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Some motivations

Some typical rare events

Physical/biological/economical stochastic process :
atomic/molecular configurations fluctuations, queueing
evolutions, communication network, portfolio and financial
assets, ...

Potential function-Event restrictions : Energy/Hamiltonian
potential functions, overflows levels, critical thresholds,
epidemic propagations, radiation dispersion, ruin levels.

Objectives

Compute rare event probabilities.

Find the law of the whole random process trajectories evolving
in a critical regime  prediction ⊕ control.

 Solution : Stochastic genealogical type tree fault model
∼ Branching+interacting evolutionary particle model

(Branching on ”more likely” gateways to critical regimes)
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Some stochastic rare event models

Event restrictions

Event restrictions

X r.v. ∈ (E , E) with µ = Law(X )

A ∈ E with 0 < µ(A) = P(X ∈ A) ' 10−p and p >> 1.

η(dx) =
1

µ(A)
1A(x) µ(dx) = P(X ∈ dx | X ∈ A)

Examples

E = R, Rd , R{−n,...,n}2
, ∪n≥0 (Rd){0,...,n}, . . .

A = [a,∞[, V−1([a,∞[), {an excursion hits B before C} . . .
µ = uniform on E finite  combinatorial counting pb

First heuristic An ↓ A

 An+1-interacting MCMC with local targets ∝ 1An(x) µ(dx)
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Some stochastic rare event models

A pair of more precise examples

Non intersecting random walks/connectivity constants :

X = (X ′0, . . . ,X
′
n) ∈ E := (Zd × . . .× Zd)

A =
{

(x ′0, . . . , x
′
n) : ∀0 ≤ p < q ≤ n x ′p 6= x ′q

}
⇒ µ(A) =

1

(2d)n
×#{not ∩ walks with length n}

' exp (c n)

⇒ η = Law((X ′0, . . . ,X
′
n) | ∀p < q ≤ n X ′p 6= X ′q)

Second heuristic ∼ multiplicative structure :

 Accept-Reject interacting X ′-motions
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Some stochastic rare event models

Random walk confinements/Lyap. exp. and top eigenval. :

A =
{

(x ′0, . . . , x
′
n) ∈ (Zd × . . .× Zd) : ∀0 ≤ p ≤ n x ′p ∈ A′

}
⇒ µ(A) = P(∀0 ≤ p ≤ n X ′p ∈ A′) ' e−λ(A′) n

and

⇒ η = Law((X ′0, . . . ,X
′
n) | ∀0 ≤ p ≤ n X ′p ∈ A′)

Same heuristic ∼ multiplicative structure :

 Accept-Reject interacting X ′-motions
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Some stochastic rare event models

More examples of stochastic rare event models

P(∩0≤p≤n{Xp ∈ Ap}), Law((Xp)0≤p≤n | ∩0≤p≤n {Xp ∈ Ap})

Ex. : Law((X ′0, . . . ,X
′
n) | ∩0≤p<q≤n {‖X ′p − X ′q‖ ≥ ε)

Soft penalization : 1An  exp (−β16∈An )
Terminal level set conditioning :

P(Vn(Xn) ≥ a) & Law((X0, . . . ,Xn) | Vn(Xn) ≥ a)

Fixed terminal value : Lawπ((X0, . . . ,Xn) | Xn = xn).

Critical excursion behavior : ∪ in excursion space
P(X hits B before C ) & Law(X | X hits B before C )

Last heuristic :

 Interacting X -excursions on gateways levels  B.
 interacting X -transitions increasing the potential Vn.
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Some stochastic rare event models

A single (sequential) Feynman-Kac/Boltzmann-Gibbs formulation:

dηn =
1

Zn

 ∏
0≤p<n

Gp(Xp)

 dPX
n

Gn=1An= Law((X0, . . . ,Xn) | X0 ∈ A0, . . . ,Xn ∈ An)

and Zn = P(X0 ∈ A0, . . . ,Xn ∈ An)

Observation : ηn = ”complex nonlinear” transformation of ηn−1 ∏
0≤p≤n

Gp(Xp)

 =

 ∏
0≤p≤(n−1)

Gp(Xp)

 Gn(Xn)

Same heuristic ∼ multiplicative structure :

 (Accept-Reject) G -interacting X -motions [and inversely!]
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Stochastic sampling strategies

Stochastic modeling

Rare event = cascade of intermediate (less) rare events
(increasing energies, critical levels, multilevel gateways).

