
LIMIT THEOREMS FOR SOME BRANCHING MEASURE-VALUED PROCESSES

BERTRAND CLOEZ

ABSTRACT. We consider a particles system, where, the particles move independently according to a Markov process and
branching event occurs at an inhomogeneous time. The offspring locations and their number may depend on the position of
the mother. Our setting capture, for instance, the processes indexed by Galton-Watson tree. We first determine the asymptotic
behaviour of the empirical measure. The proof is based on an expression of the empirical measure using an auxiliary process.
This latter is not distributed as a one cell lineage, there is a biased phenomenon. Our model is a microscopic description of a
random (discrete) population of individuals. We then obtain a large population approximation as weak solution of a growth-
fragmentation equation. We illustrate our result with two examples. The first one is a size-structured population model which
describes the mitosis and the second one can model a parasite infection.
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1. INTRODUCTION AND STATEMENT OF RESULT

This work is devoted to a continuous time model for dividing cells already studied in [2, 4, 5, 7, 29]. This model comes
from biology and physic, we can interpret it as the size of cells or polymers. In [5], it is proved thatX can represent the
growth of some biological content of the cell (nutriments, parasites...). With biological reference, it is also explained
why the division time must depend of the motion. A long time behaviour for a similar discrete model is developed in
[18]. The proof is based on a many-to-one formula and an auxiliary process. In [24], we get a law of large number for
long time for a model with a continuum population. The proof is based on a spectral analysis and an auxiliary process.

Let us begin by describe our model. Let E be a Polish space. We start with one cell that have a weight x 0 ∈ E. For
each cell u, its weightXu evolves as a càdlàg strong Markov process (X t)t≥0, until it dies , an event such that

∫ β(u)

α(u)
r(Xu

s ) ds ∼ Exp(1)

where α(u),β(u) are respectively the birth date and the death date of the cell u. r is a non-negative, measurable
and locally bounded function. The cell u is then replaced by a random number K of offsprings, that follows a law
(pk(Xu

β(u)−))k∈{1,...,k̄}, on {1, . . . , k̄}, which depends of the mother’s weight. The states of the offspring are given
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by (F (K)
j (Xu

β(u)−,Θ))1≤j≤K , where Θ is a uniform variable on [0, 1], and, (F (k)
j )j≤k,k∈N a family of measurable

functions. The new born branches evolve then independently from each other. Let m =
∑

k≥1 kpk be the mean of
news offspring, we always assumem > 1 (supercrical case).

Before giving the main and general result, let us give an example. This models a size-structured population which
represents the cell mitosis. It is described as follows: X is a deterministic and linear function and, when a cell dies, it
divides in two equal parts. Formally,
(1) E = [0,+∞), ∀f ∈ C1, Af = f ′ and p2 = 1.

(2) ∀x ∈ E, ∀θ ∈ [0, 1], F (2)
1 (x, θ) = F (2)

2 (x, θ) =
x

2
.

In this case, one cell lineage is generated by:

∀f ∈ C1, ∀x ≥ 0, Gf = f ′(x) + r(x)
[
f
(x
2

)
− f(x)

]
.

This process have some application in computer science, it is sometimes called the TCP (Transmission Control Proto-
col) process. The emergence of TCP has spurred an enormous amount of research, we refer to [11, 23, 28, 37, 44] for
some result about approximation, long time behaviour or moments estimates. Our main result about this model is :

Theorem 1.1 (Convergence of the empirical measure for a mitosis model ). Assume (1-2). If there exists r, r̄, such that
0 < r ≤ r ≤ r̄ and r(x) is constant equal to r̄ for a large enough x, then there exists a probability measure π such that

lim
t→+∞

1

Nt

∑

u∈Vt

g(Xu
t ) =

∫
g dπ

where the convergence holds in probability and for any continuous and bounded function g. In particular for a constant
rate r, π has Lebesgue density:

(3) x (→ 2r
∏+∞

n=1(1− 2−n)

+∞∑

n=0

(
n∏

k=1

2

1− 2k

)
e−2n+1rx.

The explicit formula (3) is not new [45, 46], but here, we have a convergence, in probability, of the empirical measure
instead a convergence for the mean measure . We give an analogue result for r affine (see proposition 4.4).

When the rate r is constant, the process is simpler to study. For instance, we can calculate the moment (see proposition
4.6). We also obtain a speed of convergence for Z t =

∑
u∈Vt

δXu
t
, the measure which describes the population. Let us

explain how we estimate the distance between two random measureM 1,M2. We embed the space of random measure
with the Wasserstein distance [49, 54], defined by

W (p)
d (L(M1),L(M2)) = (inf E[d(M1,M2)

p])1/p

where the infimum runs over all couples (M1,M2) such thatM1 ∼ L(M1) andM2 ∼ L(M2). d is a distance on the
measure and L(·) stands for the law of the random variable. We take d = W (1)

|·| = W|·| is the Wasserstein distance on
(E, | · |). And we have:

Theorem 1.2 (Quantitative bounds). Under the same assumptions of theorem 1.1 and if r is constant, we get, for every
t ≥ 0,

W (1)
W|·|

(
L
(
Zx
t

Nt

)
,L

(
Zy
t

Nt

))
≤ |x− y|e−rt

W (1)
W|·|

(
L
(

Zx
t

E[Nt]

)
,L

(
Zy
t

E[Nt]

))
≤ |x− y|e−rt

where Zx (resp. Zy) is the empirical measure starting with one cell that have the weight x (resp. y) in [0,+∞) .

The proof is based on coupling andmatching arguments. This result does not give a bound ofW (1)
W|·|

(L (Zx
t /E[Nt]) ,L (π))

orW (1)
W|·|

(L (Zx
t /Nt) ,L (π)), where π is the limit measure of the theorem 1.1 (see remark 4.7).

To obtain a limit theorem, we follow the approach of [4]. In this paper, the cell’s death rate r is constant and the law of
offspring (pk)k≥1 do not depend to the mother. A many-to-one formula, which looks like the Wald formula, is proved:

(4) 1

E[Nt]
E
[
∑

u∈Vt

f(Xu
t )

]
= E[f(Yt)].
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Where Vt denote the set of the cell alive at time t, Nt = card(Vt) and Y is an auxiliary process with infinitesimal
generator

(5) ∀f ∈ D(A), ∀x ∈ E, Gf(x) = Af(x) + rm
∑

k≥1

kpk
m

∫ 1

0



1

k

k∑

j=1

f(F (k)
j (x, θ)) − f(x)



 dθ

where (A,D(A)) is the generator of X . This process evolves as X , until it jumps, at an exponential time with mean
1/rm. We observe that r is not the jump rate of the auxiliary process. There is a biased phenomenon, already described
in [4, 29] and their references. We can interpret it by the fact that the faster the cells divide, the more descendants they
have. That is why a uniformly chosen individual has an accelerated rate of division. It is like the bus paradox already
observed for the Poisson process. A possible generalisation of (4) is a Feynman-Kac interpretation as in [17, 29]:

E
[
∑

u∈Vt

f(Xu
t )

]
= E

[
f(Yt)e

∫ t
0 r(Ys)(m(Ys)−1)ds

]

where Y is an auxiliary process starting at x0 and generated by (5). An other formula with Poisson measure is given
in [5] to prove criterion for extinction. However, it is difficult to exploit these formulas. In this paper, we follow an
alternative approach, which is inspired by [36, 45, 46]. In the expression (4), Y can be understood as a uniformly
chosen individual. The problem is, if r is not constant, a uniformly chosen individual is not a Markov process. Our
solution is to choose this individual, with an appropriate weight which gives a Markov process. This weight is the
eigenvector of the following operator which is not a Markovian generator,

Ãf(x) = Af(x) + r(x)








∑

k≥0

k∑

j=1

∫ 1

0
f(F (k)

j (x, θ)) dθ pk(x)



− f(x)



 .

Under some assumptions, which are given thereafter, we have the following many-to-one formula:

(6) 1

E[
∑

u∈Vt
V (Xu

t )]
E
[
∑

u∈Vt

f(Xu
t )V (Xu

t )

]
= E[f(Yt)]

where Y is an auxiliary Markov process, starting at x0, generated by

(7) Gf(x) = Bf(x) + Λ(x)

[∑
k∈N

∑k
j=1

∫ 1
0 V (F (k)

j (x, θ))f(F (k)
j (x, θ)) dθ pk(x)

∑
k∈N

∑k
j=1

∫ 1
0 V (F (k)

j (x, θ)) dθ pk(x)
− f(x)

]

where
Bf(x) =

A(f × V )(x)− f(x)AV (x)

V (x)
=

2ΓA(f, V )(x)

V (x)
+Af(x)

and ΓA is the “carré du champs”operator associated to A (see (12)) and

Λ(x) =




∑

k∈N

k∑

j=1

∫ 1

0
V (F (k)

j (x, θ)) dθ pk(x)



 × r(x)

V (x)
.

Let us further agree to call E a determining class if two probability measures P,Q are identical whenever they agree on
E .

Theorem 1.3 (Weighted many-to-one formula). If
• for all t ≥ 0, Nt < +∞ a.s.
• Ã have eigenelements (V,λ0) with a positive V
• G generate a non explosive strong Markov process
• Db(G) = {f ∈ D(A) | ∀x ∈ E, | Gf(x)| ≤ 1} is a determining class.

then (6) holds for any non negative and measurable function f .

This formula seems to be complicated, but for the mitosis model it reduces to:

∀f ∈ C1, ∀x ≥ 0, Gf = f ′(x) + r(x)
2V (x/2)

V (x)

[
f
(x
2

)
− f(x)

]
.

