Measure Valued Processes
and Interacting Particle Systems.
Application to Non Linear Filtering Problems

P. DEL MORAL

Abstract

In the paper we study interacting particle approximations of discrete time and measure valued
dynamical systems. Such systems have arisen in such diverse scientific disciplines as physics and
signal processing. We give conditions for the so-called particle density profiles to converge to the
desired distribution when the number of particles is growing. The strength of our approach is
that is applicable to a large class of measure valued dynamical system arising in engineering and
particularly in nonlinear filtering problems. Our second objective is to use these results to solve
numerically the nonlinear filtering equation. Examples arising in fluid mechanics are also given.

1 Introduction

1.1 Measure valued processes

Let (E, B(F)) be alocally compact and separable metric space, endowed with a Borel o-field, state
space. Denote by P(F) be the space of all probability measures on E with the weak topology. The
aim of this work is the design of a stochastic particle system approach for the computation of a
general discrete time and measure valued dynamical system 7, given by

M = Qb(n, 77n_1) Vn >1 Mo =1 (1)

where 7 € P(E) and ¢(n,.) : P(£) — P(F) is a continuous function.

Such systems have arisen in such diverse scientific disciplines as physics (see Sznitman [44] and the
references given there), nonlinear economic modelling and signal processing ( see Kunita [29] and
Stettner [40]). Solving (1) is in general an enormous task as it is nonlinear and usually involves
integrations over the whole space F. To obtain a computionnally feasible solution some kind of
approximation is needed.

On the other hand, particle methods have been developed in physics since the second world war,
mainly for the need of Fluid Mechanics (Méléard [32], McKean [33], Sznitman [43]) and Statistical
Mechanics ( Dobrushin [22], Liggett [31], Spitzer [42]). During the decade their application area
has grown establishing unexpected connection with number of other fields.
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Our major motivation is from advanced signal processing applications in engineering and par-
ticularly in optimal non linear filtering problems. Recall that this consists in computing the con-
ditional distribution of internal states in dynamical systems, when partial observations are made,
and random perturbations are present in the dynamics as well as in the sensors. With the notable
exception of the linear-Gaussian situation or wider classes of models (Benes filters [1]) optimal
filters have no finitely recursive solution (Chaleyat-Maurel/Michel [7]).

Nevertheless, guided by Bayes’ rule we will see that the dynamics structure of such conditional
distributions can be viewed, under mild assumptions, as a special case of (1). In our formulation
the most important measure of complexity of the problem is now reduced to the infinite dimen-
sionality of the state space P(F). The main advantage of dealing with equation (1) rather than the
conditional expectation is that the solution of (1) is Markovian and the solution of the conditional
expectation plant equation is not. Our claim that this formulation is the natural framework for
formulating and solving problems in nonlinear filtering will be amply justified by the results which
will follows.

The paper has the following structure. After fixing the context within which we work we introduce
in section 3 a stochastic particle system approach to solve (1). The particle systems described
in this section will consist of finitely many particles and the systems as a whole will be Markov
processes with product state space. In this framework the transition for individual particles will
depend on the entire configuration, So that the particles are not independent and the evolution of
an individual particle is no longer Markovian.

The models to be treated in section 3.1 are obtained by imposing various type of interactions on
the motions of the particles. We begin in this section with the description of a simple particle
system in which the interaction function only depends on the empirical measure of the particle
system. Furthermore, it is shown that the so-called particle density profiles, i.e. the random em-
pirical measures of the particle system, converge to the solution of (1) as the number of particle
is growing. The proof of convergence is based on the use of semigroup techniques in the spirit of
Kunita [29] and Stettner [40].

Our next objective is to extend the above construction. In section 3.2 we introduce general particle
systems which includes branchings and nonlinear interactions and we also prove that the random
empirical measures of the particle system weakly converge to the solution of (1) as the number
of particle is growing. The proof of convergence involves essentially the same analytic techniques
which are used in section 3.1. We will examine as much as the theory as possible in a form applica-
ble to general non linear filtering problems and to the master equations arising in fluid mechanics.
The strength of our approach is that it is applicable to a large family of measure-valued dynamical
systems. Several examples are worked out in section 3.3. One way in which our approach may be
applied to fluid mechanics problems are discussed. We will only examine the convergence of the
particle density profiles. In real problems the crucial question is the convergence of the empirical
measures of the particle system on the path space. These problems are quite deep and we shall
only scratch the surface here. For a detailed discussion and a full treatment of the above questions
the reader is referred to Sznitman [43], [44] and the references given there. However we emphasize
that our proof only uses semigroup techniques and turns out to be more transparent.

In section 4 , we will use the results of section 3 to describe several interacting particle approxi-
mations of the non linear filtering plant equation. This section is divided into two subsections.

In section 4.1 we present a general discussion of the nonlinear filtering theory and we formulate
the filtering problem in such a way that the techniques of section 3 can be applied.

The design of our particle system approach is described in section 4.2. We finish the paper with
the description of general interacting particle resolutions.



1.2 Non linear filtering

In our development, special knowledge of non linear filtering theory is not assumed. For a detailed
discussion of the filtering problem the reader is referred to the pioneering paper of Stratonovich [41]
and to the more rigorous studies of Shiryaev [39] and Kallianpur-Striebel [28]. More recent develop-
ments can be found in Ocone [34] and Pardoux [35]. Some collateral readings such as Kunita [29],
Stettner [40], Michel [7] will be helpful in appreciating the relevance of our approximations.

As far as the author knows the various numerical methods based on fixed grid approximations,
conventional linearization or determining the best-linear filter (in expected cost error sense) have
never really cope with large scale systems or unstable processes. They are usually far from optimal,
particularly in high noise environment, when there is significant uncertainly in the observations
or when the non linearities are not suitable smooth. More precisely, it is in general impossible to
identify an event space region R so that the trajectories of the state space lies entirely in K. So
that, it is difficult to use fix grid methods. Moreover it is well known that the large state dependent
noise has destabilizing effects on the dynamic of the best linear filter and tends to increase the
magnitude of its gain.

It has been recently emphasized that a more efficient way is to use random particle systems
to solve numerically the filtering problem. That particle algorithms are gaining popularity is
attested by the recent papers of Crisan/Lyons [9] [10] [11], Gordon/Salmon/Smith [24], Van
Dootingh/Viel/Rakotopara/Gauthier [45], Carvalho [5], Carvalho/Del Moral/Monin/Salut [4], Del
Moral/Rigal/Noyer/Salut [18], Del Moral/Noyer/Salut [20] and Del Moral [15] [16], [17]. Instead of
hand-crafting algorithms often on the basis of ad-hoc criteria, particle systems approaches provide
powerful tools for solving a large class of non linear filtering problems.

Let us now briefly survey some different approaches and motivate our work.
In [14] and [15] the author introduced particle methods where particles are independent each other
and weighted by regularized exponentials and he proposes minimal conditions which ensure the
convergence to the optimal filter uniformly with respect to time.
Crisan and Lyons develop in [9] a sequence of branching processes in the spirit of Dawson and
Watanabe constructions [12],[46] whose expectation converges to the solution of the Zakai equa-
tion. In [10] they construct a different sequence of branching particle systems converging in
distribution to the solution of the Zakai equation. In their last work [11] they describe another
sequence of of branching particle systems converging in measure to the solution of the Kushner-
Stratonovitch equation.
In the present paper we describe different interacting and branching particle systems and we
prove that the empirical measure converges to the desired conditional distribution. The connec-
tion between such particle systems and genetic algorithms is given in [17]. These algorithms are
an extension of the well known Sampling-Resampling principles introduced by Gordon, Salmon
and Smith in [24] and independently by Del Moral, Rigal, Noyer and Salut in [18], [19] and [16].
Roughly speaking they consist of periodically redistributing the particle positions in accordance
to a discrete representation of the conditional distribution. This procedure allows particles to give
birth to more particles at the expense of light particles which die. This guarantees an occupation
of the state space regions proportional to their probability mass, thus providing an adaptative and
stochastic grid.
We will prove the convergences of such approximations to the optimal filter, yielding what seemed
to be the first convergence results for such approximations of the nonlinear filtering equations.
This new treatment was influenced primarily by the development of genetic algorithms (J.H. Hol-
land [26], R. Cerf [6]) and secondarily by the papers of H.Kunita and L.Stettner ([29], [40]).



Several practical problems examples which have been solved using these methods are given in [4], [20],
[24], [18], [5] including problems in Radar/Sonar signal processing and GPS/INS integration.

There is an essential difference between our particle systems and the branching particle systems
described in [9], [10] and [11]. What makes our results interesting and new is that the number
of particles is fixed and the system of interacting particles is as a whole a Markov process which
feel its environment according the observations. Moreover, the transition for individual particle
depends on the entire configuration of the system and not only on its current position. On the
other hand our constructions are explicit, the recursions have a simple form and they can be easily
be generated on a computer. Thus, armed with these algorithms and the worked out examples of
section 3.3 the users should be able to handle a large class of nonlinear filtering problems. However
here the difficulties are well known: these stochastic algorithms use Mont Carlo simulations and
they are usualy slow when the state space is too large. We will not describe the so-called com-
plexity of the interacting particle algorithms. The reader who wishes to know details about such
questions is recommended to consult [5],[4],[24],[18].

There is no universal agreement at present on the choice of the most efficient particle algorithm.
Obviously this is a topic in which no one can claim to have the final answer. Perhaps such problem
will become relatively transparent only after we have develop a theory powerful enough to describe
all of these particle algorithms.

Such algorithms have been made valuable in practice by advances in computer technology. They
fall within the scope of new architecture computers such as vector processors, parallel computers
and connection machines. Moreover, they are ready to cope with real-time constraints imposed by
practical problems.

2 Preliminaries

In this paper we will consider stochastic processes with values in the set of all probability measures
on E. Such type of processes appear naturally in the study of Nonlinear Filtering problems (see
for instance [9], [29] and [40]) and in Propagation of Chaos Theory (see for instance [38], [43] and
[44] ). In this short section we summarize the key concepts and the various forms of convergence
of probability measures which are used throughout the paper. For further information the reader
is referred to Parthasarathy [36] and Dobrushing [23].

2.1 E-valued random variables

Assume F is a locally compact and separable metric space. By 3(£) we denote the o-algebra of
Borel subsets in £ and by P(F) the family of all probability measures on (F,3(F)). As usually
by B(FE) we denote the space of all bounded Borel measurable functions f : £ — R, by Cy(F)
the subspace of all bounded continuous functions and by U(FE) the subspace of all bounded and
uniformly continuous functions. In these spaces the norm is

[/1] = sup[f(z)|
€l
For an f € B(E) and p € P(F) we write

uf = [ 1) udo)



We say that a sequence (uy)n>1, pv € P(E), converges weakly to a measure u € P(E) if
li =
Vf e C(S) yim pnf=pnf

Let p € P(E), f € Cy(F) and, let Ky and K, be two Markov kernels. We will use the standard
notations

pkildy) = [ ulde) Ki(o,dy)  KiKa(o,d2) = [ Ka(e.dy) Koy, d2) (2)
K@) = [ Ki.ay) (o) (3

A transition probability kernel K on F is said to be Feller if
feEC(E) = KfeC(E) (4)

With a Markov kernel K and a measure p € P(F) we associate a measure pp x K € P(E x E) by
setting

VieCEXE) (ux K)f :/ u(der) K (21, das) f(z1,22)

It is well known that P(£) with the topology of weak convergence can be considered as a metric
space with metric p defined for u,v € P(F) by

pl,vy= > 27 |uf — v (5)

m>1

where (f,)m>1 is a suitable sequence of uniformly continuous functions such that || f,.|| < 1 for all
m > 1 (theorem 6.6 pp. 47, Parthasarathy [36]). Moreover we can show that P(FE) is a separable
metric space with metric p (theorem 6.2 Parthasarathy [36]).