ηn=Law(process | a series of n intermediate ↓ events)
=nonlinear distribution flow with ↑ level of complexity.

η0 → η1 → . . .→ ηn−1 → ηn(dx) =
1

γn(1)
γn(dx)→ . . .

Rare event probabilities = normalizing constants γn(1) = Zn.

Interacting stochastic sampling strategy

Interacting stoch. algo. = sampling w.r.t. a flow of meas.

Mean field particle models (sequential Monte Carlo,
population Monte Carlo, particle filters, pruning, spawning,
reconfiguration, quantum Monte carlo, go with the winner).
Interacting MCMC models (new i-MCMC technology).



Introduction An introduction to interacting stochastic algorithms Some rare event models An introduction to continuous time models Some references

Nonlinear distribution flows

ηn ∈ P(En) probability measures on (En, En) (↑ complexity).

ηn = Φn(ηn−1) with Φn : P(En−1) 7→ P(En)

Two important transformations

Markov transport eq. : Mn(xn−1, dxn) from En−1 into En

(ηn−1Mn)(dxn) :=

∫
En−1

ηn−1(dxn−1) Mn(xn−1, dxn)

Boltzmann-Gibbs transformation : Gn : En → R+

ΨGn(ηn)(dxn) :=
1

ηn(Gn)
Gn(xn) ηn(dxn)
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Feynman-Kac distribution flows

(Prédiction,Correction)=(Exploration,Selection)=(Gn,Mn)

Heuristics  particle occupation measures
(ξi

n=i-th walker/individual/particle time=n)

ηN
n :=

1

N

N∑
i=1

δξi
n
'N↑∞ ηn = Φn(ηn−1) := ΨGn−1

(ηn−1)Mn

Solution : Xn Markov ∼ transitions Mn

ηn(fn) =
γn(fn)

γn(1)
with γn(fn) = E

fn(Xn)
∏

0≤p<n

Gp(Xp)


Multiplicative formula  Unbias estimation

E

 ∏
0≤p<n

Gp(Xp)

 =
∏

0≤p<n

ηp(Gp) 'N↑∞
∏

0≤p<n

ηN
p (Gp)
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Running example

Confinement potential

Running example : Gn = 1A (or 1An ) :

⇒ γn(1) = P(∀0 ≤ p < n Xp ∈ A)

ηn = P(Xn ∈ dxn | ∀0 ≤ p < n Xp ∈ A)

Key multiplicative formula

γn(1) =
∏

0≤p<n

ηp(Gp) =
∏

0≤p<n

P(Xp ∈ A | ∀0 ≤ q < p Xq ∈ A)

Note :
ηn 6= Law of a Markov process with local restrictions to A.
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Structural stability properties

State space enlargements  same model!

Xn = (X ′n−1,X
′
n) or Xn = (X ′0, . . . ,X

′
n) or excursions

Ex.: Xn = (X ′0, . . . ,X
′
n)

⇒ ηn(fn) ∝ E

fn(X ′0, . . . ,X
′
n)
∏

0≤p<n

Gp(X ′0, . . . ,X
′
p)


Boltzmann-Gibbs’ formulation :

dηn =
1

Zn

 ∏
0≤p<n

Gp(Xp)

 dPX
n
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Structural stability properties

Importance sampling distributions  same model!

Change of proba. : Xn = (X ′n−1,X
′
n) Yn = (Y ′n−1,Y

′
n)

E

fn(Xn)
∏

0≤p<n

Gp(Xp)

 ∝ E

fn(Yn)
∏

0≤p<n

Hp(Yp)


Related weighted meas. Gn = G εn

n × G 1−εn
n = G

(1)
n × G

(2)
n = . . .

Complexity and Sampling problems

Path integration formulae, infinite dimensional state spaces

Nonlinear-Nongaussian models

Complex probability mass variations
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Some ”Wrong” approximation ideas

”Pure” weighted Monte Carlo methods : X i iid copies of X

1

N

N∑
i=1

fn(X i
n)

 ∏
0≤p<n

Gp(X i
p)

 ' E

fn(Xn)
∏

0≤p<n

Gp(Xp)


 bad grids X i ⊕ degenerate weights (running ex Gn = 1A).

