0 , . . . , Xλ,i

n ) 1Vn(Xλ,i
n )≥a

associated to N independent copies (Xλ,i
n )1≤i≤N of the chain under P

(λ)
n . Observe

that the corresponding error-variance is given by

σ(λ)
n (a)2 = N E

[
(P N,λ

n (a)− Pn(a))2
]

= E

[
1Vn(Xn)≥a e−λVn(Xn)

]
E[eλVn(Xn)]− P 2

n(a)(2.5)

≤ e−λ(a−λ−1Λn(λ)) Pn(a)− P 2
n(a)

For judicious choices of λ, one expects the exponential large-deviation term to be

proportional to the desired tail probabilities Pn(a). In this case, we have σ
(λ)
n (a)2 ≤
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Cte. P 2
n(a). Returning to the Gaussian situation, and using Mill’s inequalities

1

λ + 1/λ
≤ P(N (0, 1) ≥ λ)

√
2πe

λ2

2 ≤ 1

λ

which are valid for any λ > 0, and any reduced Gaussian random variable N (0, 1)
(see for instance (6) on page 237 in [32]), we find that

σ(λ)
n (a)2 ≤ e−a2/(2n) Pn(a)− P 2

n(a) ≤ P 2
n(a) [

√
2π(a/

√
n +

√
n/a)− 1]

for the optimal value of λ = λn(a) = a/n computed above. For typical Gaussian type
level indexes a = a0

√
n, with large values of a0, we find that λn(a) = a0/

√
n and

σ(λ)
n (a)2 ≤ P 2

n(a) [
√

2π(a0 + 1/a0)− 1]

As an aside, although we shall be using most of time upper bound estimates, Mill’s
inequalities ensure that most of the Gaussian exponential deviations discussed in the
paper are sharp.

The formulation (2.5) also suggests a dual interpretation of the variance. Firstly,
we note that

dPn/dP(λ)
n = E[eλVn(Xn)]E[e−λVn(Xn)] dP(−λ)

n /dPn

and therefore

σ(λ)
n (a)2 = P(−λ)

n (Vn(Xn) ≥ a) E[eλVn(Xn)]E[e−λVn(Xn)]− P 2
n(a)

In contrast to P
(λ)
n , the measure P

(−λ)
n now tends to favor low energy states Xn. As

a consequence, we expect P
(−λ)
n (Vn(Xn) ≥ a) to be much smaller that Pn(a). For

instance, in the Gaussian case we have

P(−λ)
n (Xn ≥ a) = Pn(Xn ≥ a + λn) ≤ e−(a+λn)2/(2n)

Since we have E[eλXn ] = E[e−λXn ] = eλ2n/2, we recover the estimate obtained earlier

σ(λ)
n (a)2 ≤ e−a2/ne(a−λn)2/(2n) − P 2

n(a) = e−a2/n − P 2
n(a) ≤ Cte. P 2

n(a)(2.6)

as soon as λ = a/n.

2.3. Twisted Feynman-Kac path measures. The choice of the “twisted”

measures P
(λ)
n introduced in (2.3) is only of pure mathematical interest. Indeed,

the IS estimates described below will still require both the sampling of random paths

according to P
(λ)
n , and the computation of the normalizing constants. As we mentioned

in the introduction, the key difficulty in applying IS strategies is to choose the so-
called “twisted” reference measures. In the further development of Subsection 2.4,
we shall present a natural genealogical tree based simulation technique of twisted
Feynman-Kac path distribution of the following form

dQn =
1

Zn

{
n∏

p=1

Gp(X0, . . . , Xp)

}
dPn(2.7)

In the above display, Zn > 0 stands for a normalizing constant, and (Gp)1≤p≤n

represents a given sequence of potential functions on the path spaces (Fp)1≤p≤n. Note
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that the twisted measures defined in (2.3) corresponds to the (non-unique) choice of
functions

Gp(X0, . . . , Xp) = e−λ(Vp(Xp)−Vp−1(Xp−1))(2.8)

As an aside, we mention that the optimal choice of twisted measure with respect to
the IS criterion is the one associated to the potential functions Gn = 1V −1

n ([a,∞)),

and Gp = 1, for p < n. In this case, we have Zn = P(Vn(Xn) ≥ a) and Qn is the
distribution of the random paths ending in the desired rare level. This optimal choice
is clearly infeasible, but we note that the resulting variance is null.

The rare event probability admits the following elementary Feynman-Kac formu-
lation

P(Vn(Xn) ≥ a) = E

[
g(a)

n (X0, . . . , Xn)
n∏

p=1

Gp(X0, . . . , Xp)

]
= Zn Qn(g(a)

n )

with the weighted function defined by

g(a)
n (x0, . . . , xn) = 1Vn(xn)≥a

n∏

p=1

G−1
p (x0, . . . , xp)

for any path sequence such that
∏n

p=1 Gp(x0, . . . , xp) > 0. Otherwise, g
(a)
n is assumed

to be null.
The discussion given above already shows the improvements one might expect in

changing the reference exploration measure. The central idea behind this IS methodol-
ogy is to choose a twisted probability that mimics the physical behavior of the process
in the rare event regime. The potential functions Gp represent the changes of proba-
bility mass, and in some sense the physical variations in the evolution of the process to
the rare level set. For instance, for time homogeneous models Vp = V , 0 ≤ p ≤ n, the
potential functions defined in (2.8) will tend to favor local transitions that increases
a given V -energy function. The large deviation analysis developed in Subsection 2.2
combined with the Feynman-Kac formulation (2.3) gives some indications on the way
to choose the twisted potential functions (Gp)1≤p≤n. Intuitively, the attractive forces
induced by a particular choice of potentials are compensated by increasing normal-
izing constants. More formally, the error-variance of the Qn-importance sampling
scheme is given by the formula

σQ
n (a)2 = Q−n (Vn(Xn) ≥ a) ZnZ−n − Pn(a)2(2.9)

where Q−n is the path Feynman-Kac measure given by

dQ−n =
1

Z−n

{
n∏

p=1

G−1
p (X0, . . . , Xp)

}
dPn

Arguing as before, and since Q−n tends to favor random paths with low Gp energy,
we expect Q−n (Vn(Xn) ≥ a) to be much more smaller than the rare event probability
P(Vn(Xn) ≥ a). On the other hand, by Jensen’s inequality we expect the product
of normalizing constants ZnZ−n (≥ 1) to be very large. These expectations fail in the
“optimal” situation examined above (Gn = 1V −1

n ([a,∞)), and Gp = 1, for p < n).
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In this case, we simply note that Qn = Q−n = Law(X0, . . . , Xn | Vn(Xn) ≥ a), and
Q−n (Vn(Xn) ≥ a) = 1, and Zn = Z−n = Pn(a).

We end this section with a brief discussion on the competition between making
a rare event more attractive and controlling the normalizing constants. We return to
the Gaussian example examined in (2.2), and instead of (2.4), we consider the twisted
measure

dQn = dP(λ)
n =

1

Z(λ)
n

{
n∏

p=1

eλXp

}
dPn(2.10)

In this case, it is not difficult to check that for any λ ∈ R we have Z (λ)
n = e

λ2

2

∑n
p=1 p2

.

In addition, under P
(λ)
n the chain Xn has the form

Xp = Xp−1 + λ (n− p + 1) + Wp, 1 ≤ p ≤ n(2.11)

When λ > 0, the rare level set is now very attractive, but the normalizing constants

can become very large Z (λ)
n = Z(−λ)

n (≥ eλ2n3/12). Also notice that in this situation
the first term in the right-hand side of (2.9) is given by

P(−λ)
n (Vn(Xn) ≥ a) Z(λ)

n Z(−λ)
n ≤ e−

1
2n (a+λ

∑n
p=1 p)2+λ2∑n

p=1 p2

≤ e−a2/n e
1
2n (a−λ

∑n
p=1 p)2+λ2[

∑n
p=1 p2−(

∑n
p=1 p)2/n]

Although we are using inequalities, we recall that these exponential estimates are
sharp. Now, if we take λ = 2a/[n(n + 1)], then we find that

P(−λ)
n (Vn(Xn) ≥ a) Z(λ)

n Z(−λ)
n ≤ e−

a2

n
2
3 (1+ 1

n+1 )(2.12)

This shows that even if we adjust correctly the parameter λ, this IS estimate is less
efficient than the one associated to the twisted distribution (2.4). The reader has
probably noticed that the change of measure defined in (2.10) is more adapted to
estimate the probability of the rare level sets {Vn(Yn) ≥ a}, with the historical chain
Yn = (X0, . . . , Xn) and the energy function Vn(Yn) =

∑n
p=1 Xp.

2.4. A genealogical tree based interpretation model. The probabilistic
interpretation of the twisted Feynman-Kac measures (2.7) presented in this section
can be interpreted as a mean field path-particle approximation of the distribution
flow (Qn)n≥1. We also mention that the genetic type selection/mutation evolution of
the former algorithm can also be seen as a acceptance/rejection particle simulation
technique. In this connection, and as we already mentioned in the introduction,
we again emphasize that this IPS methodology is not useful if we already know a
specialized and exact simulation technique of the desired twisted measure.

