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Abstract

Recently, the filtering model with counting process observations has been demonstrated as
a sensible framework for modeling the micromovement of asset price (or ultra-high frequency
data). In this paper, we first construct a branching particle system for such a nonlinear filtering
model. Then, we show the weighted empirical measures in the constructed branching system
converges to the optimal filters uniformly in time by deriving sharp upper bounds for the
mean square error. Furthermore, we prove a central limit type theorem to characterize the
convergence rate of such weighted empirical measures. The convergence rate is n1/2, which is
better than the best rate in the classical nonlinear filtering case where the rate is n(1−α)/2 for
any α > 0.

2000 Mathematics Subject Classification. Primary: 60H15; Secondary: 60K35, 35R60, 93E11,
60F05, 91B28.

KEY WORDS: Stochastic partial differential equation, particle filters, Monte Carlo approximation,
filtering, counting process, and ultra-high frequency data.

∗This work was done when the second author visited the first author at the Department of Mathematics, University
of Tennessee at Knoxville in Fall 2006. The hospitality of and the financial support from the Mathematics Department
are gratefully acknowledged. Xiong’s research supported in part by NSA Grant H98230-05-1-0043 and Zeng’s by
NSF Grant DMS-0604722.

†Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USA; Tel: (865) 974-4271, Fax:
865-974-6576, Email: jxiong@math.utk.edu and Website: http://www.math.utk.edu/∼jxiong/; and Department of
Mathematics, Hebei Normal University, Shijiazhuang 050016, PRC.

‡Department of Mathematics and Statistics, University of Missouri at Kansas City, Kansas City, MO 64110, USA.
Tel: (816) 235 5850. Fax: (816) 235 5517. Email: zeng@mendota.umkc.edu. Website: http://mendota.umkc.edu/.

1



1 Introduction

Recently much research have been developed for modeling the micromovement of asset price referred
as the transaction or trade-by-trade price behavior (See [18], [17], and [36] for recent developments).
Engle (Nobel Price Laureate, 2003) [17] calls such data as ultra-high frequency data, because of
their ultimate disaggregation nature. The micromovement has two characteristics distinguishing
from the continuous-time models in asset pricing, or the price macromovement referred as the
equally-spaced daily, or weekly closing price behavior in the econometric literature. First, the
micromovement observations occur at varying random time intervals. Second, financial noise (or
trading noise or market microstructure noise) in the price are not ignorable anymore as in the
continuous-time or macromovement cases due to the high frequency transaction nature.

Zeng [32] proposes a general Filtering Micromovement model for asset price (FM model, as
we simply call it), where the sample characteristics of micro- and macro-movements are tied in a
consistent manner. Economically, the proposed model has the structure similar to a class of the
time series structural models developed in many early market microstructure papers (see [21], a
survey paper on this topic, and [22]). Namely, price can be decomposed as a permanent component
and a transient component. The permanent component has a long-term impact on price while
the transient component has only a short-term impact. In FM model, there is an unobservable
intrinsic value process for an asset, which corresponds to the usual price process in the option
pricing literature and in the empirical econometric literature of macro-movement. The intrinsic
value process is the permanent component and has a long-term impact on price. Prices are observed
only at random trading times which are modeled by a conditional Poisson process. Moreover, prices
are distorted observations of the intrinsic value process at the trading times and trading (or market
microstructure) noise is explicitly modeled. It is the transient component and only has a short-term
impact (when a trade happens) on price.

The most prominent feature of FM model is that trade-by-trade prices are viewed as a collection
of counting processes of price level and the model is framed as a filtering problem with counting
process observations. Then, the unnormalized and normalized filtering equations, which correspond
to Duncan-Mortensen-Zakai, and KushnerStratonovich or FujisakiKallianpurKunita equations in
classical nonlinear filtering, are derived. These equations characterize the evolution of the integrated
likelihoods and the conditional distribution of the intrinsic value process (the signal). The Markov
chain approximation method is applied to numerically solve the filtering equations. Then, Bayes
estimation via filtering for the intrinsic value process and the related parameters in the model
is developed in [32]. Bayesian hypothesis testing or model selection via filtering for this class of
models is developed in [24]. Furthermore, a risk minimization hedging strategy for a FM model is
considered in [28], and a mean-variance portfolio selection for a FM model is studied in [30].

On the other hand, branching and interacting particle filters as approximation of optimal filters
in the classical nonlinear filtering have been studied extensively in the last ten years. In the classical
Monte Carlo method, the unnormalized filter is approximated by a weighted particle system, but
the variances of weights grow exponentially fast. To achieve the goal of variance reduction, the idea
is to divide the time interval into small subintervals and the weight for each particle is updated so
that the exponential martingale depends on the signal and the noise in the small interval prior to
the time of interest. For the approach of interacting particle filters, interested readers are referred to
the comprehensive monograph [13] by Del Moral and related references therein. For the approach of
branching particle filters, the updating is via branching in small time steps. Precisely, at each time
step, each existing particle will die or give birth to a random number of offspring proportional to
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the weight. Meanwhile, the distribution of this integer-valued variable is selected to have minimal
variance subject to this constraint. In this way, particles that stay on the right tract (representing
by heavy weights) are explored more thoroughly while particles with unlikely trajectories/positions
(representing by little weights) are not carried forward uselessly. Thus, the variation decreases. We
refer interested readers to the papers by Crisan and his coauthors in [6] - [11], especially, Crisan
and Xiong [12].

In this paper, we adopt the branching particle filtering approach for the FM model. Suppose that
Vt is the likelihood and πt is the conditional distribution of the FM model. Vt (πt) is characterized
by a unnormalized (normalized) filtering equation. First, we construct a branching particle system
for the FM model. Then, we define the weighted empirical measure πnt (V nt ) and the unweighted one
π̃nt (Ṽ nt ) of the constructed branching particle filter (Historically, unweighted empirical measures
were first studied and were proven convergent to the optimal filters. However, as indicated by
Crisan [6] and recently shown by Crisan and Xiong [12], the weighted empirical measure is superior
to the unweighted one in convergence rate in the classical nonlinear filtering case. We believe the
same holds in this case and focus on the weighted empirical measure in the paper.). The first aim
of this paper is to prove the uniform convergence (in time) of V nt and Ṽ nt to Vt as well as πnt or π̃nt
to πt when n → ∞. We prove them by deriving sharp upper bounds for the mean square errors.
The key estimates are in Lemmas 4.5 and 6.1. Moreover, we study the convergence rate of V nt and
πnt . It turns out that the rate is n1/2, which is better than the best rate in the classical nonlinear
filtering case where the rate is n(1−α)/2 for any α > 0 (see [12]). This is because the key estimates
in Lemmas 4.5 and 6.1 are better than those in the classical nonlinear filtering case (see [6] and
[12]). We prove a central limit type (CLT) theorem to characterize the rate. Similar CLT results
shown for unweighted particle filters using the interacting particle systems can be found in [13],
[15] and [16] for the classical case. Recent results for central limit theorems in the discrete time
framework can be found in [1] and [25].

The rest of this paper goes as follows: Section 2 briefly reviews FM models and related results.
Section 3 develops a branching particle system and defines the weighted and unweighted empirical
measures. Section 4 proves the convergence of the weighted empirical measure for each time t.
Section 5 proves the convergence uniformly in time. Section 6 further derives a central limit type
theorem. Section 7 concludes. The case of π̃nt and Ṽ nt are dealt with by final remarks in Sections
4 - 5.

Throughout this paper, we shall use K with a subscript to denote a constant whose value might
be different in different proofs.

2 The Filtering Model

This section focuses on presenting a FM model whose filters are approximated by a branching
particle system in this paper. There are two equivalent representations of the model which are
presented in the following two subsections. The equivalence in the sense that both representations
have the same probability distribution is proven in [34]. Section 2.3 reviews the related filtering
equations.

2.1 Construction of Price from Intrinsic Value

In Representation I, FM model is predicated on a simple intuition that the price is formed from
the intrinsic value process of an asset corrupted by trading (or market microstructure) noise.
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Assumption 2.1 Xt, the intrinsic value process of an asset follows a diffusion process:

dXt = µ(Xt)dt+ σ(Xt)dBt,

where Bt is a standard Brownian motion and Xt has a unique weak solution.

The generator associated with X is

Lf(x) =
1
2
σ2(x)

∂2f

∂x2
(x) + µ(x)

∂f

∂x
(x).

Obviously, Assumption 2.1 includes geometric Brownian motion (GBM), the Black-Scholes
model. The intrinsic value process can not be observed directly, but can be partially observed
through the price process, Y . Due to price discreteness, Y is in a discrete state space given by the
multiples of tick, the minimum price variation set by trading regulation. Y is a distorted observation
of X at some random times.

