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Abstract

The stochastic filtering problem deals with the estimation of the current state of a
signal process given the information supplied by an associate process, usually called the
observation process. We describe a particle algorithm designed for solving numerically
discrete filtering problems. The algorithm involves the use of a system of n particles
which evolve (mutate) in correlation with each other (interact) according to law of the
signal process and, at fixed times, give birth to a number of offsprings depending on
the observation process. We present several possible branching mechanisms and prove,
in a general context the convergence of the particle systems (as n tends to co) to the
conditional distribution of the signal given the observation. We then apply the result
to the discrete filtering and give several example when the results can be applied.
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1 Introduction

The stochastic filtering problem consists in effectively estimating the conditional distri-
bution of a process (the signal) given the “noisy” information obtained from a related
process (the observation). The basic problem can be identified applications: signal
processing, radar control, satellite tracking, weather forecasting, speech recognition
are just a few of them (see, for instance, [21] and the reference therein). There are very
few cases when the problem admits a solution in closed form and therefore, efficient
numerical approximations to the conditional distribution are of great interest.

Several recently suggested approaches are based on the simulation of interacting and
branching particle systems. If suitable conditions are imposed on the signal semigroup,
the empirical measures of the particle systems can be shown to converge to the solution
of the measure valued dynamical system the evolution of the conditional distributions.
In this paper we design a particle system approach which allows us to combine the
branching and interacting mechanisms introduced in [4, 5, 6], [11, 12, 13, 14, 15] and
n [17]. Our particle approximations also cope with discrete time filtering problems in
which the signal is a non linear process with transitions that depend on all the data
observed in the past. The discrete time and measure valued processes under study
also arise in Statistical Physics. In the following we present a brief formulation of the
model.

We assume we can model the state space E as a locally compact metric space with
the associated Borel o-field B(E). We denote by M(E) the space of all finite non
negative Borel measures on I/ and by M (F) C M(FE) the set of probability measures.
M(E) and M;(E) are furnished with the weak topology. We recall that the weak
topology is metrisable and, under this topology, lim,, .o ptn, = p iff

n—oo

tim [ f@)nlde) = [ Jla)u(de), VS € Co(E),
E E

where Cy(£) is the space of bounded continuous functions functions on which we con-
sider the norm

|f1] = sup | f(z)].
F<I)

We consider now a set of transitions {K, , : M(£) - M(&) ; n > 1,p € M(E)}
which will represent the transitions of the (non linear) signal process. We denote by
pK the measure given by uK(A) = [, p(dz) K(z, A) where K is any transition on FE,
p € M(E) and A € B(E), hence

ViECE)  uK(f) = [ wlds) K(e,dz) 1), (1)

Using (1), the so-called nonlinear filtering equations which represents the dynamics



structure of the conditional distributions are decomposed into two separate mechanisms

{ 7A7n = \I}n(nn) n >0 To € Ml(E) (2)

Mt = K5
where U,, : M{(F) — M;(E), n > 0 are applications given by

_ 1(gnf)
1(9n)

VieC(E)  Wn(n)f

and g, : £ — IR, n > 0 are bounded positive functions. In nonlinear filtering settings
the first mechanism

updates the distribution 7,, given the current observation at time n and the second one

T — T K1 3,

is called the prediction and does not depend on the observation data at time n + 1,
but may depends on all the data observed up to time n.

When the functions g,,n > 1 are constant, i.e., g,(z) = 1 for all # € E the dynami-
cal system (2) describes the time evolution of the density profiles of McKean-Vlasov
stochastic processes with mean field drift functions. Such equations also occur in Sta-
tistical Physics (see [7],[29] and references therein) and it was proposed by McKean and
Vlasov to approximate the corresponding equations by mean field interacting particle
systems. A crucial practical advantage of this situation is that the dynamical structure
of the non linear stochastic process can be used in the design of an interacting parti-
cle system in which the mean field drift is replaced by a natural interaction function.
Such models are called in Physics Masters equations and /or weakly interacting particle
systems. They are now well understood (see [1], [8], [7],[18], [29], [30] and references
therein). Under rather general assumptions, it was shown that the particle density pro-
file (that is the random empirical measures of the particle systems) converges towards
the solution of (2) as the number of particles is going to infinity. As a consequence,
propagation of chaos occurs.

In contrast to the situation described above the conditional distributions cannot be
viewed as the law of a finite dimensional stochastic process which incorporates a mean
field drift [3]. We therefore have to find a new strategy to define an interacting particle
system which will approximate the desired distributions.

The paper has the following structure:

In section 2 we introduce a branching and interacting particle system (BIPS)
model and we study the connections between several particular classes of particle ap-
proximations. The study the convergence of the empirical measure of the system when
the initial number of particles tends to oo is performed in section 3. The application
of the particle approximations described in section 2 to non linear filtering problems



is explored in section 4. We end this paper with some applications of the former
BIPS approximations to some practical problems arising in advanced non linear signal
processing.

2 Branching and Interacting particle Systems

The BIPS under study will be a two step Markov chain

Branching ~ .~ _ Mutation

(Nnvgn) — (Nnagn) — (Afn-l—lagn-l—l) (3)
with product state space & = U, py({a} x £%) with the convention K% = ) if @ = 0.
We will note F = {F,, E, :n> 0} the canonical filtration associated to (3) so that

Fn C ﬁn CFn—I—l

The points of the set %, « > 0 are called particle systems and are mostly denoted
by the letters 2 and z. The parameter o € IN represents the size of the system. The
initial number of particle Ny € IV is a fixed non random number which represents the
precision parameter of the BIPS algorithm.