We also observe a biased phenomenon. But contrary to [4, 29], in general, the bias is present in the motion and the
branching mechanism. it is, to our knowledge, a novelty. We can interpret the bias in the division part as follow: When
a cell dies, we have more chance to choose the daughter that is more appropriate for r (the bigger or the smaller for
example). For the bias in the motion, we can observe that if A is a vector field, Af(x) = α(x).∇f(x), (i.e. X is
deterministic) then B = A. But if A is the generator of a diffusion, B is also the generator of a diffusion but with
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biased drift. One interpretation is that we have more chance to choose the cell with smaller or bigger noise. Notice also
that we do not assume that λ0 is the first eigenvalue. So, it is possible to have some auxiliary processes. We can find
some result about existence of eigenelements in [19, 43] and theirs references. A first application of this formula is that
if Y is ergodic, with invariant measure π, we obtain

lim
t→+∞

1

E[
∑

u∈Vt
V (Xu

t )]
E
[
∑

u∈Vt

f(Xu
t )V (Xu

t )

]
=

∫
f dπ

for all bounded function f . We improve this result:

Theorem 1.4 (Convergence of the empirical measure for the long time). Assume the hypothesis of theorem 1.3 and Y
is ergodic with invariant measure π. Consider a real function g and assume that:

• There exists C > 0, such that for all x ∈ E, g(x) ≤ CV (x).
• There exists α < λ0, such that E[V 2(Yt)] ≤ Ceαt and

E



 r(Ys)

V (Ys)

∫ 1

0

∑

a,b∈N∗,a (=b

∑

k≥max(a,b)

pk(x)V (F (k)
a (x, θ))V (F (k)

b (x, θ))



 ≤ Ceαt.

Then we get,

lim
t→+∞

e−λ0t
∑

u∈Vt

g(Xu
t ) = W

∫
g

V
dπ

where W = limt→+∞ e−λ0tE[
∑

u∈Vt
V (Xu

t )] and the convergence holds in probability. If furthermore, E[V (Y t)] ≤
Ceαt and there exists c > 0 such that ∀x ∈ E, V (x) ≥ c, then,

lim
t→+∞

1

Nt

∑

u∈Vt

g(Xu
t ) =

∫
g

V
dπ/

∫
1

V
dπ in probability

For r constant, we have V ≡ 1 is an eigenvector and this theorem generalises [4, theorem 1.1].

In the other hand, our model is a microscopic interpretation, the population is discrete. And, we are also interested
by the behaviour of our process in a large population. More precisely, we take a sequence Z (n) distributed as Z , the
empirical measure, such that the starting distributionZ (n)

0 grows to infinity with n. Consider the following renormalised
processX (n) = Z(n)/n, and we get:

Theorem 1.5 (Law of large number for the large population). Let T > 0, assume r is bounded and one of the following
hypothesis:
(i) E is compact
(ii) E ⊂ R, |F (k)

j (x, θ)| ≤ |x|, and for all k ∈ N∗, there exists ψk : E → R such that:

∀x ∈ E, 1[k;+∞[(x) ≤ ψk(x) ≤ 1[k−1;+∞[(x) and ∃C, Aψk ≤ Cψk−1

So, IfX (n)
0 converges in distribution to a deterministic measureX0 inM(E) (embedded with the weak topology), then

X(n) converges in distribution in D([0, T ],M(E)) to a deterministic measureX , such that, for all f ∈ D(A),

(8)
∫

E
f(x) Xt(dx) =

∫

E
f(x) X0(dx) +

∫ t

0

∫

E
Ãf(x) Xs(dx)ds

where D([0, T ],M(E)) is the space of càd-làg functions embedded with the Skorohod topology [8, 33]

The second assumption is verified by any operator upper bounded by a differential operator [34, 40]. We can observe
that the equation (8) is the Fokker-Planck (or Kolmogorov) equation. Thus X is equal to the mean measure of Z
(e.g. f (→ E[

∫
E f(x) Zt(dx)]). This average phenomenon is predicable for two same reasons. The first is that after a

branching event, each cell evolves independently from each other, there is not interaction or mutation. The second is
the linearity of the operator Ã. From theorem 1.3, one can see that, in large population, the empiral measure (not the
mean measure!) behaves as the auxiliary process. The proof is based on the Aldous-Rebolledo criterion [33, 51] and it
is inspired by [25, 40, 52]. In these papers, there are other models of structured populations.

In the mitosis case, the equation, (8) can be written by:

(9) ∂tn(t, x) + ∂xn(t, x) + r(x)n(t, x) = 4r(2x)n(t, 2x)
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This equation was studied in [36, 45, 46]. In these papers, the constant case and the non constant case are separated.
For a constant r, the authors prove the following exponential decay

‖n(t, .)e−rt −N‖L1 ≤ e−rtC,

where N is the density of the stationary distribution. There implies a convergence in total variation. In contrast, we
also obtain the convergence to an equilibrium state for the size-structured population, and we have an exponential decay
in Wasserstein distance (see theorem 1.2). It is showed that this rate of convergence is optimal in [36]. For the non
constant case, we can also find an exponential decay,

‖(n(t, .)e−λ0t −N)V ‖L1 ≤ e−αtC,

proved by a perturbation method (α is explicit). This expression can be understood as a total variation decay for one
cell lineage. It is not easy to find a total variation bound by coupling method. When r is affine, we can find Wasserstein
bound in [11], for one cell lineage. In contrast, without speed of convergence, we find a convergence in the case where
r is affine (which means non bounded). Furthermore, for this model, we estimate the fluctuation between the empirical
measure and its approximation. It is defined by,

∀t ≥ 0, η(n)t =
√
n(X(n)

t −Xt)

Theorem 1.6 (Central limit Theorem for size-structured population). Let T > 0. Assume (1-2), r is bounded and η (n)
0

converges and

E
[
sup
n≥1

∫ +∞

0
1 + x X(n)

0 (dx)

]
< +∞.

Then the sequence (η(n))n≥1 converges in D([0, T ], C−2,0) to the unique solution of the following evolution equation:
For all f ∈ C2,0,

(10)
∫ +∞

0
f(x) ηt(dx) =

∫ +∞

0
f(x) η0(dx) +

∫ t

0

∫ +∞

0
f ′(x) + r(x)

(
2f

(x
2

)
− f(x)

)
ηs(dx) ds+ M̃(f)

where M̃(f) is a martingale and a Gaussian process with bracket:

〈M̃(f)〉t =
∫ t

0

∫ +∞

0
2r(x)

(
f
(x
2

)
− f(x)

)2
Xs(dx) ds.

And C2,0 is the set of functionC2, such that f, f ′, f ′′ vanish to zero when x vanishes to infinity. C−2,0 is its dual space.

Strucure of the paper: In the next section, we introduce some notations and give the generator of the measure-valued
process. In section 3, we focus our interest in the long time. We prove the theorem 1.3, others many-to-one formulas
and we deduce a general limit theorem. Theorem 1.4 is a consequence of Theorem 3.7 which gives similar result. Then
we give two instructive examples in section 4. The first one describes the cell mitosis, the proofs of theorem 1.1 and
theorem 1.2 are in this section. The second example can describe cell division with parasite infection. In this example,
we give different eigenelements. Finally the section 5 is devoted to the study of the large population. We prove the
theorem 1.5, and a central limit theorem for asymmetric cell division which implies the theorem 1.6. The last section
is devoted to several open problem around our model.

2. NOTATION AND PRELIMINARIES RESULTS

When we start with one individual with a weight x0 ∈ E, we use the Ulam-Harris-Neveu notation [4, 16] to describe
the population. We denote by ∅ the first cell. X ∅ is its weight. Then every cell is indexed by a label u = (u1, ..., um)
in the set:

U =
∞⋃

m=0

(N∗)m

with the convention (N∗)0 = ∅. The cell indexed by u is the daughter of the cell indexed by (u 1, ..., um−1) and the
mother of the cell indexed by uv = (u1, ..., um, v). v is between 1 and the number of offspring. We introduce the
following measure to represent the population at time t:

Zx0
t =

∑

u∈Vt

δXu
t
.

We get that the process Zx0 = (Zx0
t )t≥0 is a càd-làg measure-valued Markov process of D(R+,M(E)), the space of

càd-làg functions with values inM(E), the set of finite measures on E. And, if there will be no ambiguity we shall
note Z .
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Example 2.1 (Branching diffusion). IfX is a real diffusion, its generator is defined, for all smooth enough function f ,
by

(11) Af(x) = b(x)f ′(x) +
σ2(x)

2
f ′′(x)

where we assume that b and σ are such that there exists a unique process with this generator (see for instance the [30,
theorem 3.2 p.168]) and E = R or R∗

+. In this case, we can describe the population with a Poisson point measure
[25, 50]. This S.D.E. is defined, for all f : (t, x) (→ f t(x) in C1,2

b , by

Zt(ft) =Z0(f0) +

∫ t

0

∫

E
(Afs(x) + ∂sfs(x)Zs(dx)ds +

∫ t

0

∑

u∈Vs

√
2σ(Xu

s )∂xfs(X
u
s )dB

u
s

+

∫ t

0

∫

U×R+×N∗×[0,1]
1{u∈Vs−,l≤r(Xu

s−)}




k∑

j=1

fs(F
(k)
j (Xu

s−, θ))− fs(X
u
s−)



 ρ(ds, du, dl, dk, dθ)

where (Bu)u∈U is a family of independent standard Brownian motions and ρ(ds, du, dl, dk, dθ) a Poisson point mea-
sure on R+ × U × R+ × N∗ × [0, 1] of intensity ρ̄(ds, du, dl, dk, dθ) = ds n(du) dl dpk dθ independent from the
Brownian Motion. We have denoted by n(du) the counting measure on U and ds dl dθ are Lebesgue measures.

A necessary and sufficient condition for the existence of our process is there is no explosion, indeed N t < +∞ a.s..
This hypothesis is always assumed. For instance, we can assume that r is bounded by r̄. In this case, a coupling
argument implies E[Nt] ≤ E[N0] e(k̄−1) r̄ T .

In the next sections, the notation Cx means a constant which only depend to x, and the notation µ(1 + x p) means for∫
1 + xpµ(dx).

2.1. Infinitesimal generator and martingale properties. Denoted by (A,D(A)) the generator of X and L the gen-
erator of Z . For φ,ψ be two bounded functions belong to the domain of a generator A such that φ × ψ belong it too,
we recall that the associated "carré du champ" operator is defined by:

(12) ΓA(φ,ψ) =
1

2
(A(φ× ψ)− ψAφ− φAψ).

Lemma 2.2 (Semi-martingale Decomposition). Let φ be a bounded function belong to the domain of L. Then there is
a square-integrable and cádlág martingaleM such that:

∀t ≥ 0, Mt = φ(Zt)− φ(Z0)−
∫ t

0
Lφ(Zs) ds a.s.

and if furthermore φ2 be belong to the domain of L too, we get:

〈M〉t =
∫ t

0
2Γ(φ,φ)(Zs)ds.