Uncorrelated MCMC for each target measure ηn (↑ complex.).

”Pure” branching interpretations  random population sizes

Gn(x) = E(gn(x)) with gn(x) r.v. ∈ N

Harmonic/(Gaussian+linearisation) approximations.

G .M(H) ∝ H  G ∝ H/M(H)  H-process X H (unknown).
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Mean field particle methods

Nonlinear distribution flows

Nonlinear Markov models : always ∃Kn,η(x , dy) Markov s.t.

ηn = Φn(ηn−1) = ηn−1Kn,ηn−1 =Law
(
X n

)
i.e. :

P(X n ∈ dxn | X n−1) = Kn,ηn−1 (X n−1, dxn)

Mean field particle interpretation

Markov chain ξn = (ξ1
n , . . . , ξ

N
n ) ∈ EN

n s.t.

ηN
n :=

1

N

∑
1≤i≤N

δξi
n
'N↑∞ ηn

Particle approximation transitions (∀1 ≤ i ≤ N)

ξi
n−1  ξi

n ∼ Kn,ηN
n−1

(ξi
n−1, dxn)
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Mean field particle methods

Discrete generation mean field particle model

Schematic picture : ξn ∈ EN
n  ξn+1 ∈ EN

n+1

ξ1
n

K
n+1,ηN

n

−−−−−−−−−−→
...
ξi
n −−−−−−−−−−→
...
ξN
n −−−−−−−−−−→

ξ1
n+1
...

ξi
n+1
...

ξN
n+1

Rationale :

ηN
n 'N↑∞ ηn =⇒ Kn+1,ηN

n
'N↑∞ Kn+1,ηn

=⇒ ξi
n almost iid copies of X n



Introduction An introduction to interacting stochastic algorithms Some rare event models An introduction to continuous time models Some references

Mean field particle methods

Advantages

Mean field model=Stoch. linearization/perturbation tech. :

ηN
n = Φn(ηN

n−1) +
1√
N

W N
n

with W N
n 'Wn independent and centered Gauss field.

ηn = Φn(ηn−1) stable ⇒ local errors do not propagate

=⇒ uniform control of errors w.r.t. the time parameter

”No need” to study the cv of equilibrium of MCMC models.

Adaptive stochastic grid approximations

Take advantage of the nonlinearity of the system to define beneficial
interactions. Non intrusive methods.

Natural and easy to implement, etc.
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Mean field particle methods

”Intuitive picture” nonlinear sg : ηn = Φn(ηn−1) = Φp,n(ηp) = ηn
Local errors

W N
n :=

√
N
h
η

N
n − Φn

“
η

N
n−1

”i
' Wn ⊥ Gaussian field

Local transport formulation :

η0 → η1 = Φ1(η0) → η2 = Φ0,2(η0) → · · · → Φ0,n(η0)
⇓
ηN

0 → Φ1(ηN
0 ) → Φ0,2(ηN

0 ) → · · · → Φ0,n(ηN
0 )

⇓
ηN

1 → Φ2(ηN
1 ) → · · · → Φ1,n(ηN

1 )
⇓
ηN

2 → · · · → Φ2,n(ηN
2 )

⇓
.
.
.

ηN
n−1 → Φn(ηN

n−1)

⇓
ηN

n

 Key decomposition formula

η
N
n − ηn =

nX
q=0

[Φq,n(ηN
q )− Φq,n(Φq(ηN

q−1))]

'
1
√

N

nX
q=0

W N
q Dq,n first order decomp. Φp,n(η)− Φp,n(µ) ' (η − µ)Dp,n + (η − µ)⊗2 . . .