2.1 Description of the model

The evolution in time of the BIPS is defined inductively as follows.

e At the time n = 0:
The initial particle system & = (&}, .. .,févo) consists of Ny independent and
identically distributed particles with common law 7.

e Evolution in time:
At the time n, the particle system &, consists of N,, particles.
If N,, = 0 the particle system died and we let Kfn =0and N,y; =0.
Otherwise the branching correction is defined as follows

1. Branching Correction:
When N, > 0 we associate to &, = (£} ,57]1\7") € EN» the weight vector

n?

W, = (W},...,Whn) € RN" given by

Ny ) 1 Ny
We s = U, (m(&, here m(&,) = — Ogi
D Wby = Walm(E))  where mi€) = -3 &

Then, each particle &, 1 < i < N, branches into a random number of
offsprings M}, 1 < i < N,, and the mechanism is chosen so that

E(M,|F,) = N, W, (4)
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and there exists a finite constant C' < oo so that for any f € Cy(E)
Nn . .
E (I Y M f(E) = NaWy(m(&)) f1? |Fn) < C Nl fI17 (5)
=1
At the end of this stage the particle system En consists of
N,=> M,
=1

particles denoted by

k—1 k-1
=6 1<k<N, Y My+1<i<y M,+M;  (6)

2. Mutation transition:

If fn = 0 the particle system dies and N,4+; = 0.
Otherwise, each particle moves independently of each other starting off from
the parent particle branching site &, 1 < ¢ < N,,, with law

- i .
I(’ﬂ-l-l,m(gn)( n? d.f) 1 S ¢ S Afn
where m(gn) is the empirical measure associated to En
During this transition the total number of particle doesn’t change (N,41 =
N,) and the mechanism can be summarized as follows, for any a > 0 and
z € B

P (gn-l-l € d-rlgn = Zaﬁn = 04) = H Krn+1,m(z)(2iv dz)
=1

where dr = dz! x ... x dz® is an infinitesimal neighbourhood of z € E® with
the conventions dz = () and [[{2; = 1 if o = 0.

Note that the mutation of each individual offspring E;, 1<i<N, depends
on the entire configuration &, of the system. In other words between branching
corrections the particle system behaves itself as a interacting particle system.

The above BIPS model enables a unified description of the various particle system
approximations presented in [4, 5, 6], [11, 12, 13, 14] and in [17]. We have deliberately
left open the question of the choice of the branching correction transition and we will
devote a subsection to present several natural choices which can be used in practice.
Before that, let us point out some important properties of the BIPS algorithm.



Proposition 2.1 The process N = (N,),>0 is a posilive integer valued martingale
with respect to the filtration F' = (F,),>0 with the following properties

E((N”—1)2)<C" and P (N, =0)< " (7)

No = Ny No

Proof:
JFrom the construction of the branching corrections we have

V>0 E(Np|Fyy) = Nu_y I(Np_y > 0) = Nyu_s
It follows that N is an F-martingale. Similarly, (5) implies that
E((N, — N,_1)*|F,_1) <CN,
It is then easy to show that
Yn>0  E(N})<NG+CnNg

or, what amounts to the same thing

N, 2
E < n 1) <En
No - No
The last assertion is a consequence of this inequality. To be more precise, for any
€ €]0, 1[ we have

P(N, >0) > P(N, > (1 —¢€)Ng) > P(|N,, — Ng| < eNyp)

Then, using Tchebitchev’s inequality we find that for any € €]0, 1]

Cn
P(N,=0)<
( )_N0€2

Letting € — 1 one obtain the desired inequality. |

Remark 2.2:
Using Doob’s maximal inequality, from Proposition 2.1 we get that

N )2 Cn .
F su <— -1 < — .
(k:L.P.,n No ) - No 171
Remark 2.3:

The last inequality in (7) yields

C
P(Ny >0, VYkel[o,n])>1- Vn.
Ng




2.2 Branching Corrections

The purpose of this subsection is to present several examples of branching corrections
satisfying conditions (4) and (5). We will distinguish two types of branching numbers
laws. In the first situation the branching numbers M = (Mn)nZO are chosen indepen-
dently each other. In contrast to this we present an example of negatively correlated
branching numbers.

2.2.1 Independent Branching Numbers

When the branching numbers M,, are independent conditionnally on F,, condition (5)
is equivalent to

Nn
£ (3 (i - vwd)* it s ) < o
=1

where the weight vector W,, = (W}, ..., W) is given by

) z
Wi = N‘%Lﬁ)j 1<i<N,
Zj:n1 gn(&n)
In this situation it is natural to use a branching number law so that

E(M,|F,) = N,W,,  V(M,|F,) <CN,

where V(M,,/F,) denotes the conditional variance of the vector M, with respect to
F,. Let us now present some classsical examples of independent branching numbers.