2.2 Measure valued random variables

Recall P(F) is a separable metric space with metric p. By (P (£)) we denote the o-algebra of Borel
subsets in P(E) and by P(P(E)) the collection of all probability measures on (P(E), B(P(E))).
By B(P(F)) we denote the space of all bounded Borel measurable functions F' : P(F) — R, by
Cy(P(F)) the subspace of all bounded continuous functions and by U(P(FE)) the subspace of all

bounded and uniformly continuous functions. As usually, in these spaces the norm is

|F[|= sup [F(p)]
weP(E)

For an F € B(P(F)) and ® € P(P(FE)) we write

or = [ Fiu) o(dp)

We say that a sequence (®Pn)n>0, v € P(P(E)), converges weakly to a measure ® € P(P(L)) if

VE € Co(P(E)) lim OnyF =dF (6)
N—+co
w
and this will be denoted &y ——  O©.
N — 400

In this paper we will consider measure valued stochastic processes, it is therefore convenient to



recall the definition of the conditional expectation of a P(F)-valued random measure relative to a
o-field (cf. H.Kunita [29]). Let m(w) be an P(E£)-valued random variable defined on a probability
space (€2, F, P). The conditional expectation of 7 relative to a sub-o-field G C F is defined as a
P(FE)-valued random variable F(7/G) such that

F(BE(r/G)) = E(F(r)/G)

holds for all continuous affine functions F : P(£) — R (F € Cp(P(F)) is affine if there exists a
real constant ¢ and a function f € Cy(F) such that for every p € P(E) F(u) = c+ p(f)).
A linear mapping M : B(P(£)) — B(P(F)) such that

is called a Markov operator or Markov transition on P(F). Then we may define a linear mapping,
still denoted by M by setting

M:P(PE) — PPE)

® — OM with @M (A) %

= ®(M(14)) VA€ B(P(E)) (M)
A Markov transition M is said to be Feller if
MF € C,(P(E)) VF € Cy(P(E))

For an F' € Cy(P(FE)) and My, M; two Feller transitions on P(E) we write

M1 / M1 ,u,dl/) ( ) M1M2 / M1 ,u,dl/l)Ml(l/l,dl/Q) (1/2)

Now, we introduce the Kantorovitch-Rubinstein or Vaserstein metric on the set P(P(£)) defined

by
D(®,¥) = inf {/ p(p,v)O(d(p,v)) : © € P(P(E) X P(E)) p1o© =@ and p;00 = \Il} (8)

In other words D(®,¥) = inf F(p(u,v)), where the lower bound is taken over all pair of ran-
dom variables (u,v) with values in (P(£), B(P(F£))) such that g has the distribution ® and v the
distribution W. The metric p being a bounded function, formula (8) defines a complete metric
on P(P(FE)) which gives to P(P(E)) the topology of weak convergence (see Theorem 2 in Do-
brushing [23]). The proof of this last statement is very simple. We quote here its outline for the
convenience of the reader. Let (Pn)n>0, v € P(P(E)), N > 0, be a sequence of probability
measures such that -

Jlim D@y, @)=0 @€ P(P(E))

For every I/ € U(P(F)) and € > 0 there exists o(e) > 0 such that

V(p,v) € P(E)x P(E)  |p(p,v)| < ole) = [F(p) - F(v)| < e

Let (u, un)n>1 be a sequence of measure valued random variables on some probability space such
that pun, N > 1, have distributions &5 € P(P(FE)), N > 1 and p is a measure valued random
variable with distribution ® € P(P(E)). For every F' € U(P(E)) and € > 0 one gets

E(|F(un) — F(p))
e+ 2/|F|| P(p(un, 1) > 0(€)) < e+ 2||F[lo(e) ™" E(p(un, 1))

|ONF —QF| <
<



So that,

|ONF — ®F| < e+ ”( )” D(®y, @)

Letting N go to infinity and recalling that, in the weak convergence (6), only bounded and uni-
formly continuous functions can be considered (theorem 6.1 pp. 40, Parthasarathy [36]) we obtain
our claim.

On the other hand, we can apply the monotone convergence theorem to prove that

D@y, ®) < Y 270" B(lun frn — pfml) (9)
m>1

where (fr;)m>1 is the sequence of bounded and uniformly continuous functions introduced in (5).
Hence, by the dominated convergence theorem, it follows that

Vieu(E) |lim E(pnf-pfl)=0= lim D(@y,®)=0 (10)

Remark 1 1. It isinteresting to note that if, in addiltion, u is a constant probabilily distribution
the functions

F)=lvf—-pufl  [eC(E)

are conlinuous for the weak convergence topology in P(E). So that

VieuE) |lim E(unf-pf))=0 < lim D(@y,®)=0 (11)
w
= oy — @ (12)
17\7—>+OO

2. It is also easily seen that

VieuE)  lim E(unf—pfl) =0 lim E(uyf = pfl*) =0 (13)

2.3 Convergence of empirical measures

In the study of Markov models of interacting particles one looks at a N-particle systems (€LY ..., ¢VN)

satisfying a stochastic dynamical equation or more generally evolving according to a Markov tran-
sition probability kernel on a product space EV, N > 1. Such models are used in Fluid me-
chanics to study the many particle nature of real systems with internal fluctuations (see Sznit-
man [22], [38], [42] and [44]) and in [16] the author proposes one way to use such models to solve
numerically the so-called nonlinear filtering equation.

The problem of weak convergence in both situations consists to study the limiting behavior of the
empirical measures

1 N
N = VZ bein (14)
=1

as the number of particles N is growing. In the first situation the measures 7y are shown to
converge in law, as N — 400, to a constant probability measure n which is called the McKean
measure (see for instance Tanaka [38]). Therefore, to prove convergence it is enough to verify (11).
In nonlinear filtering problems we will prove that the measures ny converge in law, as N — 400, to
the desired conditional distribution. In this situation it is convenient to work in a first stage with a
given sequence of observations and we will formulate the conditional distributions as a non random



probability measure 5 parameterized by the given sequence of observation parameters and solution
of a measure valued dynamical system which is usually called the non linear filtering equation. To
prove convergence it is enough to verify (11) P-a.s. for every sequence of observations and then
apply the dominated convergence theorem.

In Statistical Physics and Fluid Mechanics the dynamical system (1) usually describes the time
evolution of the density profiles of McKean-Vlasov stochastic processes with mean field drift func-
tions. It was proposed by McKean and Vlasov to approximate the corresponding equations by
mean field interacting particle systems. A crucial practical advantage of this situation is that the
dynamical structure of the non linear stochastic process can be used in the design of an interacting
particle system in which the mean field drift is replaced by a natural interaction function. Such
models are called in Physics Masters equations and /or weakly interacting particle systems. In this
situation it is convenient to use the following

Lemma 1 .
Let (2, F, P) be a probability space on which is defined a pair sequence ((fZ’N)lgiSN, & )195]\7)
of N -particle systems so that the distribution uy of (§i’N)1§i§N s a symmelric probability measure

on EN and (EZ’N)lgiSN are N i.i.d. with common law n. For every f € U(E) we have

N—+co

N
tim E(d¢"N,&") =0= lm E (%; FEN) - nfl) =0 (15)

Proof:
Let o(¢) be the modulus of continuity of the function f € U(E). Then for every € > 0 we have

1 & iN 1 & ioN Zi,N 1Y i
E(le 2 1@ —uil) < B3 1@ - 1@ + B (1530 7€) - uf
= =1 =1
2[|f]] 1y gLy 2[S]]
e+ Db, g ) + 24
Letting N — 400, the lemma is proved. |

This lemma gives a simple condition for the convergence in law of the empirical measures when the
interacting particle systems are described by a stochastic dynamical equation. More precisely, this
powerful result can be used when the desired distribution 7 is the distribution of a finite dimensional
stochastic process. It will be applied in section 3.3.2 to study the convergence in law of the empirical
measures of weakly interacting particle systems. In non linear filtering problems the dynamical
system (1) describes the time evolution of the conditional distribution of the internal states in
dynamical systems when partial observations are made. In contrast to the situation described
above the conditional distributions cannot be viewed as the law of a finite dimensional stochastic
process which incorporates a mean field drift [7]. We therefore have to find a new strategy to
define an interacting particle system which will approximate the desired distributions. We propose
hereafter a new interacting partixle system approach and another method to prove convergence.



3 Measure Valued Processes

The chief purpose of this section is the design of two special models of stochastic particle systems
for the numerical solving of a discrete time and measure valued dynamical system 7, given by

= ¢, 1)  Yn2>1  nmo=n (16)

where n € P(F) and ¢(n,.) : P(F) — P(F) are continuous functions. This section has the
following structure: In section 3.1 we describe a natural particle approximation with a simple
interaction function. In this situation the interaction depends on the current positions but it does
not depend on their paths. In section 3.2 we introduce a general particle system which includes
branching and interaction mechanisms. We emphasize that in both situations the nature of the
interaction function is dictated by the plant equation (16). To illustrate our approach we finish
this section with practical examples for which all assumptions are satisfied.

3.1 Interacting Particle Systems
3.1.1 The particle system state space

The particle system under study will be a Markov chain with state space EV, where N > 1 is the
size of the system. The N-tuple of elements of F, i.e. the points of the set EV, are called particle
systems and will be mostly denoted by the letters z, y, z.

The local dynamics of the system will be described by a product transition probability measure.
Thus, to clarify the notations, with v € P(FE) we associate a measure v® € P(EVN) by setting

1/®N =vR® ...V
N ——
N times
and we note m” (z) the empirical measure associated to the point z = (z',...,2V):
1 N
m(z) = N Z 8,
1=1
3.1.2 The Associate Markov Process
Let (Q, Fy,, (§1)n>0, P) be the EN_valued Markov process defined by
P(& € dz) = n®N (dz) P(¢, €da) &y = 2) = ¢V (n, m" (2)) (dz) (17)
where dz % dal x ... x da®V is an infinitesimal neighborhood of z = (a2!,...,2V) € EN. It is

clear from the construction above that &, = (€1, .. ,fiv) can be viewed as a system of N particles

with non linear interaction function ¢(n, m™(&,_1)). The algorithm constructed in this way will
be called an interacting particle approximation of (1). The terminology interacting is intended to
emphasized that the particles are not independent and the evolution of an individual particle is
no longer Markovian. Nevertheless, the system as a whole is Markovian. Much more is true, the
above description enables us to consider the particle density profiles

def
= m™ (&)
as a measure-valued Markov process (9, F,, 7N, P) defined by

P(nd € dp) = MoCn(dp) — P(n € dp/n)_, =v) = M,Cn(v,dp) (18)



where dy is an infinitesimal neighborhood of p and, Cy and M,,, n > 0, are the Markov transitions
on P(FE) given by

M, F(v) = F(¢(n,v)) CnyF(v) = /N F(mN(a:)) 1/®N(dm) (19)
E
for every F' € Co(P(E)) n > 0 and v € P(E), with the convention ¢(0,r) = 5, for all v € P(L).
To see this claim it suffices to note that

EF@)/M =v) = [ Fmn®(@) 65N (n,)(d)
= CWF(8(n.v)) = My(CNF) ()

for all F € C,(P(£)) and v € P(E).

3.1.3 Description of the Algorithm

At the time n = 0 the particle system consists of N independent random particles &, ..., &Y. with
common law 7.

At the time n > 1 the empirical measure m’V (&,—1) associated to the particle system &,_; enters in
the plant equation (1) so that the resulting measure ¢(n, mV(£,_1)) depends on the configuration
of the system at the previous time m» — 1. Finally, the particle system at the time n consists of
N independent (conditionally to &,_;) particles &1, ..., &N with common law ¢(n, m™¥ (€,_1)). We
refer to section 3.3 for further discussions and detailed examples.

3.1.4 Convergence of the Algorithm

The crucial question is of course whether 5 converges to 7, as N is growing. When the state
space F is compact we show hereafter a slightly more general result.

Theorem 1 Let us suppose that E is compact. Let M = (My),>1 denote a series of time-
inhomogeneous and Feller Markov transitions on P(FE), My € P(P(F)) and, let MmN = M, Cy,

n > 0. Using these notations we have

w
MMM s MMM, ¥Mo € P(P(E)) (20)
N — 4+

MM
More generally (20) holds when E is locally compact and M = (M,,),>1 such that

M,F e U(P(F)) VF e U(P(F)) (21)
In order to prepare for its proof we begin with

Lemma 2 If F is compacl, then for every N > 1, Cy is a Feller transition kernel and, we have
for every F € Cy(P(E))
lim ||[CNF—F||=0 (22)
N—+co

When E' is locally compact (22) holds for every F' € U(P(E))

To throw some light on the convergence (22) and its connection with the law of large number
assume that the function F is given by

F(n)=nf—-nfl VYneP(E)

10



where f € Cy(F) and p € P(F). By a direct calculation it follows from (22) that

1 &L
sup E, (Wzﬂw—uﬂ) — 0
=1

veP(E) N — +oo

where (EN, S®N, (fi)izl, Pl,) is a sequence of E-valued and independent random variables with

common law v and, E,(.) denote the expectation with respect to P,. So that lemma 2 can be
regarded as a uniform weak law of large number.

The proof of Theorem 1 is comparatively short, therefore we give it first.
Proof of Theorem 1:
For every F' € Cy(P(F)) we observe that

e M F — My MLF

< llexdMy(CyM™N N — My M| 4 |Cn My . ML F — My .. M, F|
<lowM™ MM E - My MF|| + |CnMy ... M F — My ... M,F|| (23)
n—1
<Y NCNMpyr .. .M F = Myyy ... M, F|| +||CNF = F|
p=0

Thus, using lemma 2 and recalling that, in the weak convergence, only bounded uniformly contin-
uous functions can be considered the proof of Theorem 1 is straightforward. |

We come to the proof of Lemma 2
Proof of Lemma 2:
Let us set

N
f(xl,...,wN):Hfi(xi) Jiso o In € C(E)
=1

and assume v,, € P(FE) is a sequence which weakly converges to v € P(FE) when n tends to infinity.
Then, we obtain

=1
Since linear combinations of such functions are dense in Cy(E”), on can check easily that Cy is
Feller. Let F(v) = def F(v(fi),...,v(fp)) with f; € C4(E) and F globally Lipschitz, that is:
P
|F(351,...,xp)—F(x’l,...,;L‘;)|§AZ|xi—x§| A < 400

Then we obtain:

IN
PN
M=

ICNE() = B(v)] /| Zf, () = v(fi)| v(da1) .. .v(dzn)

IN

= i(u(ff)—v(f»?f — 0 1)

.

=
l
+
8

Therefore, for some constant B > 0

[CNF(v) = F(v)] <

=

11



Now, if E is compact such F are dense in Cy(P(FE)) and Cy is Feller, Cx F converges to F for
every F' € Cy(P(F)).

Finally let us assume that F is locally compact. Let p(¢) be the modulus of continuity of the
function F' € U(P(FE)). Then for every ¢ > 0 we have

Ot - £ < e 2 [ ptu) vt

In view of (5) it follows that

2|| £ (m41 L&
|CNF(V)—F(V)|§6+WTHXZ:1 9-(m+1) /EN |ﬁ;fm(gci)—yfm|y(dxl)...y(de)

where (f,)m>1 is a suitable sequence of uniformly continuous functions such that || f,.|| < 1 for all
m > 1. In the same way exactly as in (24) we can prove that

2[|F|
[CNE(v) = F(v)| < e+ WOV

The above inequality immediately implies the last assertion. This ends the proof of the lemma. m

Recall that the functions ¢(n, .) are continuous, so that the transitions defined by
M,F(v) = F(¢(n,v)) Vv e P(E) YF € Cy(P(F))

are Feller transition probability kernels. The interpretation of Theorem 1 is clear. The theorem
states that under rather wide conditions

Vn>0  YFeC(P(E)) lim E(F(n))) = F(n)

N—+co n

Applying this, one can obtain the limit of the moments of the particle density profile error
V>0 VfeC(E) Vp>1 lim E(ngNf—n.fP) =0
N—+oo

This result can be regarded as a convergence theorem which vindicates the approach by semigroup
techniques to a fairly general class of measure valued dynamical systems. It will be applied in
section 3.3 to the so-called master equations of fluid mechanics.

