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Abstract

Examines Quantum-Inspired Biology by connecting Feynman’s path-integral for-
mulation of quantum mechanics to the use of Feynman-Kac and Fisher-Kolomogorov
equations in biophysics. Attempts to show how fundamental concepts in quan-
tum mechanics are carried over via mathematics and formalism to be applied
nonliterally in biological contexts.
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1 Introduction

The intersection of quantum mechanics and biophysics has been a field of research
for decades, yet results have been mixed. The historical focus of effort has been
on the potential for quantum mechanics to give rise to quantum weirdness at the
level of macroscopic biology. This has been in part motivated by the marked dis-
crepancy between physicists deep understanding of classical and thermal physics
and our limited understanding of complex biological systems. While theoretical
breakthroughs have been presented, experimental verification has been lacking.
This has led to attempts with the converse approach: the non-literal applica-
tion of theoretical, mathematical, and formal constructs in quantum mechanics
to studies in biology. This we shall call QIB: Quantum-Inspired Biology. Just as
certain phenomena were never (classically) understood until the rise of quantum
mechanics in the early 20th century, the use of quantum mechanics in biology
may prove to be the missing link in our attempts to get at the heart of biological
systems.

This paper examines the ramifications of one such application in detail: Feyn-
man path integrals. Starting from Feynman’s formulation of quantum mechanics,
we shall show how underlying physical concepts have motivated further work,
work that connects directly to biophysics. The purpose is two-fold: to show the
natural connection between quantum path integrals and other mathematical tools
used in biophysics, namely the Feynman-Kac and Fisher-Kolomogorov equations;
and to argue that the concepts underpinning Feynman’s formulation of quan-
tum mechanics give insight into the underlying forces at work in biology. This
nonliteral extension of concepts is QIB.

This paper is both a response to the recent influx of biophysics papers on the
topic and a wish to clearly introduce and motivate further QIB to the scientific
community at large. Our hope is that our paper presents concepts and math-
ematics at a level to motivate any budding young biophysicist (pun intended),
as well as reveal the untapped potential of this interesting synthesis of fields to
mature theoreticians.

2 Path Integral Formulation of Quantum Mechanics

At the heart of quantum mechanics is probability. In all formulations, it is right-
fully recognized that quantum systems exhibit a wave-particle duality; that is,
the system is indeterministic (to a certain degree between conjugate coordinates).
The complex wave function Ψ(~x, t) is the square-integrable probability amplitude
of finding the particle at position ~x and time t. Traditionally, Ψ(~x, t) is solved via
the Schrödinger equation

i~
∂Ψ(~x, t)

∂t
= HΨ(~x, t) (1)
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and observable quantities are mathematically derived via operators. These
operators also inform upon the formulation of the differential Hamiltonian oper-
ator H; this creates a direct link between the quantum system and “the classical
Hamiltonian H(~p, ~x) of the associated classical system” [1]. So, while exact quan-
tum behavior is inherently indeterministic, the Schrödinger equation gives us a
solvable, deterministic equation for the probable evolution of the quantum system,
ie. for any knowledge of Ψ(~x, t = t0) we know Ψ(~x, t) for t > t0.

Published in 1948, Feynman’s interpretation of the quantum world was di-
vergent from the historically older formulations of Schrödinger and Heisenberg.
Feynman showed that the wave function Ψ(~x, t) is truly “a probability amplitude
associated with an entire motion of a particle as a function of time, rather than
simply with a position of the particle at a particular time” [1].

Suppose we know a particle travels from point a to point c with probability
Pac. As the wave function is a probability amplitude, there exists a wave function
φac such that

Pac = |φac|2 (2)

As this particle must have passed through an intermediate point b in going
from a to c, it must be that

φac =
∑
b

φabφbc (3)

The potential values of b represent mutually exclusive possible intermediate
points B, ie. the different paths the particle may travel. Therefore, the summation
over b represents all possible paths the particle may take from a to c. However,
when dealing with quantum systems, it is important to understand that (3) does
not correspond to the intuitive sum of independent probabilities

Pac =
∑
b

PabPbc (4)

The above equation is only true for quantum systems that are actually mea-
sured at the point b; such a measurement collapses the wave function, and we
are certain for which b the particle passed through. If no measurement is made,
then we cannot assume “that to get from a to c the system had to go through
a condition such that [the intermediate step] B had to have some definite value,
b” [1]. Thus, equation (3) represents the fundamental wave nature of the particle
in question: the particle may travel from a to c through several different routes at
once. These distinct routes are represented by distinct b, and the total probability
of getting from a to c via any b is a sum of their complex quantities.