Bernouilli branching numbers:

The Bernouilli branching numbers were introduced by two of the authors in [6].
They are defined as a sequence M,, = (M,,, 1 << N,,) of conditionally independent
random numbers with respect to F),, with distribution given for any 1 < ¢ < N,, by

e(NWEY if k=[NW:]+1

P(Mn = k|Fn) = { 1— €(NnW7é) if k= [anWé]

where [a] (resp. €(a) = a — [a]) denotes the integer part (resp. the fractional part) of
a € IR. The required conditions (4) and (5) are derived easily from the fact that

E(M|F,) = N.W,
V(M!|F,) = e(N,W)(1—e(N,WE)) €[0,1/4]
(8)
for any 1 < < N,,. Using the above formula we see that (5) is satisfied with C' = 1/4.

In addition it can be seen from the relation Zf\;’ll(NnWé) = N,, that at least one
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particle has one offspring (cf. [4] for more details). Therefore using the above branching
correction the particle system never dies.

Poisson branching numbers:

The Poisson branching numbers are defined as a sequence M,, = (M!, 1 <i < N,,) of
conditionally independent random numbers with respect to F,, with distribution given
forany 1 <: < N, by

(N W)

Vk20  P(M; =kF) = exp(-NaW)) 5

In this situation, we have
E(My|Fy) = NaW;, = V(M| Fy)
so that (5) holds with C' = 1.

Binomial branching numbers:

The binomial branching numbers are defined as a sequence M,, = (M!, 1< i < N,,) of
conditionally independent random numbers with respect to F,, with distribution given
for any 1 <1 < N, by

YO<Kk<N, PM.=kF,)=Ck (W)* (1 -wiN*k
In this case (4) and (5) follows from the fact that for any 1 <i < N,
E(M|F) = NW,

for any 1 <7 < N,,. Moreover, using the above we see that (5) is satisfied with

2.2.2 Branching numbers with negative correlations

We continue the account of the standard branching laws which can be used in the
correction step of the algorithm. We have presented sofar some classes of independent
branching numbers which give a good rational representation of the current weights.
However, for these branching corrections, the total number of particles is not fixed but
random. If

M,, = Multinomial (Ny,, W}, ..., W) (9)
then the population size is preserved. In this case we have for any 1 <7 # j < N,
E(M.|F,) = N,W;
E((M}. - N,WOAF,) = NWL(1— W)
E((M.— N,W.) (M} — NJW)|F,) = —N,W.Wi



Using the above we find that for any f € Cy(E£),

N, 2
E ((Z M, f (&) - anm(fn))f) |Fn> < Ny W (m(&n)) (F = W (m(&)) )

Therefore we see that (4) and (5) are satisfied with C' = 1. When the transition
probability kernels K, , satisfy the assumption

V(z,z2) € K? K, ,(z,{z})=0 (10)
it does follows that for any 1 < i # j < N, & # & P-a.s.. In this case the weights
M, may be written as

VI<i<N, M =Card{l1<j<N,:& =¢}

where En = (A}l, .. ,57]1\7") are conditionally independent random variables with respect
to F, with common law ¥,,(m(&,)). This model of branching numbers was introduced
by one of the authors in [11].

Let us look at the special case of a BIPS with multinomial branching corrections.
In view of the preceding considerations the size of the systems (5n,§n :on > 0),
n > 0, does not change and is equals to Ng. In addition when (10) holds the dynamics

structure of the latter can be written in the simplest form:

e Initial Particle System

P(& € dx) H no(dz?)

e Branching Correction

R No 1 No
p=1 0;=1

e Mutation Transition

No
P&y €dz|6 =) = H I(n-H Ly o s (P, d2P)
p=1 "o

i=1 9zt

We note that (¢, : n > 0)is a EVo-valued Markov chain given by

No
P, €dalé=2)=]] @ 25 (dz?) (11)
p=1

where

Q(n,n)=Vor(MKpw,_,(y V1€ Mi(E)

These constructions first appear in [11] and were developed in full details in [12].
Large deviations principles for interacting particle systems of the form (11) and their
applications to non linear filtering problems are described in [14].



2.3 Structural Properties

One natural question we address now is the difference between BIPS with condition-
ally independent branching numbers and BIPS with multinomial branching numbers.
Before getting down into the details it may be helpful to make a couple of remarks.
In the first place it should be note that the BIPS described above using Multinomial
branching and Poisson branching are related to the continuous critical branching su-
perprocesses and the Fleming-Viot processes (see Dawson [9] and references therein)
and the same kind of relations exist between the BIPS presented above.

Total mass process

As their continuous time version, the main difference between the two types of BIPS
presented above is that the population size of the BIPS with Multinomial branching
is constant but the population size of the BIPS with Bernoulli, Poisson or Binomial
branching is a martingale with quadratic characteristic

n—1

n—1
<N >,=Y V(Mi|Fp) <> Ny

Conditional BIPS

As in continuous time settings the BIPS with multinomial branching arises by condi-
tioning a BIPS with Poisson branching to have constant population size.

To make all this more precise we introduce some additional notations. For any Ng > 1
we denote

(Qv (Fna ﬁn)nZOv (Nm gna iﬁnvgn)nzm PI\I;/{)B)

the discrete time Markov model which realizes the BIPS with multinomial branchings
and starts with Ny particles. By construction of the multinomial corrections we have

VYn >0 N, = Ny Py — as.
On the other hand we denote
(Qv (Fm ﬁn)nZOv (Afm £n7 iﬁ?ﬂugn)nzm P§0B)

the discrete time Markov model which realizes the BIPS with Poisson branchings and
starts with Ng particles.