So, for all ϕ ∈ D(A) and t ≥ 0,
Zt(ϕ) = Z0(ϕ) +Mt(ϕ) + Vt(ϕ)

where

Vt(ϕ) =

∫ t

0
Aϕ(x) +

∫

E
r(x)

∫ 1

0

∑

k∈N∗




k∑

j=1

ϕ
(
F (k)
j (x, θ)

)


− ϕ(x) pk(x) dθ Zs(dx) ds

=

∫ t

0
Zs(Ãϕ) ds

and if ϕ2 ∈ D(A), the bracket ofMt(ϕ) equal to

∫ t

0
2Zs (2ΓA(ϕ,ϕ)) +

∫

E
r(x)

∫ 1

0

∑

k∈N∗




k∑

j=1

ϕ(F (k)
j (x, θ))− ϕ(x)




2

pk(x) dθ Zs(dx)ds

Proof. For the first part, it is an application of Dynkin and Itô formulas, see [32, lemma 3.68] for instance. For the
second part a computation gives the generator of Z that is applied in iϕ and i2ϕ where:

iϕ : µ (→ µ(ϕ) =

∫
ϕ dµ and i2ϕ : µ (→ (µ(ϕ))2.
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So

Liϕ(µ) =

∫

E
Aϕ(x) + r(x)

∫ 1

0

∑

k∈N∗

k∑

j=1

ϕ(F (k)
j (x, θ)) − ϕ(x)pk(x) dθ µ(dx)

Li2ϕ(µ) = µ(Aϕ2) + 2µ(ϕ)µ(Aϕ) − 2µ(ϕ×Aϕ)

+

∫

E
r(x)

∫ 1

0

∑

k∈N∗

2µ(ϕ)×




k∑

j=1

ϕ(F (k)
j (x, θ)) − ϕ(x)



 +




k∑

j=1

ϕ(F (k)
j (x, θ)) − ϕ(x)




2

pk(x) dθ µ(dx)

!

We define the mean measure z, for all smooth enough function ϕ, by z(ϕ) = E(Z(ϕ)) = E[
∑

u∈Vt
ϕ(Xu

t )].

Corollary 2.3 (Evolution equation for the mean measure). If D b(Ã) = {f ∈ D(A) | ∀x ∈ E, | Ãf(x)| ≤ 1} is a
determining class, for ϕ ∈ D(A), we get

zt(ϕ) = z0(ϕ) +

∫ t

0
zs(Aϕ) +

∫

E
r(x)

∑

k≥1

k∑

j=1

∫ 1

0
ϕ
(
F (k)
j (x, θ)

)
dθ pk(x) − ϕ(x) zs(dx) ds

and it is the unique solution of this integro-differential equation for a fixed initial condition.

Proof. We have just to prove the uniqueness. Consider two probability measures (µ t)t and (νt)t solution of this P.D.E.
with same starting distribution µ0 = ν0. We consider the following norm defined by

‖m1 −m2‖ = sup
ϕ∈Db(Ã)

|m1(ϕ)−m2(ϕ)|

Then we consider one function ϕ in D(A) such that |Ãϕ| < 1, we have,

|µt(ϕ)− νt(ϕ)| =

∣∣∣∣∣∣

∫ t

0

∫

E
Aϕ(x) + r(x)



E




∑

k≥1

pk(x)
k∑

j=1

ϕ(F (k)
j (x,Θ))



 − ϕ(x)



 (µs − νs)(dx)

∣∣∣∣∣∣

≤ Cr̄,k̄

∫ t

0
‖µs − νs‖ds

Taking the supremum and using the Gronwall lemma we fill deduce that :

∀t ≥ 0, ‖µt − νt‖ = 0

and, as Db(Ã) is a determining class, uniqueness holds. !

Example 2.4 (Branching diffusion). We return at the example 2.1, in this case the generator is more explicit. We give it
for the function defined by Fϕ : µ → F (

∫
ϕ dµ) = F (µ(ϕ)), with F ∈ C2

b (R,R) and ϕ ∈ C2
b (E,R) (which is known

to be convergence determining [16]).

LFϕ(µ) =µ(Aϕ)F ′(µ(ϕ)) + µ(σϕ′2)F ′′(µ(ϕ))

+

∫

E
r(x)

∫ 1

0

∑

k∈N
F



µ(ϕ) +
k∑

j=1

ϕ
(
F (k)
j (x, θ)

)
− ϕ(x)



− F (µ(ϕ)) pk(x) dθ µ(dx).

3. LONG TIME’S BEHAVIOUR

We recall that

Ãϕ(x) = Aϕ(x) + r(x)




∑

k≥0

k∑

j=1

∫ 1

0
ϕ(F (k)

j (x, θ)) dθ pk(x)− ϕ(x)



 ,

and in all this section, we assume Ã have as eigenelements (V,λ0) such that ÃV = λ0V and V positive.
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3.1. Eigenelements and auxiliary process (Proof of theorem 1.3). Before the proof of theorem 1.3, we show that
Zt(V ) =

∑
u∈Vt

V (Xu
t ) have the same part thatNt =

∑
u∈Vt

1 for constant r.

Proposition 3.1 (Martingale properties). Under the assumptions of theorem 1.3, the process (Z t(V )e−λ0t)t≥0 is a
martingale thus it converges to a random variableW almost surely.

Proof. First, by corollary 2.3 we have:

zt(V ) = z0(V ) +

∫ t

0
zs(ÃV )ds

= z0(V ) + λ0

∫ t

0
zs(V )ds

and then zt(V ) = z0(V )eλ0t. Then, denote Ft = σ{Zs | s ≤ t}. The Markov properties, applies on Z , gives

E[Zt+s(V )|Fs] = E[Z̃t(V )|Z̃0 = Zs]

where Z̃ is distributed as Z . Then E[Zt+s(V )|Fs] = Zs(V )eλ0t and thus

E[Zt+s(V )e−λ0(t+s)|Fs] = Zs(V )eλ0s

!

proof of theorem 1.3. Let γt : f (→ zt(f × V )e−λ0tV (x0)−1. We get, for all t ≥ 0,

∂tγt(f) = zt(Ã(f V ))e−λ0tV (x0)
−1 − zt(f V )λ0e

−λ0tV (x0)
−1 = e−λ0tV (x)−1

[
zt(Ã(f V ))− zt(f × ÃV )

]

and thus,

eλ0t∂tγt(f) =

∫

E

V (x)

V (x0)
Bf(x) +

V (x)

V (x0)
Λ(x)

[∑
k∈N

∑k
j=1

∫ 1
0 V (F (k)

j (x, θ)f(F (k)
j (x, θ)) dθ pk(x)

∑
k∈N

∑k
j=1

∫ 1
0 V (F (k)

j (x, θ)) dθ pk(x)
− f(x)

]
zt(dx).

Finally, ∂tγt(f) = γt(Gf). Now, by Dynkin formula, the law of the auxiliary process (f (→ E[f(Y t)]) verifies the
same equation. The uniqueness, proved at corollary 2.3, gives the result. !

Remark 3.2 (Schrödinger operator and h-transform). In introduction, we said that Ã is not a Markov generator. We
can rewrite, for all ϕ smooth enough,

Ãϕ = Gϕ+ r(m − 1)ϕ

whereG is the Markov generator defined at (5) and r(m− 1) is a potential. Ã is called a Schrödinger operator, and its
study is connected to the Feynman-Kac formula [17]. Thus, the key point of our weighted many-to-one formula is a h-
transform (Girsanov type transformation) of the Feynman-Kac semigroup as in [26, 48] ( here, V e−λ0t is a space-time
harmonic function).

Remark 3.3 (Malthus parameter). Since, Thomas Malthus (1766-1834) were introduced the simpler model to describe
the population:

∂tNt = birth− death = bNt − dNt = λ0Nt =⇒ Nt = eλ0t,

in biology and genetic population study, λ0 is sometimes called the Malthus parameter.

Example 3.4 (Galton-Watson tree). If r and p are constant, V ≡ 1 is an eigenvector for the eigenvalue λ 0 = r(m−1).
So, Zt(V ) = Nt, and the population grows exponentially. This result is already know for N t. It is a continuous
branching process [3, 4].

3.2. Many-to-one formulas. In order to compute our limit theorem, we need to control the second moment. As in [4],
we begin by describe the population over whole the tree. Then we give a many-to-one formula for forks. Let T be the
random set according to represent cells having lived at a certain moment. It is defined by

T = {u ∈ U | ∃t > 0, Xu
t ∈ Vt}.

In the following, the propositions 3.5 and 3.6 are respectively the generalisation of [4, proposition 3.5] and [4, proposi-
tion 3.9].
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Proposition 3.5 (Many-to-one formula over the whole tree). Under the assumptions of theorem 1.3, for any non-
negative measurable function f : E × [0,+∞) → R we get,

E
[
∑

u∈T
f
(
Xu

β(u)−,β(u)
)]

= V (x0)

∫ +∞

0
E
[
f(Ys, s)

r(Ys)

V (Ys)

]
eλ0sds

Proof. First we have, for all u ∈ U ,

E
[
1{u∈T }

∫ β(u)

α(u)
f(Xu

s , s)r(X
u
s )ds

]
= E

[
1{u∈T }f

(
Xu

β(u)−,β(u)
)]

because

E
[
1{u∈T }

∫ β(u)

α(u)
f(Xu

s , s)r(X
u
s )ds

]
= E

[
1{u∈T }

∫ +∞

0

∫ τ

α(u)
f(Xu

s , s)r(X
u
s )ds r(X

u
τ )e

−
∫ τ
α(u) r(X

u
t )dt dτ

]

= E
[
1{u∈T }

∫ +∞

α(u)

∫ +∞

s
r(Xu

τ )e
−

∫ τ
α(u) r(X

u
t )dt dτ f(Xu

s , s)r(X
u
s )ds

]

= E
[
1{u∈T }

∫ +∞

α(u)
e−

∫ s
α(u) r(X

u
t )dtf(Xu

s , s)r(X
u
s )ds

]

= E
[
1{u∈T }f

(
Xu

β(u)−,β(u)
)]

thus,

E
[
1{u∈T }f

(
Xu

β(u)−,β(u)
)]

= E
[∫ +∞

0
1{u∈Vs}f(X

u
s )r(X

u
s )ds

]

and then,

E
[
∑

u∈T
f
(
Xu

β(u)−,β(u)
)]

=

∫ +∞

0
E
[
∑

u∈Vs

f(Xu
s , s)r(X

u
s )

]
ds

=

∫ +∞

0
V (x0)E

[
f(Ys, s)

r(Ys)

V (Ys)

]
eλ0sds.