Generalizing to a path from point a to z for which the particle must travel
through infinitely many exact points of the sequence a, b, c, d...z
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Pabcd...z = |φabcd...z|2 (5)

This represents an exact path for the particle to travel through from a to z.
As stated before, it is theoretically possible to determine the actual path that a
particle takes from a to z by measuring the particle at every point along the way.
This collapses the wave function, and we know the exact probability for a to b,
b to c, etc. For a general path from a to z, in which we are unconcerned with
the intermediate steps, we must sum over all possible points b, c, d..z− 1 that the
particle may pass through in between a and z, given as

Paz = |
∑
b

∑
c

· · ·
∑
z−1

φabcd...z|2 (6)

Given this, we assume that the distance between points a and b, and b and c,
etc. is of a fixed distance for which it takes the particle a fixed time ε to travel
between. Taking the limit ε→ 0 for the path a to z, the probability PRaz becomes
an integral over possible positions xi defining R

∫ a+δa

a−δa

∫ b+δb

b−δb
· · ·
∫ z+δz

z−δz
P (xa, xb, · · ·xz) · · · dxadxb · · · dxz (7)

=

∫
R
P (· · ·xi, xi+1, · · · ) · · · dxidxi+1 · · · (8)

in which R is the region of space through which the particle may travel. More
specifically, region R is such that the particle passes through it’s first point xa
between a− δa and a+ δa, it’s second point xb between b− δb and b+ δb, etc. for
which δi may vary. This is a more advanced notion of position; instead of saying
that the particle is or is not exactly at point b an intermediate step, we say that
it is within a range of space.

As in quantum mechanics the probability that a particle is found in region R
is given by a complex number, we let PRaz = |φ(R)|2 for

φ(R) = lim
ε→0

∫
R

Φ(· · ·xi, xi+1, · · · ) · · · dxidxi+1 · · · (9)

The complex number Φ(· · ·xi, xi+1, · · · ) is “the probability amplitude func-
tional of paths x(t)”[1], ie. simply the square-integrable complex value of the
probability the particle travels through R. Thus, we may summarize that the
probability that “a particle has a path lying in a region [R] of space-time...is the
absolute square of a sum of complex contributions, one from each [possible] path
in the region.” [1]

For such a formulation to be useful requires a great conceptual leap, one
that allows us to calculate the relative contributions of each possible path to the
transition probability between two points. Feynman gives us the key postulate:
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“Paths contribute equally in magnitude, but the phase of their contribution is the
classical action...i.e., the time integral of the Lagrangian taken along the path.” [1]

So, the contribution Φ[x(t)] to the transition amplitude is proportional to
exp(i/~)S[x(t)], for the action S over a possible path x(t). While in classical
mechanics it is the minimization of the action that completely determines the
path taken, Feynman recognized that in quantum mechanics it is the minimization
of the classical action that determines the probability that a path is taken. The
genius behind this is the recognition that the minimization of the action gives “how
much” a particular quantum path varies from the true, classical path. The action
may then be substituted for each path Φ[x(t)] as the probability of a quantum path
taken is proportional to how deviant it is from the classical limit. So, Feynman
gives us the mechanics to relate the energies of a path to the probability that this
path occurs. To minimize the action between two successive points in space-time

S(xi+1, ti+1;xi, ti) = Min.