2.4.1. Rare events Feynman-Kac type distributions. To simplify the pre-
sentation, it is convenient to formulate these models in terms of the historical process

Yn =def. (X0, . . . , Xn) ∈ Fn =def. (E0 × . . .×En)

We let Mn(yn−1, dyn) be the Markov transitions associated to the chain Yn. To
simplify the presentation, we shall assume that the initial value Y0 = X0 = x0 is
fixed, and we also denote by Kn(xn−1, dxn) the Markov transitions of Xn. We finally
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let Bb(E) be the space of all bounded measurable functions on some measurable space
(E, E), and we equip Bb(E) with the uniform norm.

We associate to the pair potentials/transitions (Gn, Mn) the Feynman-Kac mea-
sure defined for any test function fn ∈ Bb(Fn) by the formula

γn(fn) = E


fn(Yn)

∏

1≤k<n

Gk(Yk)




We also introduce the corresponding normalized measure

ηn(fn) = γn(fn)/γn(1)

To simplify the presentation, and avoid some unnecessary technical discussions,
we shall suppose that the potential functions are chosen such that

sup
(yn,y′n)∈F 2

n

Gn(yn)/Gn(y′n) < ∞

This regularity condition ensures that the normalizing constants γn(1) and the mea-
sure γn are bounded and positive. The Feynman-Kac and the particle approximation
models developed in this section, can be extended to more general situations using
traditional cut-off techniques, or by considering Kato-class type of potential functions
(see for instance [6, 26, 29, 33]).

In this section, we provide a Feynman-Kac formulation of rare event probabili-
ties. The fluctuation analysis of their genealogical tree interpretations will also be
described in terms of the distribution flow (γ−n , η−n ), defined as (γn, ηn), by replacing
the potential functions Gp by their inverse

G−p = 1/Gp

The twisted measures Qn presented in (2.7) and the desired rare event probabil-
ities have the following Feynman-Kac representation

Qn(fn) = ηn(fnGn)/ηn(Gn) and P(Vn(Xn) ≥ a) = γn(T (a)
n (1))

In the above displayed formulae, T
(a)
n (1) is the weighted indicator function defined

for any path yn = (x0, . . . , xn) ∈ Fn by

T (a)
n (1)(yn) = T (a)

n (1)(x0, . . . , xn) = 1Vn(xn)≥a

∏

1≤p<n

G−p (x0, . . . , xp)

More generally, we have for any ϕn ∈ Bb(Fn)

E [ϕn(X0, . . . , Xn) ; Vn(Xn) ≥ a] = γn(T (a)
n (ϕn))

with the function T
(a)
n (ϕn) given by

T (a)
n (ϕn)(x0, . . . , xn) = ϕn(x0, . . . , xn) 1Vn(xn)≥a

∏

1≤p<n

G−p (x0, . . . , xp)(2.13)

To connect the rare event probabilities with the normalized twisted measures we use
the fact that

γn+1(1) = γn(Gn) = ηn(Gn) γn(1) =

n∏

p=1

ηp(Gp)
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This readily implies that for any fn ∈ Bb(Fn)

γn(fn) = ηn(fn)
∏

1≤p<n

ηp(Gp)(2.14)

This yields the formulae

P(Vn(Xn) ≥ a) = ηn(T (a)
n (1))

∏

1≤p<n

ηp(Gp)

E(ϕn(X0, . . . , Xn) ; Vn(Xn) ≥ a) = ηn(T (a)
n (ϕn))

∏

1≤p<n

ηp(Gp)

E(ϕn(X0, . . . , Xn) | Vn(Xn) ≥ a) = ηn(T (a)
n (ϕn))/ηn(T (a)

n (1))(2.15)

To take the final step, we use the Markov property to check that the twisted
measures (ηn)n≥1 satisfies the nonlinear recursive equation

ηn = Φn(ηn−1) =def.

∫

Fn−1

ηn−1(dyn−1)Gn−1(yn−1)Mn(yn−1, ·)/ηn−1(Gn−1)

starting from η1 = M1(x0, ·).
2.4.2. Interacting path-particle interpretation. The mean field particle

model associated with a collection of transformations Φn is a Markov chain ξn =
(ξi

n)1≤i≤N taking values at each time n ≥ 1 in the product spaces F N
n . Loosely

speaking, the algorithm will be conducted so that each path-particle

ξi
n = (ξi

0,n, ξi
1,n, . . . , ξi

n,n) ∈ Fn = (E0 × . . .×En)

is almost sampled according to the twisted measure ηn.
The initial configuration ξ1 = (ξi

1)1≤i≤N consists of N independent and identically
distributed random variables with common distribution

η1(d(y0, y1)) = M1(x0, d(y0, y1)) = δx0(dy0) K1(y0, dy1)

In other words, ξi
1 =def. (ξi

0,1, ξ
i
1,1) = (x0, ξ

i
1,1) ∈ F1 = (E0×E1) can be interpreted as

N independent copies x0  ξi
1,1 of the initial elementary transition X0 = x0  X1.

The elementary transitions ξn−1  ξn from F N
n−1 into F N

n are defined by

P(ξn ∈ d(y1
n, . . . , yN

n ) | ξn−1) =

N∏

j=1

Φn (m(ξn−1)) (dyj
n)(2.16)

where m(ξn−1) =def.
1
N

∑N
i=1 δξi

n−1
, and d(y1

n, . . . , yN
n ) is an infinitesimal neighbor-

hood of the point (y1
n, . . . , yN

n ) ∈ F N
n . By the definition of Φn we find that (2.16) is

the overlapping of simple selection/mutation genetic transitions

ξn−1 ∈ F N
n−1

selection
−−−−−−−−→ ξ̂n−1 ∈ F N

n−1

mutation
−−−−−−−→ ξn ∈ F N

n

The selection stage consists of choosing randomly and independently N path-particles

ξ̂i
n−1 = (ξ̂i

0,n−1, ξ̂
i
1,n−1, . . . , ξ̂

i
n−1,n−1) ∈ Fn−1
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according to the Boltzmann-Gibbs particle measure

N∑

j=1

Gn−1(ξ
j
0,n−1, . . . , ξ

j
n−1,n−1)∑N

j′=1 Gn−1(ξ
j′

0,n−1, . . . , ξ
j′

n−1,n−1)
δ(ξj

0,n−1,...,ξj
n−1,n−1)

During the mutation stage, each selected path-particle ξ̂i
n−1 is extended by an ele-

mentary Kn-transitions. In other words, we set

ξi
n = ( (ξi

0,n, . . . , ξi
n−1,n) , ξi

n,n)

= ((ξ̂i
0,n−1, . . . , ξ̂

i
n−1,n−1), ξi

n,n) ∈ Fn = Fn−1 ×En

where ξi
n,n is a random variable with distribution Kn(ξ̂i

n−1,n−1, ·). The mutations are
performed independently.

2.4.3. Particle approximation measures. It is of course out of the scope of
this article to present a full asymptotic analysis of these genealogical particle models.
We rather refer the interested reader to the recent monograph [6], and the references
therein. For instance, it is well known that the occupation measures of the ancestral
lines converge to the desired twisted measures. That is, we have with various precision
estimates the weak convergence result

ηN
n =def.

1

N

N∑

i=1

δ(ξi
0,n,ξi

1,n,...,ξi
n,n)

N→∞−→ ηn

In addition, several propagation-of-chaos estimates ensure that the ancestral lines
(ξi

0,n, ξi
1,n, . . . , ξi

n,n) are asymptotically independent and identically distributed with
common distribution ηn. The asymptotic analysis of regular models with unbounded
potential functions can be treated using traditional cut-off techniques.

Mimicking (2.14), the un-bias particle approximation measures γN
n of the unnor-

malized model γn are defined as

γN
n (fn) = ηN

n (fn)
∏

1≤p<n

ηN
p (Gp)

By (2.15), we eventually get the particle approximation of the rare event probabilities
Pn(a) as stated in the following proposition.

Proposition 2.1. Let

P N
n (a) = γN

n (T (a)
n (1)) = ηN

n (T (a)
n (1))

∏

1≤p<n

ηN
p (Gp)(2.17)

P N
n (a) is an unbiased estimator of Pn(a) such that

P N
n (a)

N→∞−→ Pn(a) a.s.(2.18)

In addition, by (2.15), the conditional distribution of the process in the rare event
regime can be estimated using the weighted particle measure

P N
n (a, ϕn) =def. ηN

n (T (a)
n (ϕn))/ηN

n (T (a)
n (1))(2.19)

N→∞−→ Pn(a, ϕn) =def. E [ϕn(X0, . . . , Xn) | Vn(Xn) ≥ a]



Genealogical particle Analysis of Rare Events 11

When no particles have succeeded to reach the desired level V −1
n ([a,∞)), at time n,

we have ηN
n (T

(a)
n (1)) = 0, and therefore ηN

n (T
(a)
n (ϕn)) = 0, for any ϕn ∈ Bb(Fn). In

this case, we take the convention P N
n (a, ϕn) = 0. Also notice that ηN

n (T
(a)
n (1)) > 0 if,

and only if, we have P N
n (a) > 0. When Pn(a) > 0, we have the exponential decay of

the probabilities P(P N
n (a) = 0) → 0, as N tends to infinity.