Proposition 2.4 For any A € V,,(F, V ﬁn) we have

Py (A

10



Proof:
First we note that conditionally on the event

{N =Ny} = m {Nn = No}
n>0

we have R
Vn >0 (&, &) € ENo x ENo PEP — as.

On the other hand, by construction of the mutation transition we have for any n > 0,
z,z € FNo

P (En € dz|N = No,&po1 = 35) = PP <5n € dz|§n_1 = 1‘)

Using the above observations and the fact that changes in the number of particles only
take place at branching corrections, we see that to prove (12) it suffices to check that
for any n > 0, z,z € FVo

P} (En € dz|N = Ny, &, = x) =Py° (En € dz|¢, = x)

Now, by definition of the Poisson branching transitions, for each n > 0, z € ENo and
ke INYo

PP (M, =k|N = No, & =2) = Pi° (M, =k|N, = No,&, = )
N Nk
1 T i (NoWy)™
= Z(n. No) H exp (—NoWy) ™
’ =1 zr
with )
Wé:% V1<i< N
2oy gn(a?)
and N
T i (NoWi)k
Z(n, No) = S ] exp (—NoW;) =

ki+...4+knyg=No =1

It is not difficult to see that Z(n, No) = e~No Ny!' N0 so that
PE® (M, = k|N = Ng, &, = z) = Multinomial (No, W}, ..., W)
Or, what amounts to the same thing

PIE (M, =k

N = No, &, =) = Py (M, = k[&, = =)

This means that the conditionally on the event {N = Ny} the Poisson branching
corrections become multinomial corrections. This end the proof of the proposition m
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The continuous time version of this result was discovered by Etheridge and March
in [16] in their study of the connections between critical branching superprocesses and
the Fleming-Viot interacting particle systems.

Before moving on let us remark that each time the multinomial branching numbers
described in section 2.2.1 are defined using the population size of the system at last
time. Furthermore this transition keeps unchanged the total size of the system.
When using multinomial branching laws one still have the freedom to adapt the size
parameter so that to produce a given number of offsprings.

To this end, let (a,; n > 0) be the path numbers of offsprings we want to have at each
stage of the algorithm (i.e. Ng=ao, N1 =ay,..., Ny =ay,...).

To do this the corresponding branching laws are defined in replacing at each time n
the law (9) by the multinomial distribution

M, = Multinomial (@41, W},..., W) (13)
Let us denote by

(Q7 (Fm ﬁn)n207 (Nm fna ZVnagn)nZO; Pl\l;OB(a))

the discrete time Markov model which realizes the BIPS with the multinomial branch-
ings corrections (13) and starts with Ny particles. Using the same line of arguments
as before one gets

Proposition 2.5 For any A € V,(F, V ﬁn) we have
Pyl (AIN =a) = P%B(a) (A) Pyl — a.s.

The continuous time version of this result was proved by Perkins [25] in his precise
study of the structural properties of Dawson-Watanabe and Fleming-Viot processes.

2.4 Complexity and Efficiency

The multinomial branching numbers ensure that the population size is constant and
prevent extinction or explosion of the algorithm. The price to pay is that the multino-
mial branching correction is time consuming;:

For instance the sampling of a measure concentrated at Ny points using the standard
inversion formula is performed by an algorithm which uses Ny tests. It follows that
N independent sampling of the same measure will use N2 test operations. In contrast
to this the Bernouilli distribution is extremely time saving. Using the same inversion
formula we just have to use one test operation. So that Ng independent sampling of a
Bernouilli distribution will use no more than Ny test operations.

In terms of complexity it seems then logical to choose Bernouilli branching instead of
multinomial. Nevertheless the precision of the particle approximation can be altered by

12



the random fluctuations of the population size associated to a given choice of branching
law.

The BIPS aproach introduced at the beginning of this section leads to a variety of
random particle algorithms. In section 2.2 we proposed several examples of branch-
ing corrections that can be used in practice. There are actually no techniques for
determining the “optimal choice” of branching correction. Nevertheless if we want to
estimate the integrals 7, f at each time n > 0, for some test function f € Cy(F), the
key condition (5) page 5 is pivotal. Roughtly speaking it ensures that the dynamics
structure of the BIPS during each branching corrections is not far from the updating
transition of the original system (2). Before discussing the meaning of conditions (4)
and (5) let us recall the conditional expectation of a M(F)-valued random measure
relative to a o-field (cf. H.Kunita [20]). Let g(w) be an M(E)-valued random variable
defined on a probability space (2, F, P). The conditional expectation of u relative to
a sub-o-field G C F is defined as a M(F)-valued random variable F(u/G) such that

F(E(p/G) = E(F(p)/G)

holds for all continuous affine functions F : M(F) — IR (F € C,(M(FE)) is affine if
there exists a real constant ¢ and a function f € Cy(E) such that for every v € M(F)

F(v) = ¢+ v(])).

The first condition (4) ensures that the estimator is unbiased, i.e.,
Nn )
E(Y_ M, 0 |Fn) = No W (m(&5))
=1

This property of being unbiased is natural and expresses the fact that the averaged
estimate coincide with the desired result. The second condition (5) is related to the
deviation of the estimate. Thus, it is, again, natural to suppose that an unbiased
branching correction is better, if its deviation is smaller.