∫ ti+1

ti

L(ẋ(t), x(t))dt (10)

for an entire path

S =
∑
i

S(xi+1, ti+1;xi, ti) (11)

in which x(tk) = xk.
The phase and amplitude of the action are substituted in for the contribution

of path Φ[x(t)]. This gives us the final equation for a Feynman path-integral:

φ(R) = lim
ε→0

∫
R

exp[
i

~
∑
i

S(xi+1, xi)] · · ·
dxi+1

Ai+1

dxi
Ai
· · · (12)

=

∫
R
DA[x(t)] · e

i
~
∑

R[Min.
∫
t L(ẋ(t),x(t))dt] · dx (13)

in which we have calculated the probability that a quantum particle travels
in a path through a region R in space-time.1 The encompassing integral is taken
over all possible paths in R. The sum of actions is for each one of these paths.
The integral of the Lagrangian is for the entire time for the particle path to be
completed.

For a path through region R, our mathematics utilizes all possible paths
through the region. If we remove the restriction of the path being in R, we are
asking for the probability that the quantum particle travels between two points.
Such a question requires, in this formulation, a knowledge of all possible paths
through all of space-time, and not just all paths through R. Inherent in such
a conception is the quantum phenomenon that there is a probability, however

1DA[x(t)] is the normalization of each path. I shall not discuss how it is obtained, as it does
not lend any conceptual relevance to my discussion of the above equation to biophysics.
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small, that a particle may take any path through space-time. The main integral
in Eq. (12) is then for all space. Because of Feynman’s connection between the
energies of the system and it’s path, such a calculation is not as formidable as it
sounds. Use of the Lagrangian makes the calculation of the weight of any path
possible. It is also easy to make approximations by only taking the integral over
the “most-classical” paths, ie. those paths that will contribute greatest to the
transition amplitude.

Figure 1: Two ways of physical transition from A to B. (a) gives the classical
trajectory, which minimizes the action. (b) shows the quantum case, in which all
possible routes from A to B are viable, and for which each route contributes to
the total transition probability. The routes with the most weighted contributions
are those which most minimize the action, ie. are closest to (a). Figure from [2],
p.74.

2.1 Collapsing the Wave Function

To generalize such a path-integral formation, it is worth noting that there are
inherently quantum concepts at work. The wave-particle duality of systems at
the quantum level means that multiple paths may be taken simultaneously. To
generalize to larger scale systems, we have been hard pressed to find any that
exhibit this kind of “quantum weirdness.”

However, the key concept behind path integrals, that each possible path con-
tributes a probability, is still valid. Quantum systems are not the only inherently
stochastic systems. Instead, if we apply Feynman’s path integral conception di-
rectly to non-quantum systems, we need simply treat it as a quantum system that
has been measured. This ensures that we may use the mathematical apparatus of
assigning probabilistic values to all possible paths, but that the system is always
“forced” to choose one particular path. Which path it takes is a function of the
inherent probabilities.
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3 Action

3.1 Examining Quantum Action

To generalize from quantum systems, we must take a closer look at the concept of
action. In classical mechanics, action is an absolute concept; it always determines
the exact path that a system takes. In quantum mechanics, action is still exact.
There is a minimum to the action, a stationary point, and this is determined in
the classical limit. The quantum system will, in the classical limit, take the path
of least action.

But Feynman begins to hint at the possibility of stochasticity in action. For a
wave function that is left undisturbed, the quantum system will travel via multiple
pathways simultaneously. The standard interpretation must then be that the
action for a given path gives “how much” the quantum system traveled down
that particle path.

However, if we do collapse the wave function, as discussed above, the particle
takes a definite path. And this path is not always the classical path. In this
scenario, then, the action functional gives a probabilistic value of a disturbed
quantum system taking the given path.

This can be intuitively applied nonliterally to other systems. If we are to
examine the dynamical behavior of a stochastic system, we cannot definitely say
how it will evolve. If, however, we have action values for its possible pathways,
we can calculate the probabilities of the system taking certain paths. Taken
nonliterally, we may use path integrals as a mathematical tool if we consider
action as a stochastic concept for certain systems. The question then becomes,
what can be thought of as an action?

3.2 What is an Action...

Looking back in history, before the formulation of Hamiltonian mechanics physi-
cists did not yet understand how the dynamical behavior of a classical system is
completely determined by the energies of that system. Systems have always held
this information, but it took the work of a few brilliant 19th century physicists
to realize the connection. Feynman made the next leap 150 years later, utilizing
the energies of a quantum system to show its probabilistic behavior in a similarly
path-based approach. This field has made extensive use of path integrals because,
for the first time, the energies of a quantum system were useful in determining
the evolution of the system’s path through both time and space.