There are three general steps in constructing Y from X. First, we specify X(t) as in Assumption
2.1. Next, we specify the trading times t1, t2, . . . , ti, . . ., which are driven by a conditional Poisson
process with an conditional intensity function a(X(t), t). Finally, Y (ti), the price at time ti, is
specified by Y (ti) = F (X(ti)), where y = F (x) is a random transformation with the transition
probability p(y|x), modeling trading noise.

Under this construction, information affects X(t), the intrinsic value of an asset, and has a
permanent influence on the price while noise affects F (x), the random transformation, and has only
a transitory influence on price. This formulation is similar to the time series structural models
applied in many market microstructure papers (see Hasbrouck [21], a survey paper, and Hasbrouck
[22]) in that X(t) is the permanent component and F (x) is the transient component.

Examples of F (x)(or p(y|x)) are given in [32], [33], and [29]. These examples well accommodate
the three types of well-documented noise in financial literature: discrete noise, clustering noise,
and non-clustering noise. Especially, Spalding et. at. [29] applied a simple FM model with new
measures of trading noises and trading cost to further support the important financial findings in [5],
[4] and [2] (The results of Christie and Schultz [5] led to regulatory investigations, legal activities,
and numerous academic studies. This culminated with the Securities and Exchange Commission
imposed a series of market reforms in NASDAQ. Barclay et. al. [2] documented effects of the
NASDAQ market reforms.).

2.2 Filtering with Counting Process Observations

Alternatively, we can view the transaction prices in the levels of price due to price discreteness.
That is, in Representation II, we view the prices as a collection of counting processes in the following
form:

~Y (t) =


N1(

∫ t
0
λ1(X(s), s)ds)

N2(
∫ t
0
λ2(X(s), s)ds)

...
Nw(

∫ t
0
λw(X(s), s)ds)

 , (1)

where Yk(t) = Nk(
∫ t
0
λk(X(s), s)ds) is the counting process recording the cumulative number of

trades that have occurred at the kth price level (denoted by yk) up to time t.
The following four mild assumptions are invoked.
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Assumption 2.2 Nk’s are unit Poisson processes under the physical measure P .

Assumption 2.3 X,N1, N2, . . . , Nw are independent under P .

Assumption 2.4 The total intensity, a(x, t), is uniformly bounded above; i.e., there exist a con-
stant, K, such that a(x, t) ≤ K for all t > 0 and x.

Assumption 2.5 The intensity at price level k, λk(x, t) = a(x, t)p(yk|x), where a(x, t) is the total
trading intensity at time t with x = X(t) and p(yk|x) is the transition probability from x to yk, the
kth price level.

Remark 2.1 Note that p(yk|x) is the same as p(y|x) in F (x) of Representation I. The structure
of λk implies that a(X(t), t) specifies when the trade might occur while p(yk|x) specifies at which
price level the trade might occur.

For the notation convenience, we denote apk(Xt, t) = λk(Xt, t) through the rest of the paper.

Remark 2.2 Under this representation, X(t) becomes the signal process, which cannot be observed
directly, and ~Y (t) becomes the observation process, which is corrupted by noise. Hence, (X, ~Y ) is
framed as a filtering problem with counting process observations.

2.3 Filtering Equations

We can assume that (X, ~Y ) is in a filtered complete probability space (Ω, Ĝ, F̂, P ) where F̂ :=
(F̂t)0≤t≤∞ is a given filtration. Assumptions 2.2 - 2.4 imply that there is a reference measure
Q under which, X and ~Y become independent, X remains the same probability distribution and
Y1, Y2, . . . , Yn become unit Poisson processes. We consider a fixed time period [0, T ]. Then, the
Radon-Nikodym derivative is:

M(T ) =
dP

dQ
=

w∏
k=1

exp

{∫ T

0

log apk(X(s−), s−)dYk(s)−
∫ T

0

[
apk(X(s), s)− 1

]
ds

}
. (2)

Let M(t) = EQ[M(T )|Ft]. Then, M(t) satisfies the following SDE:

dM(t) =
w∑
k=1

(apk − 1)M(t−)d(Yk(t)− t). (3)

Let F ~Y
t = σ{(~Y (s))|0 ≤ s ≤ t} be all the available information up to time t and let πt be the

conditional distribution of X(t) given F ~Y
t . Define

〈Vt, f〉 = EQ[f(θ(t), X(t))M(t)|F ~Y
t ] and 〈πt, f〉 = EP [f(θ(t), X(t))|F ~Y

t ].

By Kallianpur-Striebel formula, the optimal filter in the sense of least mean square error can be
written as 〈πt, f〉 = 〈Vt, f〉/〈Vt, 1〉. Hence, the equation governing the evolution of 〈Vt, f〉 is called
the unnormalized filtering equation, and that of 〈πt, f〉 is called the normalized filtering equation.

The following proposition is a theorem from [32] summarizing both filtering equations.
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Proposition 2.1 Suppose that (θ,X, ~Y ) satisfies Assumptions 1 - 5. Then, Vt is the unique
measure-valued solution of the following SDE, the unnormalized filtering equation,

〈Vt, f〉 = 〈V0, f〉+
∫ t

0

〈Vs, Lf〉ds+
w∑
k=1

∫ t

0

〈Vs−, (apk − 1)f〉d(Yk(s)− s), (4)

for t > 0 and f ∈ D(L), the domain of generator L, where a = a(X(t), t), is the trading intensity,
and pk = p(yk|x) is the transition probability from x to yk, the kth price level.

πt is the unique measure-valued solution of the SDE, the normalized filtering equation,

〈πt, f〉 =〈π0, f〉+
∫ t

0

[
〈πs, Lf〉 − 〈πs, fa〉+ 〈πs, f〉〈πs, a〉

]
ds

+
w∑
k=1

∫ t

0

[ 〈πs−, fapk〉
〈πs−, apk〉

− 〈πs−, f〉
]
dYk(s).

(5)

When a(X(t), t) = a(t), the above equation is simplified as:

〈πt, f〉 =〈π0, f〉+
∫ t

0

〈πs, Lf〉ds+
w∑
k=1

∫ t

0

[ 〈πs−, fapk〉
〈πs−, apk〉

− 〈πs−, f〉
]
dYk(s). (6)

3 A Branching Particle System

In this section, we describe a branching particle system and define the weighted and unweighted
empirical measures to approximates the optimal filter.

Initially, there are n particles of weight 1
n each at xni , i = 1, 2, · · · , n, satisfying the following

initial condition
(I): As n→∞,

V n0 =
1
n

n∑
i=1

δxn
i
→ π0 in MF (R),

where MF (R) is the collection of finite measures on R. Let δ = δn = n−2α for 0 < α ≤ 1 as
the length between two time steps. Suppose that at time t = jδ, there are mn

j particles alive.
During the time interval (jδ, (j + 1)δ), the particles move according to the following diffusions: For
i = 1, 2, · · · ,mn

j ,

Xi
t = Xi

jδ +
∫ t

jδ

µ(Xi
s)ds+

∫ t

jδ

σ(Xi
s)dB

i
s.

where {Bi, i = 1, 2, · · · , n} are independent standard Brownian motions. The weight of particle i
at time jδ is set to be 1 and for t during [jδ, (j + 1)δ) is

Mn
j (Xi, t) =

w∏
k=1

exp
(∫ t

jδ+

log apk(Xi
s−, s−)dYk(s)−

∫ t

jδ

[
apk(Xi

s, s)− 1
]
ds

)
. (7)

Obviously, Mn(Xi, t) depends on the observation ~Y , and is the likelihood ratio of measure P over
measure Q defined by Equation (2) given the simulated path of Xi. If there is no trade (or no jump
for ~Y ) in (jδ, t), then the first integral in the exponent is zero.
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Recall at the beginning, Mn
j (Xi, jδ) = 1. At the end right before branching, the weight becomes

Mn
j+1(X

i) = Mn
j (Xi, (j + 1)δ−).

To achieve variance reduction, at the end of the interval, the ith particle (i = 1, 2, · · · ,mn
j )

branches (independent of others) into a random number ξij+1 of offsprings proportional to its weight.
Precisely, we let

EQ
(
ξij+1|F(j+1)δ−

)
= M̃n

j+1(X
i)

where

M̃n
j+1(X

i) =
Mn
j+1(X

i)
1
mn

j

∑mn
j

`=1M
n
j+1(X`)

.