Unfortunately, when the state space E is not compact or when the Feller transitions M,,, n > 1,
do not satisfy the condition (21) the question of convergence is quite difficult. In this situation
we must check as usual the tightness of the laws of the random measures m™(&,), N > 1, and
identify all limit points as being concentrated on the desired measure 7, (Billingsley [2]). Thus
very few substantive statements can be made about the convergence in view of the generality of
our dynamical system (1).

Our next objective is to study an intermediate situation. More precisely we introduce an additional
assumption with regard to the functions ¢(n, .) which enables us to develop some useful theorem.
In a little while we will see one way in which this result may be applied in nonlinear filtering
problems.

12



Theorem 2 Suppose that for every f € Cy(E), v € P(E) and n > 1 there exist some constant
a, (v, f) and a finite set of bounded functions M, (v, f) such that

VueP(E)  |¢(mv)f —¢(np)fl <ean(vif) D, [vh—ph| (25)

hEHn(va)

Then, for every [ € Cy(E) and n > 1 there exists A, (f) < +oo such that

An(f
E(InYf —nafI?) < ]é ) (26)
Therefore, if ®Y is the distribution of 5} and ®,F(u) = F(n,) for all u € P(E) we have
Vn > 1 lim D(®Y, ®,)=0 (27)

N—+co

where D is the Vaserstein melric introduced in (8).

The condition (25) strongly depends on the nature of the function ¢(n,.) which governs the
dynamics of the distributions (7, ),>0. Although this seems to be a very general condition it may
not rule out certain kind of system of practical interest. For instance, the same does not work for
the so-called master equations arising in fluid mechanics. Nevertheless, theorem 1 may be applied
to study these equations. Before proceeding to the proof of the theorem let us examine some
typical situations for which the condition (25) is met.

1. Let us suppose that our functions ¢(n, .), n > 1, have the form ¢(n, u) = pk,, where (K,),>0
is a family of Feller transition on F. Then we have for every f € Cy(F) and v € P(E)

[o(n,v) f = d(n,v) f| < [V(Enf) = p(Kynf)l (28)

for every f € Cy(F) and p, v € P(E) So that, condition (25) is satisfied with a, (v, f) = 1 and
H(v, f) = {K,f}. Note that the set H, (v, f) = {K, f} does not depends on the measure v.

2. At this point it is already useful to give some example of measure-valued dynamical system
which will appear in non linear filtering problems. Next suppose that the measure valued
dynamical system of interest is described by the equations

M= n(Mn-1) VR21 mo=n
where 7 € P(F) and the continuous functions ¢, : P(F) — P(FE) are given by

~ ulgn T f)

() f = s Vn>1 VYfeC(E) VYuePE) (29)

where

o (T,)n>1 is a family of Feller transitions on F.

° (gn)nzl is a family of continuous and bounded functions such that
0<a, <gn(z) <A, VeeEF VYn>1 (30)

for some constants a,, and A4,, n > 1.

We immediately notice that this example is a generalization of the example one (if g,(z) = 1
for all @ € F then ¢, (1) = uT},). Moreover we will see in the last part of the paper that the

13



functions (29) prescribe the dynamics structure of the optimal filter in non linear filtering
problems. Now, we observe that

= 1 (BD) + @) f = 62 1) g (n?

with

= o (g, M Ly gy o
v(9gn)
It follows that

(640 = (I < (14 2171 (J(hD) = v(BD)| + (b)) = w(h®)])  (31)

and condition (25) is satisfied with oy, (v, f) = 14 2||f|| and H, (v, f) = {h%l), hﬁ})}. To see
(31) it suffices to note that

vh() =vh® =0  and ‘“(9” ) _ vlon T”f)‘ <2||f
1(gn) v(9n)
Proof of Theorem 2:

Let us show (26) by induction on n > 0. Consider the first case n = 0. By the very definition of
7y, on gets easily

E(|77(])Vf_770f|2) = E(|77(])V(f_’l70f)|2)
3 2
< / (% ST(f(2) = nof))? moldat) .. .no(da™) < (2\7]\;\’) def A(;\(ff)

=1

Suppose the result is true at rank (n —1). The assumption (25) implies the existence of a constant
@ (Mn-1, f) > 0 and a finite set of bounded functions H,, (9,—1, f) such that

E(lny f = naf1?) E(|¢(n, m_y) f = ¢, ma1) fI7) + E(1F (&) = 6(n, m_y) fI*) /N
E(|¢(n,m°y) f = ¢(n,ma-1) f12) + QI F1)?/N

(=15 )2 Moo, NI D5 Ellmnoah = na-th]®) + 20 S1)?/N
hEHn(T]n—lvf)

IN A

where |H,,(7,—1, f)| is the cardinality of the set #,(n,-1, f). Now, the induction hypothesis at
rank (n — 1) implies

(S = mf1?) <+ Anl))

with
An(f) = an(pamt, 1) Halmor, NI D0 A () + @IS
hern(T]n—lvf)
So that, the desired inequality (26) is true at rank n and the induction is completed. |

Our aim is now to get some information about the constant A, (f) in a special case arising in
non-linear filtering problems. Consider the dynamical system described by (29). The discussion
below closely follows [16]. Define the continuous functions

def
Ynfp = Pn O Pn-10...0 Ppt1 VO<p<n-1

14



with the convention v, , (1) = p for all u € P(E). Observe that

(gn/p n/pf)

'-Yn/p( )f (gn/p)

VO<p<n—1 VYfeB(E) YucP(E) (32)

where

Tp(gn/p Tn/pf)
Tp(gn/p)

with the conventions g,,/,_1 = g, and T,,/,_y = T,,. To prove this claim we first note that (32) is
obvious for p = n — 1 because v,/,_; = ¢,. Now, using backward induction on the parameter p,
if (32) is satisfied for a given value of p > 1 then we have

¢p (:u) (gn/p Tn/pf)

In/p—1 = 9p Tp(gn/p) Tn/p—lf = V0 <p<n- 1 vf € B(E) (33)

7n/p—1(:u)f = 7n/p(¢p(:u))f =

Gp (1) (Gnsp)
_ M(gp Tp(gn/p Tn/pf)) _ N(gn/p—l Tn/p—lf)
,U(gp Tp(gn/p)) lu(gn/p—l)

where g,,/,_4 and T, /,_; are given by (33). In the following we retain the notations of theorem 2.
Returning to the inequality (23) we have

(M) MNE - My M P <Y es;p ‘/ (s (2 F(vn/p(v))) Cn(v, du)‘
p=0%

for all F' € B(P(F£)). Suppose now that

F(u)=|uf—nfl  fe€B(E)

Then, on gets easily

E(InY f = natl) < Z sup /

p= OVEP

Tusp ()] = s (v)F| Cn (v, dp) (34)
Arguing exactly as before we have

_ W Gnsp Tospf)  V(Gnsp Trypf)
0 =] = o)+ (M - SR (1)

with

h(l) _ 9n/p _ V(gn/p Tn/pf) h(2) —1_ In/p
n/p V(gn/p) n/p V(gn/p) n/p V(gn/p)
On the other hand
s = s @) 1| < )|+ 21711 |(3),)]

and, a short calculation shows that

2
) |? @l Yn/p
/"uhn/P| On (v, dp) < N 7 v(Gn/p)

and )
1 9n/p
h Cyv,dp) < — v | ———
/"u ”/p‘ N M) - N (y(gn/p))

15



From this and (34) it follows that

o\ 1/2

AN < Yn/p AN~ 17 Ax
[ f=mfl) < sup < —= —

( ) z;) UE'P( V(gn/p) N pZ:;) h=p+1 ag

with the convention [[; = 1. Finally, we have proved that
Bn(f) : def oAy
VfeB(E — Ny th B, = 4n

JEBE) B f-mfl) <=2 wi (n = anisl IT 3

In this situation we have obtained a uniform upper-bound over the class of all measurable functions
f with norm || f]] < 1. This uniformity allows us to prove the following extension of the classical
Glivenko-Cantelli theorem to interacting particle systems.

Corollary 1 When the measure-valued dynamical system is given by (29) and E = R we have

Yn >0 lim sup

N—=+4co R " (] o OO’ﬂ) - Un(] - OO,t])‘ =0 P-a.s. (35)

Proof:

To prove (35) we first use the upper-bound

P<|nff<]—oo,t]>—nn@—oo,tms6/2>21—863% with B, =] 2

k=1 Ok
for every € > 0, n > 0 and ¢ € R. Consequently, for N > (16nB,,/¢)? we have
P(InN (] = 00, t]) = 7a(] — 00, ])| < €/2) > 1/2 Ve>0 VYn>0 VieR

Applying the symmetrization lemma (Pollard [37] pp. 14) it follows that

P(sup
t

n¥( - 0,1 = () - 00.0)| > < 4B (Plsup

N0 = oot > /4/gh o)) (30)
where 72N denotes the signed measure
1 N
=5 2 %i &,
=1

with (0;);>1 an i.i.d. sequence with P(o; = 1) = P(0; = —1) = 1/2. Now, using Pollard’s maximal
inequality ([37]) and the Hoeffding’s lemma ([25]) we obtain the exponential bounds

P (sup 72N(] - oo,t])‘ > e/4/E .. ,fT]LV) <2(N+1) e~ N /32 P-a.s.
telR

and the Borel-Cantelli lemma together with (36) turns this into (35). ]
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We now turn to the asymptotic normality of the particle approximation errors.

Proposition 1 Suppose the assumptions of theorem 2 are satisfied. Then for every n > 0, f €
Co(E) and z € R we have

. N i Y 1 ) 22 5
Nl_lffrloop <—N Z(f( v) = dln,nh ) f) < 90) = /_Oo WGXP (—m) z  (37)

onlf) = (m(=mp?)”" VreaE)  vazo (38)

Before proceeding we should be more precise about the difficulty which arises here: This result gives
some indications on the asymptotic behavior of the particle estimators (777]1V)n20 but the essential
and unsolved problem is to characterize the asymptotical nature of the random errors

Z —mf)  VfEG(E) Vn2>0

Other results relating to the asymptotical normality of particle approximation errors for specific
models in continuous time can be founded in Shiga/Tanaka [38].
Proof:

Using the above notations, we first observe that

i N
(exp Z é(n, n)_ 1)f))) = E(E (exp< ﬁu(&)—qﬁ(n,nﬁ_l)f))/nﬁ_l) )

and the fact that
B (&) = o(n,ml ) f/miy) =0
t
we ge 1 N N 4”f”3
3,8, - (1= greotn a0 - st )07 | < S

It allows to obtain the following inequality

|B(n,N,f)—a(n,N,f)|§ %b(nvaf)
with

OJ(TL,]V, f) = 1- /= nnf)

QV””(

3
|7 = mu)? = () = o 2]+ ST

3VN

Thus, we have

B, N, )N = a(n, N, Y] < b(n, N, /)

17



and

On the other hand let us remark that

M (f =1 f)? = d(n, 0l 1) (f = d(n,nh 1) )?

1)
(/%) = $(mm ) (D] + |nf)? = ($(mmi 1) f)?)
ma(f?) = $(m ) ()] + 201l 1 f — S(mm0) |
( W) = o) ()] 4 [ind = oln,mhon) 7]) (420171

Then, we can write

b N, < G411+ U (%) = o0, ) (D i f = 96 11) - 39)

VN

We point out that the middle term in the second parentheses goes to zero by (25) and (26). It
follows that

1
. Ny _ s N _ on_ = . 2
yim_E(B(n, N, [)7) = lim a(n, N, [)" = exp =5 (f = 1f)

This ends the proof of the proposition. |

Our final step is to provide some exponential bounds and to prove that 7Y f converges P — a.s.
to 1, f as N is the size of the systems growing, for every n > 0 and f € Cy(E).

Proposition 2 Under the same conditions as in theorem 2 we have

JEREAR
Ve>0 Yn>0 VfeC(E) P (WZ FEY = fl > e) < Ay(n, f) e NEA00) (40
=1
with Ay(n, f) and Az(n, f) positive and finite. Then we have
Vn>0 VfeC(F) hr_r; aNf=n.f P-a.s. (41)
Proof:

We first use assumption (25) to prove by induction that for every f € Cy(F) and n > 0 there exist
some constant A(n, f) and some finite subset £(n, f) CIN x Cy(E) such that

<A(n,f)  sup \nk h = ok, ni_1)h| (42)
(k,h)€L(n,f)

with the convention ¢(0,7%) = 0.
Consider the case n = 0. For every f € Cy(FE), we have

0 = mof| = |nb' s = 80,72 1]
and (42) is satisfied at rank n = 0. Suppose the result is true at rank n — 1 > 0. Observe that

n f = dlmm )]+ ot ml ) f = n,nan)f| W¥nz1

18



Using (25) we get

n f = é(n, ) f| + Colaors HH-1, Nl sup i1k = bl
heyn(nn—lvf)

To clarify the presentation we will note C,(f) and H,,(f) instead of C,(,—1, f) and H, (19,-1, f)-
The induction hypothesis at rank n — 1 implies

Uivf—ﬁnf

<A, ) sup | h— ok, nil A
(k,R)EL(n,f)

with

Aln, f) = 2(AVCu(f)[Hn(f)] sup A(n—1,h))
he€Hn(f)

L(n, f) = {(n, [)}UUpen,pLn—1,h)

The induction is thus completed. Apply Hoeffding’s [25] inequality to get the upper-bound

N
P (Inh = (ki DAl > e/ny) < 2 exp—Z(e/[IRI)* P-as. (43)
Therefore we have N
P (Inih = ¢k, mi )bl > €) <2 exp = (e/[|1]])? (44)

Combining (42) and (44) we obtain

N
P (13 22 €0 11> €] < A,y 00
=1

with

Ai(n, f)=2|C(n, )] and  Az(n,f) =1/(8A(n, /)*  sup ||R]")
(k,h)e/;(n,f)

(67) is a clear consequence of the Borel-Cantelli lemma and the proof is completed.