Action is an attribute of the dynamics of a physical system, a mathematical
functional that examines trajectories in terms of energy and time. It is a funda-
mental view of a path in terms of the energies of the system. Taken another way,
it is a tool that allows us to determine the evolution of a system as a function of
the systems energies. It is this second idea that will be most useful to us, and
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that we will use in nonliteral contexts. First, we review action in the original,
mechanical context.

To fully understand the power of action, let’s start from first principles. If
we imagine a classical system, such as a ball being thrown through the air, it is
intuitive that this ball must follow a certain trajectory. It will arc, and eventually
hit the ground; there is no chance that it will start spinning figure-eights around
your head. How the ball arcs depends on how you throw it. If you throw it harder,
you give it more energy, and the ball will fly farther.

For a classical system, the energies of the system completely determine the
systems dynamical behavior. Put another way, a knowledge of the relation of
a systems energies implies complete information of the evolution of the system.
This mathematical relation of energies is the Lagrangian. For a simple system,
this is the kinetic and potential energies,

L = T − V. (14)

To understand the dynamical behavior, we need to examine this relation of en-
ergies over the course of an entire trajectory. The action is the required functional
that integrates the Lagrangian over the course of the trajectory,

S =

∫ tfinal

tinitial

L(q, q̇, t)dt (15)

where we have assumed that the energies of most systems only rely on their
spatial coordinate (potential term) and its first derivative (kinetic term). 2

Thinking back to trajectories, it is intuitive that the “correct” trajectory
will have a different value of action from the hypothetical, figure-eights-around-
your-head trajectory. The principle of stationary action gives this idea math-
ematical utility: the exact dynamics of a physical system correspond to a sta-
tionary point of the system’s action. More simply, a classical system takes the
path of “least resistance.” 3 Using variational calculus, we can satisfy the prin-
ciple of stationary action such that δS = 0 for deviations from the system’s
true path. The perturbation of a system from this true path can be written as
δq(t) = qperturbation(t) − qtrue(t), in which the endpoints are always the same, ie.
δq(tfinal) = δq(tinitial) = 0. We use (15) to examine these perturbations:

δS =

∫ tfinal

tinitial

[L(qtrue + δq, q̇true + δq̇true)− L(qtrue, q̇true, t)]dt (16)

=

∫ tfinal

tinitial

(
δq
∂L

∂q
+ δq̇

∂L

∂q̇

)
dt =

∫ tfinal

tinitial

(
δq
∂L

∂q
− δq d

dt

∂L

∂q̇

)
dt (17)

2This is potentially troubling, but it has been found that a vast majority of systems satisfy
such a requirement

3This has nothing to do with real resistance. It is merely a phrase to try and coax an intuitive
understanding of some paths being “easier” than others for a system to follow.
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in which

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (18)

must be true to minimize the action δS = 0. These are the Euler-Lagrange
equations (18) which give the exact equations of motion for the system. This is
the Hamiltonian formulation of classical mechanics.

3.3 ...and What Can Be an Action?

This is action in the original sense, but we shall argue that it can be expanded for
non-mechanical applications. Again, the fundamental question is how can action
be generalized? This will allow a link between Feynman and biophysical problems.

For there to be an action, a system must be evolving along a dimension X.
The action is then an attribute of the dynamics in X. These dynamics must be
the direct result of some driving force f , and so the action is a functional of f over
a path in X. The action must also be descriptive over the entire trajectory. For
our mechanical system, we examined trajectories through space-time X as being
determined by the energies f of the system.

A nonliteral example can be found in the gene toggle switch network presented
by Wang, et. al. [3]. The state of the lambda phage CI/Cro switch is a function of
the chemical kinetics of the production of these two proteins, as well as inherent
noise from cellular fluctuations. Wang argues this cellular network has an action
in terms of these protein concentrations and the diffusion of cellular fluctuations,
and continues to analyze cellular dynamics utilizing path integrals.

