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1 MOTIVATION; SEQUENTIAL MC SAMPLERS

Lo, 41, - - -, i Probability measures, Aoy A1, Ak €N,
p1, P2, ..., pr Markov kernels s.t. ppr = 1y

ALGORITHM (SMCMC with multinomial resampling).

e Initialization:
~ Sample X{ (1 <i < N)iid. ~ o, setn) .= N7, oy

e Step: Fort:=1to kdo
— SIR: Sample X7 i.i.d. ~ Ziil w! - Oxi w? oc dpy /dpy—1(X!_4)
— MCMC: For m : =110 \; do

+ Sample Y; condit. indep. ~ p; (X}, -); set X} := Y}

- SetnY = N30 Ox;
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LLN: [ fdn" = %Zfll f(X}) — [ fdu as N — oo.
CLT: VN - ([ fdn) — [ fdu) — N(0,04(f)?).
REFERENCES:

e O. Cappé, E. Moulines, T. Ryden. Inference in Hidden Markov Models,
Springer 2005.

e P. Del Moral. Feynman-Kac Formulae, Springer 2004.

e N. Chopin. CLT for sequential SMC methods and its application to
Bayesian inference. Annals of Statistics 32 (6) (2004)

e H. R. Klnsch. Recursive Monte Carlo Filters: Algorithms and Theoreti-
cal Analysis. Annals of Statistics 33(5): 1983-2021, 2004.

Related methods:
e Parallel tempering, Geyer (1991)

e Equi-energy sampler, Kou, Zhou, Wong, Annals of Statistics 34 (2006)



Goal: “Feasible” non-asymptotic error bounds (/V fixed)
e not too far off in simple examples (e.g. moving Gaussians)
e applicable in high dimensions (at least for product models)

e extension to simple multimodal cases

Setup here: Continuous time, discrete state space

Extension to discrete time and continuous state spaces:



2 EVOLVING PROBABILITY MEASURES IN CON-
TINUOUS TIME

Aim : Sequential estimation / approximation of probability measures
pe(z) oc exp (=Ui(z)) v(z), t >0,

on a finite state space S.

0 0 0
Hi(z) = —alog,ut(x) = aUt(f)—<§Ut, Mt>-

o) o ep (- | H, () is) vla)

Note that (H;, u;) = 0 forany ¢ > 0.



GENERAL SMC APPROACH :

1) Find evolution equation satisfied by (u:):>0 (Fokker-Planck equation)

2) Discretize this equation by interacting particle system.

EXAMPLE.
e 1; = u Satisfies the Fokker-Planck equation

0
2 = [

for any Markov generator £ such that £*u = 0.

e Discretization ~ MCMC



FOKKER-PLANCK EQUATION:

Let £;, t > 0, be generators of a time-inhomogeneous Markov process on S
satisfying

pe(x)Li(x,y) = pue(y)Le(y,x) (detailed balance).

In particular,

Lipe = Ly = 0 (infinitesimal stationarity).



FOKKER-PLANCK EQUATION:

For any continuous function A : [0,00) — R, the function ¢ — p, is a solution
of the evolution equations

0 .
th — >‘t£t v — Hy vy ) (1)
9, .
ot = MLy — Hymy + (Heyme) ne (2)

Proof.
o 8,ut/(9t — —Ht,ut.

e L7, = 0 foranyt > 0 by detailed balance.

o (Hi,ut) = —(Orlog e, pue) = %Nt(s) = 0.



DISCRETIZATION OF FOKKER-PLANCK EQUATION:

XY = (XN, ..., X;Yy) Markov process on S™ with generator

LYo(x1,...,on) = )\tZE o(x1,...,TN)

Egi) action of £; on i th component.

e Independent Markov chain moves with generator \; - £,

o X} replaced by X} with rate - (H,(X[) — H/(X]N)*



DISCRETIZATION OF FOKKER-PLANCK EQUATION:

9
atm

The empirical distributions

= )\tﬁfm — Hyny + <Ht777t>77t

1 N

yield a discretization of this equation:

0

SE[(£0)] = B[, MLin — Ha + (Henly )]

LLN / Scaling limit: If X (i =1,...N) are i.i.d. ~ po, then

(fim') =~ E[(f,m")] =~ (f,m)  forlarge N.



ESTIMATORS FOR y;:  X(; i.i.d. ~ po
1 & t
ny = NZ(SX%» v, = exp (—/ <Hs,niv>d8> -
i=1 ’ 0

o Law of Large Numbers: (f,n}¥), (f,vi¥) — (f,u:;) a.s. as N — oo.
e v is an unbiassed estimator for ;.

e MSE w.r.t. n;¥ can be controlled by MSE w.r.t. v/}".