!

If f has the form f(x, s) = g(x, s)V (x), then we have:

E
[
∑

u∈T
g
(
Xu

β(u)−,β(u)
)
V

(
Xu

β(u)−

)]
=

∫ +∞

0
E [g(Ys, s)r(Ys)]× E [Zs(V )] ds.

This equality means that adding the contributions over all the individuals corresponds to integrating the contribution
of the auxiliary process over the average number of living individuals at time s. Let (P t)t≥0 be the semigroup of the
auxiliary process,

Ptf(x) = E[f(Yt) | Y0 = x]

Proposition 3.6 (Many-to-one formula for forks). Under the assumptions of theorem 1.3, for all non-negative and
measurable function f, g we get

E




∑

u,v∈Vt,u(=v

f(Xu
t )V (Xu

t )g(X
v
t )V (Xv

t )



 = e2λ0tV (x0)

∫ t

0
E
[
J2(V Pt−sf, V Pt−sg)(Ys)

r(Ys)

V (Ys)

]
e−λ0sds

= E[Zt(V )]2
∫ t

0

1

E[Zs(V )]
E
[
J2(V Pt−sf, V Pt−sg)(Ys)

r(Ys)

V (Ys)

]
ds

where J2 is defined by

J2(ϕ,ψ)(x) =

∫ 1

0

∑

a (=b

∑

k≥max(a,b)

pk(x) ϕ
(
F (k)
a (x, θ)

)
ψ
(
F (k)
a (x, θ)

)
dθ

J2 represent the starting distributions of the offspring picked at random.
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Proof. Let u, v ∈ Vt such that u 5= v, there exist (w, ũ, ṽ) ∈ U 3 and a, b ∈ N∗, a 5= b such that u = waũ and v = wbṽ.
w is the most recent common ancestor. Thus,

E




∑

u,v∈Vt,u(=v

f(Xu
t )V (Xu

t )g(X
v
t )V (Xv

t )





=
∑

w∈U

∑

a (=b

∑

ũ,ṽ∈U
E
[
1{waũ∈Vt}f(X

waũ
t )V (Xwaũ

t )1{waṽ∈Vt}g(X
waṽ
t )V (Xwaṽ

t )
]

We recall that Ft = σ{Zs | s ≤ t} and, by the conditional independence between descendants, we get,

E




∑

u,v∈Vt,u(=v

f(Xu
t )V (Xu

t )g(X
v
t )V (Xv

t )





=
∑

w∈U

∑

a (=b

E
[
E
[
∑

ũ∈U
1{waũ∈Vt}f(X

u
t )V (Xu

t )|Fβ(w)

]
E
[
∑

ṽ∈U
1{waṽ∈Vt}g(X

v
t )V (Xv

t )|Fβ(w)

]]

Therefore, as β(w) is a stopping time, using the strong Markov property and theorem 1.3, we get,

E




∑

u,v∈Vt,u(=v

f(Xu
t )V (Xu

t )g(X
v
t )V (Xv

t )





=
∑

w∈U

∑

a (=b

E
[
1{wa,wb∈T , t≥β(w)}Pt−β(w)f(X

wa
β(w))V (Xwa

β(w)) Pt−β(w)g(X
wb
β(w))V (Xwb

β(w))e
2λ0(t−β(w))

]

=E
[
∑

w∈T
1{t≥β(w)}J2(V Pt−β(w)f, V Pt−β(w)g)(X

w
β(w)−) e

2λ0(t−β(w))

]

=e2λ0tV (x0)

∫ t

0
E
[
J2(V Pt−sf, V Pt−sg)(Ys)

r(Ys)

V (Ys)

]
e−λ0sds.

!

3.3. Limit theorem (proof of theorem 1.4). Here we give the main limit theorem which implies the theorem 1.4.

Theorem 3.7 (General Condition for the convergence of the empirical measure). We assume that the hypothesis of
theorem 1.3 are verified. Let f be a real measurable function defined on E and µ a probability measure such that there
exists a probability measure π, and two constants α < λ0 and C > 0 such that

(13) π(|f |) < +∞ and ∀x ∈ E lim
t→+∞

Ptf(x) = π(f)

(14) µ(V ) < +∞, µPt(f
2 × V ) ≤ Ceαt and µPs

(
J2(V Pt−sf, V Pt−sf)

r

V

)
≤ Ceαt.

If x0 = X∅
0 ∼ µ, then we have

lim
t→+∞

1

E[Zt(V )]

∑

u∈Vt

f(Xu
t )V (Xu

t ) = W × π(f)

where the convergence holds in probability. If furthermore Z t(V ) is bounded into L2 then the convergence holds in L2.

Notice that the constants and π may be depend on f and µ! Notice also that λ 0 is not supposed to be the first eigenvalue.

Proof. As in [4, theorem 4.2], we first prove the convergence for f such that π(f) = 0. We have E[Z t(V )] = µ(V )eλt,
then,

E




(

1

E[Zt(V )]

∑

u∈Vt

f(Xu
t )V (Xu

t )

)2


 = E
[
Zt(f × V )2e−2λ0tµ(V )−2

]
= At +Bt
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where

At = e−2λ0tµ(V )−2E
[
∑

u∈Vt

f2(Xu
t )V

2(Xu
t )

]
= e−λ0tµ(V )−1E

[
f2(Yt)V (Yt)

]

and

Bt = e−2λ0tµ(V )−2E




∑

u,v∈Vt, u(=v

f(Xu
t )V (Xu

t )f(X
v
t )V (Xv

t )





= µ(V )−1

∫ t

0
E
[
J2(V Pt−sf, V Pt−sf)(Ys)

r(Ys)

V (Ys)

]
e−λ0sds

From (14), we have limt→+∞ At = 0 and, since

J2(ϕ,ψ)(x) =

∫ 1

0

∑

a (=b

∑

k≥max(a,b)

pk(x)ϕ
(
F (k)
a (x, θ)

)
ψ
(
F (k)
a (x, θ)

)
dθ,

from (13) and as π(f) = 0, we get, for all s ≥ 0 and x ∈ E,
lim

t→+∞
J2(V Pt−sf, V Pt−sf)(x) = 0.

And thus, by (14) and dominated convergence, we obtain lim t→+∞ Bt = 0. Now for a general f , we have
Zt(fV )e−λ0t −Wπ(f) = Zt ((f − π(f))V ) e−λ0t + π(f)

(
Zt(V )e−λ0 −W

)

Then, thanks to the first part of the proof, the first term of the sum, in the right hand side, converges to 0 in L 2. The
second term converges to 0 in probability thanks proposition 3.1. !
It is enough to consider g = f × V to deduce theorem 1.4.

4. EXAMPLES

Here, we give two examples. The first one describes the cell mitosis for a very smooth r and an affine r. In the second
one, we illustrate the fact that we can use different eigenelement. This example can model a parasite infection.

4.1. Size-structured population (equal mitosis) : Inhomogeneous rate of division (proof of theorem 1.1). As say
in introduction, the cell size grows linearly and divides into two parts. Formally, with the notation of the example 2.1,

E = R∗
+, σ = 0, b = 1, p2 = 1 and F (2)

1 (x, θ) = F (2)
2 (x, θ) = x/2.

First prove that our process is well defined:

Lemma 4.1 (Non explosion). Let p ≥ 1. If for all x ∈ R∗
+, r(x) ≤ C0(1 + xp), and z0(1 + xp) < +∞, then our

process is well defined for all t ≥ 0. Moreover

E
[

sup
s∈[0,T ]

Zs(1 + xp)

]
≤ z0(1 + xp)eCpT

Proof. As in the example 2.1, we can write

Zt(f) = Z0(f) +

∫ t

0

∫

E
f ′(x) Zs(dx) ds

+

∫ t

0

∫

U×R+×[0,1]
1{u∈Vs−,l≤r(Xu

s−)}f(θX
u
s−) + f((1− θ)Xu

s−)− f(Xu
s−) ρ(ds, du, dl, dθ)

Using the same argument to [25, theorem 3.1], we introduce τ n = inf{ t ≥ 0 | Zt(1 + xp) > n } and,

sup
u∈[0,t∧τn]

Zu(1 + xp) ≤ Z0(1 + xp) +

∫ t∧τn

0
Zs(px

p−1)ds

+

∫ t∧τn

0

∫

U×R+×[0,1]
1u∈Vs−,l≤r(Xu

s−)(1 + (θp + (1 − θ)p − 1)(Xu
s−)

p) ρ(ds, du, dl, dθ)

≤ Z0(1 + xp) +

∫ t∧τn

0
p× sup

u∈[0,s∧τn]
Zu(1 + xp)ds.

+

∫ t

0

∫

U×R+×[0,1]
1{u∈Vs−,l≤r(Xu

s−)} ρ(ds, du, dl, dθ)
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Then,

E
[

sup
u∈[0,t∧τn]

Zu(1 + xp)

]
≤ z0(1 + xp) +

∫ t

0
Cp,C0 E

[
sup

u∈[0,s∧τn]
Zu(1 + xp)

]
ds.

So, by the Gronwall lemma,

E
[

sup
s∈[0,t∧τn]

Zs(1 + xp)

]
≤ z0(1 + xp)eCpt ≤ z0(1 + xp)eCpT .

We deduce that τn tends a.s. to infinity, and our process is well defined. !
In order to have the many-to-one formula, we give a condition for the existence of eigenelement extracted to [46] (see
[45], for an asymmetric division cell, and [19], for a non linear motion between the division).

Theorem 4.2 (Sufficient condition for the existence of eigenelements). Assume ∃r, r̄ such that:
∀x ≥ 0, 0 < r ≤ r(x) ≤ r̄

Then there is a unique eigenelement (λ0, V ) and we have:
r ≤ λ0 ≤ r̄

c

1 + xk
≤ V (x) ≤ C(1 + xk)

where C, c are two positive constants and 2kλmin > λmax
So, we get a many-to-one formula with an auxiliary process generated by

(15) Gf(x) = f ′(x) + r(x)
2V (x/2)

V (x)
(f(x/2)− f(x)) .

But , even if this theorem gives us a many-to-one formula, we need a smoother r to have a convergence:

Theorem 4.3 (Sufficient condition for the existence of smooth eigenelements). Under the same assumption and if
furthermore r(x) is constant equal at r∞ for a x large enough then

c(1 + xk) ≤ V (x) ≤ C(1 + xk)

where C, c are two constant and 2k = 2r∞
λ0+r∞

.