⇒ Example CLT :
√

N
h
η

N
n − ηn

i
'

nX
q=0

WqDq,n
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Mean field particle methods

Some Theoretical results : TCL,PGD, PDM,...(n,N) :

McKean particle measure

1

N

N∑
i=1

δ(ξi
0,...,ξ

i
n) 'N Law(X 0, . . . ,X n) & ηN

n =
1

N

N∑
i=1

δξi
n
'N ηn

Empirical Processes : supn≥0 supN≥1

√
N E(‖ηN

n − ηn‖pFn
) <∞

Uniform concentration inequalities :

sup
n≥0

P(|ηN
n (fn)− ηn(fn)| > ε) ≤ c exp

{
−(Nε2)/(2 σ2)

}
Propagations of chaos : PN

n,q := Law(ξ1
n , . . . , ξ

q
n )

PN
n,q ' η⊗q

n +
1

N
∂1Pn,q + . . .+

1

Nk
∂kPn,q +

1

Nk+1
∂k+1PN

n,q

with supN≥1 ‖∂k+1PN
n,q‖tv <∞ & supn≥0‖∂1Pn,q‖tv ≤ c q2.
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Mean field particle methods

Ex.: Feynman-Kac distribution flows

FK-Nonlinear Markov models :

εn = εn(ηn) ≥ 0 s.t. ηn-a.e. εnGn ∈ [0, 1] (εn = 0 not excluded)

Kn+1,ηn (x , dz) =

∫
Sn,ηn (x , dy) Mn+1(y , dz)

Sn,ηn (x , dy) := εnGn(x) δx(dy) + (1− εnGn(x)) ΨGn (ηn)(dy)

Mean field genetic type particle model :

ξi
n ∈ En

accept/reject/selection

−−−−−−−−−−−→ ξ̂i
n ∈ En

proposal/mutation

−−−−−−−−−−−→ ξi
n+1 ∈ En+1

Running ex. : Gn = 1A  killing with uniform replacement.



Introduction An introduction to interacting stochastic algorithms Some rare event models An introduction to continuous time models Some references

Mean field particle methods

Mean field genetic type particle model :

ξ1
n
...
ξi
n
...
ξN
n


S

n,ηN
n

−−−−−−−−−−→



ξ̂1
n

Mn+1

−−−−−−−−−−→
...

ξ̂i
n −−−−−−−−−−→
...

ξ̂N
n −−−−−−−−−−→

ξ1
n+1
...

ξi
n+1
...

ξN
n+1


Accept/Reject/Selection transition :

Sn,ηN
n

(ξi
n, dx)

:= εnGn(ξi
n) δξi

n
(dx) +

(
1− εnGn(ξi

n)
) ∑N

j=1
Gn(ξj

n)PN
k=1 Gn(ξk

n )
δξj

n
(dx)

Running Ex. : Gn = 1A  Gn(ξi
n) = 1A(ξi

n)
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Mean field particle methods

Path space models

Xn = (X ′0, . . . ,X
′
n) genealogical tree/ancestral lines

ηN
n :=

1

N

∑
1≤i≤N

δξi
n

=
1

N

∑
1≤i≤N

δ(ξi
0,n,ξ

i
1,n,...,ξ

i
n,n) 'N↑∞ ηn

Unbias particle approximations :

γN
n (1) =

∏
0≤p<n

ηN
p (Gp) 'N↑∞ γn(1) =

∏
0≤p<n

ηp(Gp)

Running ex. Gn = 1A :

⇒ γN
n (1) =

∏
0≤p<n

(success % at p)
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Interacting Markov chain Monte Carlo models (i-MCMC)

Objective

Find a series of MCMC models X (n) := (X
(n)
k )k≥0 s.t.

η
(n)
k =

1

k + 1

∑
0≤l≤k

δ
X

(n)
l

' k↑∞ ηn

⇒ Use η
(n)
k ' ηn to define X (n+1) with target ηn+1

Advantages

Using ηn the sampling ηn+1 is often easier.

Improve the proposition step in any Metropolis type model with
target ηn+1 ( enters the stability prop. of the flow ηn)

Increases the precision at every time step.

But CLT variance often ≥ CLT variance mean field models.

Easy to combine with mean field stochastic algorithms.
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Interacting Markov chain Monte Carlo models (i-MCMC)

Interacting Markov chain Monte Carlo models

Find M0 and a collection of transitions Mn,µ s.t.

η0 = η0M0 and Φn(µ) = Φn(µ)Mn,µ

(X
(0)
k )k≥0 Markov chain ∼ M0.