Let
V arQ

(
ξij+1|F(j+1)δ−

)
= γnj+1(X

i)

Following [8], in order to minimize the variance γnj+1, we restrict the possible number of ξij+1 to
the two integers closest to M̃n

j+1(X
i) and take

ξij+1 =

{
[M̃n

j+1(X
i)] with probability 1− {M̃n

j+1(X
i)}

[M̃n
j+1(X

i)] + 1 with probability {M̃n
j+1(X

i)}

where {x} = x− [x] is the fraction of x. In this case

γnj+1(X
i) = {M̃n

j+1(X
i)}(1− {M̃n

j+1(X
i)}). (8)

Define

πnt =
1
n

mn
j∑

i=1

Mn
j (Xi, t)δXi(t), and V nt = πnt η

n
t , jδ ≤ t < (j + 1)δ.

where

ηnt = Πk−1
j=0

1
mn
j

mn
j∑

`=1

Mn
j+1(X

`), if kδ ≤ t < (k + 1)δ.

Then, 〈πnt , f〉 = 1
n

∑mn
j

i=1M
n
j (Xi, t)f

(
Xi(t)

)
, 〈V nt , f〉 = ηnt 〈πnt , f〉 and 〈V nt , 1〉 = ηnt , which is the

likelihood function. Also note that ηjδ is Fjδ−-measurable.
Note that in most of the literature of the branching particle filters for the classical nonlinear

filtering (cf. [10]), the optimal filter is approximated by the unweighted empirical measure π̃nt with
the same branching mechanism. Following this, we define

π̃nt =
1
n

mn
j∑

i=1

δXi(t), and Ṽ nt = π̃nt η
n
t , jδ ≤ t < (j + 1)δ.

In the rest of this paper, we prove the convergence of πn or π̃n to π as n→∞ and to study the
convergence rate of πn.
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4 Convergence of V n
t

In this section, we consider the convergence of V nt to Vt for fixed t. The main idea is to use
a backward SPDE as the dual of the Zakai equation. This idea has been applied for classical
nonlinear filtering models in [8] and [12].

We consider the backward SPDE:{
dψs = −Lψsds−

∑w
k=1(apk − 1)ψs+d̂(Y ks − s), 0 ≤ s ≤ t

ψt = φ
(9)

where d̂ denotes the backward Itô’s integral and φ is a bounded function. For the backward
Itô’s integral, we take the right point in the Riemann sum when defining the stochastic integral
backwardly.

Define
Ŷ ks = Y kt − Y kt−s and ψ̂s = ψt−s.

Then ψ̂s satisfies the following forward SPDE{
dψ̂s = Lψ̂sds+

∑w
k=1(apk − 1)ψ̂s−d(Ŷ ks − s), 0 ≤ s ≤ t

ψ̂0 = φ
(10)

which is the Zakai-tpye equation in Theorem 1. Similar to [26], we can prove the uniqueness for the
solution to (10), implying the uniqueness of (9). In fact, we need the following technical estimates
with the technical (BD) condition.

Lemma 4.1 Suppose Assumptions 1 - 5 hold and the boundedness condition below holds:
(BD): a, pk, φ ∈ C1

b (R). And µ′, σ′ and sup0≤t≤T E(σ4(Xt)) are bounded.
Let ψ′u(x) = d

dxψu(x). Then, there exists a constant K such that

EP [ sup
0≤s≤t

‖ψs‖+ sup
0≤s≤t

‖ψ′s‖] ≤ K.

The proof of Lemma 4.1 is in Appendix. It is easy to check that the (BD) condition allows Xt

to be GBM. Before we state and prove the main theorem of this section, we state several useful
lemmas with their proofs also in Appendix. Lemma 4.2 is a convolution result and Lemmas 4.3 and
4.5 are key moment estimates crucial for the convergence results and the central limit theorem type
result. Lemma 4.4 gives the SDEs of two quantities needed in Lemmas 4.5 and 6.1 later. The order
of the key estimate in Lemma 4.5 is o(δ), which is better than o(δ1/2), the order in the classical
nonlinear filtering case (see [6] and [12]).

Lemma 4.2 Almost surely, we have

ψ(j+1)δ(Xi
(j+1)δ)M

n
j+1(X

i)− ψjδ(Xi
jδ) =

∫ (j+1)δ

jδ

Mn
j (Xi, s)ψ′s(X

i
s)σ(Xi

s)dB
i
s. (11)

For the rest of this paper, we use E(X) = EQ(X). Under Q, let Ỹk(t) = Yk(t)− t.

Lemma 4.3 E
(
mn
j (η

n
jδ)

2
)
≤ K1n.
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Lemma 4.4 Let

M̂n
j (t) =

1
mn
j

mn
j∑

`=1

Mn
j (X`, t), and M̃n

j (Xi, t) =
Mn
j (Xi, t)

1
mn

j

∑mn
j

`=1M
n
j (X`, t)

=
Mn
j (Xi, t)

M̂n
j (t)

.

Then,

dM̂n
j (t) = M̂n

j (t−)
w∑
k=1

h̄k(t−)dỸk(t) (12)

and

M̃n
j (Xi) = 1 +

∫ (j+1)δ

jδ

M̃n
j (Xi, s−)

w∑
k=1

[apk(Xi
s−, s−)

h̄k(s−) + 1
− 1
]
dYk(s) (13)

where

h̄k(s) =
1
mn
j

mn
j∑

i=1

M̃n
j (Xi, s)(apk(Xi

s, s)− 1) (14)

Lemma 4.5 Let F (x) = {x}(1− {x}). Then,∣∣∣E(γnj+1(X
i)f2(Xi

(j+1)δ)(η
n
(j+1)δ/η

n
jδ)

2|Fjδ
)
−H(Xi

jδ)δ
∣∣∣ = o(δ),

where o(δ) → 0 as δ → 0 and H(x) is nonnegative and given by

H(Xi
jδ) = M̂n

j (jδ)2f2(Xi
jδ)

w∑
k=1

F
(apk(Xi

jδ, jδ)

h̄k(jδ) + 1

)
(h̄k(jδ) + 1)2. (15)

Theorem 4.1 Suppose that Assumptions 1 -5 hold with conditions (I) and (BD). Then there exists
a constant K1 such that

E| 〈V nt , φ〉 − 〈Vt, φ〉 |2 ≤ K1n
−(1−α).

Proof: Let kδ ≤ t < (k + 1)δ. Observe that

〈V nt , φ〉 − 〈V n0 , ψ0〉 = 〈V nt , ψt〉 − 〈V nkδ, ψkδ〉+
k∑
j=1

(〈
V njδ, ψjδ

〉
− E

(〈
V njδ, ψjδ

〉
|Fjδ−

))
+

k∑
j=1

(
E
(〈
V njδ, ψjδ

〉
|Fjδ−

)
−
〈
V n(j−1)δ, ψ(j−1)δ

〉)
≡ In1 + In2 + In3 . (16)

Then

In1 = ηnkδ
1
n

mn
k∑

i=1

(
Mn
k (Xi, t)ψt(Xi

t)− ψkδ(Xi
kδ)
)
,

In2 =
k∑
j=1

ηnjδ
1
n

mn
j−1∑
i=1

ψjδ(Xi
jδ)(ξ

i
j − M̃n

j (Xi))
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and

In3 =
k∑
j=1

ηnjδ 1
n

mn
j−1∑
i=1

ψjδ(Xi
jδ)M̃

n
j (Xi)− ηn(j−1)δ

1
n

mn
j−1∑
i=1

ψ(j−1)δ(Xi
(j−1)δ)


=

k∑
j=1

ηn(j−1)δ

1
n

mn
j−1∑
i=1

(
ψjδ(Xi

jδ)M
n
j (Xi)− ψ(j−1)δ(Xi

(j−1)δ)
)
.

Now, it suffices to estimate the following moments. First, we study I3 term. By Lemma 4.2 and
the independent increments of the Brownian motion, we have

E((In3 )2) = E

k−1∑
j=0

ηnjδ
1
n

mn
j∑

i=1

∫ (j+1)δ

jδ

Mn
j (Xi, s)ψ′sσ(Xi

s)dB
i
s

2

=
k−1∑
j=0

E

ηnjδ 1
n

mn
j∑

i=1

∫ (j+1)δ

jδ

Mn
j (Xi, s)ψ′sσ(Xi

s)dB
i
s

2

.