The above asymptotic estimates are almost sure convergence results. We can
also precise these convergences in various ways, including Lp-mean-error or increasing
propagations of chaos analysis, central limit theorems and Berry-Esseen type inequal-
ities, as well as exponential estimates and large deviations principles (see [6]).

2.5. Fluctuations and variance comparisons. The fluctuations of genetic
type particle models have been initiated in Ref. [7]. Under appropriate regularity
conditions on the mutation transitions, this study provides a central limit theorem
for the path particle model (ξi

0, . . . , ξ
i
n)1≤i≤N . Several extensions, including Donsker’s

type theorems, Berry-Esseen inequalities, and applications to nonlinear filtering prob-
lems can be found in Refs. [10, 8, 9, 11]. In this section, we design a simplified analysis
essentially based on the fluctuations of random fields associated to the local sampling
errors. In the first part of this subsection, we provide a brief discussion on the fluc-
tuations analysis of the weighted particle measures introduced in Subsection 2.4. We
underline several interpretations of the central limit variances in terms of twisted
Feynman-Kac measures. In the final part of this section, we illustrate these gen-
eral and theoretical fluctuation analysis in the warm up Gaussian situation discussed
in (2.2), (2.4), and (2.10). In this context, we derive an explicit description of the
error-variances, and we compare the performance of the IPS methodology with the
noninteracting IS technique.

2.5.1. Central limit theorems. The fluctuations of the mean field particle
models described in Subsection 2.4 are essentially based on the asymptotic analysis of
the local sampling errors associated with the particle approximation sampling steps.
These local errors are defined in terms of the random fields WN

n , given for any fn ∈
Bb(Fn) by the formula

WN
n (fn) =

√
N [ηN

n − Φn(ηN
n−1)](fn)

The next central limit theorem is pivotal. Its complete proof can be found in [6].
For any fixed time horizon n ≥ 1, the sequence (WN

p )1≤p≤n converges in law, as N
tends to infinity, to a sequence of n independent, Gaussian and centered random fields
(Wp)1≤p≤n; with, for any fp, gp ∈ Bb(Fp), and 1 ≤ p ≤ n,

E [Wp(fp)Wp(gp)] = ηp([fp − ηp(fp)][gp − ηp(gp)])

Let Qp,n, with 1 ≤ p ≤ n, be the Feynman-Kac semi-group associated to the flow γn =
γpQp,n. For p = n, we use the convention that Qn,n = Id. Using the Markov property,
it is not difficult to check that Qp,n has the following functional representation

Qp,n(fn)(yp) = E


fn(Yn)

∏

p≤k<n

Gk(Yk) | Yp = yp




for any test function fn ∈ Bb(Fn), and any path sequence yp = (x0, . . . , xp) ∈ Fp.
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To explain what we have in mind when making these definitions, we now consider
the elementary telescopic decomposition

γN
n − γn =

n∑

p=1

[γN
p Qp,n − γN

p−1Qp−1,n]

For p = 1, we recall that ηN
0 = δx0 and γ1 = η1 = M1(x0, ·), from which we find that

ηN
0 Q0,n = γ1Q1,n = γn. Using the fact that

γN
p−1Qp−1,p = γN

p−1(Gp−1) × Φp−1(η
N
p−1) and γN

p−1(Gp−1) = γN
p (1)

the above decomposition readily implies that

Wγ,N
n (fn) =def.

√
N [γN

n − γn](fn) =

n∑

p=1

γN
p (1) WN

p (Qp,nfn)(2.20)

It is now easy to check that γN
n is an unbiased estimate of γn, in the sense that

E(γN
n (fn)) = γn(fn), for any fn ∈ Bb(Fn).
To take the final step, we recall that the random sequence (γN

p (1))1≤p≤n converges
in law, as N tends to infinity, to the deterministic sequence (γp(1))1≤p≤n (see for
instance [6]). A simple application of Slutsky’s Lemma, now implies that the random
fields Wγ,N

n converge in law, as N tends to infinity, to the Gaussian random fields
Wγ

n defined for any fn ∈ Bb(Fn) by

Wγ
n(fn) =

n∑

p=1

γp(1) Wp(Qp,nfn)(2.21)

In much the same way, the sequence of random fields

Wη,N
n (fn) =def.

√
N [ηN

n − ηn](fn)(2.22)

=
γn(1)

γN
n (1)

× Wγ,N
n

(
1

γn(1)
(fn − ηn(fn))

)

converges in law, as N tends to infinity, to the Gaussian random fields Wη
n defined

for any fn ∈ Bb(Fn) by

Wη
n(fn) = Wγ

n

(
1

γn(1)
(fn − ηn(fn))

)
=

n∑

p=1

Wp

(
Qp,n

ηpQp,n(1)
(fn − ηn(fn))

)
(2.23)

One simple consequence of the above fluctuations is a central limit theorem for
the particle rare event estimates P N

n (a) introduced in (2.17). We first notice that

√
N [P N

n (a)− Pn(a)] = Wγ,N
n (T (a)

n (1))

with the weighted function T
(a)
n (1) introduced in (2.13). From previous considerations,

we readily find that Wγ,N
n (T

(a)
n (1)) converge in law, as N tends to infinity, to a

centered Gaussian random variable Wγ
n(T

(a)
n (1)) with the variance

σγ
n(a)2 =def. E(Wγ

n(T (a)
n (1))2) =

n∑

p=1

γp(1)2 ηp([Qp,n(T (a)
n (1))− ηpQp,n(T (a)

n (1))]2)
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To have a more explicit description of σγ
n(a) we notice that

Qp,n(T (a)
n (1))(x0, . . . , xp) =




∏

1≤k<p

Gk(x0, . . . , xk)−1



 P(Vn(Xn) ≥ a | Xp = xp)

By definition of ηp, we also find that

ηp(Qp,n(T (a)
n (1))) = P(Vn(Xn) ≥ a)/γp(1)

From these observations, we conclude that

σγ
n(a)2 =

n∑

p=1



γp(1) E


 ∏

1≤k<p

G−k (X0, . . . , Xk) E(1Vn(Xn)≥a | Xp)
2


− Pn(a)2





=
n∑

p=1

[γp(1)γ−p (1) η−p (Pp,n(a)2)− Pn(a)2]

Our next objective is to analyze the fluctuations of the particle conditional dis-
tributions of the process in the rare event regime defined in (2.19):

√
N [P N

n (a, ϕn)− Pn(a, ϕn)] =
ηnT

(a)
n (1)

ηN
n T

(a)
n (1)

×Wη,N
n

(
T

(a)
n

ηnT
(a)
n (1)

(ϕn − Pn(a, ϕn))

)

Using the same arguments as above, and by (2.23), we have the weak convergence

√
N [P N

n (a, ϕn)−Pn(a, ϕn)] 1P N
n (a)>0

N→∞−→ Wη
n

(
T

(a)
n

ηnT
(a)
n (1)

(ϕn − Pn(a, ϕn))

)
(2.24)

The limit is a centered Gaussian random variable with variance

σn(a, ϕn)2 =def. E


Wη

n

(
T

(a)
n

ηnT
(a)
n (1)

(ϕn − Pn(a, ϕn))

)2



Taking into account the definition of Wη
n and the identities ηnT

(a)
n (1) = Pn(a)/γn(1)

and ηnT
(a)
n (ϕn − Pn(a, ϕn)) = 0, we readily check that

σn(a, ϕn)2 = Pn(a)−2
n∑

p=1

γp(1) γp

(
[Qp,n(T (a)

n (ϕn − Pn(a, ϕn))]2
)

We summarize the above discussion with the following theorem.
Theorem 2.2. The estimator P N

n (a) given by (2.17) is unbiased, and it satisfies
the central limit theorem

√
N
[
P N

n (a)− Pn(a)
] N→∞−→ N (0, σγ

n(a)2)(2.25)

with the asymptotic variance

σγ
n(a)2 =

n∑

p=1

[γp(1)γ−p (1) η−p (Pp,n(a)2)− Pn(a)2](2.26)
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and the collection of functions Pp,n(a) defined by

xp ∈ Ep 7→ Pp,n(a)(xp) = E[1Vn(Xn)≥a | Xp = xp] ∈ [0, 1](2.27)

In addition, for any ϕn ∈ Bb(Fn), the estimator P N
n (a, ϕn) given by (2.19) satisfies

the central limit theorem
√

N
[
P N

n (a, ϕn)− Pn(a, ϕn)
] N→∞−→ N (0, σn(a, ϕn)2)(2.28)

with the asymptotic variance

σn(a, ϕn)2 = Pn(a)−2
n∑

p=1

γp(1)γ−p (1) η−p (Pp,n(a, ϕn)2)

and the collection of functions Pp,n(a, ϕn) ∈ Bb(Fp) defined by

Pp,n(a, ϕn)(x0, . . . , xp)

= E
[
(ϕn(X0, . . . , Xn)− Pn(a, ϕn)) 1Vn(Xn)≥a | (X0, . . . , Xp) = (x0, . . . , xp)

]

(2.29)

Arguing as in the end of Section 2.2, we note that the measures η−p tend to favor
random paths with low (Gk)1≤k<p-potential values. Recalling that these potentials
are chosen so as to represent the process evolution in the rare level set, we expect
the quantities η−p (Pp,n(a)2) to be much smaller than Pn(a). In the reverse angle, by
Jensen’s inequality we expect the normalizing constants products γp(1)γ−p (1) to be
rather large. We shall make precise these intuitive comments in the next section, with
explicit calculations for the pair Gaussian models introduced in (2.4) and (2.10). We
end the section by noting that

σn(a, ϕn)2 ≤ Pn(a)−2
n∑

p=1

γp(1)γ−p (1) η−p (Pp,n(a)2)

for any test function ϕn, with sup(yn,y′n)∈F 2
p
|ϕn(yn)− ϕn(y′n)| ≤ 1.