Proof of theorem 1.1. Under the assumptions of theorem 1.1 and theorem 4.3, V (x/2)/V (x) is bounded. Thus, the
auxiliary process is ergodic and admits a unique invariant law, as can be checked using a suitable Foster-Lyapunov
function [13, 42] (for instance, V (x) = 1 + x). Finally, we use theorem 1.4 to conclude. The explicit formula is an
application of the theorem of [44]. !
We can see that the assumptions of theorem 4.3 are strong, and not necessary. Because if r(x) = ax+ b (with a, b ≥ 0

and a or b positive) then V (x) = x
√
b2+4a−b

2 + 1 is an eigenvector and 2a√
b2+4a−b

the eigenvalue. Thus we deduce,

Proposition 4.4 (Convergence of the empirical measure when r(x) = ax+ b). For r(x) = x there exists a measure π
such that

lim
t→+∞

1

Nt

∑

u∈Vt

g(Xu
t ) =

∫
g dπ

where the convergence holds in probability and for any continuous function g on E such that ∀x ∈ E, |g(x)| ≤
C(1 + x).

It is a pity not to manage to obtain Λ(x) = x, because in this case the invariant measure of the auxiliary process
possesses an explicit form [28]. So, we also obtain

lim
t→+∞

Nt e
−λ0t = W

∫

E

1

V
dπ

and λ0 = 2a√
b2+4a−b

is the Malthus parameter (see remark 3.3).

Remark 4.5 (Value of r for the Escherichia coli cell). We can find some estimate of the division rate in the literature (for
the macroscopic model). An inverse problem is developed in [22, 47]. In [21], this method is applied with experimental
data extracted to [35]. It is also explain why our model is realistic for the Escherichia coli cell. More recently, [20]
gives a nonparametric estimation of the division rate.
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4.2. Size-structured population (equal mitosis) : Homogeneous rate of division (proof of theorem 1.2). When r
is constant, the process is easier to be studied and we can find some result about the auxiliary process in [11, 37, 44].
It is the most homogeneous possible case. r and p constant and X is linear. Furthermore, the generator conserves
the polynomial function. So, we can calculate the moments (proposition 4.6). This knowledge gives us the Laplace
transformation of the equilibrium, and by inversion, the formula (3). Now, we give the moments, the proof of theorem
1.2 and some remarks about this result. Let µ =

∑n
i=1 xi be a deterministic measure, we denote by Z µ the process,

distributed as Z starting at µ, indeed:

Zµ d
=

n∑

i=1

Zxi

where Zxi are i.i.d. and distributed as Z starting with one point with size x i.

Proposition 4.6 (Moments of the empirical measure). For allm ∈ N, and for all t ≥ 0, we have,

E[Zµ
t (x

m)] = E




∑

u∈V µ
t

(Xu
t )

m



 =

∫ +∞

0
ert



 m!∏m
i=1 θi

+m!
m∑

i=1




i∑

k=0

xk

k!

m∏

j=k,j (=i

1

θj − θi



 e−θit



 µ(dx)

where θi = 2r
(
1− 2−i

)
. In particular,

E[Zµ
t (x)] = ertE




∑

u∈V µ
t

Xu
t



 =

∫ +∞

0

1

r
−

(
1

r
− x

)
e−rt µ(dx)

=
n

r
(ert − 1) +

n∑

i=1

xi

and

E[Zµ
t (x

2)] = ertE




∑

u∈V µ
t

(Xu
t )

2





= ert
∫ +∞

0

4

3r2
+ 2

[
e−rt

(
−2

r2
+

2x

r

)
+ e−3rt/2

(
4

3r2
− 2x

3r
+

x2

2

)]
µ(dx).

=
4n

3r2

(
ert − 3 + 2e−rt/2

)
+

(
n∑

i=1

xi

)(
4

r
− 4

3r
e−rt/2

)
+ e−rt/2

n∑

i=1

x2
i .

Proof. It is an application of the moment estimate of the homogeneous TCP windows size process [37, Theorem 8] and
theorem 1.3. !

proof of theorem 1.2. We have to prove

∀t ≥ 0, W (1)
W|·|

(L(Zx
t ),L(Z

y
t )) ≤ |x− y|.

We recall again, the Wasserstein distance between two laws,m1 andm2, with finite mean on a metric space (F, dF ), is
defined by

W (p)
dF

(m1,m2) = (inf E[dF (X,Y )p])1/p

where the infimum runs over all coupling of X ∼ m1 and Y ∼ m2 (see for instance [49, 54]). Let us explain how
we build our coupling. Since this process is homogeneous, we can see it as a process indexed by a tree [4]. For our
coupling, we take two process indexed by the same tree. In other word, like the time of branching do not depend of the
position, we can take the same for our two processes. Let T =

⋃
n∈N{1, 2}n be the set according to represent cells

having lived at a certain moment. Let (du)u∈U a family of i.i.d. exponential with mean 1/r, which will model the
lifetimes. We build Zx and Zy by recurrence. ∀t ∈ [0, d∅), X

∅
t = x + t (resp. Y ∅

t = y + t ), α(u) = 0. Then for all
u ∈ T , for all k ∈ {1, 2}, α(uk) = α(u) + du and

∀u ∈ T , ∀k ∈ {1, . . . , νu}, ∀t ∈ [α(uk),α(uk) + duk), X
uk
t =

1

2
Xu

α(uk)− + t− α(uk)

( resp. Y uk
t = Y u

α(uk)−/2 + t− α(uk)). Finally, Vt = {u ∈ T | α(u) ≤ t < α(u) + du} and

Zx
t =

∑

u∈Vt

δXu
t
and Zy

t =
∑

u∈Vt

δY u
t
.
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Then, we see that the trajectories are parallels between the branching events. At this time,
∑

u∈Vt
|Xu

t −Y u
t | is constant.

Hence, we easily prove ∑

u∈Vt

|Xu
t − Y u

t | = |x− y|.

But, If m1 = 1
n

∑n
k=0 δxi andm2 = 1

n

∑n
k=0 δyi are two discrete measures, where n ∈ N∗ and xi, yi ∈ F , we have

the following matching representation [54]:

W (p)
dF

(m1,m2)
p = inf

τ∈Sn

1

n

n∑

i=1

dF (xi, yτ(i))
p

where Sn denote the symmetric group. Thus,

W (1)
|·| (Zx

t , Z
y
t ) ≤ |x− y|

and the others inequalities follow. !

Remark 4.7 (Convergence to equilibrium). Usually, for the real Markov processes, if we have a bound of

W (L(Xt|X0 ∼ µ),L(Xt|X0 ∼ ν)),

it is enough to take the invariant probability measure for µ to obtain a speed of convergence toward the equilibrium.
But here, it is not possible because the equilibrium is not a Dirac mass. But, we can try to estimate the distance between
Zx and Zπn , such that

1

n
πn =

1

n

n∑

i=1

δxi → π.

By the branching properties, we get, ,

Zπn
t

d
=

n∑

i=1

Zxi
t

where Zxi
t are independent and distributed as Z starting at δxi . Thus,

W|·|

(
Zx
t

E[Nx
t ]

,
Zπn
t

E[Nπn
t ]

)
≤ e−r(m−1)t 1

n

n∑

i=1

W|·|(Z
x
t , Z

xi
t )

Now, we want to take the infimum and obtain a result such that,

W (1)
W|·|

(
L
(

Zx
t

E[Nx
t ]

)
,L

(
Zπn
t

E[Nπn
t ]

))
≤ e−r(m−1)t 1

n

n∑

i=1

W (1)
W|·|

(L(Zx
t ),L(Z

xi
t ))

≤ e−r(m−1)t 1

n

n∑

i=1

|x− xi|

≤ e−r(m−1)tW|·|(δx,πn)

But, these inequalities are false. It seems to be impossible to use the inequalities, of theorem 1.2, to obtain a bound to
the equilibrium. One explication is that this problem is similar to the following: Let X,Y, Z three random variables
such thatX and Y are independent. Is there a constant C such that,

W

(
L
(
X + Y

2

)
,L(Z)

)
≤ C × W (L(X),L(Z)) +W (L(Y ),L(Z))

2
.

But it is enough to considerX,Y, Z are three Bernoulli variables with same parameter to see that it is not possible. We
can only find

W (1)
W|·|

(
L
(

Zx
t

E[Nx
t ]

)
,L

(
Zπn
t

E[Nπn
t ]

))
≤ e−r(m−1)t 1

n

n∑

i=1

E[W|·|(L(Zx
t ),L(Zxi

t ))]

where Zxi
t and Z

xj

t are independent for all i 5= j. This inequalities suggests that we must consider the independent
coupling, but it is not satisfactory too (see proposition 4.9 latter).

Remark 4.8 (Generalisation of theorem 1.2). In the proof of theorem 1.2, we only need that, for all n, θ, x and y,
n∑

j=1

|F (k)
j (XT , θ)− F (k)

j (YT , θ)| ≤ |x− y|
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where X,Y are generated by A and start respectively at x, y and T is exponentially distributed. For instance we can
considerX is a continuous lévy process and a sub-critical fragmentation:

∀x ∈ E, ∀k ∈ N∗, ∀j ≤ k, F (k)
j (x,Θ) = Θk

jx,
k∑

j=1

Θk
j ≤ 1 and ∀j ∈ {1, . . . , k}, Θk

j ∈ [0, 1].

Proposition 4.9 (Independent coupling). Let µ =
∑n

i=1 xi ν =
∑m

i=1 yi be two discrete measures and Zµ and Zν be
two independent processes starting at µ and ν. We get,

(16) ∀t > 0, E
[
W (2)

|·|

(
Zµ
t

Nµ
t
,
Zν
t

Nν
t

)]2
≤ 2t2

(1 − e−t)2
+O(t2e−rt).

Proof. By matching and Cauchy-Schwarz formulas, we get,

E
[
W (2)

|·|

(
Zµ
t

Nµ
t
,
Zν
t

Nν
t

)]2
= E

[
W (2)

|·|

(
Nν

t × Zµ
t

Nν
t N

µ
t

,
Nµ

t × Zν
t

Nν
t N

µ
t

)]2

≤ E





√√√√
1

Nν
t N

µ
t

∑

u∈V ν
t

∑

v∈V µ
t

|Xu
t − Y v

t |
2





2

(17)

≤ E
[

1

Nν
t N

µ
t

]
× E




∑

u∈V ν
t

∑

v∈V µ
t

|Xu
t − Y v

t |
2





where,
Zµ
t =

∑

u∈V µ
t

δXu
t
and Zν

t =
∑

v∈V ν
t

δY v
t
.