Let Ft = FBt be the natural filtration of Bi, i = 1, 2, · · · ,mn
j up to t. Since Xi, i = 1, 2, · · · ,mn

j

are conditionally (given Fjδ ∨ F
~Y
t ) independent, we can continue with

E((In3 )2)

=
k−1∑
j=0

E

E


 1
n

mn
j∑

i=1

∫ (j+1)δ

jδ

Mn
j (Xi, s)ψ′sσ(Xi

s)dB
i
s

2 ∣∣∣Fjδ ∨ F ~Y
t

 (ηnjδ)
2


= E

k−1∑
j=0

1
n2

mn
j∑

i=1

∫ (j+1)δ

jδ

Mn
j (Xi, s)2|ψ′sσ(Xi

s)|2(ηnjδ)2ds

≤ E
k−1∑
j=0

1
n2

mn
j∑

i=1

∫ (j+1)δ

jδ

E
(
||ψ′s||∞(Mn

j (Xi, s))2σ2(Xi
s)(η

n
jδ)

2|Fjδ
)
ds

= E
k−1∑
j=0

1
n2

mn
j∑

i=1

∫ (j+1)δ

jδ

E (||ψ′s||∞|Fjδ) E
(
(Mn

j (Xi, s))2σ2(Xi
s)|Fjδ

)
(ηnjδ)

2ds

where the last equality follows from the independent increments of Y and, given Fjδ,Mn
j (Xi, s)σ(Xi

s)

is F ~Y
s ∨ F ijδ,s-measurable and ||ψ′s||∞ is F ~Y

s,t-measurable. Here F ijδ,s = σ(Bit − Bijδ : jδ ≤ t ≤ s)

and F ~Y
s,t = σ(~Yu − ~Ys : s ≤ u ≤ t).

Then,

E
(
(Mn

j (Xi, s))2σ2(Xi
s)|Fjδ

)
≤
√

E
(
(Mn

j (Xi, s))4|Fjδ
)√

E (σ4(Xi
s)|Fjδ).

It is easy to show that E
(
(Mn

j (Xi, s))4|Fjδ
)
≤ eKδ, and using (BD) condition, E

(
|σ(Xi

s)|4|Fjδ
)
≤

K1, and by the independent increments of Y and Lemma 4.1, E
(
‖ψ′s‖2∞|Fjδ

)
= E

(
‖ψ′s‖2∞

)
≤ K2.

10



Hence, using
∑k−1
j=0 δ ≤ t ≤ T and applying Lemma 4.3, we obtain

E((In3 )2) ≤ E
k−1∑
j=0

1
n2

mn
j∑

i=1

∫ (j+1)δ

jδ

K3(ηnjδ)
2ds ≤ K4n

−2E
(
mn
j (η

n
jδ)

2
)
≤ K5n

−1.

Next, we look at I2 term. Note that for j < j′,

E
1
n

mn
j−1∑
i=1

ψjδ(Xi
jδ)(ξ

i
j − M̃n

j (Xi))
1
n

mn
j′−1∑
i=1

ψj′δ(Xi
j′δ)(ξ

i
j′ − M̃n

j′(X
i))ηnjδη

n
j′δ

= E
(

1
n

mn
j−1∑
i=1

ψjδ(Xi
jδ)(ξ

i
j − M̃n

j (Xi))
1
n

mn
j′−1∑
i=1

ψj′δ(Xi
j′δ)E(ξij′ − M̃n

j′(X
i)|Fj′δ− ∨ F

~Y
t )ηnjδη

n
j′δ

)
= 0.

Therefore

E((In2 )2) = E

∣∣∣∣∣∣
k∑
j=1

ηnjδ
1
n

mn
j−1∑
i=1

ψjδ(Xi
jδ)(ξ

i
j − M̃n

j (Xi))

∣∣∣∣∣∣
2

=
k∑
j=1

E

ηnjδ 1
n

mn
j−1∑
i=1

ψjδ(Xi
jδ)(ξ

i
j − M̃n

j (Xi))

2

=
k∑
j=1

E

E


 1
n

mn
j−1∑
i=1

ψjδ(Xi
jδ)(ξ

i
j − M̃n

j (Xi))

2 ∣∣∣Fjδ−
 (ηnjδ)

2


= E

k∑
j=1

1
n2

mn
j−1∑
i=1

ψjδ(Xi
jδ)

2γnj (Xi)(ηnjδ)
2.

≤ E
k∑
j=1

1
n2

mn
j−1∑
i=1

E
(
||ψjδ||2∞

∣∣∣Fjδ−) γnj (Xi)(ηnjδ)
2.

≤ E
(

sup
0≤s≤T

||ψs||2∞
)

E
k∑
j=1

1
n2

mn
j−1∑
i=1

E
[
γnj (Xi)(ηnjδ)

2
∣∣∣F(j−1)δ

]

Applying Lemmas 4.1, 4.5 and 4.3, we have

E((In2 )2) ≤ K1

k∑
j=1

1
n2
E
(
mn
j−1(η

n
(j−1)δ)

2
)
δ ≤ K2n

−1.

In1 can be estimated similar to In3 .

11



Remark 4.1 For the case of π̃nt and Ṽ nt , we have

〈
Ṽ nt , ψt

〉
−
〈
Ṽ nkδ, ψkδ

〉
=

1
n

mn
k∑

i=1

(
ψt(Xi

t)M
n
k (Xi, t)− ψkδ(Xi

kδ)
)

+
1
n

mn
k∑

i=1

φ(Xi
t)
(
1−Mn

k (Xi, t)
)
.

Namely, the second term is an extra term. It can be proved that its second moment is bounded by
Kn−2α. Therefore, we have

E|
〈
Ṽ nt , φ

〉
− 〈Vt, φ〉 |2 ≤ K1

(
n−1 ∨ n−2α

)
.

5 Convergence of V n

In this section, we study the convergence of V n, regarding as a sequence of stochastic processes.
More specifically, we prove the convergence uniformly for t in an interval [0, T ].

The main idea of this section is to obtain an equation for the process V nt and then to derive
maximum inequality making use of the martingale theory.

First we consider the equation satisfied by V nt . Let jδ < t < (j+1)δ. By Itô’s formula, we have

d 〈V nt , f〉 = 〈V nt , Lf〉 dt+
1
n

mn
j∑

i=1

Mn
j (Xi, t)f ′σ(Xi

t)dB
i
tη
n
jδ +

w∑
k=1

〈V nt , f(apk − 1)〉 dỸk(t).

The jump at (j + 1)δ is

ηn(j+1)δ

1
n

mn
j∑

i=1

ξij+1δXi
(j+1)δ

− ηnjδ
1
n

mn
j∑

i=1

Mn
j+1(X

i))δXi
(j+1)δ

= ηn(j+1)δ

1
n

mn
j∑

i=1

(
ξij+1 − M̃n

j+1(X
i)
)
δXi

(j+1)δ
.

Therefore,

〈V nt , f〉 = 〈V0, f〉+
∫ t

0

〈V ns , Lf〉 ds+
w∑
k=1

∫ t

0

〈V ns , f(apk − 1)〉 dỸk(s) +Nn,f
t + N̂n,f

t , (17)

where

Nn,f
t =

[t/δ]∑
j=0

1
n

mn
j∑

i=1

∫ ((j+1)δ)∧t

jδ

f ′σ(Xi
s)dB

i
sη
n
jδ

and

N̂n,f
t =

[t/δ]∑
j=1

ηnjδ
1
n

mn
j−1∑
i=1

(ξij − M̃n
j (Xi))f(Xi

jδ).

12



It is easy to see that Nn,f
t , N̂n,f

t are two uncorrelated martingales with quadratic variational
processes 〈

Nn,f
〉
t
=

[t/δ]∑
j=0

1
n2

mn
j∑

i=1

∫ ((j+1)δ)∧t

jδ

|f ′σ(Xi
s)|2ds(ηnjδ)2

and

〈
N̂n,f

〉
t
=
〈
N̂n,f

〉
[t/δ]δ

=
[t/δ]∑
j=1

1
n2

E


mn

j−1∑
i=1

(ξij −Mn
j (Xi))f(Xi

jδ)

2

|Fjδ−

 (ηnjδ)
2

=
[t/δ]∑
j=1

1
n2

mn
j−1∑
i=1

γnj (Xi)f2(Xi
jδ)(η

n
jδ)

2. (18)

Define the usual distance

d(ν1, ν2) =
∞∑
k=1

2−k (| 〈ν1 − ν2, fk〉 | ∧ 1)

where {fk} satisfy the following conditions: fk ∈ C2
b (R) with ‖Lfk‖∞ ≤ 1. Moreover, we define

d̃(ν1, ν2) =
∞∑
k=1

2−k (| 〈ν1 − ν2, fk〉 |)

with the same assumptions on {fk}. Obviously, d ≤ d̃, but d̃ may not be a distance.

Theorem 5.1 Under the assumptions of Theorem 4.1, there exists a constant K1 such that

E sup
t≤T

d(V nt , Vt)
2 ≤ K1n

−1.

Proof: Note that

E sup
t≤T

d̃(V nt , Vt)
2 ≤

∞∑
k=1

2−k
(

E sup
t≤T

〈V nt − Vt, fk〉2
)

+ E sup
t≤T

〈V nt − Vt, 1〉2 (19)

By Equation (17) and Doob’s maximum inequality,

E sup
t≤T

〈V nt − Vt, f〉2

≤K2

∫ T

0

E 〈V nt − Vt, Lf〉2 dt+K2E
[T/δ]∑
j=0

1
n2

mn
j∑

i=1

∫ ((j+1)δ)

jδ

|f ′σ(Xi
s)|2ds(ηnjδ)2

+K2

w∑
k=1

∫ T

0

E 〈V nt − Vt, f(apk − 1)〉2 dt+K2E
[T/δ]∑
j=1

1
n2

mn
j∑

i=1

γnj (Xi)f2(Xi
jδ)(η

n
jδ)

2.