2.6. On the weak negligible bias of genealogical models. In this subsec-
tion, we complete the fluctuation analysis developed in Subsection 2.5.1, with the
study of the bias of the genealogical tree occupation measures ηN

n , and the corre-
sponding weighted measures P N

n (a, ϕn) defined by (2.19). The forthcoming analysis
also provide sharp estimates, and a precise asymptotic description of the law of a
given particle ancestral line. In this sense, this study also completes the propagation-
of-chaos analysis developed in [6].

Before getting into further details, we recall from [6] that for ν ∈ {γ, η}, and for
any fn ∈ Bb(Fn), and p ≥ 1, we have the Lp-mean error estimates

sup
N≥1

E
[
|Wν,N

n (fn)|p
]1/p

< ∞

with the random fields (Wγ,N
n ,Wη,N

n ) defined in (2.20) and (2.22). By the Borel-
Cantelli lemma this property ensures that (γN

n (fn), ηN
n (fn)) converges almost surely

to (γn(fn), ηn(fn)), as N tends to infinity. Using Hölder’s inequality, we can also
prove that any polynomial function of terms Wν,N

n (fn), ν ∈ {γ, η}, fn ∈ Bb(Fn),
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forms a uniformly integrable collection of random variables (indexed by the size and
precision parameter N ≥ 1). This property, combined with the continuous mapping
theorem, and Skorohod embedding theorem, allows us to state the following technical
lemma.

Lemma 2.3. For any n, d ≥ 1, any collection of functions (f i
n)1≤i≤d ∈ Bb(Fn)d,

and any sequence (νi)1≤i≤d ∈ {γ, η}d, the random products
∏d

i=1Wνi,N
n (f i

n) converge

in law, as N tends to infinity, to the Gaussian products
∏d

i=1Wνi

n (f i
n). In addition,

we have

lim
N→∞

E

[
d∏

i=1

Wνi,N
n (f i

n)

]
= E

[
d∏

i=1

Wνi

n (f i
n)

]

This result is pivotal in our way to analyze the bias of the path-particle models. To
illustrate our approach, we already present an elementary consequence of Lemma 2.3.
We first rewrite (2.22) as follows

Wη,N
n (fn)

= Wγ,N
n

(
1

γn(1) (fn − ηn(fn))
)

+
(

γn(1)
γN

n (1) − 1
)
× Wγ,N

n

(
1

γn(1) (fn − ηn(fn))
)

= Wγ,N
n (f̃n)− 1√

N

γn(1)
γN

n (1) Wγ,N
n (f̃n)Wγ,N

n (g̃n)

with the pair of functions (f̃n, g̃n) defined by

f̃n =
1

γn(1)
(fn − ηn(fn)) and g̃n =

1

γn(1)

This readily yields that

N E
[
ηN

n (fn)− ηn(fn)
]

= −E

[
γn(1)

γN
n (1)

Wγ,N
n (f̃n)Wγ,N

n (g̃n)

]

Since the sequence of random variables (γn(1)/γN
n (1))N≥1 is uniformly bounded, and

it converges in law to 1, as N tends to infinity, by Lemma 2.3 we conclude that

lim
N→∞

N E[ηN
n (fn)− ηn(fn)] = −E

[
Wγ

n(f̃n)Wγ
n(g̃n)

]

= −
n∑

p=1

ηp

(
Qp,n(1) Qp,n(fn − ηn(fn))

)
(2.30)

with the re-normalized semi-group Qp,n defined by

Qp,n(fn) =
Qp,n(fn)

ηpQp,n(1)
=

γp(1)

γn(1)
Qp,n(fn)

We are now in position to state and prove the main result of this subsection.
Theorem 2.4. For any n ≥ 1 and ϕn ∈ Bb(Fn), we have

N E
[
(P N

n (a, ϕn)− Pn(a, ϕn)) 1P N
n (a)>0

]

N→∞−→ −Pn(a)−2
n∑

p=1

γp(1)γ−p (1) η−p [Pp,n(a)Pp,n(a, ϕn)]
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with the collection of functions Pp,n(a), Pp,n(a, ϕn) ∈ Bb(Fp) defined respectively in
(2.27) and (2.29).
Proof:
The proof is essentially based on a judicious way to rewrite (2.24). If we define

f (a)
n =

T
(a)
n

ηnT
(a)
n (1)

(ϕn − Pn(a, ϕn)) and g(a)
n =

T
(a)
n (1)

ηnT
(a)
n (1)

then, on the event {P N
n (a) > 0}, it is easy to check that

N [P N
n (a, ϕn)− Pn(a, ϕn)]

= N [ηN
n (f

(a)
n )− ηn(f

(a)
n )]− 1

ηN
n (g

(a)
n )

Wη,N
n (f

(a)
n )Wη,N

n (g
(a)
n )

By Lemma 2.3 and (2.30) we conclude that

N E
[
(P N

n (a, ϕn)− Pn(a, ϕn)) 1P N
n (a)>0

]

N→∞−→ −E

[
Wη

n(f (a)
n )Wη

n(g(a)
n )
]
− E

[
Wγ

n(
f

(a)
n

γn(1)
)Wγ

n(
1

γn(1)
)

]

On the other hand, using (2.23) we find that

E

[
Wη

n(f (a)
n )Wη

n(g(a)
n )
]

=

n∑

p=1

(γp(1)/γn(1))
2

E

[
Wp

(
Qp,n(f (a)

n )
)
Wp

(
Qp,n(g(a)

n − 1)
)]

=
n∑

p=1

(γp(1)/γn(1))2 ηp

(
Qp,n(f (a)

n )Qp,n(g(a)
n − 1)

)

Similarly, by (2.21) we have

E

[
Wγ

n(
f

(a)
n

γn(1)
)Wγ

n(
1

γn(1)
)

]
=

n∑

p=1

γp(1)2 E

[
Wp(Qp,n

f
(a)
n

γn(1)
)Wp(Qp,n

1

γn(1)
)

]

It is now not difficult to check that

E

[
Wγ

n(
f

(a)
n

γn(1)
)Wγ

n(
1

γn(1)
)

]
=

n∑

p=1

(γp(1)/γn(1))2 ηp

(
Qp,n(1)Qp,n(f (a)

n )
)

from which we conclude that

N E([P N
n (a, ϕn)− Pn(a, ϕn)] 1P N

n (a)>0)

N→∞−→
n∑

p=1

(γp(1)/γn(1))
2

ηp

(
Qp,n(f (a)

n )Qp,n(g(a)
n )
)

By the definition of the function T
(a)
n (ϕn) we have ηnT

(a)
n (1) = Pn(a)/γn(1) and for

any yp = (x0, . . . , xp) ∈ Fp

Qp,n(T
(a)
n (ϕn))(x0, . . . , xp) = [

∏
1≤k<p G−k (x0, . . . , xk)]

×E
[
ϕn(X0, . . . , Xn) 1Vn(Xn)≥a | (X0, . . . , Xp) = (x0, . . . , xp)

]
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By the definition of the pair of functions (f
(a)
n , g

(a)
n ), these observations yield

Qp,n(f (a)
n )(x0, . . . , xp) =

γn(1)

Pn(a)
[
∏

1≤k<p

G−k (x0, . . . , xk)] Pp,n(a, ϕn)(x0, . . . , xp)

Qp,n(g(a)
n )(x0, . . . , xp) =

γn(1)

Pn(a)
[
∏

1≤k<p

G−k (x0, . . . , xk)] Pp,n(a)(x0, . . . , xp)

The end of the proof is now straightforward.

2.7. Variance comparisons for Gaussian particle models. Let (Xp)1≤p≤n

be the Gaussian sequence defined in (2.2). We consider the elementary energy like
function Vn(x) = x, and the Feynman-Kac twisted models associated to the potential
functions

Gp(x0, . . . , xp) = exp[λ(xp − xp−1)], for some λ > 0

Arguing as in (2.4), we prove that the Feynman-Kac distribution η−p is the path
distribution of the chain defined by the recursion

X−
p = X−

p−1 + Wp and X−
k = X−

k−1 − λ + Wk, 1 ≤ k < p

where X0 = 0, and where (Wk)1≤k≤p represents a sequence of independent and iden-
tically distributed Gaussian random variables, with (E(W1), E(W 2

1 )) = (0, 1). We also
observe that in this case we have

γp(1)γ−p (1) = E[eλXp−1 ]2 = eλ2(p−1)(2.31)

The next lemma is instrumental for estimating the quantities η−p (Pp,n(a)2) introduced
in (2.26).