Let us examine the deviation

Nn
E (l Y M f(E) = NaWo(m(&)) f1? IFn) (14)
i=1
associated to the branching number laws presented in section 2.2.
SN V(ME|F,) f(€)?  (Cond. Independent branching numbers)

N, U, (m(E))(f — W (m(£)) )2 (Multinomial branching numbers)

Note that the last deviation can be written

TS wiwl (r(€) - 1))
i#]
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We quote a result of two of the authors [4, 5, 6] who showed that the Bernouilli
branching numbers realize the minimum deviation (14) with respect to all conditionally
independent branching numbers.

The “optimal choice” of the branching correction at each time n > 0 strongly depends
on the function f € Cy(F) and on the weight vector W,, = (W}, ..., Wln):

Suppose we want to estimate the integrals W, (n,) f, n > 0, where f is constant function
on some Borel subset B C F.

For any weight vector W,,, the deviation (14) corresponding to a multinomial branching
correction is null as soon as the particles & belong to B for any 1 < i < N,,.

On the other hand, if the weight vector W,, is given by

Dn
W, = —
Nn

with

N,
pro=(phyo )y e NV and Y ph =N,
=1

the multinomial branching correction is null for any test function f.

3 Convergence Theorems

In the previous section we introduced a general model of particle systems which move,
die and produce offsprings in accordance with the dynamics structure of the measure
valued process (2). In this section we prove that the so-called particle density profile,
i.e., the random empirical measure of the system, converges weakly to the solution of
(2) as the initial number of particle tends to infinity.

The main difference from the interacting particle models developped in [11] and [12]
is that the total number of particles is not constant but forms an integer valued mar-
tingale. For this reason the basic state space for the study of the convergence is now
M(FE) instead of My (FE).

Let us introduce the random measures which will be used in the sequel. We denote by
(Y, 5N s n > 0) the random measures given by

1 | S
N _ . N - .
N, = ; O¢i and 0, = N ; 5& (15)

102_

with the convention ) 5 = 0 the null measure on F.
It is also convenient to introduce the normalised measures, (m(&,), m(&,) ; n > 0)

_ () ey AN
VEGE)  mE)f =T ad  m@)f =T (6)

14



with the convention m(&,)f = 0 (resp. m(&,)f = 0) if nY (resp. 7Y ) is the null
measure on F.

When the particle systems &, (resp. En) is not dead m(§&,,) (resp. m(gn)) is the empirical
measure associated to &, (resp. én)

In a first subsection we summarize the key concepts and the technical tools necessary
to carry out the proof of limit theorems. For further information the reader is referred
to Parthasarathy [24] and or Billingsley [2]

3.1 Measure Valued Random Variables

Recall that M(F) with the topology of weak convergence is a complete separable
metrisable space with metric p defined as follows

P, v) =3 27" |ufm — vl A1 Yp,v € M(E) (17)
m>0

where (fy.)m>0 is a suitable sequence of uniformly continuous functions such that
|| fr]] <1 forall m>1and fop =1. In this paper we study sequences of M(F)-valued
random variables. The basic state space for the study of the weak convergence is the set
of all probability measures on M(£) denoted by M;(M(E)). By C,(M(£)) we denote
the space of all bounded continuous functions on M(F) furnished with the uniform
norm
IFll= swp |F(u)
reM(E)

For an F € C,(M(L)) and ® € M; (M(£)) we write

oF = [ Fin) (dp)

We say that a sequence (®n;,)n, >0, P, € M (M(E)), converges weakly to a measure
® € M, (M(E)) if

VEECM(E)  lim Oy F = OF

Now we introduce the Kantorovitch-Rubinstein or Vasershtein metric on the set
M;(M(E)) defined by
D@, ) = int{ [ p(uv) Od(uv) : © € My(M(E) x M(E)
pro® =>®and ppo O =V} (18)

(see for instance [30] and references therein). The metric D gives the topology of weak
convergence on M;(M(F)).

Let (p, 1Ny ) No>1 be a sequence of measure valued random variables on some prob-
ability space such that py, have distributions @y, € M;(M(£)), No > 1 and p is a

15



measure valued random variable with distribution ® € M;(M(£)). We can apply the
monotone convergence theorem to prove that

D(®n,, @) < > 27" Ellpng fm — pfim| A 1]
m2>0

so by the dominated convergence theorem

Y/ € Cy(E) v S — pf]] =0 = lim D(®y,, ®)=0  (19)

lim &
No—+o0 No—+oo
In addition, if g is a fixed probability distribution the functions
Fuw) =Ivf —nufIn1, [ eC(E)
are continuous for the weak convergence topology in M(F) and therefore

VfeCy(E) lene f —pfIA1] =0« lim D(®y,,P)=0. (20)

lim F
No—)+OO No—H—oo
3.2 Convergence Results

The aim of this section is to prove that the random measures introduced in (15) as
well as their normalizations (16) converge weakly to the solution of the system (2). We
start with the following lemma

Lemma 3.1 Let us suppose that, for all f € Cy(F), we have

Jim B [0 - m(n)] =0 (21)
then, for all f € Cy(E)
Jim B[ - in(n)’] =0 (22)

Moreover, let us suppose that there exists a constant c,, such that for all f € Cy(F), we
have

2
B [0 - m(n)] < =l (23)
then, as well, there exists a constant ¢, such that for all f € Cy(F)
. 2
B0 - intn)] < =M (20
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Proof:
If N, > 0, then we have the following consecutive relations