(20)

13



By Theorem 4.1, the first and third terms are bounded by K3n
−1. By Lemma 4.3,

2nd term ≤ K3

[T/δ]∑
j=1

δ

n2
E
(
mn
j (η

n
jδ)

2
)
≤ K4n

−1.

By Lemma 4.5, we have

4th term ≤ K5

[T/δ]∑
j=0

δ

n2
E
(
mn
j (η

n
jδ)

2
)
≤ K6n

−1.

Finally, we consider the last term in (19). Take f = 1 in (20), we have

E sup
t≤T

〈V nt − Vt, 1〉2

≤K2

w∑
k=1

∫ T

0

E 〈V nt − Vt, (apk − 1)〉2 dt+K2E
[T/δ]∑
j=1

1
n2

mn
j∑

i=1

γnj (Xi)(ηnjδ)
2.

(21)

Again, Theorem 4.1 implies that the first term is bounded by K7n
−1. Clearly, Lemma 4.5 is true

with f = 1, and a similar argument implies the second term of (21) is bounded by K8n
−1. Putting

all the above estimates back to (20), we establish the desired result, since d ≤ d̃.

Remark 5.1 For the case of Ṽ nt , the jump at (j + 1)δ is

ηn(j+1)δ

1
n

mn
j∑

i=1

(
ξij+1 −

ηnjδ
ηn(j+1)δ

)
δXi

(j+1)δ
.

Write

ξij+1 −
ηnjδ

ηn(j+1)δ

=
(
ξij+1 − M̃n

j (Xi)
)

+
Mn
j (Xi)− 1

1
mn

j

∑mn
j

k=1M
n
j (Xk)

.

Then the new N̂n,f can be written as two terms. A careful estimate of the second term leads to the
bound Kn−2α. Thus, we have

E sup
t≤T

d(Ṽ nt , Vt)
2 ≤ K

(
n−2α ∨ n−1

)
.

Now, we convert the convergence result for πn (the convergence of π̃n can be obtained similarly).

Theorem 5.2 Under the assumptions of Theorem 4.1, there exists a constant K such that

EP sup
0≤t≤T

d(πnt , πt) ≤ Kn−
1
2 . (22)

Proof: Note that for f bounded by 1, we have

| 〈πnt − πt, f〉 | =
∣∣∣∣ 〈V nt , f〉 〈Vt − V nt , 1〉+ 〈V nt , 1〉 〈V nt − Vt, f〉

〈V nt , 1〉 〈Vt, 1〉

∣∣∣∣ (23)

≤ | 〈Vt − V nt , 1〉 |
〈Vt, 1〉

+
| 〈V nt − Vt, f〉 |

〈Vt, 1〉
.

14



Thus
d(πnt , πt) ≤

1
〈Vt, 1〉

| 〈Vt − V n, 1〉 |+ 1
〈Vt, 1〉

d̃(V nt , Vt).

Now,

EP sup
0≤t≤T

d(πnt , πt) = E sup
0≤t≤T

{
1

〈Vt, 1〉
| 〈Vt − V n, 1〉 |+ 1

〈Vt, 1〉
d̃(V nt , Vt)

}
MT

≤
(

E sup
0≤t≤T

| 〈Vt − V n, 1〉 |2
) 1

2
(

E sup
0≤t≤T

M2
T

〈Vt, 1〉2

) 1
2

+
(

E sup
0≤t≤T

d̃(V nt , Vt)
2

) 1
2
(

E sup
0≤t≤T

M2
T

〈Vt, 1〉2

) 1
2

. (24)

With Assumption 4 and the SDEs for Mt and 〈Vt, 1〉, it is straightforward to prove that ÊM4
T <∞

and
E sup

0≤t≤T
〈Vt, 1〉−4

<∞.

Thus, by Theorem 5.1 and (24), there is a constant K such that (22) holds.

6 A Central Limit Type Theorem

In this section, we prove the exact rate of convergence by a central limit type theorem. Let

Unt = n
1
2 (V nt − Vt).

We first prove tightness for {Un} in an appropriate space and then characterize the limit and obtain
a central limit type theorem. The exact rate of convergence for the FM model is n

1
2 which is better

than that for the classical filtering model, which is n(1−α)/2 for α > 0 (see [12]).

6.1 The Modified Schwartz Space and Tightness of {Un}
As in Hitsuda and Mitoma [23], we use the modified Schwartz space Φ. Let ρ(x) = K11{|x|<1}
exp

(
−1/(1− |x|2)

)
, where K1 is a constant such that

∫
ρ(x)dx = 1. Let ψ(x) =

∫
e−|y|ρ(x− y)dy.

Then for any integer k and e = ψ−1, we have |e(k)(x)| ≤ K2(k)(1 + e|x|). Let Φ = {φ : φψ ∈ S} ,
where S is the Schwartz space. For κ = 0, 1, 2, . . ., define

‖φ‖2κ =
∑

0≤|k|≤κ

∫
R
(1 + |x|2)2κ

∣∣∣∣ ∂k∂xk (φ(x)ψ(x))
∣∣∣∣2 dx

the k above is a multi-index (k1, · · · , kd) with |k| = k1 + · · · + kd. Let Φκ be the completion of Φ
with respect to ‖ · ‖κ. Then Φκ is a Hilbert space with inner product

〈φ1, φ2〉κ =
∑

0≤|k|≤κ

∫
R
(1 + |x|2)2κ

(
∂k

∂xk
(φ1(x)ψ(x))

)(
∂k

∂xk
(φ2(x)ψ(x))

)
dx.
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Note that Φκ ⊃ Φκ+1 and that Φ0 is L2(µψ), where µψ(dx) = ψ2(x)dx. For φ̂ ∈ Φ0 and φ ∈ Φκ,

〈φ̂, φ〉 ≡ 〈φ̂, φ〉0 =
∫

R
φ̂(x)φ(x)ψ2(x)dx

defines a continuous linear functional on Φκ with norm

‖φ̂‖−κ = sup
φ∈Φκ

|〈φ̂, φ〉|
‖φ‖κ

,

and we let Φ−κ denote the completion of Φ0 with respect to this norm. Then Φ−κ is a representation
of the dual of Φκ. If {φκj } is a complete, orthonormal system for Φκ, then the inner product for
Φ−κ can be written as

〈φ̂1, φ̂2〉−κ =
∞∑
j=1

〈φ̂1, φ
κ
j 〉〈φ̂2, φ

κ
j 〉. (25)

By a slight modification of Theorem 7, page 82, of [20], these norms determine a nuclear space,
so in particular, for each κ there exists a κ′ > κ such that the embedding Tκ

′

κ : Φκ′ → Φκ is a
Hilbert-Schmidt operator. The adjoint Tκ

′∗
κ : Φ−κ → Φ−κ′ is also Hilbert-Schmidt. Φ′ = ∪∞k=0Φ−k

gives a representation of the dual of Φ (see [20], page 59). Next, we prove tightness for {Un} in
DΦ−κ

[0,∞) for an appropriate κ.
By (17) and Zakai equation, we have

〈Unt , f〉 = 〈Un0 , f〉+
∫ t

0

〈Uns , Lf〉 ds+
w∑
k=1

∫ t

0

〈Uns , f(apk − 1)〉 dỸk(s)

+n
1
2Nn,f

t + n
1
2 N̂n,f

t , (26)

Theorem 6.1 Under the assumptions of Theorem 4.1, there exists κ such that {Un} is tight in
DΦ−κ

[0,∞).

Proof: For u ≤ ε, we have

E
(〈
Unt+u − Unt , f

〉2 ∣∣∣Ft) ≤ E

(
4∑
i=1

ζi,nf (ε)

)
where

ζ1,n
f (ε) =

∫ t+ε

t

〈Uns , Lf〉
2
ds,

ζ2,n
f (ε) =

∫ t+ε

t

〈Uns ,∇∗fc+ hf〉2 ds,

ζ3,n
f (ε) = n

∑
t≤jδ<t+ε

1
n2

mn
j∑

i=1

∫ ((j+1)δ)∧t

jδ

|∇∗fσ(Xi
s)|2ds(ηnjδ)2

and

ζ4,n
f (ε) = n

∑
t≤jδ<t+ε

1
n2

mn
j∑

i=1

γ2
j (X

i)f2(Xi
jδ)(η

n
jδ)

2.
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Similar to the previous section, we can show that

lim
ε→0

sup
n

E

(
4∑
i=1

ζi,nf (ε)

)
= 0.