Lemma 2.5. Let (W1, W2) be a pair of independent Gaussian random variables,
with (E(Wi), E(W 2

i )) = (0, σ2
i ), with σi > 0 and i = 1, 2. Then, for any a > 0, we

have the exponential estimate

C(a, σ1, σ2) ≤ E
[
P(W1 + W2 ≥ a | W1)

2
]
exp

(
a2

2σ2
1 + σ2

2

)
≤ 1

where

C(a, σ1, σ2) = (2π)3/2

(
σ2a

2σ2
1 + σ2

2

+
2σ2

1 + σ2
2

σ2a

)−2(
2σ1a

2σ2
1 + σ2

2

+
2σ2

1 + σ2
2

2σ1a

)−1

Proof:
Using exponential version of Chebychev’s inequality we first check that, for any λ > 0,
we have

P(W1 + W2 ≥ a | W1) ≤ eλ(W1−a) E(eλW2) = eλ(W1−a)+λ2σ2
2/2

Integrating the random variable W1, and choosing λ = a/(2σ2
1 + σ2

2) we establish the
upper bound

E
[
P(W1 + W2 ≥ a | W1)

2
]
≤ e−2λa+λ2(2σ2

1+σ2
2) = e

− a2

2σ2
1+σ2

2
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For any ε ∈ (0, 1), we have

E
[
P(W1 + W2 ≥ a | W1)

2
]
≥ P(W2 ≥ εa)2P(W1 ≥ (1− ε)a)

Applying Mill’s inequality yields

E
[
P(W1 + W2 ≥ a | W1)

2
]
≥ (2π)3/2

(
εa
σ2

+ σ2

εa

)2 (
(1−ε)a

σ1
+ σ1

(1−ε)a

)e
−a2

(
ε2

σ2
2
+ (1−ε)2

2σ2
1

)

Choosing ε = σ2
2/(2σ2

1 + σ2
2) establishes the lower bound.

From previous considerations, we notice that

η−p (Pp,n(a)2) = E
[
P(W1 + W2 ≥ (a + λ(p− 1)) | W1)

2
]

where (W1, W2) is a pair of independent and centered Gaussian random variables,
with (E(W 2

1 ), E(W 2
2 )) = (p, n− p). Lemma 2.5 now implies that

η−p (Pp,n(a)2) ≤ exp
[
−(a + λ(p− 1))2/(n + p)

]
(2.32)

Using the estimates (2.31) and (2.32), we find that

σγ
n(a)2 ≤

n∑

p=1

[eλ2(p−1)− (a+λ(p−1))2

n+p − Pn(a)2]

=
∑

0≤p<n

[e−
a2

n e
p+1

n(n+p+1) [a−λ np
p+1 ]

2
+λ2 p

p+1 − Pn(a)2]

For λ = a/n, this yields that

σγ
n(a)2 ≤

∑

0≤p<n

[e−
a2

n e
a2

n2 (1− 1
n+p+1 )) − Pn(a)2] ≤ n

(
e−

a2

n (1− 1
n) − Pn(a)2

)

We find that this estimate has the same exponential decay as the one obtained in (2.6)
for the corresponding noninteracting IS model. The only difference between these two
asymptotic variances comes from the multiplication parameter n. This additional
term can be interpreted as the number of interactions used in the construction of the
genealogical tree simulation model.

Now, we consider the Feynman-Kac twisted models associated to the potential
functions

Gp(x0, . . . , xp) = exp(λxp), for some λ > 0

Arguing as in (2.11), we prove that η−p is the distribution of the Markov chain

X−
p = X−

p−1 + Wp and X−
k = X−

k−1 − λ (p− k) + Wk , 1 ≤ k < p

where X0 = 0, and where (Wk)1≤k≤p represents a sequence of independent and iden-
tically distributed Gaussian random variables, with (E(W1), E(W 2

1 )) = (0, 1). We also
notice that

γp(1)γ−p (1) = E

[
eλ
∑

1≤k<p Xk

]2
= eλ2∑

1≤k<p k2

(2.33)
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In this situation, we observe that

η−p (Pp,n(a)2) = E


P


W1 + W2 ≥ a + λ

∑

1≤k<p

k | W1




2



where (W1, W2) is a pair of independent and centered Gaussian random variables,
with (E(W 2

1 ), E(W 2
2 )) = (p, n− p). As before, Lemma 2.5 now implies that

η−p (Pp,n(a)2) ≤ exp

[
− 1

n + p

(
a + λ

p(p− 1)

2

)2
]

(2.34)

Using the estimates (2.33) and (2.34), and recalling that
∑

1≤k≤n k2 = n(n + 1)(2n+
1)/6, we conclude that

σγ
n(a)2 ≤

n∑

p=1

[e
1
6 λ2(p−1)p(2p−1)− (a+λp(p−1)/2)2

n+p − Pn(a)2]

=

n∑

p=1

[e−
a2

n e
p

n(n+p) [a−λn(p−1)/2]2+ 1
12 λ2(p−1)p(p+1) − Pn(a)2]

If we take λ = 2a/[n(n− 1)], then we get

σγ
n(a)2 ≤

n∑

p=1

[e−
a2

n e
a2

n2(n−1)2
[ np

n+p (n−p)2+ (p−1)p(p+1)
3 ] − Pn(a)2]

=

n∑

p=1

[e−
a2

n e
a2

n
n2

(n−1)2
[θ( p

n )− p

3n3 ] − Pn(a)2]

with the increasing function θ : ε ∈ [0, 1] −→ θ(ε) = ε (1−ε)2

(1+ε) + ε3

3 ∈ [0, 1/3]. From

these observations, we deduce the estimate

σγ
n(a)2 ≤ n

[
e−

a2

n
2
3 (1−

1
n−1 ) − Pn(a)2

]

Note that the inequalities are sharp in the exponential sense by the lower bound
obtained in Lemma 2.5. Accordingly we get that the asymptotic variance is not of
the order of Pn(a)2, but rather Pn(a)4/3. As in the first Gaussian example, we observe
that this estimate has the same exponential decays as the one obtained in (2.12) for
the corresponding IS algorithm.

3. Estimation of the tail of a probability density function. We collect and
sum-up the general results presented in Section 2 and we apply them to propose an
efficient estimator for the tail of the probability density function (pdf) of a real-valued
function of a Markov chain. We consider a (E, E)-valued Markov chain (Xp)0≤p≤n

with non-homogeneous transition kernels Kp. In a first time, we show how the results
obtained in the previous section allow us to estimate the probability of a rare event
of the form {V (Xn) ∈ A}

PA = P(V (Xn) ∈ A) = E[1A(V (Xn))](3.1)
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where V is some function from E to R. We shall construct an estimator based on an
IPS. As pointed out in the previous section, the quality of the estimator depends on
the choice on the weight function. The weight function should fulfill two conditions.
First, it should favor the occurrence of the rare event without involving too large
normalizing constants. Second, it should give rise to an algorithm that can be easily
implemented. Indeed the implementation of the IPS with an arbitrary weight function
requires to record the complete set of path-particles. If N particles are generated and
time runs from 0 to n, this set has size (n + 1) × N × dim(E) which may exceed
the memory capacity of the computer. The weight function should be chosen so that
only a smaller set needs to be recorded to compute the estimator of the probability
of occurrence of the rare event. We shall examine two weight functions and the two
corresponding algorithms that fulfill both conditions.

Algorithm 1. Let us fix some β > 0. The first algorithm is built with the weight
function

Gβ
p (x) = exp [βV (xp)](3.2)

The practical implementation of the IPS reads as follows.

Initialization. We start with a set of N i.i.d. initial conditions X̂
(i)
0 , 1 ≤ i ≤ N ,

chosen according to the initial distribution X0. This set is complemented with a set of

weights Ŷ
(i)
0 = 1, 1 ≤ i ≤ N . This forms a set of N particles: (X̂

(i)
0 , Ŷ

(i)
0 ), 1 ≤ i ≤ N ,

where a particle is a pair (X̂, Ŷ ) ∈ E × R+.

Now, assume that we have a set of N particles at time p denoted by (X̂
(i)
p , Ŷ

(i)
p ),

1 ≤ i ≤ N .
Selection. We first compute the normalizing constant

η̂N
p =

1

N

N∑

i=1

exp
[
βV (X̂(i)

p )
]

(3.3)

We choose independently N particles according to the empirical distribution

µN
p (dX̌, dY̌ ) =

1

Nη̂N
p

×
N∑

i=1

exp
[
βV (X̂(i)

p )
]
δ
(X̂

(i)
p ,Ŷ

(i)
p )

(dX̌, dY̌ )(3.4)

The new particles are denoted by (X̌
(i)
p , Y̌

(i)
p ), 1 ≤ i ≤ N .