1y (9nf)  Ma(gnf)
m(9n)  n(gn)
i (9nf)  n (9nf) i (9nf)  a(9nf)
"7711\7(971) N (gn) N (gn) N (gn)

V() (F) = Un(n)(f) =

1 | N B
< o ) = )|
AL |~ ”
Condition (5) yields
C

B3 - 0t ) 0) 10V > 0)] < 1P (26)

and Proposition 2.1 tells us that

Cn

P(N,=0) < Vo (27)

Putting together (21), (25), (26) , (27) and the fact that 7, (f) = ¥, (n,)(f), we obtain
B |0 - in)’]

= & (D) 10 = 0] 4 8 [(2() ~ ) 10860 > 0]

_ Cnll/IP 4
< + 3 WP+ s B [ (1 00) = me0) |
o I | (2 0) = mata)| (28)
hence (22) holds true. Also from (23) and (28), we get (24). ]

Theorem 3.2 Lel us suppose that the mappings . — K, ,f, n > 0, defined on M(E)
with values in Cy(E) are continuous (pointwise). Then for all n > 0 and for all f €

Co(E)

Jin B (0 -mm)] = o, (29
Jim B (i -n0)] = o (30)

17



Moreover if for every f € Cy(E), v € M(E) and n > 1 there exist some constant C,,(v)
and a finite set of bounded functions M, (v) such that

Vpe M(E)  ||Knuf = Knufll SCu) Il Y2 Ivh — ph (31)

then for all n > 0 there exist constant c,, ¢,, such that for all f € Cy(F)

e[ - min)] < D (32)
e[ - )] < @MIE (33)

Proof:

The previous lemma tells us that (30) follows from (29) and (33) follows from (32),
thus we only need to prove (29) and (32) which we do by induction. The initial step is
satisfied by hypothesis, since, using the independence of the initial distribution of the
particles, we have

9 N ) 9 2
B[ -w0)] = 37 =8 [(r&) - min) ] < ]
We show now that )
i 8| (40 - m(n)’] =0
implies
Mim B (nivﬂ(f) - nn+1(f))2] =0.
Since P(Ny41 =0) < g?\,—Hl (Proposition 2.1), we have
E [(nﬁl(f) 1 (1) (N = o>] = E|(+1(/)* (N1 = 0)]
Cln+ 1) |If|
< N ;

hence we only need to concentrate on the set {N, 41 > 0}. For N,,1; > 0, we have that

T (f) = g1 (f) = @ w() i K i (f)
= Ky (f) = 1a K, in (f)
+nn1<m (f) = Ko ,nn<f) (34)

Using the induction hypothesis we have that

i 81K () = 1K ()] = 0

No—00

18



and using the Lebesgue Dominated Convergence theorem and the continuity of the
mapping u — K, , f we get

2
Jim B [y (1) = ik ()] =0
hence our claim holds true. For the second part of the claim we proceed similarly by
induction and use the bound (31) instead of the Dominated Convergence theorem and
the fact that for all » > 0 and g € M(E) we have || K, , f|| < || f]]. [

Theorem 3.2 and the form of the metric p introduced in (17) provide the following
straighforward corollary

Corollary 3.3 If, as in Theorem 3.2, p — K, ,f, n > 0, defined on M(E) with values
in Cy(F) are continuous (pointwise) then, for all n > 0, limy, oo F {p(ﬁg,ﬁn)} =0

and impy 00 F {p(ﬁfy,ﬁn)} = 0. Moreover, if for every [ € Cy(F), v € M(F) and
n > 1 there exist some constant C,(v) and a finite sel of bounded functions H,(v)
such that condition (31) is satisfied, then for all n > 0 there exist constant ¢, and

¢, such that F [,0(777]1\7,77”)} < \;”N and FE {p(fyi\[,ﬁn)} < \?"N, where p is the melric
introduced in (17). In both cases, we obtain that n, respectively 7Y, converges to n,,
respectively 7y, in probability. Under the same condilions, similar properties are valid

Jor the normalised measures (m(&,), m(&,) ; n > 0) introduced in (16).

The following are some examples for which condition (31) holds true.

Example 1 If the transition kernels K, ,, n > 1, p € M(E) does not depend on the
measure (. condition (31) is trivially satisfied with

Cov, =1 and  Ha(v,[) ={[}

Example 2 If X = IR and the transition kernels K, ,, n > 1, p € M(FE) are given by

K, (z,dz) = \/% exp—% (z —/ an (7, u) u(du))2

where a, € Cy(IR*). We begin by noting that for any u,v € M(E) f € Cy(IR) and
x € IR we have

2

_z

e 2

Vor

Knf (@) = Ko f(2) = [ () (ehontoe) = elrtea)) © 2 g

where the functions I, ~(u,v) are given by

I, ~(u,v) = —% </ an(u, w) 'y(dw))Q +v / an(u, w) y(dw)
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for any (u,v) € IR*, n > 1 and v € M(FE). Using the fact that
V(. B) € B |e” =€’ < Ja— B (e +¢)
we can find a constant C' < oo such that

<C (14 |Z|)e||an|||z|

‘eln,,u ($7Z) — eInyV(a:VZ)

/an(x,u) p(du) — / an(z,v) v(dv)