Given X (n), we let X
(n+1)
k with Markov transtions M

n+1,η
(n)
k

Rationale :

η
(n)
k ' ηn =⇒ Φn+1(η

(n)
k ) ' Φn+1(ηn) = ηn+1

=⇒ M
n+1,η

(n)
k

' Mn+1,ηn fixed point ηn+1
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Interacting Markov chain Monte Carlo models (i-MCMC)

i-MCMC

((n − 1)-th chain)

X
(n−1)
0

↓
X

(n−1)
1

↓
...
↓

X
(n−1)
k

η
(n−1)
k 'ηn−1

−−−−−−−−−−−−−→
↓
...

(n-th chain)

X
(n)
0

↓
...
...
↓

X
(n)
k

↓
M

n,η
(n−1)
k

' Mn,ηn−1

↓
X

(n)
k+1
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Interacting Markov chain Monte Carlo models (i-MCMC)

Feynman-Kac particle sampling recipes

Nonlinear Feynman-Kac type flow ∼ (Gn,Mn)

ηn = Φn(ηn−1) = ΨGn−1 (ηn−1)Mn

m

Interacting stochastic algorithm (mean field or i-MCMC)

acceptance/rejection/selection/branching  Gn

exploration/proposition/mutation/prediction  Mn

Normalizing constants  key multiplicative formula.

Path space models  path-particles=ancestral lines

Occupation meas. of genealogical trees ' ηn ∈ path-space
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Boltzmann-Gibbs distribution flows

Boltzmann-Gibbs distribution flows

Boltzmann-Gibbs measures

X r.v. ∈ (E , E) with µ = Law(X )

Target measures associated with gn : E → R+

ηn(dx) := Ψgn (µ)(dx) =
1

µ(gn)
gn(x) µ(dx)

Running examples :

gn = 1An ⇒ ηn(dx) ∝ 1An (x) µ(dx)

gn = e−βnV ⇒ ηn(dx) ∝ e−βnV (x) µ(dx)

gn =
∏

0≤p≤n

hp ⇒ ηn(dx) ∝

 ∏
0≤p≤n

hp(x)

 µ(dx)

Applications : global optimization pb., tails distributions, hidden Markov
chain models, etc.
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Boltzmann-Gibbs distribution flows

Boltzmann-Gibbs distribution flows

Boltzmann-Gibbs distribution flows

Target distribution flow : ηn(dx) ∝ gn(x) µ(dx)

Product hypothesis :

gn = gn−1 × Gn−1 =⇒ ηn = ΨGn−1 (ηn−1)

Running Ex.:

gn = 1An with An ↓ ⇒ Gn−1 = 1An

gn = e−βnV with βn ↑ ⇒ Gn−1 = e−(βn−βn−1)V

gn =
∏

0≤p≤n hp ⇒ Gn−1 = hn

Problem : ηn = ΨGn−1 (ηn−1) = unstable equation.
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Boltzmann-Gibbs distribution flows

Feynman-Kac distribution flows

FK-stabilization

Choose Mn(x , dy) s.t. local fixed point eq. → ηn = ηnMn

(Metropolis, Gibbs,...)

Stable equation :

gn = gn−1 × Gn−1 =⇒ ηn = ΨGn−1 (ηn−1)

=⇒ ηn = ηnMn = ΨGn−1 (ηn−1)Mn

Feynman-Kac ”dynamical” formulation (Xn Markov Mn)

∫
f (x) gn(x) µ(dx) ∝ E

f (Xn)
∏

0≤p<n

Gp(Xp)


 Interacting Metropolis/Gibbs/... stochastic algorithms.
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Markov processes with fixed terminal values

Objectives - Markov processes with fixed terminal values

Xn Markov with transitions L(x , dy) on E

Law(X0) = π only known up to a normalizing constant.

For a given fixed terminal value x solve/sample inductively the
following flow of measures

n 7→ Lawπ((X0, . . . ,Xn) | Xn = x)
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Markov processes with fixed terminal values

FK-formulation - Markov processes with fixed terminal values

π ”target type” measure+(K , L) pair Markov transitions

Metropolis potential G (x1, x2) =
π(dx2)L(x2, dx1)

π(dx1)K (x1, dx2)

Theorem [Time reversal formula ] :

EL
π(fn(Xn,Xn−1 . . . ,X0)|Xn = x)

=
EK

x (fn(X0,X1, . . . ,Xn) {
∏

0≤p<n G (Xp,Xp+1)})
EK

x ({
∏

0≤p<n G (Xp,Xp+1)})

 time reversal genealogical tree simulation
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Multi-splitting rare events excursions