Then, using Remark 8.7 (p.138) in Ethier and Kurtz [19], we prove the tightness of 〈Un, f〉 in
DR[0,∞). Finally, following the proof of Theorem 3.1 in [27] and applying Mitoma’ theorem, we
prove that there exists a κ such that the tightness of Un holds in DΦ−κ [0,∞).

6.2 Characterization of the Limits

It is easy to show that
n

1
2Nn,f

t → 0. (27)

To characterize the limit of n1/2N̂n,f , we need the following two more technical estimates in
two lemmas with their proofs in Appendix. The other key estimate in Lemma 6.1 is in the order of
O(δ3/2), which is better than O(δ), the order in the classical nonlinear filtering case (see [12]).

Lemma 6.1 ∣∣∣E(γnj+1(X
i)2(ηn(j+1)δ/η

n
jδ)

4|Fjδ
)∣∣∣ ≤ Kδ3/2.

Lemma 6.2
E
(
(mn

j )
2(ηnjδ)

4
)
≤ Kn2.

Note that

〈
n1/2N̂n,f

〉
t

= n

[t/δ]∑
j=1

1
n2

mn
j−1∑
i=1

γnj (Xi)f2(Xi
jδ)(η

n
jδ)

2

= n

[t/δ]∑
j=1

1
n2

mn
j−1∑
i=1

E
(
γnj (Xi)f2(Xi

jδ)(η
n
jδ)

2
∣∣∣F(j−1)δ

)

+n
[t/δ]∑
j=1

1
n2

mn
j−1∑
i=1

(
γnj (Xi)f2(Xi

jδ)(η
n
jδ)

2 − E
(
γnj (Xi)f2(Xi

jδ)(η
n
jδ)

2
∣∣∣F(j−1)δ

))

By Lemma 4.5, the first term is approximated by

n

[t/δ]∑
j=1

1
n2

mn
j−1∑
i=1

H(Xi
(j−1)δ)δf

2(Xi
(j−1)δ)(η

n
(j−1)δ)

2

=
[t/δ]∑
j=1

〈
Ṽ njδ,Hf

2(Xi
jδ)
〉〈

Ṽ njδ, 1
〉
δ

→
∫ t

0

〈
Vs,Hf

2
〉
〈Vs, 1〉 ds,
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where the approximation means the difference tends to 0 as n→∞.
The second moment of the second term is bounded by

n2

[t/δ]∑
j=1

E
( 1
n2

mn
j−1∑
i=1

γnj (Xi)f2(Xi
jδ)(η

n
jδ)

2
)2

≤ ||f ||4∞n−2

[t/δ]∑
j=1

E
(
mn
j−1

mn
j−1∑
i=1

γnj (Xi)2(ηnjδ)
4
)

≤ K1n
−2

[t/δ]∑
j=1

δ3/2E
(
K(mn

j−1)
2(ηn(j−1)δ)

4
)

≤ K2δ
1/2 → 0

Lemma 6.1 is applied in the second inequality and Lemma 6.2 in the last inequality. Combining
the above results, we obtain

Lemma 6.3
n

1
2 N̂n,f

t =⇒Mf
t

which is a martingale uncorrelated to B and ~Y such that〈
Mf
t

〉
t
=
∫ t

0

〈
Vs,Hf

2
〉
〈Vs, 1〉 ds.

Further, there exists a space-time white noise W (dtdx) (independent of B and ~Y such that

Mf
t =

∫ t

0

∫
R

√
H(x)V (s, x) 〈Vs, 1〉f(x)W (dsdx).

Summarizing these, we obtain

Theorem 6.2 Under the assumptions of Theorem 4.1, Un ⇒ U which is the unique solution to:

〈Ut, f〉 = 〈U0, f〉+
∫ t

0

〈Us, Lf〉 ds+
w∑
k=1

∫ t

0

〈Us−, f(apk − 1)〉 dỸk(s)

+
∫ t

0

∫
R

√
H(x)V (s, x) 〈Vs, 1〉f(x)W (dsdx). (28)

Proof: By Theorem 6.1, we can take U being a limit point. Without loss of generality, we assume
that Un =⇒ U . By Lemma 6.3 and (27), it is easy to show that U satisfies (28). To prove the
uniqueness, we take another solution Ũ of (28) and define Ût = Ut − Ũt. Then Ût satisfies the
following homogeneous linear equation〈

Ût, f
〉

=
∫ t

0

〈
Ûs, Lf

〉
ds+

w∑
k=1

∫ t

0

〈
Ûs, f(apk − 1)

〉
dỸk(s).

Similar to Lemma 4.2 in [27] we get Û = 0.

Finally, we convert the convergence result to that for the optimal filter.
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Theorem 6.3 Under the assumptions of Theorem 4.1, n
1
2 (πnt − πt) ⇒ ζt which is the unique

solution to:

d 〈ζt, f〉 = 〈ζt, Lf − (a− w)f − f 〈πt, a− w〉+ (a− w) 〈πt, f〉〉 dt

+
w∑
k=1

[ 〈ζt−, fapk〉
〈πt−, apk〉

− 〈ζt−, apk〉 〈πt−, fapk〉
〈πt−, apk〉2

− 〈ζt−, f〉
]
dYk(t)

+
∫

R

f(x)− 〈πt, f〉
〈Vt, 1〉

√
H(x)V (t, x) 〈Vt, 1〉W (dxdt).

(29)

When a(Xt, t) = a(t), depending only on time t, Equation (29) is simplified as below:

d 〈ζt, f〉 = 〈ζt, Lf〉 dt+
∫

R

f(x)− 〈πt, f〉
〈Vt, 1〉

√
H(x)V (t, x) 〈Vt, 1〉W (dxdt)

+
w∑
k=1

[ 〈ζt−, fapk〉
〈πt−, apk〉

− 〈ζt−, apk〉 〈πt−, fapk〉
〈πt−, apk〉2

− 〈ζt−, f〉
]
dYk(t).

(30)

Proof: From Equation (23), we can see that

n
1
2 (πnt − πt) = (Vt, 1)−1Unt − (V nt 1Vt1)−1(Unt 1)V nt

which converges to
ζt ≡ (Vt1)−1

(
Ut − (Vt1)−1(Ut1)Vt

)
.

Let ηt = (Vt1)−1Ut. By Itô’s formula for 〈ηt, f〉 = 〈Ut, f〉 / 〈Vt, 1〉, we have the following equation
for ηt.

d 〈ηt, f〉 =
(
〈ηt, Lf − (a− w)f〉+ 〈ηt, f〉 〈πt, a− w〉

)
dt

+
w∑
k=1

[ 〈ηt−, fapk〉
〈πt−, apk〉

− 〈ηt−, f〉
]
dYk(t)

+
∫

R

f(x)
〈Vt, 1〉

√
H(x)V (t, x) 〈Vt, 1〉W (dxdt).

(31)

When a(Xt, t) = a(t), the above equation is simplified as:

d 〈ηt, f〉 = 〈ηt, Lf〉 dt+
w∑
k=1

[ 〈ηt−, fapk〉
〈πt−, apk〉

− 〈ηt−, f〉
]
dYk(t)

+
∫

R

f(x)
〈Vt, 1〉

√
H(x)V (t, x) 〈Vt, 1〉W (dxdt).

(32)

Observe that ζt = ηt − (ηt1)πt. Applying Itô’s formula again, we get Equation (29) for ζ. When
a(Xt, t) = a(t), the simplified (32) and (6) gives (30). The uniqueness comes from the similar
argument of Theorem 6.2.

Easy to check that 〈ζt, 1〉 = 0 for all t in (29) and (30), which is a necessary condition for ζt.
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7 Conclusions
In this paper, we study the branching particle filters to a FM model, which well fit the stylized
facts of ultra-high frequency data in financial markets. We construct a branching particle system
and its weighted empirical measure. Then, we prove the uniform convergence of the branching
particle filters to the optimal filters. Moreover, we study the convergence rate by proving a central
limit type theorem. We find out the rate is n1/2, which is better than the best rate in the classical
nonlinear filtering case.

The branching particle filter developed in this paper can be directly applied to calculate the
MSE estimate of Xt, which is important in asset pricing. Moreover, the filter developed can be
used to estimate locally risk-minimizing hedging strategy for FM models derived in [28] and the
optimal trading strategy for mean-variance portfolio selection problem of the FM models derived
in [30].

Future works include studying the large deviation principle of V n and πn as the classical non-
linear filtering case in [14], and studying the branching approximation in a more general framework
such as Xt becomes a stochastic volatility model (even with jumps) or a general Markov process.
See [35] for a very general FM model with statistical analysis. The branching particle filters devel-
oped in this paper only estimates Xt. It is intriguing to study branching particle filters for both
(Xt, θt), where θt is the parameter (allowing time-dependent) in a FM model. These topics are
currently under investigation by the authors.