As shall be discussed in more detail in section 5, Maeshiro and Kimura ar-
gue that in the evolutionary process, the action is the fitness between genetic
sequences in adjacent generations. The Lagrangian is the product of the fitness
of a genetic sequence and the probability of attaining this sequence. This makes
up the driving force f over genetic evolution X. Taken over the trajectory of
multiple generations, the action is in terms of time · fitness. These authors are
both using action in a stochastic sense. Their dynamical systems are probabilistic,
their actions give the probabilities of evolution through a particular dimension.

The weighting of paths is also a function of the action. In Feynman, it is the
phase of the action that gives the probability of a quantum trajectory. For certain
non-mechanical systems (in which conservation of energy is not applicable), it may
be that the calculation of the action itself is the relevant weighting, perhaps with
a normalization over all paths in question. Or it may be that the action gives
a value that is to be further attenuated to give the probability of following the
trajectory in question.

This is also a function of whether the most weighted paths have maximal or
minimal action. It shall be clarified that the principle of stationary action is often
referred to as the principle of least action, yet this is a misnomer. The path
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of least resistance has an action with a first order variation of zero; it can be a
maximum or minimum. Depending on how we define the system’s action, the
system may either tend to follow paths of maximum action or to follow paths of
minimal action. In section 4, the action gives a paths fitness, and it is intuitive
that those paths with greater fitness are more likely to succeed.

3.4 Action vs. Lagrangian

Why have we focused on a systems action, when the more fundamental quantity
is the Lagrangian? First, our argument for non-literal path integrals is (we hope)
focused on path integration. Action, as a concept, is more directly linked to
paths. Each path has a value of action; it makes no sense to speak of the action
of a system without relation to a possible trajectory of that system. Second,
as we make the argument to generalize path integration, it may be necessary to
approximate the action of certain possible paths. While the Lagrangian connotes
a complete knowledge of the energies of the system, the action only refers to a
particular path. We feel that it’s more kosher to say that we have approximated
the action rather than the more fundamental Lagrangian. That is not to say
a knowledge of the Lagrangian is unwanted; a knowledge of the Lagrangian is
invaluable.

4 Feynman-Kac

4.1 Potential Landscapes

The beauty of path integrals is that it allows us to conceive of a system literally
evolving through, say, space-time. The system takes a path through a landscape.

This landscape is the potential function, and it can be the driving force of
dynamical behavior. If we consider simple quantum systems, the action is a func-
tion of both kinetic and potential energies; but the kinetic energy of a particle is
generally simple, and similar across many systems. What differentiates problems
in quantum mechanics is when systems must navigate different forms of potential
functions. This is literally the landscape that paths are taken through.

The concept that potential functions make up the landscape of path-space is
central to Mark Kac’s generalization of Feynman’s work to diffusion problems.
In this case, the potential is easily broadened in conception. As with the pre-
vious examples, the potential can be the selective pressure of evolution, cellular
fluctuations, or any other landscape through which a biophysical problem must
evolve. Essentially all biological systems must navigate a complex environment;
by acknowledging that this environment is the driving potential of the systems
dynamical behavior, we may use path-integral based tools.
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4.2 The Feynman-Kac Equation

As with all great ideas, Feynman’s revolutionary paper found a life outside of its
original realm. A colleague at Cornell University, Mark Kac, was one of the first to
build off of Feynman’s work. Even before it was published in Reviews of Modern
Physics, Kac was able to see the genesis of a path integral formulation of quantum
mechanics in Feynman’s then-unpublished Princeton doctoral thesis. His main
interest being probability theory, Kac quickly grasped the innovative approach to
solving the Schrodinger equation and realized the same concept could be applied
to other stochastic processes. It is historically noted that Kac’s inspiration came
from the heat equation, with an external cooling term V :

∂u

∂t
=

1

2
∇2u− V (x)u, u(x, t) = u0(x) (19)

It is easy to see the similarities to the Schrödinger equation (1), for which both
equations contain a time derivative and a second-order derivative in space.