Rare event excursions

(E = A ∪ Ac), Yn Markov, C ⊂ Ac absorbing set

Y0 ∈ A0(⊂ A)  Ac = (B ∪ C )

Objectives :

P(Y hits B before C ) and Law(Y | Y hits B before C )



Introduction An introduction to interacting stochastic algorithms Some rare event models An introduction to continuous time models Some references

Multi-splitting rare events excursions

Multi-splitting rare events

Multi-level decomposition B0 ⊃ B1 ⊃ . . . ⊃ Bm = B
(A0 = B1 − B0, B0 ∩ C = ∅)

Inter-level excursions : Tn = inf {p ≥ Tn−1 : Yp ∈ Bn ∪ C}

Xn = (Yp ; Tn−1 ≤ p ≤ Tn) and Gn(Xn) = 1Bn (YTn )

Feynman-Kac formulations :

P(Y hits B before C ) = E(
∏

1≤p≤m

Gp(Xp))

E(f (Y0, . . . ,YTm ) 1Bm (YTm )) = E(f (X0, . . . ,Xm)
∏

1≤p≤m

Gp(Xp))

 genealogical tree in excursion space.
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Fixed time level set entrances

Fixed time level set entrances

Fixed time level set entrances

Xn Markov ∈ En, Vn : En → R+, a ∈ R

Objectives :

P(Vn(Xn) ≥ a) and Law((X0, . . . ,Xn) | Vn(Xn) ≥ a)
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Fixed time level set entrances

Large deviation analysis

Large deviation analysis

P(Vn(Xn) ≥ a)
∀λ
= E

(
1Vn(Xn)≥a eλVn(Xn) e−λVn(Xn)

)
≤ e−(λa−Λn(λ)) with Λn(λ) = log E(eλVn(Xn))

Ex.: Vn(Xn) = Xn and ∆Xn = N(0, 1) =⇒ λ? = a/n

Twisted measure

ηn(dxn) ∝ eλVn(xn) P(Xn ∈ dxn) := γn(dxn)

⇒ P(Vn(Xn) ≥ a) = ηn(1Vn≥a e−λVn ) × γn(1)
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Fixed time level set entrances

Feynman-Kac representation formula

Feynman-Kac twisted measures (V−1 = 0)

E(fn(Xn) eλVn(Xn)) = E

fn(Xn)
∏

0≤p≤n

eλ(Vp(Xp)−Vp−1(Xp−1))


and

E(fn(X0, . . . ,Xn) | Vn(Xn) ≥ a)
∝
E
(

Tn(fn)(X0, . . . ,Xn)
∏

0≤p≤n eλ(Vp(Xp)−Vp−1(Xp−1))
)

with
Tn(fn)(X0, . . . ,Xn) = fn(X0, . . . ,Xn)e−λVn(Xn)1Vn(Xn)≥a
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Particle absorption models

Particle absorption models

Sub-Markov  Markov

Xn Markov ∈ (En, En) with transitions Mn, and Gn : En → [0, 1]

Qn(x , dy) = Gn−1(x) Mn(x , dy) sub-Markov operator

 E c
n = En ∪ {c}.

X c
n ∈ E c

n

absorption ∼Gn

−−−−−−−−−−−−−−−−−−→ X̂ c
n

exploration ∼Mn

−−−−−−−−−−−−−−−−−−→ X c
n+1

Absorption: X̂ c
n = X c

n , with proba G (X c
n ); otherwise X̂ c

n = c .

Exploration: like Xn  Xn+1
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Particle absorption models

Feynman-Kac formulation

Feynman-Kac integral model

T = inf {n : X̂ c
n = c} absorption time : ∀fn ∈ Bb(En)

P(T ≥ n) = γn(1) := E

 ∏
0≤p<n

G (Xp)


E(fn(X c

n ) ; (T ≥ n)) = γn(fn) := E

fn(Xn)
∏

0≤p<n

Gp(Xp)


Continuous time models : ∆ = time step

(M,G ) = (Id + ∆ L, e−V ∆)

 L-motions ⊕ expo. clocks rate V ⊕ Uniform selection.
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Particle absorption models

Ex.: Feynman-Kac-Shrdinger ground states energies

Spectral radius-Lyapunov exponents

Q(x , dy) = G (x)M(x , dy) sub-Markov operator on Bb(E )

Normalized FK-model : ηn(f ) = γn(f )/γn(1).