A Appendix: Related Proofs

Proof: (for Lemma 4.1) LetN(t) be the counting process for the jumps in ~Y (t). Let τ1, τ2, · · · , τN(t)

be the jump times of N(t) such that t ≥ τ1 > τ2 · · · > τN(t) > 0. For s ∈ [t, τ1), there is no jump
and (9) reduces to

dψs = −Lψsds+
w∑
k=1

(apk(Xs)− 1)ψsds. (33)

Feynman-Kac Formula ([31]) and the boundedness of a(x, t) and (BD) condition implies

sup
τ1<s≤t

‖ψs‖∞ ≤ ewC1(t−τ1)‖φ‖∞

After a jump happens at τ1, ψτ1− = apkψτ1+. Hence, sup{τ1<s≤t}∪{τ1−} ‖ψs‖ ≤ K2‖φ‖∞
ewK2(t−τ1). By induction, we have

sup
0≤s≤t

‖ψs‖ ≤ K
N(t)
2 ‖φ‖∞ewK2t.

Taking expectation, the result for the part of ψ follows.
To obtain the result for ψ′, we differentiate Equation (33) with respect to x and obtain

dψ′s = −L1ψ
′
sds+

[
µ′ +

w∑
k=1

(apk(Xs)− 1)
]
ψsds+

w∑
k=1

a′p′kψsds

where

L1f(x) =
1
2
σ2(x)

∂2f

∂x2
(x) + (σ(x)σ′(x) + µ(x))

∂f

∂x
(x).
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Then, we repeat the steps for ψ to obtain the desired result for ψ′.

Proof: (for Lemma 4.2) After simplifying notations, it is equivalent to proving:

ψt(Xt)Mt − ψ0(X0) =
∫ t

0

Msψ
′
sσ(Xs)dBs. (34)

Let fk, k = 1, 2, ..., w and g be bounded functions on [0, t],

θ
~Y
f (r) =

w∏
k=1

exp
{√

−1
∫ r

0

log fk(s−)dYk(s)−
∫ r

0

(fk(s)− 1)ds
}

and

θBg (r) = exp
(√

−1
∫ r

0

gsdBs +
1
2

∫ r

0

g2
sds

)
.

First, we need a lemma, whose proof is identical to that of Lemma 4.1.4 in [3, page 81].

Lemma A.1 If ξ ∈ L2(Ω,FB,~Yt , P̂ ) and for bounded fk, k = 1, 2, ..., w and g on [0, t],

E
(
ξθ
~Y
f (t)θBg (t)

)
= 0,

then ξ = 0 a.s.

By Lemma A.1, it is sufficient to show that

E
(
(ψt(Xt)Mt − ψ0(X0)) θ

~Y
f (t)θBg (t)

)
= E

(∫ t

0

Ms∇∗ψsc̃(Xs)dBsθ
~Y
f (t)θBg (t)

)
.

First we observe that for r ≥ 0,

E
(
ψr(Xr)Mrθ

~Y
f (t)θBg (t)|F ~Y

r ∨ FBr
)

= Θr(Xr)Mrθ
~Y
f (r)θBg (r) (35)

where
Θr = E

(
ψr θ̃f (r)|F

~Y
r ∨ FBr

)
with

θ̃f (r) = θ
~Y
f (t)/θ~Yf (r) =

w∏
k=1

exp
(√

−1
∫ t

r

log fk(s−)dYk(s)−
∫ t

r

(fk(s)− 1)ds
)
.

Since ψr and θ̃f (r) are measurable with respect to the σ-field F ~Y
r,t = σ(~Ys − ~Yr : r ≤ s ≤ t),

which is independent of F ~Y
r ∨ FBr , we get that

Θr = Ê
(
ψr θ̃f (r)

)
.

Applying backward Itô’s formula, we have

d̂θ̃f (r) =
√
−1θ̃f (r+)

w∑
k=1

(fk(r+)− 1)d̂Ỹk(r).
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where Ỹ (r) = Y (r)− r. Again applying backward Itô’s formula, we get

d̂(ψr θ̃f (r)) = [−Lψr −
√
−1ψr

∑w
k=1(fk(r)− 1)(apk(Xr, r)− 1)]θ̃f (r)dr

+
∑w
k=1[

√
−1(fk(r+)− 1)− (apk(Xr+, r+)− 1)]ψr+θ̃f (r+)d̂Ỹk(r)

−
∑w
k=1

√
−1(fk(r+)− 1)(apk(Xr+, r+)− 1)ψr+θ̃f (r+)d̂Ỹk(r).

Thus

dΘr =

(
−LΘr(Xr)−

√
−1

w∑
k=1

(fk(r)− 1)(apk(Xr, r)− 1)Θr(Xr)

)
dr.

By Itô’s formula, we have

dΘr(Xr) = −
√
−1

(
w∑
k=1

(fk(r)− 1)(apk(Xr, r)− 1)Θr(Xr)

)
dr + Θ′

rσ(Xr)dBr. (36)

Note that

dMr =
w∑
k=1

[apk(Xr, r)− 1]MrdỸr,

dθ
~Y
f (r) =

√
−1θ~Yf (r−)

2∑
k=1

(fk(r−)− 1)dỸr

and
dθBg (r) =

√
−1θBg (r)grdBr.

Apply Itô’s formula to the four equations above, we get

d(Θr(Xr)Mrθ
~Y
f (r)θBg (r)) =

√
−1Θ′

rσ(Xr)grMrθ
~Y
f (r)θBg (r)dr + d(mart.)

Combining with (35), we get

E
(
(ψt(Xt)Mt − ψ0(X0)) θ

~Y
f (t)θBg (t)

)
= E

(
Θδ(Xt)Mtθ

~Y
f (δ)θBg (δ)−Θ0(X0)θ

~Y
f (0)θBg (0)

)
=

√
−1
∫ t

0

E
(
Mrθ

~Y
f (r)θBg (r)Θ′

rσ(Xr)gr
)
dr.

On the other hand,

E
(∫ r

0

Ms∇∗ψsc̃(Xs)dBsθ
~Y
f (t)θBg (t)|F ~Y

t ∨ FBr
)

=
∫ r

0

Ms∇∗ψsc̃(Xs)dBsθ
~Y
f (t)θBg (r).

Note that ψ is independent of Fr, we can apply integration by part regarding ψ as nonrandom.
Thus, ∫ r

0

Ms∇∗ψsc̃(Xs)dBsθBg (r)
∫ r

0

· · · dBs +
√
−1
∫ r

0

Msψ
′
sσ(Xs)gsθBg (s)ds.
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This implies that

E
(∫ t

0

Msψ
′
sσ(Xs)dBsθ

~Y
f (t)θBg (t)

)
= E

(√
−1
∫ t

0

Msψ
′
sσ(Xs)gsθBg (s)dsθ~Yf (t)

)
= E

(√
−1
∫ t

0

MsE
(
ψ′s(Xs)θ̃f (s)|F

~Y
s ∨ FBs

)
σ(Xs)gsθBg (s)θ~Yf (s)ds

)
= E

(√
−1
∫ t

0

MsΘ′
s(Xs)σ(Xs)gsθBg (s)θ~Yf (s)ds

)
.

This finishes the proof of the lemma.

Proof: (of Lemma 4.3) Note that

E
(
mn
j (η

n
jδ)

2
)

= EE
((
mn
j (η

n
jδ)

2
) ∣∣∣∣Fjδ−) = E

(
mn
j−1(η

n
jδ)

2
)

= E
(
mn
j−1(η

n
(j−1)δ)

2E
((

ηnjδ/η
n
(j−1)δ

)2

|F(j−1)δ

))
≤ eK

2δE
(
mn
j−1(η

n
(j−1)δ)

2
)

where the last inequality follows from

E


 1
mn
j−1

mn
j−1∑
k=1

Mn
j (Xk)

2

|F(j−1)δ

 ≤ 1
mn
j−1

mn
j−1∑
k=1

E
(
Mn
j (Xk)2|F(j−1)δ

)
≤ eK

2δ.

By induction, we have E
(
mn
j (η

n
jδ)

2
)
≤ eK

2Tn ≤ K1n.

Proof: (of Lemma 4.4) By Equation (3), we have

dMn
j (Xi, s) = Mn

j (Xi, s−)
w∑
k=1

(apk(Xi
s−, s−)− 1)dỸk(s).