Just a year later, Kac published his proof of what would become known as the
Feynman-Kac formula. The partial differential equation (19) admits a solution
given by:

u(x, t) = Expect.
{
u0e
−

∫ t
0 V (x)ds

}
(20)

This paper, “On the Distributions of Certain Wiener Functionals” [4], ties path
integral formulations to the solution of partial differential equations involving dif-
fusion processes. As Feynman’s proof went from the assumed discrete probability
amplitudes (15) to an integral over continuous paths, Kac made the mathematical
leap from Wiener processes to PDEs.

As the rigorous mathematics in [4] are beyond the scope of this paper, and
of less interest to a physicist, I shall attempt to elucidate the key concepts and
power behind it’s formulation.

4.3 Primacy of the Potential

A standard diffusion equation,

∂u

∂t
= D∇2u (21)

can be solved quite simply by separation of variables. But most systems have
a driving force, the potential V ,

∂u

∂t
= D∇2u+ V (22)

It is this term that differentiates a standard diffusion process from anything
“more interesting.”
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The formulation of Feynman-Kac is based on an understanding of this poten-
tial. The landscape of the potential directly influences what paths the system
may take; intuitively, the system is less likely to take a path through a part of
the potential surface in which the potential is high. Feynman-Kac measures take
this potential landscape as the driving force of how the system will evolve. By
exponentially weighting the paths based on the potentials they travel through, we
come to an expectation of the systems behavior. In this sense, “the potential is
rather regarded as a likelihood function of the states with respect” [5] to the path
space.

The potential function is then an energy function, or the action, for the paths.
This is a similar setup to Feynman’s path integrals (12). The Feynman-Kac for-
mula thus ties two worlds together through an understanding of potential land-
scapes. Regardless of the system in question, it is the potential function that acts
as the action, the driving force for dynamical behavior.

Feynman-Kac is therefore widely applicable. It may be used as a path-based
approach to solve the Schrödinger equation (1), or any other diffusion equation
of a similar nature. These types of equations are widely found in biology, such
as for allelic diffusion, chemical interactions, or directed polymers. It is amazing
that such varied phenomena can be approached with the same tool. While it
is stretch to say that, for instance, chemical diffusion across a cell membrane
exhibits any quantum-like behavior, it is true that dynamically their behavior
exhibits remarkable similarities.

4.4 Fisher-Kolomogorov

The Fisher-Kolomogorov equation was developed “as a deterministic version of a
stochastic model for the spatial spread of a favored gene in a population” [6]. It
is perhaps the best example of a PDE used in biology that admits traveling wave
solutions. For a habitat spatially distributed in dimension x, if a mutant arises
with a selective advantage, it is expected that this mutation will diffuse through
the population over time, at the expense of other alleles at the same locus. Fisher
found that the frequency of the advantageous gene satisfies the following equation
of allelic diffusion

∂u

∂t
=
∂2u

∂x2
+ u(1− u) (23)

While this equation predates quantum mechanics, and therefore the Feynman-
Kac equation as well, it is remarkably similar. We can see that the above equation
(23) satisfies the form of Feynman-Kac PDEs (20). Despite the fact that allelic
diffusion is a stochastic process, the Fisher-Kolomogorov equation is decidedly
deterministic. The selective pressure u(1 − u) is not a potential landscape, and
therefore does not necessitate a path integral approach. It is also a not a lin-
ear problem, complicating the standard requirement for the Lagrangian, or the

12



potential, or a path based approach to be first-order.
Still, it is worth bringing to our attention. Kac’s goal was to connect Feyn-

man’s multi-path approach to diffusion equations in a general form. Diffusion is a
multi-path problem itself; it asks, given a complex environment, how is the system
expected to evolve? Kac’s solution is to treat the multi-path approach similarly
to the principle of stationary action used by Feynman. The Fisher-Kolomogorov
equation represents the limit in which the potential function for allelic diffusion is
not a function of outside pressure, but rather is fully tied to the spread of the allele
itself. Even in this case, we see the Fisher-Kolomogorov PDE is remarkably close
to those diffusion problems that Feynman-Kac is outfitted for. In a more com-
plex case, a potential landscape could be added to Fisher-Kolomogorov, and the
expectation of paths taken over the landscape could be solved via Feynman-Kac.
This would give Fisher-Kolomogorov gene dynamics a more advanced treatment.