P(T ≥ n) = E

 ∏
0≤p≤n

G (Xp)

 =
∏

0≤p≤n

ηp(G ) ' e−λn

with e−λ
M reg .

= Q-top eigenvalue or

λ = −LogLyap(Q) = lim
n→∞

−1

n
log |||Qn|||

= −1

n
log P(T ≥ n) = −1

n

∑
0≤p≤n

log ηp(G ) = − log η∞(G )
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Particle absorption models

Ex.: Feynman-Kac-Shrdinger ground states energies

Limiting Feynman-Kac measures

M µ− reversible :

⇒ E(f (X c
n ) | T > n) ' µ(H f )

µ(H)
with Q(H) = e−λH

Limiting FK-measures

ηn = Φ(ηn−1)→n↑∞ η∞ with
η∞(G f )

η∞(G )
=
µ(H f )

µ(H)

leadsto Particle approximations :

λ 'n,N↑ λN
n :=

1

n

∑
0≤p≤n

log ηN
p (G ) and η∞ 'n,N↑ ηN

n

Law((X c
0 , . . . ,X

c
n ) | (T ≥ n)) ' Genealogical tree measures
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Distribution flows (nonlinear sg.)

(weak sense) : infinitesimal generators Lt,η

d

dt
ηt(f ) = ηtLt,ηt (f ) :=

∫
E

ηt(dx) Lt,ηt (f )(x)

Example FKS : Xt '
(

L
ex.
= 1

2 ∆
)
− process ⊕ potential V .

ηt(f ) :=
γt(f )

γt(1)
avec γt(f ) = E

(
f (Xt) exp

{
−
∫ t

0

V (Xs)ds

})

d

dt
γt(f ) = γt(LV (f )) Schrodinger op. LV := L− V

d

dt
ηt(f ) = ηtLηt (f )

:=

∫
ηt(dx)

{
L(f )(x) + V (x)

∫
(f (y)− f (x))ηt(dy)

}
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Mean field particle interpretation

Markov process ξt = (ξi
t)1≤i≤N with infinitesimal generator

Lt(F )(x1, . . . , xN) :=
N∑

i=1

L
(i)

t, 1
N

PN
i=1 δxi

F (x1, . . . , x i , . . . , xN)

Occupation measures evolution ηN
t := 1

N

∑N
i=1 δξi

t

dηN
t (f ) = ηN

t Lt,ηN
t

(f )dt +
1√
N

dMN
t (f )

with

〈MN(f )〉t =

∫ t

0

ηN
s ΓL

s,ηN
s

(f , f ) ds



Introduction An introduction to interacting stochastic algorithms Some rare event models An introduction to continuous time models Some references

Example : FKS model  Moran type particle systems

(ξi
t)1≤i≤N = L-explorations ⊕ interacting jumps (V -intensity)

Lt(F )(x1, . . . , xN)

=
∑N

i=1 L(i)F (x1, . . . , x i , . . . , xN) +
N∑

i=1

V (x i )

×
∫ (

F (x1, . . . , y i , . . . , xN)− F (x1, . . . , x i , . . . , xN)
)

m(x)(dy i )

with m(x) = N−1
∑N

i=1 δx i .

Asymptotic theory ”∼” discrete time models

Geometric clocks  Exponential clocks
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Asymptotic theory

FKS-model ⊕ Moran type particle systems

Particle estimations

E
(

f (Xt)e
R t

0
V (Xs )ds

)
= ηt(f ) e−

R t
0
ηs (V )ds

'N ηN
t (f ) e−

R t
0
ηN

s (V )ds (unbias)

Ground states of Schrodinger op. : (⊃ DMC, QMC)

(v.p. λ ⊕ ground state h (L µ-reversible))

lim
N,t→∞

ηN
t (dx) ∝ h(x) µ(dx) et e−

R t
0
ηN

s (V )ds ' e−λt

Asymptotic theory ”∼” discrete time models.
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Some references

Interacting stochastic simulation algorithms

Mean field and Feynman-Kac particle models :

Feynman-Kac formulae. Genealogical and
interacting particle systems, Springer (2004) ⊕ Refs.
joint work with L. Miclo. A Moran particle system
approximation of Feynman-Kac formulae. Stochastic Processes
and their Applications, Vol. 86, 193-216 (2000).
joint work with L. Miclo. Branching and Interacting Particle
Systems Approximations of Feynman-Kac Formulae. Séminaire
de Probabilités XXXIV, Lecture Notes in Mathematics,
Springer-Verlag Berlin, Vol. 1729, 1-145 (2000).