Mutation. For every 1 ≤ i ≤ N , the particle (X̌
(i)
p , Y̌

(i)
p ) is transformed into

(X̂
(i)
p+1, Ŷ

(i)
p+1) by the mutation procedure

X̌(i)
p

Kp+1−→ X̂
(i)
p+1,(3.5)

where the mutations are performed independently, and

Ŷ
(i)
p+1 = Y̌ (i)

p exp
[
−βV (X̌(i)

p )
]
.(3.6)

The memory required by the algorithm is Ndim(E) + N + n, where Ndim(E) is
the memory required by the record of the set of particles, N is the memory required
by the record of the set of weights, and n is the memory required by the record of the
normalizing constants η̂N

p , 0 ≤ p ≤ n−1. The estimator of the probability PA is then

P N
A =

[
1

N

N∑

i=1

1A(V (X̂(i)
n ))Ŷ (i)

n

]
×

n−1∏

k=0

η̂N
p(3.7)
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This estimator is unbiased in the sense that E[P N
A ] = PA. The central limit theorem

for the estimator states that

√
N
(
P N

A − PA

) N→∞−→ N (0, QA)(3.8)

where the variance is

QA =

n∑

p=1

E

[
EXp [1A(V (Xn))]2

p−1∏

k=0

G−1
k (X)

]
E

[
p−1∏

k=0

Gk(X)

]
− E [1A(Xn)]

2
(3.9)

Algorithm 2. Let us fix some α > 0. The second algorithm is built with the
weight function

Gα
p (x) = exp [α(V (xp)− V (xp−1))](3.10)

Initialization. We start with a set of N i.i.d. initial conditions X̂
(i)
0 , 1 ≤ i ≤ N ,

chosen according to the initial distribution X0. This set is complemented with a set of

parents Ŵ
(i)
0 = x0, 1 ≤ i ≤ N , where x0 is an arbitrary point of E with V (x0) = V0.

This forms a set of N particles: (Ŵ
(i)
0 , X̂

(i)
0 ), 1 ≤ i ≤ N , where a particle is a pair

(Ŵ , X̂) ∈ E ×E.

Now, assume that we have a set of N particles at time p denoted by (Ŵ
(i)
p , X̂

(i)
p ),

1 ≤ i ≤ N .
Selection. We first compute the normalizing constant

η̂N
p =

1

N

N∑

i=1

exp
[
α(V (X̂(i)

p )− V (Ŵ (i)
p ))

]
(3.11)

We choose independently N particles according to the empirical distribution

µN
p (dW̌ , dX̌) =

1

Nη̂N
p

N∑

i=1

exp
[
α(V (X̂(i)

p )− V (Ŵ (i)
p ))

]
δ
(Ŵ

(i)
p ,X̂

(i)
p )

(dW̌ , dX̌)(3.12)

The new particles are denoted by (W̌
(i)
p , X̌

(i)
p ), 1 ≤ i ≤ N .

Mutation. For every 1 ≤ i ≤ N , the particle (W̌
(i)
p , X̌

(i)
p ) is transformed into

(Ŵ
(i)
p+1, X̂

(i)
p+1) by the mutation procedure X̌

(i)
p

Kp+1−→ X̂
(i)
p+1 where the mutations are

performed independently, and Ŵ
(i)
p+1 = X̌

(i)
p .

The memory required by the algorithm is 2Ndim(E) + n. The estimator of the
probability PA is then

P N
A =

[
1

N

N∑

i=1

1A(V (X̂(i)
n )) exp

(
α(V (Ŵ (i)

n )− V0)
)]

×
[

n−1∏

k=0

η̂N
p

]
(3.13)

This estimator is unbiased and satisfies the central limit theorem (3.8).
Let us now focus our attention to the estimation of the pdf tail of V (Xn). The

rare event is then of the form {V (Xn) ∈ [a, a + δa)} with a large a and an evanescent
δa. We assume that the pdf of V (Xn) is continuous so that the pdf can be seen as

p(a) = lim
δ→0

1

δa
P(V (Xn) ∈ [a, a + δa))
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We propose to use the estimator

pN (a) =
1

δa
× P N

[a,a+δa)(3.14)

with a small δa. The central limit theorem for the pdf estimator takes the form

√
N
(
pN (a)− p(a)

) N→∞−→ N (0, p2
2(a))(3.15)

where the variance is

p2
2(a) = lim

δa→0

1

δa
E

[
1[a,a+δa)(V (Xn))

n−1∏

k=0

G−1
k (X)

]
E

[
n−1∏

k=0

Gk(X)

]
(3.16)

Note that all other terms in the sum (3.9) are of order δa2 and are therefore negligible.
This is true as soon as the distribution of V (Xn) given Xp for p < n admits a
density with respect to the Lebesgue measure. Accordingly, the variance p2

2(a) can
be estimated by (δa)−1QN

[a,a+δa), where QN
A is given by

QN
A =

[
1

N

N∑

i=1

1A(V (X̂(i)
n ))(Ŷ (i)

n )2

]
×
[

n−1∏

k=0

η̂N
p

]2

(3.17)

for the algorithm 1, and by

QN
A =

[
1

N

N∑

i=1

1A(V (X̂(i)
n )) exp

(
2α(V (Ŵ (i)

n )− V0)
)]

×
[

n−1∏

k=0

η̂N
p

]2

(3.18)

for the algorithm 2. The estimators of the variances are important because confidence
intervals can then be obtained.

4. A toy model. In this section we apply the IPS method to compute the prob-
abilities of rare events for a very simple system for which we know explicit formulas.
The system under consideration is the Gaussian random walk Xp+1 = Xp + Wp+1,
X0 = 0, where the (Wp)p=1,...,n are i.i.d. Gaussian random variables with zero-mean
and variance one. Let n be some positive integer. The goal is to compute the pdf of
Xn, and in particular the tail corresponding to large positive values.

We choose the weight function

Gα
p (x) = exp[α(xp − xp−1)](4.1)

The theoretical pdf is such that

p(a)δa = E
[
1[a,a+δa)(Xn)

]
+ O(δa2)(4.2)

It is a Gaussian pdf with variance n

p(a) =
1√
2πn

exp

(
− a2

2n

)
(4.3)

The theoretical variance of the pdf estimator is such that

p2
2(a)δa = E


1[a,a+δa)(Xn)

n−1∏

j=1

(Gα
p )−1(X)


E




n−1∏

j=1

Gα
p (X)


+ O(δa2)(4.4)
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Fig. 4.1. Picture a: Pdf estimations obtained by the usual MC technique (dots) and by the IPS
with the weight function (4.1) with α = 1 (stars). The solid line stands for the theoretical Gaussian
distribution. Picture b: standard deviations of the estimators of the pdf. Picture c: empirical and
theoretical ratios p2/p.

and it is given by

p2
2(a) = p2(a)×

√
2πn exp

(
α2 n− 1

n
+

(a− α(n− 1))
2

2n

)
(4.5)

When α = 0, we have p2
2(a) = p(a), which is the result of standard MC. For

α 6= 0, the ratio p2(a)/p(a) is minimal when a = α(n − 1) and then p2(a) '
p(a) 4

√
2πn exp

(
α2(n− 1)/(2n)

)
. This means that the IPS with some given α is espe-

cially relevant for estimating the pdf tail around a = α(n− 1).

Let us assume that n � 1. Typically we look for the pdf tail for a ' a0
√

n with
a0 > 1 because

√
n is the typical value of Xn. Thus we must take α = a0/

√
n and

then the relative error is p2(a)/p(a) ' 4
√

2πn.

In figure 4.1 we compare the results from MC simulations, IPS simulations and
theoretical formulas with the weight function (4.1). We use a set of 2 104 particles
to estimate the pdf tail of Xn with n = 15. The agreement shows that we can be
confident with the results given by the IPS for predicting rare events with probabilities
10−12.

We now choose the weight function

Gβ
p (x) = exp(βxp)(4.6)

We get the same results, but the explicit expression for the theoretical variance of the



24 P. Del Moral and J. Garnier

a)
−30 −20 −10 0 10 20 30

10
−15

10
−10

10
−5

10
0

X
p(

X
)

MC
IPS β=0.15

b)
−30 −20 −10 0 10 20 30

10
−15

10
−10

10
−5

10
0

10
5

X

p 2(X
)

MC
IPS β=0.15

c)
−30 −20 −10 0 10 20 30

10
0

10
2

10
4

10
6

X

p 2(X
)/

p(
X

)

MC empir.
MC theo.
IPS empir.
IPS theo.

Fig. 4.2. Picture a: Pdf estimations obtained by the usual MC technique (dots) and by the
IPS with the weight function (4.6) with β = 0.15 (stars). The solid line stands for the theoretical
Gaussian distribution. Picture b: standard deviations of the estimators of the pdf. Picture c:
empirical and theoretical ratios p2/p.

pdf estimator is

p2
2(a) = p2(a)×

√
2πn exp


β2 n(n2 − 1)

12
+

(
a− βn(n−1)

2

)2

2n


(4.7)

When β = 0, we have p2
2(a) = p(a), which is the result of standard MC. For

β 6= 0, the ratio p2(a)/p(a) is minimal when a = βn(n − 1)/2 and then p2(a) =
p(a) 4

√
2πn exp

(
β2n(n2 − 1)/24

)
. This means that the IPS with some given β is espe-

cially relevant for estimating the pdf tail around a = βn(n− 1)/2.
Let us assume that n � 1. Typically we look for the pdf tail for a ' a0

√
n with

a0 > 1. Thus we must take β = 2a0/n3/2 and then the relative error is p2(a)/p(a) '
(2πn)1/4 exp(a2

0/6) = (2πn)−1/12p(a)−1/3. The relative error is larger than the one
we get with the weight function (4.1). In figure 4.2 we compare the results from MC
simulations, IPS simulations and theoretical formulas with the weight function (4.6).
This confirms that the weight function (4.6) is less efficient than (4.1).