3.2 Interacting Particle Systems with Branchings

The latter is only concerned with simple interaction mechanisms therefore avoiding situations in
which the interaction depends on parts of the trajectories of the particles. In this section we
introduce a general approximation of (1) which includes branching and interaction mechanisms.
Such constructions will solves numerically (1) when the state space F is given by

F=F xX...xFE, with r>1

where (E,)1<p<, is a finite sequence of locally compact separable spaces. The basic idea is to split
a probability measure on F for dealing with random trees. Nevertheless, it should be kept in mind
that the content of this section is nothing else than an extension of the results of section 3.1.
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3.2.1 The particle systems space

The particle system state space
Let us introduce some new notations. For every Ny,..., N, > 1 we note

(N)g=AL,...., Ny} x...x{1,..., N;} forall 1<¢g<r (45)

The points of the sets (IV), will be denoted by the letters (z) or (j). For (i) € (N), and 1 < p < g,
i, denotes the p-th component of (¢), so that (z) = (¢1,...,%,). The particle system under study
will be a Markov chain with state space

EM g0 B () (N, LN (46)
For every 1 < p < r, each point z, € EZ()N)” consists of |(N),| particles acz(f)
2y = (@) ey, € BN (47)

Each point 2 € E®) consists of r particles systems

= (T1,...,7) EE{N)I X ...x EN) (48)

r

The points of z € EX) are called random trees.

It is important to remark that the size of the particle systems increases at each step of the al-
gorithm.

|(N)1|:N1§ (4N)2|:17\71N2§ ...S (AN)T|:A7V1---ANT

At each step 1 < p < r the transitions under study will be branching mechanisms. More precisely,
during a transition each particle fz(f_)l, living in the system £,_;, will branch into N, auxiliary
particles.

V(i) € (N)p_y [Suap——r O RSO (49)

p—1

So that, at the end of this time the resulting particle system &, consists of |(NV),| random particles.
Note that, for every 1 < ¢ < r, a point (z1,...,2,) of the product space EWMN1 s x FWN)q
may be viewed as a finite sequence

N R, S P 11,82 yeeesig
Tlye.o,Ty) = (x T R )
(1,5 2) 122 ' 1<i1 <Ny oy 1<ig <Ny

Thus, from the above description (49), given a random tree z € EW) each g-tuple (11, ..., 2g)

will describe the history of the particle x((;). In order to describe the history of the particle x((;),
it is convenient to introduce the following notations. For every (i) = (i1,...,%,) € (N), and

1 <p<q<r wedenote
(1)p =t1,. .., 0

For instance
() = (i1, i) € (N)r = (D)1= (ir) (2= (i1,i2) ()3 = (i1,12,13)

Using these notations and the description (49) the branching dynamics which describe the evolution

(1)

of the particle .rri = glt is given by

aj(lz)l — 33211 $(22)2 — $221722 o xi-l)rl_l — .,Ez’l,.l..,lr—l $£,Z) _ :EZ},...,ZT
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Transition probability kernels

Let v be a probability measure on Fy X ... X F,.. For every 1 < p < r, we define, whenever they
exist, a probability measure v, € P(FE; x ... x FE}) and a transition probability kernel v/, 4 by
setting, with some obvious abusive notations,

v(dzy,...,dz,) = vi(dzy) vop(wr,day) .. vpp (21,00 201, day) (50)
vp(dey, ... day) = vpq(day,...,dep 1) vyp_1(21, ..y Tp1,day)

The existence of such splittings is discussed in Dellacherie/Meyer, Chap III. [13].

With v € P(E) and (50) we associate a measure v&(V) ¢ P(EN)) by

Nl . N2 . . . NT . . . . .
I/®(N)(d.:v) = H vi(dzi') H vor (2t dag ™) .. H 2 LT datetr)

i1=1 29=1 =1
Let us see an example of the use of these formulas.

Examples 1 Letr =2, Fy = Ey andv = px K where p € P(E}) and K is a transition probability
kernel on Eq. Since in this case

vi(dzy) = p(dzy) and V2/1($17 dzy) = K(z1, dz3)

on obtain

N1 . N2 . .o
vo 0 ) = T[ (o) T K (o, dai ™) oy

11=1 =1

It follows from (51) that v®WN) s the probability distribution of a random tree
€= (€1, 659" 1< <Ny 1<in< N
where

1. (5;1)196]\71 are Ny independent and identically distributed random variables with common
law .
2. For each 1 <11 < Ny, (5;“”)1§2§NQ are Ny independent and identically distributed random

variables with common law K (&3, ).

We observe that the probability measure »®(V) may be splitted as before and written in a more
compact and simple form. By the very definition of the sets (N)q,..., (N),, we have

VW) (dz) = 1/1®(N)1 (dzy) 1/59/(1]\7)2 (21, dzq) .. I/B(TJX){ (z1,...,2,_1,dz,)
with
N P 7 1 ip—l ip
I/f/(p_)l (z1,...,2p_1,dz,) = H I/($(1) yus .,x;_l ,dac](?) )
(D)E(N)p
Np

(NEV)p—1 p=1

Using these notations we introduce the transition probability kernels Cy) as follows:

qmﬂm=/ Fm™() ¥ ™ (de)  with mM@) S 6 0, (53)
E(N) | N) |()E(N)T (1‘1 ooy Tr )
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for all v € P(E) and F € Cy(P(F)). Roughly speaking, starting with a measure v € P(FE) the
transition probability C'(y chooses randomly a measure mW) (&) where € is a EW)_valued random

variable with law v®N). From our notations m™(¢) € P(E; x ... x E,) and it has the form
Ny, Ny

(V). 2 g g

2] yeenytr=1

mtM () =

Further manipulations yields the decomposition

mM(€)(dz) = m{™M" (€) (dz1) m$?(€) (21, dz2) ... (€) (21, d2) (54)
N 1
with — m{™M(©)1(dz) = N, 2 S (da) (55)
11=1
and m;]/\;)fl(f)(zp_l,dzp) = E 15 (zp-1) Z 5 (iip(dzp) V1< p<r (56)
DEW)pr 77 N 2

The decompositions (52) and (56) make clearer the nature of the transition probability kernel C'(y.
The recursive description of the random tree & = (&, ...,&,) with law v®WN) is straightforward:

1. Step p=1:
The particle system &; consists of Ny i.i.d. random variables with common law vy.

2. Step 1 < p<r:
At the end of step (p — 1), the random tree consists of (p — 1) particle systems &;,...,&,—1.
In particular the system &,_; contains |[(N),_1| particles.

During this transition each particle 52(72)1 branches into a ﬁxed number N, of independent

particles (fl ye ,5 p) with common law v, /,_ 1(51 yo 75 p ' du):
g](?)leEp 1—>(€ 7"75 NP)EENP lleNV/P 1(5( ""g Pldu)

Remark 2 If (N) = (Ny,1,...,1) then it is clear from the above that for every v € P(F)

EW) = BNy .  xEM =M
1 X
m(N)(x) = mMz)= — 6 o and Cn, =Cy
Nl 21 1 1‘17 o
v?M(dz) = [[ vilda)vap(alt, dadd) .. vy (2, ... 2k, dalt)
11=1
Ny

= H v(de't) = v®N (dx)

11=1

3.2.2 The Associate Markov Process

We further require that for every z € E(™) and n > 1, the measure o(n, m(N)(z)) can be splitted
as in (50). At this point, it is appropriate to give a special case which will appear in non linear
filtering problems where the splitting of the measure ¢(n, m(™)(z)) does not present much more

difficulty.
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Examples 2 Let us suppose that r = 2, 1 = Ey and ¢(n, .) is given by

/ flz1,22) gn(z1) pldao, dzq) K(z1,dzs)
/gn(zl) p(dzo, dzy)

VfeCy(F* VYueP(E?  énpf=

Since in this case

Ni  No

vz e BV« giM)2 ) _
z € Iy X Lug m Z NIZVQZE (211 ,2112)

1= 122 1

we oblain

Niy,N3 gn(zélﬂz)

$(n,m"N(2))(day, das) = Y —x7n prre 8 ivis(du1) K (wy,dws)
11,00=1 2]17]2 1gn( ) 2

and therefore
¢(n, mN)(2))(dey, dey) = d1 (n, mN)(2)) (de1) 1 (n, N (2)) (21, dey)

with

N17N2 21,22

o1 (n,mM(2))(dzy) = 3 le’]@(‘? ) 8 iz (dy)

11,52=1 z:J17]2 1!]71(2’%17]2) 2

Ga1(n, mMN(2)) (21, day) = K(2q,day)

We refer again to section 3.3 and seclion 3 for more detlailed examples which explain the splitting
assumption imposed in the construction of the branching transitions.

We are now ready to introduce a particle approximation of (1) which includes branching and
interaction mechanisms.

Let Ny > 1,...,N, > 1 and, let (2, (F),)n, (&.)n, P) be the EW)_valued Markov process defined by
P& € de) = 1°M(dz)  P(En € de)Eny = 2) = 6°MN) (0, m™)(2)) (d) (57)

In section 3 we will apply the above constructions to solve nonlinear filtering problems. In such
framework the above transitions will have an explicit and simple form.

The algorithm constructed in this way will be called an interacting particle system with branch-
ings. The terminology branching is intended to emphasized that the points of the state space of
the Markov chain are random trees.

It is useful at this point already to stress the Markov description of the empirical measures

777(1N) o m(N) (fn)
(V)

Arguing as in section 3.2.2 the above description enables us to consider the random measures 7y,
as the measure valued random process (€2, (F),),, (ngN))n, P) defined by

P (") € dp) = MoCwy(dp) P (0™ € du/ 0] = v) = MuCiy (v, dpr) (58)

with Mo F(v) = F(n) for all v.
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3.2.3 Description of the algorithm

If we want to think in terms of branching and interaction mechanisms it is essential to recall that
at each time n and for every (7) = (i1,...,4,) € (N), we have

g(i) — (5“17 “*22 75217227 721")

n n, .

Therefore 57(;) can be viewed as the nth-part of trajectory of an individual particle
57(7,27)11—>€n2—> —>€)rl—>€nr

In addition, in view of (52), at each step 1 < p < r, each particle 57(%_1 will branch into N,
auxiliary particles.

V(i) € (N)ps Sy p—2 O IC )

In the same spirit, the £(V)-valued Markov process as a whole can be viewed as a branching process.

Notice that each particle system &,,, 1 < p < n, contains |(N),| = Nj...N, particles. So
that the size of the particle systems &, 1,...,&,,, increase at each step of the p=1,...,n, but at
the end of the interval, the next particle system &, 411 only contains |(N);| = N; particles.

Probabilistically and, in a more precise language we may describe its evolution in time as fol-
lows:
1. At the time n = 0:
e Step p=1: _
The particle system &y ; consists of Ny = |(IV);] random particles & ; = (5(()27)1)(2-)6(]\7)1
with the same distribution 7.
e Stepl<p<r:
At the end of the step p—1 the random tree consists of p—1 particle systems &y 1, ..., &o,p—1-
(N)p—1| particles 50; 1

In the very beginning each particle 50 p—1 branches into a fixed number N, of particles:

(€0 ey e ENedide ~ g (€50 650 du)

7

In particular, the particle system fop 1 contains

5((;,;9—1 € Epy

Therefore at the end of these mechanisms the particle system &g, contains |(NV),| parti-

cles.
2. At the time n > 1:
At the time n—1 the random tree §,,_; consists of r particle systems &,_1 = (§n—1,1,- -3 &nm1,r)-
Forallp =1,...,r, each particle system &,_; , contains |(N),| particles §,_; , = (53117]9)(2-)6(]\7)}7.
e Step p=1:

The particle system &, ; consists of [(/V);] random particles 57(;7)1 with the same distribu-

tion ¢ (7% m(N)(fn—1))
e Stepl<p<r:
At the end of the step p—1 the random tree consists of p—1 particles systems &ty Enpot.

(N)p—1| particles 5

In particular, the particle system &, ,— 1 consists of np—1-

In the very beginning each particle fmp_l branches into a fixed number N, of random
particles:

€0 —— (€01 €M) L ~ by (mem ™ (Eon)) (€) €0 du)

1

So that, at the end of these mechanisms, the particle system &, , contains |(V),| particles.
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3.2.4 Convergence of the Algorithm

The following discussion is an easy generalization of that given in section 3.1 and for these reasons
proofs will only be sketched.