Then,

E
[

1

Nν
t N

µ
t

]
= E

[
1

Nµ
t

]
E
[

1

Nν
t

]
=

1

n×m
E
[
1

Nt

]2

where Nt is the classical Yule process starting at N0 = 1. Then, since Nt is is geometric with parameter e−rt [4], we
get

∀t > 0, E
[

1

Nν
t N

µ
t

]
=

r2t2

nm

e−2rt

(1− e−rt)2
.

In the other hand, we have, by proposition 4.6,

E




∑

u∈V ν
t

∑

v∈V µ
t

|Xu
t − Y v

t |
2





=E[Ny
t ]E




∑

u∈V x
t

(Xu
t )

2



+ E[Nx
t ]E




∑

v∈V y
t

(Y v
t )

2



− 2E




∑

v∈V y
t

Y v
t



E




∑

u∈V x
t

Xu
t





=
8mn

3r2

(
e2rt − 3ert + 2ert/2

)
+ (mµ(x) + nν(x))

(
4

r
ert − 4

3r
ert/2

)
+

(
mµ

(
x2

)
+ nν

(
x2

))
ert/2

−2

(
nm

r2
(ert − 1)2 +

1

r
(ert − 1)(mµ(x) + nν(x)) + ν(x)µ(x)

)

=
2mn

r2
e2rt − 4mn

r2
ert +

16mn

3r2
ert/2 − 2nm

r2

+
1

r
(mµ(x) + nν(x))

(
2ert − 4

3
e−rt/2 + 2

)
+

(
mµ

(
x2

)
+ nν

(
x2

))
e−rt/2 − 2µ(x)ν(x).

Thus, we deduce (16). !
The coupling choice does not seem to be responsible of the non-optimality (the limit is deterministic). The error results
maybe from the matching choice (17). But it is the only one such that we can estimate the distance. In spite of
everything, we have
Proposition 4.10 (Wasserstein convergence). Under the assumptions of theorem 1.2, we have

lim
t→+∞

W (1)
|·|

(
Zt

Nt
,π

)
= 0 in probability.
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Proof. As x (→ 1 + x is a Lyapounov function for the auxiliary process, we have

lim
t→+∞

Zt

Nt
(f) = π(f) in probability

for all function f such that f(x) ≤ C(1 + x). The convergence also holds in distribution. By the Prokhorov theorem,
in an other probability space, we have,

lim
t→+∞

Zt

Nt
(f) = π(f) a.s.

for all bounded function and for f(x) = x. This convergence is equivalently to a Wasserstein convergence. Thus, by a
classical argument of discreteness (Varadarajan theorem type), we get,

lim
t→+∞

W (1)
|·|

(
Zt

Nt
,π

)
= 0 a.s..

Hence, in our probability space we get lim t→+∞ W (1)
|·| (Zt/Nt,π) = 0 in distribution. And like the convergence is

deterministic, we get the result. !

4.3. Explicit eigenelements for a parasite infection model. In theorem 1.3, we did not required that λ 0 was the first
eigenvalue. So, it is possible to have different eigenelements and auxiliary processes. Consider the following example,
where some eigenelements are explicit. :

(18) ∀x > 0, Af(x) = axf ′(x) + b(x)f ′′(x)

with b smooth enough. We also consider that for j ≤ k and for all measurable and non-negative f ,

(19) E[f(F (k)
j (x,Θ))] = E[f(Θk

jx)]

where

(20)
k∑

j=1

Θk
j = 1 and Θk

j ∈ [0, 1] a.s..

This process can model physical or biological polymers. It can also models cell division with parasite infection [5]. We
easily find a is an eigenvalue and V (x) = x is its eigenvector. So, for all measurable and non-negative function f ,

E
[
∑

u∈Vt

Xu
t f(X

u
t )

]
= E[f(Yt)]e

atx0

where Y is a Markov process, generated by,

GY f(x) =

(
ax+ 2

b(x)

x

)
f ′(x) + b(x)f ′′(x) + r(x)








∑

k∈N
pk(x)

k∑

j=1

E[Θk
j f(Θ

k
jx)]



− f(x)



 .

When r is affine, we obtain a second formula. Assumem is constant and r(x) = cx+ d, with c ≥ 0 and d(m− 1) > a

(or d > 0 and c = 0). So, V1(x) = c(m−1)
d(m−1)−ax + 1 is an eigenvector associated to the eigenvalue λ1 = d(m − 1)

(⇒ λ1 > λ0 = a). Thus, for all measurable and positive function,

E
[
∑

u∈Vt

f(Xu
t )

]
e−dt = E

[
f(Ut)

τUt + 1

]
(τx0 + 1)

where τ = c(m−1)
d(m−1)−a and U is generated, for all f ∈ D(A) and for all x > 0, by

GUf(x) =

(
ax+

2b(x)τ

τx+ 1

)
f ′(x) + b(x)f ′′(x) +

r(x)(τx +m)

τx + 1

(
E[
∑

k≥1 pk(x)(τΘ
k
j x+ 1)f(Θk

jx)]

τx +m
− f(x)

)
.

So, if we start with one cell infected by x0 parasite then d(m− 1) is the Malthus parameter (see remark 3.3):

Proposition 4.11 (Properties of the number of individual alive). Under (18-20) and if r(x) = cx+ d, with c ≥ 0 and
d(m− 1) > a (or d > 0 and c = 0). Nt verifies,

E[Nt] = ed(m−1)t + τx0 (e
d(m−1)t − eat).

And (Nte−d(m−1)t)t≥0 and (Nt/E[Nt])t≥0 converge a.s..
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Proof. First, a same computation of lemma 4.1 gives that the process is well defined and that the weighted many-to-one
formula holds. So, as we get:

Nt =

(
∑

u∈Vt

1 + τXu
t

)
− τ

(
∑

u∈Vt

Xu
t

)

the proposition follows. !

Consider the same parameter of [5], that is b(x) = σ2x and p2 = 1. Xt = Zt(V ) is the total number of parasite. It is a
martingale, so we easily obtain E[Xt] = eatE[X0] and Xte−at converge a.s.. But since his bracket is 2σ2(1 − e−at),
we have a convergence a.s and in L2. This result is already know, because in this case, (Xt)t≥0 is a Feller diffusion.

5. MACROSCOPIC INTERPRETATION

To prove theorem 1.5, we need to use different topology onM(E). We note (M(E), d v) (resp. (M(E), dw)) when it
is embedded with the vague (resp. weak) topology. These topologies will be understood in the following sense:

lim
n→+∞

dv(Xn, X∞) = 0 ⇐⇒ ∀f ∈ C0, lim
n→+∞

E[f(Xn)] = E[f(X∞)]

lim
n→+∞

dw(Xn, X∞) = 0 ⇐⇒ ∀f ∈ Cb, lim
n→+∞

E[f(Xn)] = E[f(X∞)]

where C0 is the set of continuous function that vanishes to zero at the infinity and C b the set of bounded continuous
function. We also will use D([0, T ], E) and C([0, T ], E) be respectively the set of càd-làg function embedded with the
Skorohod topology and the set of continuous function embedded with the uniform topology [8].

5.1. Law of large number (proof of theorem 1.5 ). In this section, we consider a sequence Z (n) distributed as Z ,
starting at some measure of probability Z (n)

0 , and the following scaling: X (n) = 1
nZ

(n). We describe the behavior of
this renormalized process when n go to infinity.

Heuristically, to understand the behaviour of our process when we start with a large population distributed by a de-
terministic measure X0, we can approximate X0 by the interesting sequence defined by X (n)

0 = 1
n

∑n
k=0 δYk ,where

(Yk)k≥1 is a sequence i.i.d. distributed byX0. Thus, we get,

X(n) =
1

n
Z(n) d

=
1

n

n∑

k=0

ZYk

where ZYk
t are i.i.d. distributed as Z , with Z0 = δYk . So, let ϕ a bounded function, the law of large number gives:

∀t ≥ 0, lim
n→∞

1

n

n∑

k=0

ZXk
t (ϕ) = E

[
ZY1
t (ϕ)

]

So by corollary 2.3 , it implies that X (n) converges to the solution of the following integro-differential equation:

(21) µt(ϕ) = µ0(ϕ) +

∫ t

0
µs(Aϕ) +

∫

E
r(x)

∑

k≥0

pk(x)

∫ 1

0

k∑

j=1

ϕ(F (k)
j (x, θ))dθ − ϕ(x) µs(dx) ds

In fact, this convergence is better. It is a processes convergence. There is that the theorem 1.5 said.

Lemma 5.1 (Semi-martingale decomposition). for all ϕ ∈ D(A2) and t ≥ 0,

X(n)
t (ϕ) = Xn

0 (ϕ) +M (n)
t (ϕ) + V (n)

t (ϕ)

with

V (n)
t (ϕ) =

∫ t

0

∫

E
Aϕ(x) + r(x)

∫ 1

0

∑

k∈N

k∑

j=1

ϕ(F (k)
j (x, θ)) − ϕ(x)pk dθ X(n)

s (dx) ds

andM (n)
t (ϕ) is a square-integrable and càdlàg martingale with bracket

1

n




∫ t

0
2X(n)

s (Aϕ2)− 2X(n)
s (ϕ× Aϕ) +

∫

E
r(x)

∫ 1

0

∑

k∈N∗




k∑

j=1

ϕ(F (k)
j (x, θ)) − ϕ(x)




2

pk(x) dθ X
(n)
s (dx) ds
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Proof. It is an application of the lemma 2.2 because the generator ofX (n), denoted by L(n), verifies:

L(n)Fϕ(µ) = ∂tE[Fϕ(X
(n))|X(n)

0 = µ] t=0 = ∂tE[Fϕ/n(Z
(n))|Z(n)

0 = nµ]
t=0

= LFϕ/n(nµ)

where Fϕ(µ) = F (µ(ϕ)). !

Lemma 5.2. Under the assumptions of theorem 1.5,X (n) is tight for the vague topology.