Sequential Monte Carlo models :

joint work with Doucet A., Jasra A. Sequential Monte
Carlo Samplers. JRSS B (2006).
joint work with A. Doucet. On a class of genealogical and
interacting Metropolis models. Sém. de Proba. 37 (2003).

http://www.math.u-bordeaux.fr/~delmoral/gips.html
http://www.math.u-bordeaux.fr/~delmoral/gips.html
http://www.math.u-bordeaux.fr/~delmoral/smc_samplers_try.pdf
http://www.math.u-bordeaux.fr/~delmoral/smc_samplers_try.pdf
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Some references

Interacting stochastic simulation algorithms

i-MCMC algorithms :

joint work with A. Doucet. Interacting Markov Chain
Monte Carlo Methods For Solving Nonlinear
Measure-Valued Eq., HAL-INRIA RR-6435, (Feb. 2008).
joint work with B. Bercu and A. Doucet. Fluctuations of
Interacting Markov Chain Monte Carlo Models.
HAL-INRIA RR-6438, (Feb. 2008).
joint work with C. Andrieu, A. Jasra, A. Doucet. Non-Linear
Markov chain Monte Carlo via self-interacting approximations.
Tech. report, Dept of Math., Bristol Univ. (2007).
joint work with A. Brockwell and A. Doucet. Sequentially
interacting Markov chain Monte Carlo. Tech. report, Dept. of
Statistics, Univ. of British Columbia (2007).

http://hal.inria.fr/docs/00/23/92/42/PDF/RR-6435.pdf
http://hal.inria.fr/docs/00/23/92/42/PDF/RR-6435.pdf
http://hal.inria.fr/docs/00/23/92/42/PDF/RR-6435.pdf
http://hal.inria.fr/docs/00/23/92/48/PDF/RR-6438.pdf
http://hal.inria.fr/docs/00/23/92/48/PDF/RR-6438.pdf
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Some references

Particle rare event simulation algorithms

Twisted Feynman-Kac measures

joint work with J. Garnier. Genealogical Particle Analysis of
Rare events. Annals of Applied Probab., 15-4 (2005).
joint work with J. Garnier. Simulations of rare events in fiber
optics by interacting particle systems. Optics Communications,
Vol. 267 (2006).

Multi splitting excursion models

joint work with P. Lezaud. Branching and interacting
particle interpretation of rare event proba..
Stochastic Hybrid Systems : Theory and Safety Critical
Applications, eds. H. Blom and J. Lygeros. Springer (2006).
joint work with F. Cerou, Le Gland F., Lezaud P.
Genealogical Models in Entrance Times Rare Event
Analysis, Alea, Vol. I, (2006).

http ://www-math.unice.fr/publis/delmoral lezaud.ps
http ://www-math.unice.fr/publis/delmoral lezaud.ps
http://alea.impa.br/articles/v1/01-08.pdf
http://alea.impa.br/articles/v1/01-08.pdf
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Some references

Particle rare event simulation algorithms

Particle absorption models

joint work with L. Miclo. Particle Approximations of
Lyapunov Exponents Connected to Schrodinger
Operators and Feynman-Kac Semigroups. ESAIM
Probability & Statistics, vol. 7, pp. 169-207 (2003).
joint work with A. Doucet. Particle Motions in Absorbing
Medium with Hard and Soft Obstacles. Stochastic Analysis
and Applications, vol. 22 (2004).
Molecular chemistry applications :

MICMAC INRIA team-project
(B. Jourdain, T. Lelièvre, G. Stoltz)
M. Rousset (Lille Univ., SIMPAF INRIA team-projet ).

http://www.math.u-bordeaux.fr/~delmoral/exponent.ps
http://www.math.u-bordeaux.fr/~delmoral/exponent.ps
http://www.math.u-bordeaux.fr/~delmoral/exponent.ps
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