REFERENCES FOR CONTINUOUS TIME CASE:

e P. Del Moral, L. Miclo. Branching and Interacting Particle Systems Ap-
prox. of Feynman-Kac Formulae (2000)

e M. Rousset. On the control of an interacting particle approximation of
Schrddinger ground states. SIAM J. Math. An. 38(3) (2006)



3 QUANTITATIVE ERROR BOUNDS
eév’p = sup {E U(f, Ny — <f,,us>]2} 2 s € (0,t], |[fllne(u) < 1}, p € [2,00].

e Aim: Feasible bounds for ¢/"* for a fixed number N of replicas.

e Tool: L? estimates and L?/L? bounds for Feynman-Kac propagators.



FEYNMAN-KAC PROPAGATOR:
Define ¢, . f as solution of backward equation

0
gqutf — —Asﬁsqs,tf - Hst,tfa Qt,tf — f’

Feynman-Kac representation:

QS,tf(x) — Es,x e fst He(Xr) drf(Xt)} )

where (X;, P ) is Markov process with gen. A\:£; and init. cond. X = z.

e [P estimates and L?/L? bounds for ¢ ; have been derived in:



AN EXPRESSION FOR THE VARIANCE:
THEOREM. For any function f : S — R,

E[(f,v)] = (fs ),

E[‘<f7yzgv>_<f7:ut>‘2: — _Var,ut N/
where
V() == (Ho(gst )2 v V(L0 ) = (Ho, v W, f? — (qsf)? vs))

/ H,(z (@5 f(2) — quc f)? v (dy) v (d2).



Proof.

o Define A!, := (g, f, V).

o Then Af, = (f,v) and A, = (qo,.f,1i'). Hence

Fori) = (Fom) = Al = ALy + (a0.efo10') = (g0, ], o)

7_5 standard MC error

o s+ Al is a martingale.

o Compute (AZ,), ....



BOUNDING THE MSE:

B[t = )] = N Van () + 87 EVA)] ds.

VN(f) = —(Hy(gsi )% v (1,0N) + -

Decomposing v = s + (vY — ps), we obtain

E V.3 ()]
= :<HS(QS,tf)27,LLs>J —EE [<H8(qs’tf)2,ué\7 — M8><17y5 — Ms>] 4o

7

asymptotic variance non-asymptc;ic correction
N7
_<H8(QS,tf)27 Us> + €4 P HHS(qsatf)QHLP(MS) ) HlHLP(MS) :

IA



BOUNDING THE MSE:

e In order to obtain a closed estimate for ;" **, we have to bound the right
hand side in terms of || f{[ ., ,,)-

e Therefore, we need estimates of the form

~(Hy(qsif)* ps) < const.-[|f|1v,,  (~ estimate for asympt. var.)

1Ho(46,00)? || oy < const. | fl 1oy (~ estimate for correction)

A first attempt: p = oo

e For p = oo we need an estimate of the form

sup |gs,¢ f| < C(o0,00)-sup|f|] Vf

e The optimal constant in this estimate is

C(00,00) = supgssl = sup, ¥, gse(,y)



e For Markov kernels, C(c0,00) = C(1,1) = 1, but for Feynman-Kac prop-
agators this is not the case.

e In some applications, feasible estimates for C'(oco, o0) exist. In general,
however, it is not clear if and how C'(oc, 00) can be bounded efficiently.

A second attempt: p € (2, )

e Forp € (2,00) we need in particular an estimate of the form

HQS,tfHLQP(,UJS) < C(pa 2p) ' ||fHLp(’UJt)

to control the correction term.

e Such estimates with C'(p,2p) < 1 are closely related to logarithmic
Sobolev inequalities (LSI).

e However, the estimate may hold with a reasonably sized constant
C(p,2p) > 1 even when an LSI does not hold globally !



4 NON-ASYMPTOTIC BOUNDS UNDER GLOBAL
CONDITIONS

Fix t9 € (0,00) (length of time interval), p € (6,00), ¢ € (p,00), and let

t
v = sup osc(H): K, — / AT
tc[0,to] 0
2
C, = sup ff Mt

ouey=0 Et(fs f)

v o= s L loglldm
(f2,pe)=1 gt(fa f)

where & (f, f) is the Dirichlet form

1

D) = = (Lol = 5 D (W) = F(@)? ) Lo, ).