This yields

”I(WHf - Krn,lffH S sup ‘/ an('rv u) :u(du) _/ an('rv ’U) V(dv)
zcIR

When functions (a, ; n > 1) have the form

R
an(z,z) = E by () cpr(2)

r=1

with b.,c, € Cy(IR), 1 <1 < R, we see that condition (31) holds and

Colv, =1+ lrSnraSXRHer (v, ) ={K, f, ¢, ;1 <r <R}

The BIPS algorithm with multinomial branching corrections have been extensively
studied in [11] and [12]. Unless otherwise stated, from now on we assume that the
Markov chain (Nn,f’n,ﬁn,én ; n > 0) is assumed to be defined using the Binomial
branching corrections introduced in section 2.2. Our aim is to prove the almost sure
convergence of the sequences 77Y f to 1, f as Ny — oo, for any time n > 0 and any test
function f € Cp(E£). We do this via a Borel-Cantelli argument. Since the branching

mechanism is of Bernoulli type, P(N,, > 0) = 1 for all n > 0 and

|- va )] < (Gt mv o) I

(=) s (3)

Theorem 3.4 Again let us suppose that, for every f € Cy(E), v € M(FE) and n > 1
there exist some constant C,,(v) and a finite set of bounded functions H, (v) such that
(31) holds then for all n > 0 there exist constants ¢, and é, such that for all f € Cy(E)

(e[ -min)]) < 20

(B[ - mtn)])’

20

IN

o

-

n

(36)

=

=~

IN

IS
>
3

(37)

=



Proof:
As before we prove the theorem by induction. The initial step is satisfied by hypothesis,
since, using the independence of the initial distribution of the particles, we have

N
5 [(Uév(f) _ Uo(f))4] — A14 ;E [(f(fé) - Uo(f))4]
tyr 20 - mn) e {(re) - mn)]
. 4';'%” _ (39)

Hence (36) is satisfied for n = 0 and ¢g = 4. We assume now that (36) is satisfied for
an arbitrary time n and prove that this implies that (37) is satisfied for n and (36) is
satisfied for n 4+ 1. From (25), (35) and the induction hypothesis we get that

A N L 2l e I
(E[(niw)—nn(f))]) wt UL 2l el

IN

L2\ el
= (n +77n(§n)) VN 39)

where g, = 2. To get (39) we assumed that ¢, > 1 (otherwise we take ¢, = 1).
MTan]l

Hence
= (v )
Cp=1|n74+ ——— )¢,
N (Gn)

Finally from (31), (34) and (39) we have,

(B | (1) - nn+1(f))4])% < %

where

np = () (1+cn<nn> ) ||h||)cn (40)
77n)

1 (9n) hetnt

Corollary 3.5 If the transition kernels K,, ,, n > 0 are independent of the measure
i.e., K, , = K,, then

(B0 - %(ﬁ)j)i < 4: (it+ =) L (41)
(el -no)]) <o T (o5 W o
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Corollary 3.6 Under the same condiltions as in Theorem 3.4 we have, almost surely,
lim 7y 00 nN =1, and lim 7y 00 i = ,.

Proof:
Using a Borel-Cantelli argument, from (36) and (37) we obtain that, almost surely,

N})iinoo |’77]zv(fm) - Un(fm)| =0

=0

1‘ i m) An m
77 (fin) = i (fm)
simultaneously for all the bounded continuous functions f,, which appear in the def-

inition (17) of the metric p (including the constant function fo = 1) which imply
lim Ny 00 (7Y, M) = 0, Tespectively, lim n, o0 p(7Y, f1,) = 0. m Remark 3.7:

The results of Theorem 3.4 and Corrolary 3.6 also hold for the empirical measures
(m(&,) and m(&,). This is straightforward from (36), (37) and the relations

(&) f —mfl = 10N —nuf + (1= No/No) m(&,) ]
I f = f1+ Il 1= na 1| £
imE)f —Tnfl = |05 = fuf + (1 = Nu/No) m(&) f|
N f = ]+ Y1 = G2 ]

IN

IN

4 Application to the Nonlinear Filtering Prob-
lem

The nonlinear filtering problem consists in computing the conditional distributions of
internal states in dynamical systems when partial observations are made and random
perturbations are present in the dynamics as well as in the sensor. The object of this
section is to apply the results obtained in the previous section to this problem. For a
detailed discussion of the filtering problem the reader is referred to the pioneering paper
of Stratonovich [28] and to the more rigorous studies of Shiryaev [27] and Kallianpur-
Striebel [19]. More recent developments can be found in Ocone [22] and Pardoux [23].
We don’t present here the standard change of reference probability approach since in
the model under study the signal transition will also dependent on the data observed
in the past and on the last value of the optimal filter but follow closely the approach
of Stettner [26] and Kunita [20].

The basic model for the general filtering problem consists of a ‘signal’ process
X = (X, ; n > 0) taking values in a locally compact separable metric space F and
an ‘observation’ process Y = (Y, ; n > 0) taking values in IR? for some d > 1. The
classical filtering problem is to find conditional distribution of the signal given the
observation process 7j,, where

Mnf =E(f(Xn)/Yo, ..., Y1, Yn)  VfEC(E), n>0
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with the associated one step predictor conditional probability 5,, where

S = B(J(X2) /Yo, Yar1) V[ €CH(E), n>0

We assume that the initial value Xy of the signal is an E-valued random variable
with law 79 € M;(F) and the one step transition of X at time n > 1, denoted by
(yn_lﬁn_l’ (possibly) depends on the condional distribution 7,,—; and on the observa-
tion data Y,,_;. The corresponding transition functions are connected to a given family
of transitions

{K,,; n€M(E), yc R}

satisfying the following condition

(H1)  For any y € IR, f € Cy(F) the mapping u € M(E) = K, ,f € C(FE) is
continuous (pointwise).