Observe that

d

 1
mn
j

mn
j∑

`=1

Mn
j (X`, s)

 =

 1
mn
j

mn
j∑

`=1

Mn
j (X`, s−)

 w∑
k=1

h̄k(s−)dỸk(s)

This gives (12). Applying Itô’s formula to the last two equations and simplifying, we obtain

dM̃n
j (Xi, s) = −M̃n

j (Xi, s)
w∑
k=1

(apk(Xi
s, s)− 1− h̄k(s))ds+ ∆M̃n

j (Xi, s)

Note that
∑w
k=1(apk(X

i
s, s)− 1− h̄k(s)) = 0. To make the last term predictable, we observe

∆M̃n
j (Xi, s) = M̃n

j (Xi, s)− M̃n
j (Xi, s−) =

w∑
k=1

M̃n
j (Xi, s−)

(apk(Xi
s−, s−)

h̄k(s−) + 1
− 1
)
dYk(s).
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The conclusion then follows by substituting the above observation into the equation of M̃n
j (Xi, s)

and by taking integral from jδ to (j + 1)δ.

Proof: (of Lemma 4.5) Note that ηn(j+1)δ/η
n
jδ = M̂n

j ((j + 1)δ) and M̂n
j (t) follows (12). Then,

dM̂n
j (t)2 = −2M̂n

j (t)2(a− w)dt+ M̂n
j (t−)2

w∑
k=1

(h̄2
k(t−) + 2h̄k(t−))dYk(t).

Easy to find that df2(Xi
t) = Lf2(Xi

t)dt+ 2ff ′σ(Xi
t)dBt and by Itô formula, we obtain

d
(
M̂n
j (t)2f2(Xi

t)
)

= M̂n
j (t)2(Lf2 − 2f2(a− w))dt

+M̂n
j (t−)2f2

w∑
k=1

(h̄2
k(t−) + 2h̄k(t−))dYk(t) + 2M̂n

j (t)2ff ′σ(Xi
t)dBt.

Equation (8) gives γnj+1(X
i) = F (M̃n

j+1(X
i)). By telescoping and using (13), we obtain

γnj+1(X
i) =

∑
jδ<s≤(j+1)δ

[
F (M̃n

j (Xi, s))− F (M̃n
j (Xi, s−))

]
=

w∑
k=1

∫ (j+1)δ

jδ

[
F
(
M̃n
j (Xi, s−)

apk(Xi
s−, s−)

h̄k(s−) + 1

)
− F (M̃n

j (Xi, s−))
]
dYk(s)

Applying Itô’s formula again, we have

γnj+1(X
i)f2(Xi

(j+1)δ)(η
n
(j+1)δ/η

n
jδ)

2

=
∫ (j+1)δ

jδ

F (M̃n
j (Xi, t))M̂n

j (t)2
(
Lf2 + f2

2∑
k=1

h̄2
k(t)

)
dt

+
∫ (j+1)δ

jδ

M̂n
j (t)2f2

2∑
k=1

[
F
(
M̃n
j (Xi, t)

apk(Xi
t , t)

h̄k(t) + 1

)
− F (M̃n

j (Xi, t))
]
(h̄k(t) + 1)2dt

+
∫ (j+1)δ

jδ

F (M̃n
j (Xi, t−))M̂n

j (t−)2f2
w∑
k=1

(
h̄2
k(t−) + 2h̄k(t−)

)
dỸk(t)

+
∫ (j+1)δ

jδ

F (M̃n
j (Xi, t))M̂n

j (t)2ff ′σ(Xi
t)dBt

+
∫ (j+1)δ

jδ

M̂n
j (t−)2f2

w∑
k=1

[
F
(
M̃n
j (Xi, t−)

apk(Xi
t−, t−)

h̄k(t−) + 1

)
− F (M̃n

j (Xi, t−))
]
(h̄k(t−) + 1)2dỸk(t)

Taking conditional expectation and noting that the last three terms are zero, we have

E
(
γnj+1(X

i)f2(Xi
(j+1)δ)(η

n
(j+1)δ/η

n
jδ)

2|Fjδ
)

=
∫ (j+1)δ

jδ

E
[
F (M̃n

j (Xi, t))M̂n
j (t)2

(
Lf2 + f2

2∑
k=1

h̄2
k(t)

)∣∣∣Fjδ]dt
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+
∫ (j+1)δ

jδ

E
[
M̂n
j (t)2f2

w∑
k=1

[
F
(
M̃n
j (Xi, t)

apk(Xi
t , t)

h̄k(t) + 1

)
− F (M̃n

j (Xi, t))
]
(h̄k(t) + 1)2

∣∣∣Fjδ]dt
≈

(
M̂n
j (jδ)2f2(Xi

jδ)
w∑
k=1

F
(apk(Xi

jδ, jδ)

h̄k(jδ) + 1

)
(h̄k(jδ) + 1)2

)
δ + o(δ)

The last approximation comes from M̃n
j (Xi, jδ) = 1, the boundedness of f , Lf2,

∑w
k=1 h̄

2
k, and the

following two observations:

sup
jδ≤s≤(j+1)δ

E
[
M̂n
j (s)2F

(
M̃n
j (Xi, s)

)∣∣∣Fjδ]

≤ sup
jδ≤s≤(j+1)δ

√
E
(
M̂n
j (s)4|Fjδ

)√
E
[(

1− M̃n
j (Xi, s)

)2|Fjδ] ≤ K
√
δ.

and (the last inequality above is by E
[
(1− M̃n

j (Xi, s))2|Fjδ
]
≤ K1δ and E

(
M̂n
j (s)4|Fjδ

)
≤ K2)

sup
jδ≤s≤(j+1)δ

∣∣∣E[M̂n
j (s)2F

(
M̃n
j (Xi, s−)

apk(Xi
s−, s−)

h̄k(s−) + 1

)∣∣Fjδ]− M̂n
j (jδ)2F

(apk(Xi
jδ, jδ)

h̄k(jδ) + 1

)∣∣∣→ 0.

The last observation can be proven similarly as the previous one.

Proof: (of Lemma 6.1) Note that

dM̂n
j (t)4 = −4M̂n

j (t)4(a− w)dt+ M̂n
j (t−)4

w∑
k=1

[
(h̄2
k(t−) + 1)4 − 1

]
dYk(t),

and by telescoping, we obtain

γnj+1(X
i)2 =

∑
jδ<s≤(j+1)δ

[
F 2(M̃n

j (Xi, s))− F 2(M̃n
j (Xi, s−))

]
=

w∑
k=1

∫ (j+1)δ

jδ

[
F 2
(
M̃n
j (Xi, s−)

apk(Xi
s−, s−)

h̄k(s−) + 1

)
− F 2(M̃n

j (Xi, s−))
]
dYk(s)

Applying Itô’s formula, we have

γnj+1(X
i)2(ηn(j+1)δ/η

n
jδ)

4

=− 8
∫ (j+1)δ

jδ

F (M̃n
j (Xi, t))M̂n

j (t)4(a− w)dt

+ 2
∫ (j+1)δ

jδ

F (M̃n
j (Xi, t))M̂n

j (t)4
w∑
k=1

[
(h̄2
k(t−) + 1)4 − 1

]
dYk(t)

+ 4
∫ (j+1)δ

jδ

M̂n
j (t)3

w∑
k=1

[
F 2
(
M̃n
j (Xi, t−)

apk(Xi
t−, t−)

h̄k(t−) + 1

)
− F 2(M̃n

j (Xi, t−))
]
dYk(t)

+
∫ (j+1)δ

jδ

M̂n
j (t)4

w∑
k=1

[
F 2
(
M̃n
j (Xi, t−)

apk(Xi
t−, t−)

h̄k(t−) + 1

)
− F 2(M̃n

j (Xi, t−))
]

[
(h̄2
k(t−) + 1)4 − 1

]
dYk(t)
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For the first term, we have

E
(∫ (j+1)δ

jδ

F (M̃n
j (Xi, t))M̂n

j (t)4(a− w)dt
∣∣∣Fjδ)

≤
∫ (j+1)δ

jδ

E
(∣∣M̃n

j (Xi, t)− 1
∣∣M̂n

j (t)4
∣∣∣Fjδ)dt

≤
∫ (j+1)δ

jδ

√
E
(
(M̃n

j (Xi, t)− 1)2|Fjδ
)√

E(M̂n
j (t)4|Fjδ)dt ≤ Kδ3/2.

Other terms can be estimated similarly with the same order of δ3/2.

Proof: (of Lemma 6.2) We can estimate E
(
(mn

j )
2(ηnjδ)

4
)

recursively as follows

E
(
(mn

j )
2(ηnjδ)

4
)

= E
(
E
(
(mn

j )
2(ηnjδ)

4
∣∣Fjδ−)) = E

(
(ηnjδ)

4E
((mn

j−1∑
i=1

ξji
)2∣∣∣Fjδ−))
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Thus, by induction, we have

E
(
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4
)
≤ (1 +Kδ)jeK1jδn2 ≤ K3n

2.
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