L,y



THEOREM. Suppose that

N > 40 -max (K¢, 1), and
3
Ae > w-maX(%(lﬂLt-%)-Cwa(na%%) vt € |0, .
Then

2+8K 16 K
e P < Nt-(l—k Nt

and, in particular,

) Vtelo,tol,

Var ((£,7) < (Varm(ﬂ ¥ / Vailf) + HfHQLpW)) N7 4 Rl {120y N

with explicit constants R;.



Vts,t(f) — < QS tf :us / ‘H QS tf ) o QS,tf@j))Z ,LLS(dZC),LLS(dy)

COROLLARY. Under the conditions from the theorem,

¢ 1/2
< (Varut(f) + [V + 15— ut>\\%p<w>) N2

+Re - | f = {fs o) lsup N7

with explicit constants R;.



EXAMPLE 1: Moving Gaussians, d = 1
S=A{a,a+1,...,.a+A -1} CZ,

7 — my|?
pe(z) o< exp | — :

2
207

Li(x,y) = % min (Zig‘z; : 1) if |y —x| =1, 0 otherwise.

Here the following estimates hold:

30 ((oy AA)V 2)°
300 A + 300 ((oy AA)V2)% log A
(0: A 1)2 7t 5

S
o A o

Cy

IA

IA

Yt

osc (Hy)

VAN



EXAMPLE 1: Moving Gaussians, d = 1
S=A{a,a+1,...,.a+A -1} CZ,

pe(x) oc exp (—‘x_th) .

2
207

e Wehave w <1 If
[oy | mil

at+ A - (%)2'

e The Theorem above yields feasible bounds if

2

O't/\l
A

IS not too small.



EXAMPLE 2: Product measures, dependence on dimension

d
= H Sk » ® e
k=1

d

= Hy(x) = —glog,ut ZH(R) (k)

d
= w = sup |H(x) — Z

t,x,y

d
T,y) = Z£§k)(af,y) product dynamics
k=1

= (; = max C’gk), V¢ = max %( )

k k



EXAMPLE 2: Product measures, dependence on dimension

d d
s =15 w=Qu"
k=1 k=1

Assumption:

w® <1 vk o™, 4"independent of k.

= W= O(d), Ct = 0(1), Yt = 0(1)
= need N = O(d) and \; = O(d)
= total effort for a given precision is O(d?)



S NON-ASYMPTOTIC BOUNDS FROM LOCAL ES-
TIMATES

Example: Annealing

pe(z) = Z;7 1 exp(—p.U(x)), t > 0.

Metastability Problem :

e Local energy minima ~~ metastable states ~» traps for Markov chain

e Logarithmic cooling schedule: Cool down so slowly that Markov chain
escapes traps.

~~ not feasible in practice !

e Realistic approach: Cool down much faster.
~ Markov chain eventually gets trappped



Tree(H)

DISCONNECTIVITY TREE OF ENERGY FUNCTION:

S

Energy function U : S — R,

Reference measure

v

Mt

Ll

Disconnectivity tree T
Height function h: T — R
Density of states (dx) on T
fi(dz) o e Peh@) Q(dx)



H Tree(H)

e As t increases, the Markov chain gets trapped in deeper branches of
the tree.

e The state space effectively splits into an increasing number of compo-
nents (metastable states)






NON-ASYMPTOTIC BOUNDS FROM LOCAL ESTIMATES
S =|JS; disjoint decomposition of state space. Suppose that

Li(z,y) = 0Vt>0,2x€8;,yeS;(t#7), andlet
ppo= 1), 1T = max Il »
5 2 N
= s (B[ 0)) = (F) ] s € 0, 113 <1}
THEOREM. Suppose conditions as above hold with Cy, ~; replaced by
C, = max C? , Y = max ..
Then ) o
2+ 8 K; M? 16 K M?
~N,p t t . 1 t t
where

M; = max sup
Lo 0<r<s<t ,u’r(

N

i)



“Recipes’ for applications

e Try to guarantee osc(H;) < 1, oratleastosc(H;, ) <1

e Use enough MCMC steps such that there is sufficient mixing in each
metastable state

e Quality of error estimates depends (among other things) on structure of
disconnectivity tree



6 OUTLOOK

OPEN PROBLEMS:

e Generalization to discrete time and continuous space

see PhD thesis of Nikolaus Schweizer

e Non-asymptotic bounds under local mixing conditions.

First step: Asymptotic bounds:

A.E., C. Marinelli. Stability of nonlinear flows of probability measures
related to sequential MCMC methods.

Second step: Non-asymptotic analysis on trees:

PhD thesis of Nikolaus Schweizer