Proof. For this proof, we are inspired by [25]. According to [51], it is enough to show that, for any continuous bounded
function f , the sequence of laws of X (n)(f) is tight in D([0, T ],R). To prove this, we use the Aldous-Rebolledo
criterion. Let S be a dense subset of C0 that contained the function x (→ 1. We have the following two points to be
verified: For all function f ∈ S,

(1) for all t ≥ 0,
(
X(n)

t (f)
)

n≥0
is tight.

(2) for all n ∈ N, and ε, η > 0, there exists δ such that for each stopping times Sn bounded by T ,

lim sup
n→+∞

sup
0≤u≤δ

P(|V (n)
Sn+u(f)− V (n)

Sn
(f)| ≥ η) ≤ ε.

lim sup
n→+∞

sup
0≤u≤δ

P(|〈M (n)(f)〉Sn+u − 〈M (n)(f)〉Sn | ≥ η) ≤ ε.

The first point explain a pointwise tightness and the second point, called the Aldous condition, gives a "stochastic
continuity". It look like the Arzelà-Ascoli theorem. For our problem we can take S = D(A 2). The first point gives,

P(|X(n)
t (f)| > k) ≤ ‖f‖∞ E[X(n)

t (1)]

k

≤
‖f‖∞ E[N (n)

0 ] Cr̄,k̄

n k
.

Since E[N (n)
0 ]/n converges , it is bounded, and for a large k, we have the tightness. Let δ > 0 and S n ≤ Tn ≤

(Sn + δ) ≤ T , we get

E[|V (n)
Tn

(f)− V (n)
Sn

(f)|] = E





∣∣∣∣∣∣

∫ Tn

Sn

X(n)
s (Af) +

∫

E
r(x)

∫ 1

0

∑

k∈N

k∑

j=1

f(F (k)
j (x, θ)) − f(x)pk dθ X(n)

s (dx) ds

∣∣∣∣∣∣





≤ Cr̄,k̄,T [‖Af‖∞ + ‖f‖∞]× (Tn − Sn)

≤ Cr̄,k̄,T,f δ.

In the other hand,
E[|〈M (n)(f)〉Tn − 〈M (n)(f)〉Sn |]

=
1

n
E





∣∣∣∣∣∣

∫ Tn

Sn

2X(n)
s (Af2)− 2X(n)

s (f ×Af) +

∫

E
r(x)

∫ 1

0

∑

k∈N

k∑

j=1

(f(F (k)
j (x, θ)) − f(x))2pk dθ X(n)

s (dx) ds

∣∣∣∣∣∣





≤ 1

n
× Cr̄,k̄,T,f × (Tn − Sn)

≤
Cr̄,k̄,T,fδ

n.

Then, for a sufficiently small δ the second point is verified and we conclude that
(
X(n)

)
n≥1

is uniformly tight in
D([0, T ],M(E)) for the vague topology. !
Proof of theorem 1.5. First, by the Doob’s inequality, we get,

sup
ϕ

E
[
sup
t≤T

∣∣∣M (n)(ϕ)t
∣∣∣
]
≤ 2 sup

ϕ
E[〈M (n)(ϕ)〉T ] ≤

Cr̄,k̄

n

where the supremum is taken over all the function ϕ ∈ D(A2) such that ‖ϕ‖∞ ≤ 1. Hence,

(22) lim
n→+∞

sup
ϕ

E
[
sup
t≤T

∣∣∣M (n)(ϕ)t
∣∣∣
]
= 0.

But,

M (n)
t (ϕ) = X(n)

t (ϕ) −X(n)
0 (ϕ)−

∫ t

0

∫

E
Aϕ(x) + r(x)

∫ 1

0

∑

k∈N

k∑

j=1

ϕ(F (k)
j (x, θ))− ϕ(x)pk dθ X(n)

s (dx) ds.
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So, we have to prove that the limit of (M (n)
t (ϕ)) is also

Xt(ϕ)−X0(ϕ)−
∫ t

0
Xs(Aϕ) +

∫

E
λ(x)




k∑

j=1

ϕ(F (K)
j (x, θ)) pk(x) dθ − ϕ(x).



 Xs(dx) ds

Since this equation has a unique solution, it is enough to prove that the convergenceofX (un) is inD([0, T ], (M(E), dw)),
for each convergent subsequence (un)n∈N∗ . If E is compact, the vague topology and the weak topology coincide, and
we have the result. For the case (ii) of the assumptions, we can use the Méléard-Roelly criterion [39]. Let (u n)n a
subsequence such that (X (un))n converges in distribution to X in D([0, T ], (M(E), dv)). We have to prove that X is
in C([0, T ], (M(E), w)) andX (n)(1) converges to X(1). To prove it, as in [34, 40], we can use the following lemma:

Lemma 5.3 (Analogous of the lemma 3.3 of [40]). Under the same assumptions of theorem 1.5,

lim
k→+∞

lim sup
n→+∞

E
[
sup
t≤T

X(n)
t (ψk)

]
= 0

where (ψk)k≥0 are defined at theorem 1.5.

This lemma explain that we can commute the limit, The proof is postponed after. Hence, a same computation to [40]
give us the convergence in D([0, T ], (M(E), w)) to our process. Thus, each subsequence converges to the equation
(21). There is a unique solution, and our sequence converges in D([0, T ], (M(E), w)) to z (defined at the corollary
2.3) the unique solution about the equation (21).

But the lemma 5.3 is so strong, we can give another argument, without to use the Méléard-Roelly criterion [39]. As in
[40], we can prove thatX is continuous, from [0, T ] to (M(E), dw), because

sup
t≥0

sup
f,‖f‖∞≤1

|X(n)
t− (f)−X(n)

t (f)| ≤ k̄

n
.

Then, let G be a Lipschitz function on C([0, T ], (M(E), dw)), we get,

|E[G(Xun)]−G(X)| ≤ E
[

sup
t∈[0,T ]

dw
(
X(un)

t , Xt

)]

≤ E
[

sup
t∈[0,T ]

dw
(
X(un)

t , X(un)
t (.× (1 − ψk))

)]

+ E
[

sup
t∈[0,T ]

dw
(
X(un)

t (.× (1 − ψk)), Xt(.× (1− ψk))
)]

+ sup
t∈[0,T ]

dw (Xt(.× (1− ψk)), Xt) .

According the lemma 5.3, we obtain that

lim
k→+∞

lim sup
n→+∞

E
[

sup
t∈[0,T ]

dw
(
X(un)

t , X(un)
t (.× (1 − ψk))

)]
= 0

and

lim
k→+∞

lim sup
n→+∞

sup
t∈[0,T ]

dw(Xt(.× (1− ψk)), Xt) = 0.

Then, we have dw(X(un)
t (.× (1− ψk)), Xt(.× (1− ψk))) = dv(X

(un)
t (.× (1 − ψk)), Xt(.× (1− ψk))). Thus,

lim
k→+∞

lim sup
n→+∞

E
[

sup
t∈[0,T ]

dw(X
(un)
t (.× (1− ψk)), Xt(.× (1− ψk)))

]
= 0

by contuinity of ν (→ ν(1 − ψk) in D(M(E), dv)). !
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proof of lemma 5.3. we denote by µn,k
t = E(X(n)

t (ψk)), and we get:

µn,k
t = E[X(n)

0 (ψk)] +

∫ t

0
E




∫

E
Aψk(x) + r(x)




∑

k≥1

k∑

j=1

pk(x)

∫ 1

0
ψk(F

(k)
j (x, θ)) − ψk(x)



X(n)
s (dx)



 ds

≤ µn,k
0 + C

∫ t

0
µn,k−1
s + µn,k

s ds

and by Gronwall’s lemma, iteration, monotonicity and the boundedness of 1
nE[supt≤T Nn

t ]:

µn,k
t ≤ C1(µ

n,k
0 +

∫ t

0
µn,k−1
s ds)

≤ C1µ
n,k
0 + C2

1Tµ
n,k−1
0 +

∫ t

0

∫ s

0
µn,k−2
u duds

≤
k−1∑

l=0

µn,k−l
0 C1

(C1T )l

l!
+ C2 ×

(C1T )k

k!

≤ µn,/k/20
0 C1e

C1T + C3

∑

l>/k/20

(C1T )l

l!
+ C2 ×

(C1T )k

k!

where C1, C2 and C3 are three constants. Thus,

lim
k→+∞

lim sup
n→+∞

µn,k
t = 0.

Then, the following expression concludes the proof,

E
[
sup
t≤T

|Xn
t (ψk)|

]
≤ µn,k

0 + C

∫ t

0
µn,k−1
s + µn,k

s ds+ E
[
sup
t≤T

|M (n)
t (ψk)|

]
.

!

Example 5.4 (Asymmetric mitosis). Let F (2)
1 (x, θ) = G−1(θ)x and F (2)

2 (x, θ) = (1 − G−1(θ))x. Where G is
the cumulative distribution function of the random fraction in [0, 1] associated with the branching event. It verifies
G(x) = 1−G(1 − x). If n(t, .) is the density of zt, then it is a weak solution solution of the following P.D.E. :

∂tn(t, x) + ∂xn(t, x) + r(x) n(t, x) = 2E[ 1
Θ
r(x/Θ)n(t, x/Θ)].

Especially, we deduce that the following P.D.E. gets a weak solution:

∂tn(t, x) + ∂xn(t, x) + r(x) n(t, x) =

∫ +∞

x
b(x, y)n(t, y)dy

where b verify the following properties:

b(x, y) ≥ 0, b(x, y) = 0 for y < x(23)
∫ +∞

0
b(x, y)dx = 2r(y)(24)

∫ +∞

0
xb(x, y)dx = yr(y)(25)

b(x, y) = b(y − x, y).(26)

This equation was studied in [45]. b(x, y) = 2
y r(y)g(

x
y ), where g is the density of G. b has this form is equivalently at

verify the following points (23 - 26).
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5.2. Central Limit Theorem for size-structured population (proof of theorem 1.6). Our aim in this section is to
describe the limit of the fluctuation process defined by:

∀t ∈ [0, T ], ∀n ∈ N∗, η(n)t =
√
n(X(n)

t −Xt).

For a better understanding, we only give the convergence on the example of the size-structured population (asymmetric
mitosis). The result of this section are easily generalisable for splitted diffusion, but we do not want to weigh down the
hypotheses and the notations.

Theorem 5.5 (Central limit theorem for asymmetric size-structured population). Let T > 0. Assume η (n)
0 converges

and
E
[
sup
n≥1

∫

E
1 + x X(n)

0 (dx)

]
< +∞.