Proposition 3 Let us suppose that E is compact. Let M = (M,),>, denote a series of time-

inhomogeneous and Feller Markov transitions on P(E), My € P(P(FE)) and, let M) = M,C )y,
n > 0. Using these notations we have

w
MM MW MM, .. M,  Y®, € P(P(E)) (59)
N — 400

More generally (59) holds when E is locally compact and M = (M,,),> such that
M, F e U(P(F)) VF e U(P(E)) (60)

Hint of proof:
The proof which we sketch here is based on the same kind of arguments used in the proof of
Theorem 1. Arguing as before, we can show that the transition probability kernel C'(yyy is a Feller

transition. Now, Let F(r) = def F(v(fi),...,v(f;)) with fr € Cy(E) and F globally Lipschitz, that
is:

|F(xy,...,2q) — F(2h,...,2)| < A Z|w2 z!| A< 400

By the very definition of C(y) one gets easily the system of inequalities

Conf ) - FO)| < Azy/ o) fi = ()| VP (da)

IN

AZ/WW(EJWWWWW%mmﬂWWMwm>
k:1 r (Z)G(N)r

(et

)T) one gets after some standard computations

Therefore using the form of (z;”', ...,
- - q r 1 , %
|C(N)F(V) —F@) < A Z (N),] Vp((’/r/pfk - Vr/p—lfk) ) (61)
k=1 \p=1\""/P
q r 1 ) ) 2
= A Z I(N),] Vp((’/r/pfk) - V((Vr/p—lfk) )
k=1 \p=1 p

2

IN
BN BN
=z
ox
Il Q
—
3
Il S
—
%T
=
-
~
3
=
—_
—_
<
~
3
—
=
\—/

with the convention v, . f = f for all f € Cy(F). The proof of (61), while straightforward, is
somewhat lengthy so that it is omitted. Then there exists some constant B such that

B
v Ny

ICyF(v) = F(v)| <

~—
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The statement follows using (23) and on recalling that such functions F' are dense in Cy(P(S)). m
In particular, when M, F(v) = F(¢(n,v)) the above result implies that

Vn >1 VfeCy(E) Nli_)r{ll_ E(nMNf —n. ) =0 where (N)= (Ny,...,N;)

The problem is now to find an explicit upper bound for the rate of convergence. Similarly as in
Theorem 2 and, using the inequality (61) a crude upper bound may be derived when the condition
(25) is satisfied.

Proposition 4 Suppose that for every f € Cy(F), v € P(E) and n > 1 there exist some constant
Cpn(v, f) and a finite set of bounded functions H, (v, f) such that

VuePE) (o) f - dlmmfl < Culvif) Y Ivh— bl (62)

heHn(me)

Then, for every f € Cy(E) and n > 1 there exists A, (f) < +oo such that

Ay
E(IniMf = naf1?) < N(f) (63)
1
Therefore, if oM is the distribution of 777(1N) and ®F(u) = F(n,) for all p € P(E) we have
Vo > 1 lim D(@WMN) &) =0 (64)

Nip—+oo
To get exponential bounds in this situation we prove an extension of Hoeffding’s inequality ([25]).

Lemma 3 Let (f(i))(i)e(N) be an EXN) -valued random tree with law v®WN) where (N) = (Ny, ..., N,),
Ni>1,...,No>1, r>1andv € P(Ey x...x E,.). Foreach f € C,(F1 X ... X E,) and ¢ >0

—1 @y —p € ex €
P(||(N)| > () f)|>)§2 p( S(e/171)? ( k|) ) (65)
Proof:

()e(N)
Our method of proof follows that of Hoeffding. For each f € Cyp(Fy x ... x E,), (i) € (V) and
1<k <rset

f}ii)k — E(f(f(l))/f(z)k) _ E(f(g(i))/g(i)k—l) g ) def (521 521,22 ) _’giu---,ik)

Using these notations we have

FEDY v =3 £ (i) e (V)
k=1

Write Ly (t, f)” the moment generating functions

r def ex Dy _ = ex t
Ln(t, f) (p(|(N)| o (f(EY) f)) E(@)TH Py

" () re(N)r )r €(N)r

3 )
)l k=1

It is well-known that E(e!*) < exp ((tb)?/2) for every ¢ € R and every real-valued random variable
X with zero mean and bounded ranges | X | < b. Applying this inequality to each f,gz)r, (7)r € (N),
conditionally to £€()r-1 we obtain

Livy(t, )" < Loyt )"~ expe2(|112/1(N). )
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Using repeatedly the same technique we obtain the upper-bound

1 )
Nkl
1

vl Oy —y € exp | —e 2 2y !

7)E(N)

Ly (t, )" < exp (2 21
k=1

Thus, for each ¢ > 0 and t € R

To minimize the quadratic, let ¢ = ¢/(4||f||* 5=y 1/

P(% 3 (f(g(i)>_yf)>g)§exp< (/1112 (Z )_)
NI ety

The end of the proof is now straightforward.

(N)g|). This yields

Using the same lines of arguments as in the proof of proposition 2, the above lemma leads
immediatly to the following result.

Proposition 5 Under the same conditions as in theorem 2, for every e > 0, n > 0 andf € Cy(F)
we have

-1
P (1) f = nf] > ¢) < Ai(n, f) exp (—e Az(n, f) (E I k|) ) (66)
with Ay(n, f) and Az(n, f) positive and finite. Then we have

Vn>0 Vfel (V) lim My =un.f P-a.s. (67)
Ni—+o0

Our goal is now to discuss the connexions between proposition 4 and theorem 2. Let (n)1),

be the density profiles associated to the particle approximation with simple interactions and Ny
particles and let (777(1N))n be the density profiles associated to the interacting particle resolution
with branchings, where (N) = (Ny,...,N,) and Ny,..., N, > 1. We have already remark that the
particle systems with simple interactions and the interacting particle systems with branchings are
exactly the same when the number of auxiliary branching particles is at each step equals to one.

More precisely
(N)= (N, 1,...,1) = C(nyy=Cp, and néN):niVl Yn >0

Let us discuss the relationship between the above approximations in the situation where the func-
tions ¢(n, .), n > 1, are defined by (29). The discussion of example 2) page 13 can be extended in
an obvious way to the interacting particle approximation with branchings and it can be seen easily
that the moments of the corresponding particle density profile errors are given by

B f — nf) <3 sup Iiv/;,uf) B - ) <30 sup n/p v, /)

p= OVEP p= OVEP
with
10D = [ ) F=30p @) Cxs i) 00 0) = [ agpl) F =01 0) 1] oy o, di)
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In order to estimate the terms IV} (v, f) we introduced previously two functions Y and A2
n/p n/p n/p

such that I/hg/)p =0= I/hff/)p and we proved that

Iff/lp(v,f) < /Iuhn/p| Ch, (v, dp) + 2|/ f|| / |uhn/p|ch(,, dp)
1+ 2
< LEAUL (a4 o) (69)

Similarly, one gets

100w ) < [ 10k, Conwadn) + 2101 [ )| oy (v, di)

and the same computations as in (61) leads to

2 r 1/2
N 1 i 2
L 1) < (421 3 (Z vy ety = v ) ) ©)

i=1 \g=1

One way to see that the term in the right hand of (69) is lower than the one of (68) is to remark
that

- 1 @) (i) \2 1 ¢ @) (1) \2
qZ::l *Nl B ‘qu (Vr/qhn/p 7’/‘1 lhn/p) < Fl = v (Vr/qhn/p 7’/‘1 lhn/p)
_ 1y (i) 2 )
- Vl pt (V(Vr/qhn/p) - ( Vrjg— lhn/p) )
_ 1 (i) ()2 _ 1 () \2
e 17\71 V(hn/p — th/p) = E V(hn/p)

We conclude that using the branching mechanisms it is possible to get a lower bound for the
particle density moment errors but whether or not much loss of performance is incurred by one of
the above algorithms is an interesting but unsolved theorical question. Really effective methods
for attacking such a problem are apparently not known.

3.3 Examples

One important and useful application of our techniques is the situation in which the dynamical
system (1) has the form

b(n, 1) (f)
d(n,p)f = om0 (D VfeC(E) VpeP(E) (70)

where ¢ (n, .) are continuous and measure-valued linear functions, that is
Yui,pp € P(E) Vaj,ap € R Yo >1 Y(n, o py + g pg) = ay ¥(n, pr) + az P(n, pg)

This property is of particular interest because of its relation to the nonlinear filtering problem.

In addition to the role of interacting particle systems in nonlinear filtering theory they are several
important points of contact between our approach and nonlinear systems arising in fluid mechanics.
The second part of this section is devoted to the study of such systems. These simple Markovian
models of particles are called master equations in physics. Incidentally, our approach provides
convergence results for the empirical measures of such interacting particle systems. For a more
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thorough treatment of these equations see Sznitman [44] and the references given there.

The setting is the same as in the previous sections. The particle systems will be a Markov chain
with state space EV where N > 1 indicates the size of the system. The N-tuple of elements
of E, i.e. the points of the set EN are called systems of particles and will be mostly denoted

by the letters z,y,z. As usual mN(x) denotes the empirical measure associated to the point
= (zt,...,2") e EN:
N 1 al
m" (z) = N Z i
V=1

3.3.1 Linear systems Compositions

The following examples illustrate our interacting particle system approach and highlight issues
specific to non linear filtering problems. Let (K,),>0 be a family of Feller Markov kernels and let
(gn)nzl be a sequence of continuous functions g, : £ — R.

1) If ¢(n,n) = nK, for all n > 1 then for every z € EN
1 X .
o(n,mN (z)) = m" () K, = N Z K,(z'.)

=1

and, the transition probability kernels of the corresponding particle system are given by

1

N N )
P, €dz/é1 =2) = H Z K, (2", dzP)
o NF

In other words the particles are chosen randomly and independently in the previous system and,
in a second step, they move independently of each other according to the transitions (K)s.

2) Our second example concerns the dynamical plant equation (1) when the functions ¢(n,.)
are given by

o(n,p)f=p(f gn)/ulgn) VI E€C(E)  VueP(E)
In this situation, for every z € EV

N

o(n, mN(x)) = Z 9n(2")

N _ .
i=1 Zj:l gn(l’])
Thus, the transition probability kernels of the corresponding particle system are given by

) — A gn('rl) (D
P(gn € dZ/gn—l $) H Z 5$'(d‘r )

N .
p=1 =1 Z]:l gn(‘r])

In other words, at the time n the particles are chosen randomly and independently in the previous
system according to the fitness functions g,.

3) Let us study a way of combining the situations 1) and 2). Let us set £ = F; x FEj;, where
Fy and E3 are two locally compact separable spaces. Suppose the dynamical plant equation (1) is
given with the functions ¢(n, .) defined by

" y / flz1,22) gnlz1) p(dao, dzy) K(z1,dzs)
n,p)f = /

(71)
gn(z1) p(dzo,dz)
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for every f € Cp(F1 X Eq) and p € P(Ey x Es).
In this situation, for every = = (z1,22) € EN = ENx,EYN

N

n,m" (z u, dv M5 u) K(u,dv
¢(n,m" (z))(du, dv) = ;Z]ﬂn(]) i (du) K(u,dv)

and the particles will move according to the transitions

n € d(z1,29)/Co1 = (21, 22) 9u(23) dz? b, dah
P(Cn € d(1,22)/Crr 1,22 H;Z]1gn() s (doy) K (@ 2)

To be more precise, let us set (, = (En,an). Using this notation and the above description the
motion of the particles is decomposed into two separate mechanisms

N
P&, € day/éuy =a1) = ][] K(af,dab) (72)
=1
pN
II

N i
P € dnfe=n) = 1Y =20 s, () (73)

4) Finally we examine the above situation (71) when we use a particle system which includes branch-
ing and interaction mechanisms. When considering the dynamical system (71) with state space
E = Ey X F,, the particle system is modeled by Markov chain with state space E(N) = E{N)l X EgN)Q
where (N) = (N, N2) with Ny, Ny > 1.

Recall that m()(z) is the empirical measure associated to the point o = (Jc(i))(i)e(N)Q c EW):

(N) 5 ShS i
m ( |( ) ( Z N147V2 Z Z

N)2 21 ’LQ 1

Observe that, for every z € EWN)

N1 No 21722)

é(n, mM™ (2)) (du, dv) = Z Z ~ gn (25
11=112o=1 zl: ign ]1,]2

J1=11iz=1

8 iy (du)  K(u,dv)
T2

Thus, the transition probability kernels of the corresponding E; X Fs-valued particles is given by

Ny Ni,Ns g ($21722)
n 2 }
P(Cn € dZ/Cn—l = x H Z NN, S 1) zl z2 dz]fl H I{ Zl ,dzgl pz)
p1=141,i2=1 Z]Mg 1 gn(23"?) p2=1

Let us set (, = (En,fml) e FM x Eé\[lNQ. Using this notation and the above description the
motion of the particles is decomposed into two separate mechanisms

Ny

P(gn € d$2/€n—1 = $1) = H H K ’dx22917]92) (74)
p1=1 pa2=1
N1 Ni,Np

21722)

Phcn/o=r) = I ¥ o™

p1=111,52=1 Z]uﬂz 19n

8 vy (dz) (75)

($%’1 ,jz) z,

30



To be more precise, let us remark that

N1 N E 11,k2 Ny 11,12
> gn(zy ™) gn(z57?)
P& € day/&n=w2) = [ D k2= S 5 iy, (dat)
p1=12;=1 Z]l 1 2]2 1 gn(‘r%h]2) ip=1 ZkQ 1 gn(xéh 2) 2

Roughly speaking, each particle 521 chooses a sub-system ($221’k)lskSN27 with 1 < 43 < Ny, at
random with probability

N2 & Nl N2
Z gn 21, 2 /Z Z gn J17J2
kg:l ]1 1]2 1

and moves to the site x“’lr" with probability g, (z “’ /Z gn (2 Zl’kr").
ko=1

3.3.2 Master equations

The following systems are called in physics weakly interacting systems, because the interaction
depends only on a fixed function of the empirical measures m”. We have only considered here
very elementary equations which can be easily generalized. The continuous versions, with non
necessarily compact state space, are studied in Braun/Hepp [3], McKean [33], Méléard /Roelly-
Coppoletta [32], Sznitman [43], [44] and the references given there.