5. Polarization mode dispersion in optical fibers.

5.1. Introduction. The study of pulse propagation in a fiber with random bire-
fringence has become of great interest for telecommunication applications. Recent ex-
periments have shown that Polarization Mode Dispersion (PMD) is one of the main
limitations on fiber transmission links [1]. PMD has its origin in the birefringence
[34], i.e. the fact that the electric field is a vector field and the index of refraction
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of the medium depends on the polarization state (i.e. the unit vector pointing in
the direction of the electric vector field). For a fixed position in the fiber, there are
two orthogonal polarization eigenstates which correspond to the maximum and the
minimum of the index of refraction. These two polarization states are parameterized
by an angle with respect to a fixed pair of axes that is called the birefringence angle.
The difference between the maximum and the minimum of the index of refraction
is the birefringence strength. If the birefringence angle and strength were constant
along the fiber, then a pulse polarized along one of the eigenstates would travel at
constant velocity. However the birefringence angle is randomly varying which involves
coupling between the two polarized modes. The modes travel with different velocities,
which involves pulse spreading. Random birefringence results from variations of the
fiber parameters such as the core radius or geometry. There exist various physical
reasons for the fluctuations of the fiber parameters. They may be induced by mechan-
ical distortions on fibers in practical use, such as point-like pressures or twists [28].
They may also result from variations of ambient temperature or other environmental
parameters [3].

The difficulty is that PMD is a random phenomenon. Designers want to ensure
that some exceptional but very annoying event occurs only a very small fraction
of time. This critical event corresponds to a pulse spreading beyond a threshold
value. For example, a designer might require that such an event occurs less than
1 minute per year [5]. PMD in an optical fiber varies with time due to vibrations
and variations of environmental parameters. The usual assumption is that the fiber
passes ergodically through all possible realizations. Accordingly requiring that an
event occurs a fraction of time p is equivalent to require that the probability of this
event is p. The problem is then reduced to the estimation of the probability of a
rare event. Typically the probability is 10−6 or less [5]. It is extremely difficult to
use either laboratory experiments or MC simulations to obtain a reliable estimate of
such a low probability because the number of configurations that must be explored is
very large. Recently IS has been applied to numerical simulations of PMD [3]. This
method gives good results, however it requires very good physical insight into the
problem because it is necessary for the user to know how to produce artificially large
pulse widths. We would like to revisit this work by applying the IPS strategy. The
main advantage is that we do not need to specify how to produce artificially large
pulse widths, as the IPS will automatically select those “particles” with large widths.
As a byproduct, we shall also compute variances that allow us to give confidence
intervals for our estimations of the outage probabilities, and we shall also be able
to describe the typical cascade of elementary events giving rise to anomalously large
pulse spreading.

5.2. Propagation of short pulses in optical fibers.

5.2.1. PMD driven by random birefringence. The evolution of polarized
fields in randomly birefringent fibers is governed by the coupled Schrödinger equations
with random PMD between two modes (polarizations) [24]

iAz + K0A + iK1At = 0(5.1)

where subscripts stand for partial differentiation with respect to corresponding vari-
ables and A = (Ax, Ay)T is the column vector that denotes the envelopes of the
electric field in the two eigenmodes. The z-dependent 2 × 2 matrices K0 and K1

describe random fiber birefringence. We can eliminate the fast random birefringence
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variations that appear in Eq. (5.1) by means of a change of variables, that leads to
the new vector equation

iUz = iRUt(5.2)

where U ≡ M−1A, U = (u, v)T represents the slow evolution of the field envelopes in
the reference frame of the local polarization eigenmodes, and the matrix M obeys the
equation iMz + K0M = 0. R = −M−1K1M is a z-dependent matrix that involves
high order PMD. In absence of losses M is unitary and R is a combination of three
Pauli matrices

R(z) = m1(z)Σ1 + m2(z)Σ2 + m3(z)Σ3,(5.3)

where

Σ1 =

(
0 1
1 0

)
, Σ2 =

(
0 −i
i 0

)
, Σ3 =

(
1 0
0 −1

)
,

and mj are real-valued random processes. R is associated with the coupling between
the modes, as well as an accumulation of a phase mismatch. The important quantity
is the pulse width defined by

T 2
w(z) =

∫
t2(|u|2 + |v|2)(t, z)dt∫
(|u|2 + |v|2)(t, z)dt

(5.4)

Note that the propagation equation preserves the energy (i.e. the L2-norm) of the
optical pulse, so that Tw can be interpreted as the root mean square of the energy
distribution.

5.2.2. The Stokes vector. The Fourier components Û := (û, v̂)T of the field
defined by

û(ω, z) =

∫
u(t, z) exp(iωt)dt, v̂(ω, z) =

∫
v(t, z) exp(iωt)dt,

obey a system of ordinary differential equations:

Ûz = iωR(z)Û(5.5)

There exist simple and exact analytical identities between the amount of broadening
and Fourier components [4, 20]. These formulas are in fact nothing more than the
usual Parseval formula applied to well chosen quantities. We first define the spectral
intensity

Ê0(ω) = |û|2(ω, z) + |v̂|2(ω, z)(5.6)

which is a preserved quantity imposed by the initial condition (u0, v0)
T at z = 0. A

convenient representation of the polarization evolution can be obtained in terms of
the Stokes vector ŝ(ω, z) associated to the Fourier components of the field

ŝ1 =
(
|û|2 − |v̂|2

)
/ Ê0,

ŝ2 = 2Re (û∗v̂) (ω) / Ê0,(5.7)

ŝ3 = 2Im(û∗v̂) (ω) / Ê0,
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whose modulus
√

ŝ2
1 + ŝ2

2 + ŝ2
3 = (|û|2 + |v̂|2)/Ê0 is 1. The Stokes vector thus belongs

to the so-called Poincaré sphere. In terms of the Stokes vector the dynamics driven
by PMD is simple

ŝz = ωΩ(z)× ŝ(5.8)

where Ω(z) is the column vector 2(m3, m1, m2)
T (z). Thus the mj appear as ele-

mentary infinitesimal generators of random rotations of the Stokes vector over the
Poincaré sphere.

5.2.3. Pulse width and PMD vector. In terms of the Fourier components
the pulse width Tw reads

T 2
w(z) =

∫
R̂(ω, z)Ê0(ω)dω∫

Ê0(ω)dω
, with R̂ :=

|û′|2 + |v̂′|2
|û|2 + |v̂|2 .(5.9)

Here the primes stand for partial derivatives with respect to the pulsation ω. The
process R̂(ω, z) obeys the differential equation R̂z = 1

2Ω · r̂ where the vector r̂(ω, z)

r̂1 = 2Im(û′û∗ − v̂′v̂∗) / Ê0

r̂2 = 2Im(û′v̂∗ + v̂′û∗) / Ê0(5.10)

r̂3 = 2Re (û′v̂∗ − v̂′û∗) / Ê0

is solution of

r̂z = ωΩ(z)× r̂ + Ω(z)(5.11)

The vector r̂ is the so-called PMD vector. Let us denote τ(ω, z) = 4(R̂(ω, z)−R̂(ω, 0)).
Differentiating |̂r(ω, z)|2 − τ(ω, z) with respect to z establishes that it is constant.
τ = |̂r|2 is the so-called square Differential Group Delay (DGD), it characterizes the
pulse spreading.