Then the sequence (η(n))n≥1 converges in D([0, T ], C−2,0) to the unique solution of the evolution equation: for all
f ∈ C2,0,

(27) ηt(f) = η0(f) +

∫ t

0

∫ +∞

0
f ′(x) + r(x)

(∫ 1

0
f(qx) + f((1− q)x)G(dq) − f(x)

)
ηs(dx) ds+ M̃(f)

where M̃(f) is a martingale and a Gaussian process with bracket:

〈M̃t(f)〉 =
∫ t

0

∫ +∞

0
2f ′(x)f(x) + 2r(x)

∫ 1

0
(f(qx)− f(x))2G(dq) Xs(dx) ds.

And C2,0 is the set of functionC2, such that f, f ′, f ′′ vanish to zero when x vanishes to infinity. C−2,0 is its dual space.

By lemma 5.1, we have the following representation:

∀ t ≥ 0, η(n)t = η(n)0 + Ṽ (n)
t + M̃ (n)

t

where

∀ϕ ∈ Cb ∩ C1, Ṽ (n)
t (ϕ) =

∫ t

0

∫ +∞

0
ϕ′(x) + r(x)

(∫ 1

0
ϕ(qx) + ϕ((1− q)x)G(dq) − ϕ(x)

)
η(n)s (dx) ds

and M̃ (n)
t is a martingale with bracket:

(28) 〈M̃ (n)
t (ϕ)〉 =

∫ t

0

∫ +∞

0
2r(x)

∫ 1

0
(ϕ(qx) − ϕ(x))2G(dq) X(n)

s (dx) ds.

The set of signed measure is not metrizable, so we can not adapt the proof of theorem 1.5. As in [38, 52], we consider
η(n) like an operator in a Sobolev space, and use the Hilbertian properties of this space to have tightness (see for
instance [41] for tightness condition on Hilbert spaces). Let us explain the Sobolev space that we will use. Let p > 0,
j ∈ N , andW j,p be the closure of the set of function C∞ to [0,+∞) into R with compact support with the following
norm:

∀f ∈ W j,p, ‖f‖2W j,p =
j∑

k=0

∫ ∞

0

(
f (k)(x)

1 + xp

)2

dx.

W j,p is an Hilbert space and we considerW −j,p the dual space. Let C j,p, the space of function f , C j , such that:

∀k ≤ j, lim
x→+∞

f (k)(x)

1 + xp
= 0

and we embed it by the following norm:

∀f ∈ Cj,p, ‖f‖Cj,p =
j∑

k=0

sup
x≥0

f (k)(x)

1 + xp
.

Thus, Cj,p is a Banach space and we denote by C−j,p its dual space. These spaces verify the following continuous
injection [38, 1]:
(29) Cj,p ⊂ W j,p+1 and W 1+j,p ⊂ Cj,p.

Or equivalently, if f is smooth enough,
‖f‖W j,p+1 ≤ C‖f‖Cj,p and ‖f‖Cj,p ≤ C‖f‖W j+1,p .

The first embedding/inequality prove that the tightness in W j,p+1 implies the tightness in Cj,p. The second is useful
for some upper bound:
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Lemma 5.6. If (ek)k≥1 is a basis ofW 2,1, we get:
∑

k≥1

ek(x)
2 ≤ C(1 + x).

Proof. LetD0
x : f (→ f(x) and D1

x : f (→ f ′(x) be an operator onW 2,1. We have, for all f ∈ W 2,1,

|D0
xf | ≤ (1 + x)‖f‖C0,1 ≤ C(1 + x)‖f‖W 1,1 ≤ C(1 + x)‖f‖W 2,1

But, by Parseval identity we get,
‖D0

x‖2W−2,1 =
∑

k≥1

ek(x)
2.

It ends the proof. !

We introduce the trace
(
〈〈M̃ (n)〉〉t

)

t≥0
of

(
M̃ (n)

t

)

t≥0
defined such that

(
‖M̃ (n)

t ‖2W−2,1 − 〈〈M̃ (n)〉〉t
)

t
is a local

martingale. Then since
‖M̃ (n)

t ‖2W−2,1 =
∑

k≥1

M̃ (n)
t (ek)

where (ek)k≥1 is a basis ofW 2,1, and by (28), we get,

〈〈M̃ (n)〉〉t =
∑

k≥1

∫ t

0

∫ +∞

0
2r(x)

∫ 1

0
(ek(qx)− ek(x))

2G(dq) X(n)
s (dx) ds.

Now, we first prove the tightness of (η (n))n≥1 then we prove theorem 5.5.

Lemma 5.7. (ηn)n≥1 is tight in D([0, T ],W−2,1).

Proof. By [33, theorem 2.2.2] and [33, theorem 2.3.2] (see also [38, lemma C]), it is enough to prove
(1) E

[
sups≤t ‖ηns ‖2W−2,1

]
< +∞.

(2) ∀n ∈ N, ∀ε, ρ > 0, ∃δ such that for each stopping times Sn bounded by T ,

lim sup
n→+∞

sup
0≤u≤δ

P
(
‖V (n)

Sn+u − V (n)
Sn

‖W−2,1 ≥ η
)
≤ ε

lim sup
n→+∞

sup
0≤u≤δ

P
(∣∣∣∣

〈〈
M̃ (n)

〉〉

Sn+u
−

〈〈
M̃ (n)

〉〉

Sn

∣∣∣∣ ≥ η
)

≤ ε.

These two points are the Aldous-Rebolledo criterion. For the first point, we get,
∑

k≥1

〈M̃ (n)
t (ek)〉 ≤

∫ t

0
2r̄

∫ 1

0
2
∑

k≥1

e2k(qx) + 2
∑

k≥1

e2k(x) G(dq) X(n)
s (dx) ds

≤ CT X(n)
0 (1 + x)

then, by the assumptions of theorem 5.5, we have the boundedness. Thus since,

‖M̃ (n)
t ‖2W−2,1 =

∑

k≥1

(M̃ (n)
t (ek))

2

we have by Doob inequality,

E
[
sup

t∈[0,t]
‖M̃ (n)

t ‖2W−2,1

]
≤ C.

Then
‖η(n)t ‖2W−2,1 ≤ ‖η(n)0 ‖2W−2,1 + ‖Ṽ (n)

t ‖2W−2,1 + ‖M̃ (n)
t ‖2W−2,1 ≤ C + ‖Ṽ (n)

t ‖2W−2,1 .

And

‖Ṽ (n)
t ‖2W−2,1 ≤ C

∫ t

0
sup
w≤s

‖η(n)s ‖2W−2,1ds.

So by Gronwall lemma we obtain

E
[
sup
s≤t

‖η(n)s ‖2W−2,1

]
≤ C
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Then for the second point, we have

E[‖V (n)
Sn+u − V (n)

Sn
‖W−2,1 ] ≤ E

[
C

∫ Sn+u

Sn

sup
s≤T

‖η(n)s ‖2W−2,1

]

≤ Cu.

So, byMarkov-Chebyshev inequality, we get the Aldous condition. A same proof gives 〈〈 M̃ (n)〉〉 also verify the Aldous
condition. Thus, (η(n))n≥1 is tight. !

Proof of theorem 5.5. Let M̃ a continuous Gaussian process with quadratic variation, given for every f ∈ C 2,0 (⊂
W 2,1) and t ∈ [0, T ] by:

∑

k≥1

∫ t

0

∫ +∞

0
2r(x)

∫ 1

0
(f(qx)− f(x))2G(dq)Xs(dx).

Since we have,
∀f ∈ C2,0, sup

t∈[0,T ]
|M̃ (n)(f)| ≤ Cf√

n

and 〈M̃ (n)
t 〉 converge in law to 〈M̃t〉, we obtain, by [32, theorem 3.11 p.473], the convergence of M̃ (n)(f) to M̃(f).

By lemma 5.7 and (29) , the sequence (η (n))n≥1 is also tight in C−2,0. Let η be an accumulation point. Since the
martingale part M̃ , η is almost surely continuous. Hence, η solves (27). Using Gronwall’s inequality, we obtain
that this equation admits in C([0, T ], C−2,0) a unique solution for a given Gaussian white noise M̃ . We deduce the
announced result. !

6. OPEN PROBLEMS

In the literature, the auxiliary process is sometimes called an hybrid process [6]. When the motion between the branch-
ing times is deterministic, indeedA is a vector fields, the auxiliary process is a piecewise deterministic Markov process
(PDMP). These processes were introduced in the literature by Davis [14] as a general class of non diffusion stochastic
models. Some properties of the PDMPs are given in [15, 31]. But, there is a lot of question about this process.

Speed of convergence for piecewise deterministic Markov processes:
In [11], we see that it is sometimes easier to have a speed of convergence for the embedded chain than for the contin-
uous process (the embedded chain is the continuous process indexed at the jump times). We have some link about the
invariant measure of the process and its embedded chain in [12, 15], but it would be interesting to find a link between
their long time behaviour. We can also research a criterion, like the Bakry-Emery criterion, to have a quantitative rate of
decay for the entropy. We can find a first approach in [9, 10]. It is also interesting to improve theorem 1.2 or proposition
4.9.

Regularity of the stationary distribution:
In [13], we can find some criterion for ergodicity. A natural question is the regularity of the invariant distribution
(support, density,...). For instance, is there Hörmander’s condition? At the moment, there is some properties of PDMP
semi-group in [27, 53].

Other functional of the empirical measure:
this paper gives some result about the convergence of the empirical measure

∑
u∈Vt

δXu
t
, but it do not capture other

symmetric functional of the population, like the bigger cell or the more infected cell:
max
u∈Vt

f(Xu
t ),

or the following functional: ∫ t

0

∑

u∈Vs

f(Xu
s ) ds =

∑

u∈T

∫ β(u)∧t

α(u)∧t
f(Xu

s ) ds

Interesting result for the maximum for branching Brownian motion are developed in [2].

Statistic:
A natural application of our limit theorem is the parameter estimation. Working in the Kolmogorov equation and the
macroscopic process, [20] gives a non parametric estimation of r.
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Eigenproblem:
The existence of eigenelement is fundamental to have our many-to-one formula. As say in introduction, [19, 43] give
some condition to have it. The problem is that, in these papers, the eigenvector are not lower bounded. Hence, it will
be interesting to find a theorem like the theorem 4.3.
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