Compact state space

In order to use theorem 1, we first made the sanguine assumption that the state space is compact.
Although such is generally not the case these artificial examples will serve their purpose in illumi-
nating the effect of interaction in real systems.

1) Our first example concerns the dynamical system (1) when £ = [0, 1] and the functions ¢(n, .)
are given by

dn,p)f = [ S(o+ F(o,V (@) + ) dufa) dU(w)  ¥f € C((0,1)

where the sign + means summation modulo 1, I' € P([0, 1]) and V and F are continuous functions
V:[0,1] >R, F:[0,1] x R — [0,1].
Roughly speaking the solution of this dynamical system

describes the time marginal distribution of the time inhomogeneous, [0, 1]-valued, and non linear
process £ defined by the recursive equation
{ X, — X :F(Xn—lav*nn—l(Xn—l))+Wn n>1
(77)
Xo ~ o
where 7,,_; is the distribution of X,,_; and W, is an [0, 1]-valued random variable with law . As
we shall see this process describes the limit behavior of the trajectory of an individual particle in an
interacting particle system, as the number of particle is growing. It is usually called in propagation
of chaos theory the tagged particle process.
To be more precise, it is well known that there exists a measure 7, in the path space € P(E™H1),
called a McKean measure (or McKean process) corresponding to the set of transitions {K, ; u €

P(E)} defined by

Kuf(x):/f(x—l—F(x,V*u(x))—}—w) dl(w)  Vf € Cy(E)

such that
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o (Em! 8L X, = (Xk)o<k<n, 7.) is a time inhomogeneous Markov process with transitions
(I(uk)OSkSn-
e Under 7, the probability distribution of zy is ug for all 0 < k£ < n.

In our settings this measure is clearly given by
n(dzo, ..., dx,41) = uo(dzo) Ky (zo,dzy) ... Ky, (¢, dzpgq)

with

ug = moand V1 <k <n Up = up—1 Ky, _,
The description of such models in continuous time may be founded in Méléard /Roelly-Coppoletta [32].
In this situation the McKean probability measure on the path space is defined as the solution of a
classical martingale problem. Therefore, the time marginal distributions 5,,, n > 0, of the McKean
measure 7 satisfy (76). The existence of a unique McKean measure is discussed in Sznitman [43]
and Shiga-Tanaka [38].
One classical problem is to estimate the the time marginal distributions 7,,. Using (17) section 3.1.1
and theorem 1 section 3.1.4 we are able to construct an interacting particle approximation. First,

we observe that for every z = (2',...,2V) ¢ BN

Sk, m( E/ ¢+ F(at, (V + m (2))(2)) + w) dT(w)

With regard to (17), the system of particles is driven by the mechanisms

P(é €da/ép=2) = H Z 8.i (dzP)
p= =1

G=8,+F (G, (VemV (&) E)) + Wi 1<i<N

(78)

where (Wli)ISiSN are i.i.d. with common law T, éo = (f%, .. .,Eé\]) are i.i.d. with common law 5y,

gk = (5}17751];7)7 é:k — (é%,,giv) € [Ovl]N

There remains the question of convergence of the particle density profiles

:e E(Sgn nZl

Using theorem 1, we conclude easily that for every n > 1 the random measures 7} converge in law
to 1, when the size of the system is growing.

2) Our second example concerns the dynamical system (1) when the functions ¢(n, .) are given by

Gﬁ(n,u)fz/ S <$+/ a(z, z) u(dZ)+/ b(z,z) p(dz) W> dp(z) dU(w) V[ € G([0,1])

where the sign 4+ means summation modulo 1, I' € P([0, 1]) and @ and b are continuous functions
a:[0,12 =R, b:[0,1]* = R.
In this situation, the solution of the dynamical system

M = ¢(n, Np-1) Yn > 1 no € P(E)

is the density profile of the McKean measure associated to the time inhomogeneous and [0, 1]-valued
non linear process

{ Xy = Xpot = @n(Xno1) + b (Xpmy) Wi (79)

Xo~mno

where
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o @(2) = E(a(z Xn_1)) :/ a(2,2) Dot (da) and B (2) = E(b(z, X_1)) :/ b(z, ) 7ot (d2)
forall n > 1 and = € [0, 1].

® 1},_1 is the distribution of X, _;.

e W, is an [0, 1]-valued random variable with law .

The description of such models in continuous time may be founded in Sznitman [44]. Arguing as
before the corresponding interacting particle system is given by

R N 1 N
P edu/é=2)=]] ﬁz d,i (da?)
p=1 =1

Gi=8 1+ EYN 0@ & )+ EEN E L E_ )WL 1<i<N

with (W} )1<;<n ii.d. variables with common law T.

Using theorem 1, the random measures 7Y def % Zf\; d¢: converge in law to 7, when the size of

the system is growing.

(80)

3)Let £ be a compact separable state space and, let 5, be a McKean process corresponding
to a given set of Feller transitions {K, ; v € P(F)} and to a given distribution n € P(F). In
addition, we assume that the maps

ueEP —6, K, P

are continuous, for all # € E. Recalling the above observations, we see that the density profile 5,
is solution of the dynamical system

Un:¢(n,nn_1) Vn > 1 770:776’]?(E)
where

Vn>1 YueP(E) VfeC(E) é(nu)f dzef/ u(dz) K, (z,dy) f(y)

Now, in view of (17) section 3.1.1, the transition probability kernels of the interacting particle
system is defined by

N N
1 . ; . N 1
P&, €dx/é,—1 = 2) :pl;[l N 2221 K, v (2" da?) with m" (2) = N ;:1 b, € P(E)
where z = (21,...,2V), 2= (2',...,2M) e EN and &, = (¢},...,&N).

Finally, using theorem 1 section 3.1.4 and the above conditions we can show easily that the random
measures

N def 1 N

€

N, = — i n>1
converge in law to 7, when the size of the system is growing.

Non compact state space
In this last example we study in a different, but more classical way, the asymptotic behavior of
a system of interacting particles when the state space is non necessarily compact. The continu-
ous version without interaction through the perturbation can be founded in [44]. Let E = R,
d > 1, and let 5 be the McKean measure on the path space ETt! T € N*, corresponding to the
time-inhomogeneous and F-valued non linear process.

{ X, =Fp(Xp_1,Wy) 1<n<T

Xo with law nq (81)

where
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e Forevery z,w € E  Fp(z,w) = [ F,(2,2,w) n,—1(dz) where F, : E> — E are bounded
Lipschitz functions for all 1 <n <T.

e 17, is the distribution of X, forall 0 < n < T.
o W = (W,), is a sequence of E-valued and independent random variables.
e Xy is an, independent of W, random variable with distribution 7y € P(E)

In this situation one looks at a pair system of N-particles

zN 7 —=t,N - =t,N :

5 ]V ZF n— 17 n— 17W) {fn :Fn(gn—hwn)
1 .

1§2§N 1§n§T

where W, 1 <4 < N, are independent copies of the perturbation W and féN def 50 , 1<t <N,
are 1ndependent of W*ii.d. random variables with common law 7.

Let us prove that

=1,N 1,N @

for some finite constant A(7) > 0. Therefore, using lemmal we conclude that the empirical
measures

dof 1 &
oV del & ) )
o= N; 5(557N,...,5;N)

converge in law as N is growing to the McKean measure € P(ET+1).
To prove (82) we use the following decomposition

=

1

=1,N N

J=1

LN N W — B @0 N Wk

n—11%5n—-11 n—1

n 17 n7 17W1)_ (gn lvfn 1 )

1 X —= ,~=1,N
+ WZFn n— 17€n 19 )_Fn(gn—hwi)
7=1

Since the functions F,, are bounded and Lipschitz there exists a finite constant C' < 400 such that

|

1,N 1)

E(|§7117N_€7117N|) S C( (|€n 1 n 1 ZF n— 17571 1 )_F’ﬂ(gn’—l?Wn

Using a discrete time version of Gronwall’s lemma one gets

T
B -gr) <o Y E

n=1

1,N

ZF n— 17571 19 )_Fn(gn—lvwfr%)

where |E711’N — LN * def SUPg<k<n |fk - fi’N| and C(T") < 4o0. To bound the terms of the right
hand side we observe that, by the law of large numbers,

= =L,N 2|| )2
( ZF n— 17571 13 )_Fn(fn—hWT%”Q) < w 1<n<T
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4 Application to the Non Linear Filtering Problem

The basic model for the general Non Linear Filtering problem consists of a time inhomogeneous
Markov process X and a non linear observation Y with observation noise V. Namely, let (X,Y)
be the Markov process taking values in S x R?, d > 1, and defined by the system:

, X = (Xp)n>o0

F(X/Y) { Yo=hy (X)) +V, n>1 (83)
where S is a locally compact and separable metric space, h, : S — R?, d > 1, are continuous
functions and V,, are independent random variables with continuous and positive density g, with
respect to Lebesgue measure. The signal process X that we consider is assumed to be a non-
inhomogeneous and S-valued Markov process with Feller transition probability kernel K,, n > 1,
and initial probability measure v, on 5. We will assume the observation noise V and X are inde-
pendent.

The classical filtering problem is to estimate the distribution of X,, conditionally to the obser-
vations up to time n. Namely,

def

() € E((X)/ Y0, Y (84)

for all f € Cy(S). The nonlinear filtering problem has been extensively studied in the literature.
With the notable exception of the linear-Gaussian situation or wider classes of models (Beénes fil-
ters [1]) optimal filters have no finitely recursive solution (Chaleyat-Maurel/Michel [7]). Although
Kalman filtering ([27],[30]) is a popular tool in handling estimation problems its optimality heavily
depends on linearity. When used for non linear filtering (Extended Kalman Filter) its performance
relies on and is limited by the linearizations performed on the concerned model. The interacting
particle systems approach developed hereafter can be seen as a non linear filtering method which
discards linearizations. More precisely these techniques use the non linear system model itself in or-
der to solve the filtering problem. The evolution of this material may be seen quite directly through
the following chain of papers [4], [5], [16], [17], [18], [19], [20], [24]. Nevertheless, in most of these
papers this method is applied as an heuristic approximation to specific models, its general nature
is not emphasized and experimental simulations are the only guides for handling concrete problems.

The remainder of this paper is divided into three sections.

In section 4.1 we formulate the filtering problem in such a way that the techniques of section 3 can
be applied. The problem of assessing the distributions (84) is of course related to that of recursively
computing the conditional distributions m,, n > 0, which provides all statistical informations about
the states variables X, obtainable from the observations (Yi,...,Y,), n > 0. The key idea is to
study the filtering problem along the the lines proposed by Kunita [29] and Stettner [40]. Briefly
stated, the essence of the present formulation is that, given the observations Y = y, the conditional
distributions m,, n > 0, are solution of an explicit dynamical model with infinite dimensional state
space of the form studied in the first part of our development. Namely,

Tp = pn(yn7 ﬂ-n—l); n>1 (85)
o=V

where y,, € R? is the current observation at the time n > 1 and Pn(Yn, +) are continuous functions
Pn(Yn, +) : P(S) — P(S). It should be noted that in this form the optimal filter has a recursive but
infinite dimensional solution (except for the linear-Gaussian case, where the Kalman filter reduces
to mean an variance parameters). For illustration, recalling the constructions of the particle
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approximation of a measure valued of the form (85) described in section 3 we will see that the local
dynamics at the time n > 1 of the corresponding particle system are given by the distributions

1 N N g n(-TZ) ) ) N
PrlUns = E b,i)(dz) = g — A~ K, (2t d2) x,...,x €S n>1 (86)
N =1 =1 Zﬁvzl g%n('rj) !

where

9un(@) = [ galon - (=) Koo', d2) (57)
and

el )

Ky, (a2 dz) = o (@) K,(z' dz) (88)

for all z' € §, 1 <14 < N. What is remarkable is that the particle system motion is strongly influ-
enced by the observations. More precisely K, is exactly the conditional distribution of X, given
X,,—1 and the observation Y,,. Intuitively speaking, when the observation of X, becomes available
the particles are sampled around the real state X,, and this guarantees an occupation of the state
space regions in accordance with the observations, thus providing a well behave adaptative grid.
Unfortunately the main difficulty in directly applying the random particle methods of section 3 to
the equation (85) stems from the fact that this local dynamic has still the disadvantage of incor-
porating integrations over the space S. Thus, another kind of approximation is needed to simulate
the motion of the particles. Nevertheless we will work out an example in which the integrals (87)
and (88) have an explicit and simple form.

This special case apart, such a computational difficulty will be solved by studying the conditional
distributions of the pair process (X, X,,+1) with respect to the observations up to time n. Namely

1) S E(f(Xn, Xu)/ Y1, Y)Y EC(SY)  ¥n>0 (89)

The advantage of this alternative formulation of the optimal filter is that it incorporates separately
the so-called prediction and updating mechanisms. To be entirely precise, we will see that, given

the observations Y = y, the conditional distributions 7,, n > 0, are solution of a new measure
valued dynamical system
M = S‘On(yna 7771—1)7 n>1 (90)
o=V X I(l

where y,, € R? is the current observation at the time n > 1 and @n(Yn, ») are continuous function
©n(Yn, +) : P(S?) — P(S?). Then, it will follows easily that the local dynamic of the corresponding
particle system with simple interactions is given by the distributions

(U i (et i) (du, dv) = i ]j’”(y” — h(ﬂi))j 8. (du) Kpyr (u, dv) (91)
N =1 ot =1 Zj:l gn(yn - h(‘rl)) !

with n > 1, a},...,z)Y € S and z},...,2) € S. Roughly speaking, the prediction mechanism is
introduced in the filtering model (89) in order to express in an explicit form the local dynamics of
the associated random particle approximation.