We also assume that the observation process has the form
Y, =ho(X,) +V, n >0

where h,, : F — IR are continuous and (V3 n > 0) are independent random variables
with density (g, ; n > 0) with respect to Lebesgue measure on IR? and that the
observation noise (V,, ; n > 0) and the signal (X, ; n > 0) are independent. The
function h,, and g, satisfy the following condition:

(H2) For any time n > 0, h,, is bounded continuous and g, is a positive continuous
function.

The problem of estimating the conditional distributions of the signal with respect to
the observations is of course related to that of recursively computing the conditional
distributions (9,7, ; n > 0). Kunita and Stettner showed that 7, and 7, satisfy the
following recurrence relations:

Proposition 4.1 (Kunita [20],Stettner [26]) Given the observations Y = y the
conditional distributions (1,7, ; n > 0) are solution of the M, (E)-valued dynamical
system given by

Tm+1 = T Rynﬁn

where
e y, is the given current observation at time n.

o K - is the transition function of the signal at time n.
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o UV, (yn,.): My(E) = My(F) is the continuous function given by

Ve My(E) VfeCy(E) Vnlyn ) = ! ]}(:fq)j;:y—n f:n?;)()x;)(gz()dx)

Equation (43) is usually called the non linear filtering equation. It involves two separate
mechanisms. Namely the first one

N ——— Vo (Yn, )

updates the predictor conditional distribution 7, given the current observation Y,, = y,.
This first mechanism is called the correction or the updating transition. The second
transition

ﬁn - ﬁn I(ynvﬁn
does not depend on the observation at time n + 1 and is usually called the prediction

step.

In this formulation the conditional distributions (7,7, ; n > 0) are parametrized by
a given observation record (y, : n > 0) and they are solution of the measure valued
dynamical system given by (43) so that the BIPS approaches introduced in section 2
can be applied. In the following, we treat only the BIPS algorithm constructed using
the Bernoulli branching corrections introduced in section 2.2. The algorithm with
multinomial corrections is described in all details in[11] and [12].

For the moment, we assume that the BIPS ((N¥,&Y), (N¥,£¥) ;n > 0) depend on the
arbritrary, but fized, observation record (y, ; n > 0). Then the approximation of the
desired conditional distributions (n¥,7Y ; n > 0) is guaranteed by the theorems 3.2,
3.4 and their corollaries. Indeed, using Corollary 3.3 Corollary 3.5 and Corollary 3.6,
we find:

Proposition 4.2 If the conditions (H1) and (H2) hold then, for any time n > 0, we
have limp, 00 E[p(nY¥, 72)] = 0 and limn, oo E[p(7Y,nY)] = 0 Furthermore, if we
assume that the transition K, , does not depend on the parameter p then limpny oo nNv
=Y and limy, 00 7YY = HY. and

wip et <o TT (e 2\ I
ElY () — n()] < 2 H(z +,y@g)) /Il (44

B - i) < 2 ]] ( o ) £ (45)
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We remove now the assumption of having a fixed observation record (y, ; n > 0) and
impose another condition of the filtering system:

(H3) For any time n > 0 we have m := F [H?:l (1 + % )} < 00
For any Ng > 1 and n > 0 we denote by &~ (AnN ) the distribution of the random

measure 7Y (ref. 7Y) and we denote by ®, (@, ) the distribution of the random
measure 7, (ref. 7,).

Proposition 4.3 Assume that the conditions (H2) and (H3) hold true and that the
transition K, , does not depend on the parameter . Then, for any time n > 0, we
have

Yn >0 lim D(@®Y,®,) =0 and lim D(®Y,®,)=0 (46)

N0—>oo No—)OO
where D is the Vasershtein metric introduced in (18).

Proof:
Straightforward from Proposition 4.2 and (19). ]

Corollary 4.4 If the transition kernels K, ,, are independent of the measure p the
conditions (H2) and (H3) are satisfied, then

Bl - mr) < W (a7)

Finally we present two examples for which (H3) is satisfied.
Example 3 As a typical example of a non-linear filtering problem, assume the func-
tions hy, : E — IR, n > 1, are bounded continuous and the densities g,, given by
1 L,
w(V) = —=——7% exp(—zv R, v
w0 = Grrgr P Y

where R, s a d X d symmeltric positive matriz. This correspond to the silualion where
the observations are given by

Y, =h, (X)) +V, Vn>1 (48)

where (Vy,)n>1 is a sequence of IR-valued and independent random variables with Gaus-
sian densities. il is easy to show that the exists a constant M} which depends only on
h, and R;l so that for all 1> 0

(@) = M exp(=[| B | [l [[Yal])
> Mg exp(=[[B | [nll* = [RZH 1l V1)

where |R;; || is the spectral radius of R, *. This implies, using the independence of the
random variables V,, and the existence of their exponential moments, thal condition

(H3) holds.
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Example 4 Suppose d = 1 and g,, is a bilateral exponential density

1
gn(v) = 3 oy, exp (—a,|v]) o, >0

In this case one can easily check that condition (H3) is salisfied.
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