5.3. Review of PMD models.

5.3.1. The white noise model. Simplified analytical models have been stud-
ied. In the standard model [27, 34, 16, 21] it is assumed that the real-valued pro-
cesses mj are random white noises with autocorrelation function E[mi(z

′)mj(z)] =
σ2δijδ(z

′ − z). In such a case the differential equation (5.11) must be interpreted as
a stochastic differential equation

dr̂1 = σωr̂3 ◦ dW 2
z − σωr̂2 ◦ dW 3

z + σdW 1
z(5.12)

dr̂2 = σωr̂1 ◦ dW 3
z − σωr̂3 ◦ dW 1

z + σdW 2
z(5.13)

dr̂3 = σωr̂2 ◦ dW 1
z − σωr̂1 ◦ dW 2

z + σdW 3
z(5.14)

where ◦ stands for the Stratonovich integral. It is then easy to establish [15] that the
DGD τ is a diffusion process with infinitesimal generator

L = 8σ2τ
∂2

∂τ2
+ 12σ2 ∂

∂τ
(5.15)

which implies that τ(ω, z) obeys a χ2 distribution with three degrees of freedom also
known as Maxwellian distribution. In other words the pdf of τ(ω, z) is:

p(τ) =
τ1/2

√
2π(4σ2z)3/2

exp
(
− τ

8σ2z

)
1[0,∞)(τ)
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5.3.2. Realistic models. The white noise model gives an analytical formula
for the pdf of the DGD, which in turns allows us to compute exactly the probability
that the DGD exceeds a given threshold value. However it has been pointed out that
the pdf tail of the DGD does not fit with the Maxwellian distribution in realistic
configurations [2]. Various numerical and experimental PMD generation techniques
involve the concatenation of birefringent elements with piecewise constant vectors Ω
[23]. Eq. (5.11) can be solved over each segment, and continuity conditions on the
segments junctions give a discrete model for the PMD vector r̂. The total PMD vector
after the n + 1-th section can then be obtained from the concatenation equation [17]

r̂n+1 = Rn+1r̂n + σΩn+1(5.16)

where σ is the DGD per section. Assuming linearly birefringent fibers, Ωn lies in the
equatorial plane of the Poincaré sphere [14]: Ωn = Ω(θn) with

Ω(θ) = (cos(θ), sin(θ), 0)T

Rn is a matrix corresponding to a rotation through an angle φn about the axis Ωn

[17]. Explicitly Rn = R(θn, φn) with

R(θ, φ) =




cos2(θ) + sin2(θ) cos(φ) sin(θ) cos(θ)(1− cos(φ)) sin(θ) sin(φ)
sin(θ) cos(θ)(1− cos(φ)) sin2(θ) + cos2(θ) cos(φ) − cos(θ) sin(φ)

− sin(θ) sin(φ) cos(θ) sin(φ) cos(φ)




From the probabilistic point of view, the angles φn are i.i.d. random variables uni-
formly distributed in (0, 2π). The angles θn are i.i.d. random variables such that
cos(θn) are uniformly distributed in (−1, 1) [3]. Accordingly, (r̂n)n∈N is a Markov
chain. Let us assume that the fiber is modeled as the concatenation of n segments
and that the outage event is of the form |̂rn| > a for some fixed threshold value a. In
the case where a is much larger than the expected value of the final DGD |̂rn|, the
outage probability is very small, and this is the quantity that we want to estimate.

5.4. Estimations of outage probabilities.

5.4.1. Importance sampling. In Ref. [3] IS is used to accurately calculate
outage probabilities due to PMD. The outage event can be represented as a set A of
particular realizations of the random process x = (xp)1≤p≤n = (θp, φp)1≤p≤n, whose
probability is denoted by PA. The idea is to bias the distribution of x so as to
cause large DGD events to occur more frequently. Let us denote by p the standard
distribution of x (a direct product of uniform distributions as described in Subsection
5.3.2) and by p∗ a twisted distribution chosen by the user. We can carry out a set of N
MC simulations with the twisted distribution p∗ generating a set of i.i.d. (x(i))1≤i≤N .
An estimator of the probability PA is

P N
A =

1

N

N∑

i=1

1A(x(i))
p(x(i))

p∗(x(i))

The key difficulty in applying IS is to properly choose p∗. The papers [3, 22, 13] present
different twisted distributions and the physical explanations why such distributions
are likely to produce large DGDs. As a result the authors obtain with 105 MC
simulations good approximations of the pdf tail even for probabilities of the order
10−12. The main reported physical result is that the probability tail is significantly
smaller than the Maxwellian tail predicted by the white noise model.
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Fig. 5.1. Picture a: Segments of the DGD pdf obtained by the usual MC technique (dots) and

by the IPS with the weight function Gβ
n with β = 0.33 (triangles) and β = 1 (stars). The solid line

stands for the Maxwellian distribution obtained in the white noise model. The Maxwellian distri-
bution fails to describe accurately the pdf tail. Picture b: Standard deviations p2 of the estimators
of the DGD pdf. In the MC case, the standard deviation is p2(a) = [p(a)(1 − p(a))]1/2. In the IPS
cases, the standard deviations are estimated via the formula (3.17). Picture c: Ratios p2/p.

5.4.2. Interacting particle systems. In this subsection we apply our IPS
method and compare the results with those obtained by MC and IS. To get a reliable
estimate of the outage probability of the event, it is necessary to generate realizations
producing large DGDs. The main advantage of the IPS approach is that is proposes
a “blink” method that does not require any physical insight. Such a method could
thus be generalized to more complicated situations. Here the Markov process is the
PMD vector (r̂n)n∈N at the output of the n-th fiber section. The state space is R3,
the initial PMD vector is r̂0 = (1, 0, 0)T , the Markov transitions are described by
Eq. (5.16), and the energy-like function is V (r̂) = |̂r|. We estimate the pdf p(a) of
|̂rn| by implementing the IPS with the two weight functions

Gβ
p (r̂) = exp (β |̂rp|)(5.17)

parameterized by β ≥ 0, and

Gα
p (r̂) = exp [α(|̂rp| − |̂rp−1|)](5.18)

parameterized by α ≥ 0. We have implemented algorithms 1 and 2 as described in
Section 3.

In figure 5.1a we plot the estimation of the DGD pdf obtained by the IPS method
with the weight function Gβ

n defined by (5.17). The fiber consists in the concatenation
of n = 15 segments. The DGD per section is σ = 0.5. We use a set of N =
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Fig. 5.2. Picture a: Segments of the DGD pdf obtained by the usual MC technique (dots)
and by the IPS with the weight function Gα

p with α = 1.0 (triangles) and α = 3.0 (stars). The
solid line stands for the Maxwellian distribution obtained in the white noise model. Picture b:
Standard deviations p2 of the estimators of the DGD pdf. In the MC case, the standard deviation is
p2(a) = [p(a)(1− p(a))]1/2. In the IPS cases, the standard deviations are estimated via the formula
(3.18). Picture c: Ratios p2/p.

2 104 interacting particles. This result can be compared with the one obtained in
Ref. [3], which shows excellent agreement. The difference is that our procedure is
fully adaptative and does not require any guess from the user. The variance p2

2

of the estimator of the DGD pdf is plotted in Figure 5.1b. This figure is actually
used to determine the best estimator of the DGD pdf. Indeed the IPS and the
corresponding estimator depends on the parameter β. We have actually simulated
three sets of particle systems, the first one being the usual MC method, the two other
ones being IPSs with two different parameters β. For each set of particle systems we
have computed the empirical variances p2

2(a), and we have detected for each value of
a which set gives rise to the smallest variance. Then we report in figure 5.1b-c the
value of this variance, and in figure 5.1a we report the estimation p(a) obtained with
the corresponding particle system.

In figure 5.2a we plot the estimation of the DGD pdf obtained by the IPS method
with the weight function Gα

p defined by (5.18). It turns out that the estimated vari-
ance of the estimator is smaller with the weight function Gα

p than with the weight

function Gβ
p (compare figures 5.2c and 5.1c). This observation confirms the theoretical

predictions derived from the toy model in Section 4.

The IPS approach is also powerful to compute conditional probabilities or expec-
tations given the occurrence of some rare event. For instance, we can be interested in
the moments of the intermediate DGDs given that the final DGD lies in the rare set
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Fig. 5.3. Conditional expectations D1
a,a+δa(p) of the intermediate DGD at p = 4, 8, 12, given

that the final DGD lies in the interval (a, a + δ) with δa = 0.18 and (from top to bottom) a = 8,
a = 7.1, a = 6.2. The error bars are obtained from the estimations of the conditional variances.

(a, a + δa):

Dq
a(p) = E [|̂rp|q | |̂rn| ∈ [a, a + δa)]

This information gives us the typical behaviors of the PMD vectors along the fiber
that give rise to a large final DGD. We use the estimator (2.19) based on the IPS with
the weight function (5.18). As shown by figure 5.3, the typical conditional trajectory
of the DGD is a linear increase with a constant rate given by the ratio of the final
DGD over the length of the fiber. The conditional variances are found to be small,
which shows that fluctuations are relatively small around this average behavior.
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Birkhäuser-Verlag, Boston, 1991.

[27] C. D. Poole and R. E. Wagner, Phenomenological approach to polarization dispersion in long
single-mode fibers, Electron. Lett. 22, 1029–1030 (1986).

[28] S. C. Rashleigh, Origins and control of polarization effects in single-mode fibers, J. Lightwave
Technol. 1, 312–331 (1983).

[29] M. Reed and B. Simon, Methods of Modern Mathematical Physics, II, Fourier Analysis, Self
Adjointness, Academic Press, New York, 1975.

[30] M. N. Rosenbluth and A. W. Rosenbluth, Monte-carlo calculations of the average extension of
macromolecular chains, J. Chem. Phys. 23 356–359 (1955).

[31] R. Y. Rubinstein, Simulation and the Monte Carlo method, Wiley, New York, 1981.
[32] G. R. Shorack, Probability for Statisticians, Springer Texts in Statistics, Springer-Verlag, New

York, 2000.
[33] A. S. Sznitman. Brownian Motion Obstacles and Random Media, Springer-Verlag, Monographs

in Mathematics, New York, 1998.
[34] P. K. A. Wai and C. R. Menyuk, Polarization mode dispersion, decorrelation, and diffusion

in optical fibers with randomly varying birefringence, J. Lightwave Technol. 14, 148–157
(1996).