The aim of section 4.2 is to use the results of section 3 to describe several interacting particle
approximations of the non-linear and measure valued dynamical system (90). These approxima-
tions belong to the class of algorithms called genetic algorithms. These algorithms are based on the
genetic mechanisms which guide natural evolution: exploration/mutation and updating/selection.
They were introduced by J.H. Holland [26] to handle global optimization problems on a finite set
and the first well-founded convergence theorem ensuring the convergence of the algorithm toward
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the desired set of the global minima of a given fitness function was obtained by Cerf in 1994 in
his PhD. dissertation [6]. Another simplest proof based on the use of Log-Sobolev inequalities and
semigroup techniques can be founded in [21].

In the beginning of this section we first describe a basic particle approximation with simple interac-
tion. In this situation and in view of the distributions (91) the local dynamic of the corresponding
particle systems is decomposed into two mechanisms. In the first one, each particle explores the
state space S, independently of each other, according the transition probability kernel of the signal
process X . Finally, when the observation is received, each particle examines the previous system
and chooses randomly a site in accordance with the observation data.

In a second stage we describe a more general evolutionary scheme which includes branchings mech-
anisms. Upon carefully examining the local dynamics of the particles it will be shown that the
corresponding transitions are themselves natural approximations of the distributions (86). Intu-
itively speaking, the integral form of the conditional distribution K, , and the weights g, , given
by (87) are estimated at each step of the algorithm by auxiliary branching particles moving inde-
pendently of each other according to the transition probability kernel of the signal process.

Computionally, the particle approximation with simple interactions is of course more time sav-
ing because it doesn’t use branching mechanisms but several numerical studies have revealed that
its use is a more efficient way to solve the filtering problem. In fact the choice of the number of
auxiliary branching particles has considerable effects on the dynamics of the particle systems. The
interested reader is referred to [4],[5] and [20].

There seems to be numerical evidence of this superiority and from a intuitive point of view the
physical reason of that seems to be the fact that the particle systems are more likely to track
the signal process by conditioning the exploration in accordance with the observations and thus
avoid divergence from the real process X. This observation leads us to investigate more closely the
relationships between these interacting particle resolutions. Although it is intuitively clear that a
benefit can be obtained from the use of branchings it is still an object of investigation to prove
the superiority of the such approximations. We remark that the estimates provided by theorem 2
and proposition 4 are in some ways rather crude and without some precise bound on the speed
of convergence of such algorithms it is difficult to get a comparison argument between them. On
the other hand we have already note in remark 2, section 3, that the particle approximation with
simple interactions can be viewed as a special case of the interacting particle approximation with
branching mechanisms. To be entirely precise when the number of auxiliary branching particles is
equal to 1 these two algorithms are exactly the same. Thus, the interacting particle approximation
with branchings generalizes the particle approximation with simple interactions.

We finish the paper with some natural generalizations of the elementary stochastic algorithms
described in section 4.2. Briefly stated, the particle system described in section 4.3 will track the
signal process by considering exploration paths of a given length r > 1 and limited sections of
the observation path. In the case r = 1 these constructions will reduce to those described above.
This enables a unified description of our particle approximations in terms of three parameters: the
population size, the number of auxiliary branching particles and the length of exploration paths.

Several numerical investigations [4],[5] and [20] have also revealed that the introduction of ex-
ploration paths also tends to re-center the particles around the signal trajectory.

Of course we have touched in this paper only a limited number of questions. For instance we
let open the practical question of the best choice of the population size, the number of auxiliary
branching particles and the length of exploration paths in accordance with the non linear filtering
problem at hand. These simple questions turn out to be surprisingly hard to answer satisfactorily
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and no firm results concerning the choice of the parameters has been available.

Another question we let in the dark is the study of the asymptotic behavior of these algorithms
in terms of the ergodic properties of the signal semigroup. In these direction something was done
in [17] when the state space is compact but many questions have yet no answers.

4.1 Formulation of the Non Linear Filtering Problem

The object of this section is to introduce the filtering model in such a way that the techniques of
section 3 can be applied. We emphasize that several presentations are available and here we follow
rather closely the paper of Stettner [40]. For simplicity non linear filtering problem in discrete time
are treated throughout. The main virtue of these problems is that the theory is very simple and
the ideas transparent. It is thus a good starting point.

Let X = (@ = SN, (FY)n>0s (X0n)n>0, PY) be a time-inhomogeneous discrete time Markov process

with transition operators K, n > 1, initial distribution v and, let Y = (@, = (Rd)N, (F2)n>0, (Yn)n>0, PY)
be a sequence of, independent of X, independent random variables with continuous and positive
density g, with respect to Lebesgue measure.

On the canonical space (2 = Q1 X Qo, F, = F! x F2, P = Py @ P?) the signal process X and
the observation process Y are Fp-independent. Let (hn)nZI be a family of continuous functions
h,:S—R% n>1. Let us set

L, = ﬁ 9k (Y — hie (X)) /96 (Ye)  n2>0 (92)
k=1

with the convention [[; = 1. Note that L is a (Fy, (F))n>0))-martingale. Then we can define a
new probability measure P on (€2, (F),),>0) such that the restrictions PY and P, to F), satisfy

P,=L,P° n>0 (93)
One can check easily that

Lemma 4 Under P, X is a lime-inhomogeneous Markov process with transilion operators K,,
n > 1 and initial distributionv. V,, =Y, — h,(X,), n > 1, are independent of X and independent
random variables with continuous and positive density g, with respect to Lebesgue measure.

We will use E/(.) to denote the expectations with respect to P on Q. The following well known
result gives a functional integral representation for the conditional expectation, which is known as
the Kallianpur-Striebel formula [28] (see also Stettner [40] and Kunita [29]).

Lemma 5 (Stettner [40]) The conditional distributions (7, ),>0 form a time-inhomogeneous and
(6(Y"™), P)-Markov process on P(S) with transition operators

LB () = [ F(puly, ) gnly — hae)) dy (Ko (de)  VF €C(P(S)) YueP(S) (94
where py(y,.) : P(S) — P(S), n > 1, is the continuous function given by
[ 7@ 4ay = hal@) (1 ) o)
[ onty = ha2) () d2)

forallpe P(S)ye R? and n > 1. Therefore, given the observations Y =y the distributions m,,
n > 0, are solution of the P(S)-valued dynamical system

pr(y, 1) f = Vf e Cy(S) (95)

T = pu(Yny 1) n21  mo=v (96)
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The equation (96) is called the non linear filtering equation. Even if it looks innocent it requires
extensive computations and can rarely be solved analytically. It is thus necessary to resort to nu-
merical solutions. This lemma is proved in Stettner [40]. We quote its outline for the convenience
of the reader.

Proof:
In view of (93) we have

Eo(J(Xn) Ln/Y"™) _ B3 (f(Xs) L)

T T R Y T EX (L)

where Fy(.) denotes the expectation with respect to P° and Egf (.) denotes the integration of the
paths of the Markov process X and the variable Xg. Then we obtain

EE (B (£(Xa) gn (Yo = hu(X0))/Xno1) Ln1)
EF (EX (gn (Yo = ha(X,)) /Xn1) Do)

Tnf =
and, finally

P (EE (F(X0n) gn (Yo = hn(Xn))/Xnt) L) /B (L)
T TN (B (0 Ve — (X)) /X1) L) /B (L)

[ 7@) g0V = (@) (1K) )
[ 0¥ = B (a1 Ko d2)

The temptation is to apply immediately the random particle approximations described in sec-
tion 3.1. Recalling the construction of the interacting particle system (17) we see that the transi-
tion of individual particle at the time n > 1 will be specified, in this situation, by the transition
probability kernels

N (y%i 5) ) = 35 00l ~ (1)) e ) o
i=1 i=1 Z/ Iy — o (21)) Kn(a, d21)

J=1

where N is the size of the particle systems, Y,, = y,, is the current observation data, z; € S and

(z',...,2N) € SN. To be more precise, let us put for all z¢,z; € S
n\Yn — hn .
Kyn(zo,dzy) = 9nly (21)) K, (z0, dz1) (98)
[ 90t = haz1)) Koo, d21)
gun(e0) = [ Ko d1)gu(yo — (1) (99)

Using Bayes’ rule we note that K, ,(zo,dz;) is the density under P of the distribution of X,
conditionally to X,,_; = z¢ and Y,, = y, and, g, ,(z¢) is the density under P of the distribution
of Y,, conditionally to X,,_; = zo.

With these notations, the transition probability kernel (97) becomes

( S )<d =3 =) ey (100)
P\ Y, 7 xt r1) = =~ . < nl\T, T
N 1=1 1=1 Zé\le gym(x]) !

Let us work out and example in which the desired transition (97) has a simple form.
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Examples 3 let (X,Y) be the Markov process taking values in R x R and defined by the system:

X, = fn()(n—l) + W,
{ Y, =C, X, +V, n>1 (101)

where f, : R =R, C, € R and W, resp. V, is a discrele time Gaussian process with zero mean
and vartance function q, resp. r. In this specific situation one gets easily

, 1 1 B 2
Ky (zg,dzy) = WQXP <—m (1‘1 - {fn(%) +5,Cn " (Yn — Cn fn(xo))D )
(102)

1 1 ,
and gyn(zo) = exp (—— (yn — Cp fr(z0)) )

! V2 7 gl Il /]54] 2 [gul [rsl/|5xl
with s, = (¢;*+Cy, r;t Co)~t and g, 21 € R. Once more the verification of (102), while straight-
forward, is somewhat lengthly and is omitted.

Unfortunately, in most cases it is not possible to exhibit explicitly the form of transition (100). In
a little while we shall see one way to approximate the transition probability kernel (100). Roughly
speaking, the idea is to replace, in the definition of K ,, each transition Kn(xi, dzi), 1 <i< N,
by the empirical measure

1 X
i 2 O (103)
i=1
where (2%, 252, .. .,xi’N/) are i.i.d. random variables with common law K, (2% dz;), 1 < i < N.

With these notations we have formally

N,N' P N
: gn(yn - hn (3727])) 1
E : N.N' Ogisg ~ pn(yv N E_l 61:1)

i,j= "'~
J=1 Z o (yn B hn(.rk’l)) N +0o0
k=1

Using such a local approzimation it is not obvious that the empirical measure of the particle system
will converge to the conditional distribution since it is not clear what condition on the system size
N’ will guarantee the convergence of the algorithm. Fortunately, this vexing technical difficulty
will disappear when we will model this local approzimation by a branching mechanism.
The difficulty with the recursion (96) is that it involves two separate mechanisms. Namely, the
first one

o= kG

does not depends on the current observation and it is usually called the prediction and, the second
one ]

gn(Yn = hn(.)) y
[ 0¥ = ba(2)) ()

updates the distribution given the current observation. It is therefore essential to find a dynamical
system formulation which incorporates separately the prediction and the updating mechanisms.
A natural idea is to study the distribution of the pair process (X, X,+1) conditionally to the
observations up to time n. Namely,

W

() C E(f(Xn, Xps1)/ Y1, .., Y, VFECST)  Vn>0 (104)

Next lemma is a modification of lemma 5
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Lemma 6 Given the observations Y =y, n, is solution of the P(5%)-valued dynamical system

T = Son(ynynn—l) n>1 (105)
T = I/XI(l

where ©,(y, +) : P(S?) — P(S?) is the continuous function given by

/ F(21,22) gn(y — hn(21)) dn(zo, 1) Knpr (21, d)
only, ) f = Vf € Cy(S?) (106)
/ 9y — hu(21)) dn(z, 1)

for all p € P(S%), y € R? and n > 1. Moreover (n,), is a time-inhomogeneous and (o(Y™), P)-
Markov process on P(S?) with transition operators

T F(n) = [ F(eugs) galy— ha(0)) dy du(z,0)  VF € C(P(SY) Ve P(S?) (107

Proof:
It is easily checked from (96) that

Mn = T X I(n-l—l = pn(yna 7Tn—1) X I(n-}—l = @n(yna 7771—1)

So that (105) and lemma 5 end the proof of the lemma.
(]

Returning once more to the description of the random particle system described in section 3.1, we
see that the local dynamics of an individual particle will now be given by the transition probability
kernels

N

1Y 9n(yn — h(23)) -
g@n(yn’ — 5 Si i )(d(xl’ $2)) = - (Szi (dwl) I(n_|_1(£€1, dCCQ) (108)
N; (1.7) ; Zﬁlgn(yn_hn(zé)) :

where N is the size of the particle systems and Y,, = y,, is the current observation data.

4.2 Interacting particle resolutions

This section covers stochastic particle methods for the numerical solving of the nonlinear filtering
equation (105) based upon the simulation of interacting and branching particle systems. The tech-
nical approach presented here is to work with a given sequence of observations Y = y. With regard
to (105) and (106) the nonlinear filtering problem is now reduced to the infinite dimensionality
of the state space P(S?). This assumption enables us to formulate the conditional distributions
as probabilities parameterized by the observation parameters and solution of a measure-valued
dynamical system. The design of our particle system approach is described in section 3 for the
numerical solving of general measure-valued dynamical systems. We shall use the notions and
notations introduced in sections 3.1 and 3.2.

4.2.1 Particle systems with simple interactions

The algorithm presented in (17) section 3.1 was referred to as a particle system approximation
with simple interaction function. When considering the nonlinear filtering equation (105) the in-
teracting particle system is modeled by a Markov chain (', (F})n>0, (Cu)n, Fryj) with state space

S2N where N > 1 is the size of the system.