5 Mathematical Analysis of Evolutionary Process

The above discussion has been quite limited to mathematical tools, but it may
help to present some examples of biological problems for which this paper has
been relevant. We will examine a paper on population genetics that attempts to
use path integrals directly, without the medium of Feynman-Kac. While perhaps
not the most advanced approach, this makes clear exactly how the underlying
concepts in path integrals are nonliterally applied to a biological problem.

Population genetics is the study of how a population’s phenotypic proportions
change over time. It has been a powerful theory, giving important insights into
the evolution of life. Yet as genetics-based biology has exploded, there has been
increased interest in dealing with the evolution of genotypes in population dy-
namics. Such an approach treats the actual genetic information, the DNA, as
the building block of evolutionary progress. This could allow geneticists to better
understand how, at the molecular level, the replication and propagation of DNA
leads to the evolving fitness of organisms.

By looking at the string of nucleic acids directly, we can overcome the com-
plication of mutation “distance” between amino acids. The 64 combinations of
three nucleotides make up any of 20 amino acids, yet there is not a direct cor-
relation in between mutating individual nucleotides, and getting different amino
acids. For instance, one, two, or all three of arginine’s nucleotides may mutate,
and the result be histidine in each case.

Maeshiro & Kimura [7] make an interesting assumption in their study of this
field: that there is a “principle of least action in evolutionary mechanism at genetic
sequence level”[sic] [7]. By this assumption, the evolutionary process follows the
path of greatest fitness. This is not purely genetic fitness, but rather the concept
of genetic fitness within a potential landscape of selective pressures. The survival
of a species is determined by both mutation and selection, which is a reality of
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the species’ natural habitat. If we ignore selection, then calculation is simply
finding the optimal path of genetic mutation. With selection, it may be that
the path of evolution is suboptimal; it may be that the realities of the fitness
landscape, coupled with the possibility that the most evolutionary advantageous
paths are reached with a low genetic probability, gives higher probability to a
more moderate evolution.

An evolutionary action is then a function of the fitness of the species’ evolution
over successive generations. Maeshiro & Kimura thus define the evolutionary
Lagrangian as the fitness in evolving to the next generation, a function of mutation
rate and fitness landscape. A path integral formulation gives the probability of
reaching “a genetic sequence after T replications in a given environment” [7].
This approach is well-founded because of their recognition that species evolve in
a selective landscape. This landscape is the path-space for all genetic mutations.

Take a haploid, asexual population in which we only consider point mutations.
As individual cells replicate independently, we assume that the population starts
either with a single cell, or with a culture of identical cells. Then we need only
consider the possible paths of a single organism. The evolution of the population
is then easily generalizable.

Consider that our organism is DNA-based, with a genetic sequence m base
pairs long. This sequence can be represented as a one-dimensional vector ~x =
{x1, x2, · · · , xm}, in which the pairing between DNA strands is assumed to be
exact. Each point in the sequence can be one of four possible nucleic acids,
denoted as ne = 4, thus the number of possible genetic sequences is nme = 4m.
(insert possible m? look up) For the replication of each base there is a constant
probability µ of mutation.4 The number of mutations per replication is nµ, with an
expected value of µ ·m. In determining how our population evolves, the idea is to
determine and assign probabilities to all paths between a starting genetic sequence
~xa and a hypothetical future sequence ~xb over a fixed number of generations T .5

This is a function of the number of point mutations ν that must occur between
adjacent generations ~xa and ~xb,

νij = m−
m∑
k=1

δ(xki − xkj ). (24)

The probability that mutations pmut cause an initial sequence ~xj to generate
~xi in the next generation is the product of independent probabilities that νij
mutations do occur and that m − νij mutations do not occur, divided by the
probability that each mutation is to the correct nucleic acid,

4We therefore for assume that a mutation changes both bases, such that they remain perfectly
matched

5The question is rarely “given infinite time, will the organism evolve to ~xb. Rather, “will the
organism evolve fast enough to be fit enough to survive?”
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pmutij = µνij (1− µ)m−νij
1

(ne − 1)νij
. (25)

By the reasonable assumption that the sequence is long, m >> 1, and the
mutation rate small, µ << 1, which can be approximated to

pmutij → e−µm(µm)νij

νij !C
νij
m (ne − 1)νij

, C
νij
m =

m!