41



The N-tuple of elements of S2, i.e. the points of the set S*V, are called particle systems and
will be denoted by the letters z, z. Recalling the description (17), this chain is defined by

N
P[ (o € dJL‘ H 770 dxp P[y] (Cn € dx/ (o1 = Z) = H ©n (yn, Z 52‘) dxp (109)
p=1 N

In view of (105) and (108), we have that

N
By (G €dz) = v(dzy) Kq(zf,dzy) (110)

_ _ i gn(yn — hn(ZQ)) ) P - P P
PG €da/ G =2) = [] Z N —0,i (d}) Kpyi(2y,deg)  (111)

where
e y, is the observation data at the time n
o v = (21,73), 2= (21,22) € SV x SN and, 2* = (2%,2}),2° = (2},2%) € S? forall 1 <i < N.
o (, € SV x SN is the system of S?-valued particles at the time n.

To be more precise, it is convenient to introduce additional notations. Let us set

n d:ef (gnvfn—}—l) S SN X SN Yn >0

Now the points of the set S will be denoted by the letters = and z. Using these notations, (109)
together with (108) lead to the following Markov model

N
Py (& €de/uy=2) = [] Knl(z",da?) (112)
p=1
: N gn(yn — ha(2)
Py €da/&=2) = H Z N _ —0,i (dz") (113)

where y,, is the observation data at the time n and z, 2 € SV. Equations (112) and (113) resemble a
genetic algorithm [6], [21], [26]. The advantage of this formulation is that it incorporates separately
the prediction fn 1 ~ &, and the updating &, ~ fn mechanisms. Thus, we see that the particles
move according the following rules

1. Prediction: Before the updating mechanism each particle evolves according the transition
probability kernel of the signal process.

2. Updating: When the observation Y,, = y, is received, each particle ezamines the system of
particles &, = (&} ,fT]LV) and chooses randomly a site &, with probability

In(Yn — I 721))
Z;‘Vzl 9n(Yn — hn(&2))

Our purpose is now to understand why the second mechanism (113) play a very special role in the
behavior of the particle filter. What is important is that each particle interacts selectively with the
system in accordance with the observations data. Roughly speaking, a given particle which takes
a given value is more likely to choose another site if its position generally disagree with the current
observation than if it agrees with it. These observations points to the very interesting dynamical
role played by the updating mechanism. It stabilizes the particles’ motion around certain values of
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the real signal which are determined by the observations thus providing a well behave adaptative

grid.
Now we design a stochastic basis for the convergence of our particle approximations. To capture

all randomness we list all outcomes into the canonical space (€, (F,,)n>0, P) defined as follows:

1. Recall (2, F),, P) is the canonical space for the signal observation pair (X,Y).

2. We define Q = Q' x Q and F,, = F! x F, and, for every w def (wh, w? w?) € Q we define:

Cnw) =w,  Xn(w) =w;

n Yalw) =)

3. For every A € F! and B € F, we define P as follows:

P(Ax B) /B Py(A) dP (114)

As usual we use E (+) to denote expectations with respect to P. The approximation of the condi-
tional distribution 7, by the empirical measure

dot 1
N def 1 o
= N; O ¢

1)
is guaranteed by theorem 2. Moreover, applying the dominated convergence theorem, we find
VfeC(S?H) Vn>1 lim E(n)f-n.f*)=0
N—+co

To see this claim it clearly suffices to prove that condition (25) is satisfied for every sequence of
observation Y = y. By the very definition of the functions ¢, (y,, .) one gets easily

¥n>1 VpeP(S%) V/eC(S")  enlynn)f= %

with
9n(20,21) = gn(Yn — bn(z1))  and T, f(z0,21) = / [(@1,22) Kpya(21, das)
Arguing as in 2) page 13 with £ = S? it is straightforward to see that condition (25) is satisfied.

4.2.2 Interacting particle systems with branchings

The method described above is the crudest of the random particle methods. When applied to the
non linear filtering equation (105) the density profiles might lack some of the statistical details of
the conditional distributions which one would get when using the branching refinement method
introduced in section 3.2. We shall use the notions and notations introduced in section 3.2.1. This
refinement is also relatively easy to program and it has been used with success in many practical
situations [4], [5], [18] but its use still leaves open the optimal choice of the number of auxiliary
particles. Let us start with a few remarks. When each particle branches into 1 particle these algo-
rithms are exactly the same. On the other hand, when the number of auxiliary branching particles
is growing the transition probability density of an individual particle tends to the transition (100).
Even if the first algorithm is more time saving because it does not use branching simulations sev-
eral numerical simulations have revealed that a clear benefit can be obtained by using branching
particles. Unfortunately on cannot quantify this superiority. Some attempts in this direction have
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been done page 28.

When considering the nonlinear filtering equation (105) with a given sequence of observations
Y = y, the corresponding interacting particle system with branchings is modeled by a Markov
chain (', (F})n>0, (Ca)n, Py)) with state space

E(N):S(N)l XS(N)2 (N) d:ef (N1747V2)

where (N); = {1,..., Ny} and (N3) = {1,..., N1} x{1,..., N3}, N;, Ny > 1. Each point

( P1 P1,p2

N N
r = (z1,22) = (27", 7% )1§p1§N1,1§p25N2 € SV o g(N)2

consists of two particles systems and they are called random particle trees, they will be denoted
by the letters z,z. Now, recalling the description (57), the transition probability densities of this
Markov chain are given by

N, Ny
Py (Co € dz) = H v(dz") H Ky (2", dabh??) (115)
p1=1 =1
N1 Ni,Na R, (221,22)) N
P[y] (Cn € dm/ Cn—l = z) = H Z N 7N2 2 T 5Z¢1,¢2 (da?]fl) H I(n+1 (leﬂl’ dxgl’m)
1= 121,22 1 2]17]2 1 n( 7’L - hn(ZQ )) 2 pa=1

(116)

where y, is the observation data at the time n. This algorithm generalize the one given above by
allowing at each step N; auxiliary particles. For the moment, let us merely note that if Ny = 1
then the transitions above are exactly the same as those given before.

To be more precise, it is now convenient to introduce additional notations

6o & (Eu ) € SN x S yn >0
To clarify the notations, the Ni-tuple of elements of S, i.e. the points of the set SCV)1 will be
denoted by 2 = (2P1),, and, the points of the set SV)2 will be denoted by z = (zP172),, ,,. For
brevity, we will also write g, (z) instead of g, (y, — hy(z)). Using these notations, we obtain to the
following Markov model

N
P[y](foedz) = H I/(del)
p1=1
Ny No
Pynede/ér=2 = [[ II Ku(z", de"??)
p1=1pa2=1
N1 Ni,N; zl,ig)

P[y] (gn € dZ/ gn = $) = H Z N1,N2 5zi17i2 (dzpl)

p1= 121722 12]17]2 1gn($217]2)

Continuing in the same vein, it is important to note that

et I 58 THEC S a )
P[] n€dz/ &y = x NN : n - o (dz . 117
y m=ti=1 L= In(@92) 2 Zkz L gn(zi0F2)

This formulation incorporates separately the prediction En_l ~+ &, and the updating &, ~ é?n
mechanism. More precisely, at each moment of time n, we see that the particles move according
the following rules
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1. Prediction: Before the updating mechanism each partlcle fn 1» 1 <43 < Ny, branches into
a fixed number Ny of i.i.d. random particles &, = (f“’ 2)1<22<N2 with law K.

2. Updating: When the observation Y,, = y, becomes available, each particle fn 1<y <
Ny, chooses a sub-system of auxiliary particles (5%1’22)192§N2 at random with probability

Niy,N3
E gn 521,192 / Z gn 5]1712
koy=1 J1,J2=1

and moves to the site &1 in the chosen sub-system with probability

. . N2 .
n(E2)) D0 gn(E)

ko=1

The fundamental difference between the so-called simple interaction and branching approaches lies
in the fact that in the former each particle branches into a fixed number of auxiliary particles and
the corresponding updating/selection procedure is itself decomposed in two different mechanisms.
Intuitively speaking the branchings are meant to discourage the particles to visit bad state regions.

Remark 3 The choice of the systems’ size N1 and N3 is frequently a matter of judgment and
intuition. We observe that each sub-system consists of Ny i.i.d. random variables (f“’ 2)1<22<N2
with law K (fn 1,dz1). So that, formally

1
N. 25‘1'2 dzl) ~ K, ( — 1,d2’1)
L¥2 Z =1 N2 ~ —|—OO
leads to
N2 11,2
Z 9n (& 2)17k2 5:-11,1'2 (dz) ~ Ky,n(fn Ly dz1)
ig=1 Zkg 1 n( ) N2 ~ _I_OO
and

S~ 0@ = [ (e K i)

E\TQ 22 1 N2 ~ —I—OO

This observation leads us to the following equivalence

Ny
P[y](gn € dZ/gn—l = -r) ~ H pn(yTu Z 6 ‘1 dzpl

Nog ~ 400 p1=1 N Li=1
It follows that (117) is the right way to model the local approzimation discussed in (103).

As in section 4.2.1, to capture all randomness, we list all outcomes into a canonical space (2, (Fn)n207 P)
and we use F (.) to denote expectations with respect to P.

Using the same line of arguments as in the end of section 4.2.1, the approximation of the desired
conditional distribution 7, by the empirical measure

N) def 1 DX
’777(1 ) ((5nafn+1)) NN, Z E 5(2"1 @1:'12)
11=1129=1 "

is guaranteed by proposition 4. Moreover arguing as before we have

lim B =) =
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4.2.3 General interacting particle resolutions

In the last part of this paper the above approximations are generalized. The prediction mechanism
of the former particle filter will include exploration paths of a given length r» > 1 and the corre-
sponding updating procedure will then be used every r steps and it will consider r observations.
The idea is to study the pair process (X, X41) given by

Xy = (Xory oo s Xppgrmy)) V220 and 7 >0 (118)
For later convenience, let us set Y, def (Yor, ooy Yorgr—1) forall n > 0.

Let u,, be the distribution of the pair process (X, X,,4+1) conditionally to the observations up to
time nr. Namely,

def

pn(f) S E(f(Xn, Xng1) /Y1, Vn) Y €Cp(S?) (119)

It is straightforward to see that this case may be reduced to the latter (104) through a suitable
state space basis. More precisely, (X},),>0 is a S”-valued and time-inhomogeneous Markov process
with transition operator

r—1
def -
ICn ((w07 R xr—l)v d(xr’v R x?r’—l)) = H I(nr—l—p(xr—}—p—lv dwr—}—p)
p=0

and initial distribution
VQIVXI(l X ...XKYT_l

In this situation the corresponding observation process (V,),>o may be written by
Vo =Hn(Xn) + Vs Vn >0
with
H(zo, ... Troy) = (hm,(:vo), . .,hm,+(,,_1)(:v,,_1)) and  V, = (Vm,, . .,vm(r_l)) n>0

is a sequence of, independent of X, independent random variables with continuous and positive
density

r—1
Gn(v07 R IUT'—I) = H 977‘7"}']9([1)]9)
p=0

The same kind of arguments as the ones above given show that y, is solution of the P(S?%")-valued
recursive equation

Hn = ¢n(ynvﬂn—1) n > 1
{ po = vg XKy (120)

where ¥, (y, ) : P(S*") — P(S?") is the continuous function given by

[ 7, 26) G0 = 1) (o, 1) Ko (20,422
bV ) = (121)
/ G (Vo — Ho(21)) dn(Zo, 21)

for all f € Cy(S*") and 5 € P(S*"). From the equations (120) we can quickly deduce the design
of general interacting particle resolutions. We will look at such algorithms in all details below
and provide enough detail for the reader to be able to generate these stochastic algorithms on a
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computer. For brevity we will write G, (X') instead of G,(},, — H,(X)). Now, the corresponding
particle system is modeled by a Markov chain (', (F},)n>0,¢ = (Cn)n>o0, Fy)) With state space

EM & (gryMNr o (g1 (M) < (N Ny) and Ny, N > 1 (122)

where
(17\7)1 = {1,...,N1} (N)QI {1,...717\71} X {17...,N2}
We will use the notations

Go = (G Grp) € (572 (52 vn > 0
and, to clarify the presentation, the points of the set (7)™t will be denoted by z = (2P1),, and,
the points of the set (S7)(M)2 will be denoted by = (z"172),, ,,. Recalling the descriptions (115)
and (117), this Markov chain has the following transition probability densities:

Ny
Pyéoedz) = [ v(def")Kq(28', dat") .. Kp_q(20ty, d2P )
p1=1
N; Ny
P cde/Eur=2) = [ I Kur(ePr dab??) . Ky (2700 da?'P?)
p1=1p2=1
R N Ni,N; G ( 11,22 xihilz)
n R
Fareds/6=2) = T 3 somm o= Sy (R 280)
p1=111,00= 12]07]1 1 ( ) 7"'7337’—1) 0 !
Finally, the approximation of the desired conditional distribution u, by the empirical measure
(a1 AN
€
5 I 1
I'L n AVI N2 Z Z n1-|-12
21 122 1

is guaranteed by proposition 4 and for every f € Cp(S*"), n > 1

lim E .
i B = f1) =

To check that this algorithm generalizes the one given above observe that the former transition
probability densities coincide with the transitions of the particle systems with simple interaction
described in section 4.2.1 when r = 1 and Ny = 1 and, they coincide with those of the interacting
particle systems with branchings described in section 4.2.2 when r = 1.

The choice of the parameters Ny, No, r requires a criterion for optimality. The result will probably
depend on the dynamics of state process and also on the dynamical structure of the observations.
Unfortunately no one has yet been able to give an effective method of solution.

Another idea is to study the performance of a modified version of the above algorithms which
includes an interactive updating/selection schedule r = r(n). For instance we may choose to re-
sample the particles when fifty percents of the weights are lower that %, with a convenient choice
of the parameter A > 0 and p > 2.
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