νij !(m− νij)!
(26)

Taking this as our probability that sequence ~xj evolves to ~xi in the next
generation,

The other side of our calculation is natural selection, ie. the probability psel

that our haploid organism will survive due to the natural environment and the
relative fitness of competing species. The genetic fitness W (~xi) of a given organism
is purely a function of it’s DNA ~xi. It’s relative fitness is influenced by the mean
fitness of the entire population N of it’s habitat w̄,

w̄ =
N∑
k

W (~xk)qk (27)

The probability that qi organisms of sequence ~xi is given by,

psel =
W (~xi)qi

w̄
(28)

psel requires a knowledge, or at least an approximation, of the fitness landscape
over multiple generations. For an isolated petri dish, this is of little concern. For a
tree of life, this becomes a formidable task, perhaps currently prohibitive. As our
collective database of genetic information continues to grow, this will hopefully
become more realistic.

The action is becomes the sum 6 of the Lagrangian over the intervening gen-
erations. If we are interested in the probability of our asexual haploid evolving
from ~xa to ~xb,

S =

tb∑
ta

α · pi,jW (29)

This is the action for a single path; the “total probability of the change from
~xa to ~xb is the sum of contributions over all possible paths” [7], ie. the discrete
path integral,

P (b, a) =
∑

allpaths

φ[~x(t)] (30)

for each possible path normalized by A.

6Not an integral, because generations are discrete.
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Figure 2: A fitness potential landscape for a genetic sequence of m=2. Assume
that each of the two genes has 20 possible alleles. The genetic code “walks”
along the surface, finding the optimal genetic code for the given fitness landscape.
Figure from [7].

5.1 Critique

Maeshiro & Kimura continue to work out the “isolated limit,” as we shall call it,
for which

pij = pmutij · pselij → pij = pmutij (31)

This is simple to solve, but not particularly useful for our investigation.
Our interest in the problem stems from how selective forces influence evolution.

In this case, the key idea for Maeshiro & Kimura is that genetic paths may “walk”
along a potential landscape of selective pressures, as in Fig. 2. It is this potential
landscape that will determine the strongest genetic paths as a combination of
selection and mutation. This concept is similar in spirit to the potential landscapes
of Feynman and Feynman-Kac.

Maeshiro & Kimura also exhibit some of the ideas of Section 3. They have
given a biophysical problem a non-mechanical, probabilistic action. This action is
a function they have determined from first principles, from answering the question
of what factors influence the selection of a genetic code. It is this kind of leap that
must necessarily be taken for path integrals to be used in a non-literal context. We
are accustomed to the idea of mechanical action, a Lagrangian relating energies.
But for an abstract system, as this genetic system over fitness space is, it is up
to the investigating authors to determine what determines the viability of paths.
In this sense, the mathematics of this paper have presented some strong tools for
diffusion problems in biology. The difficulty for some lines of inquiry may then be
more conceptual, in seeing how certain systems abstractly fit into a path-integral
formulation.

16



6 Conclusion

Part of the beauty of our mathematical understanding of nature are the relation-
ships between vastly different phenomena. This paper started with Feynman’s
path integral formulation, a mathematical framework for understanding systems
at the subatomic level. Yet we have shown that much of this framework is still
relevant to physical systems on a vastly different scale, such as in biophysics.
There are conceptual similarities as well as related mathematical tools. All physi-
cists are given an education that runs the gamut of physical phenomena, from
classical and statistical physics, to electromagnetism, and all the way down, in
this current age, to string theory. For some, it may be easy to lose sight of the
astounding range of Nature that physics encompasses; it may be easy to over-
look the astonishing feat of tying together seemingly distant pieces, all through
mathematics. Our particular fascination of this sort is QIB, and in closing, we
would like to remind the reader that Feynman’s path integral formulation is but
a part of quantum mechanics. Quantum physics has been a focus of the physical
community for decades; the field is rife with ideas and tools that could be the
genesis for further QIB.
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