Particle models for multiple objects nonlinear filtering

P. Del Moral

INRIA Bordeaux & IMB & CMAP X

Toulouse University, November 2012

Some hyper-refs

- Mean field simulation for Monte Carlo integration. Chapman & Hall, Series : Maths and Stat. (2013).
- Particle approximations of a class of branching distribution flows arising in multi-target tracking. SIAM Control. & Opt. (2011). (joint work with Caron, Doucet, Pace)
- On the Conditional Distributions of Spatial Point Processes. Advances in Applied Probability (2011). (joint work with Caron, Doucet, Pace).
- On the Stability & the Approximation of Branching Distribution Flows, with Applications to Nonlinear Multiple Target Filtering. Stochastic Analysis and Applications (2011). (joint work with Caron, Pace, Vo).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Comparison of implementations of Gaussian mixture PHD filters. FUSION (2010). (joint work with Caron, Pace, Vo).
- More references on the website http://www.math.u-bordeaux1.fr/~delmoral/index.html [+ Links]

Introduction

Multiple objects branching signals

Multiple targets filtering models

General measure valued equations

Introduction

Defense Industrial Research project Some basic notation Spatial Branching models First moments recursion

Multiple objects branching signals

Multiple targets filtering models

General measure valued equations

- 1. Defense industrial Contract : ALEA INRIA team & DCNS (2009)
- 2. \rightsquigarrow ANR PROPAGATION [2,3M \in] (2009-2012):

 \subset 2 Industrial research project

Passive radar tracking and optronics liabilities for the protection of coastal infrastructures

- Project members : D. Arrivault, Fr. Caron, D.M. P., M. Pace.
- ▶ Visiting researchers : D. Clarck, A. Doucet, S.S. Sing, B.N. Vo.

Some notation : *E* measurable space $(\mathcal{M}(E), \mathcal{P}(E), \mathcal{B}(E)) =$ (measures, proba, bounded functions on *E*).

• Lebesgue integral $(\mu, f) \in (\mathcal{M}(E) \times \mathcal{B}(E))$

$$\mu(f) = \int \mu(dx) f(x)$$
 and $\overline{\mu}(dx) := \mu(dx)/\mu(1) \in \mathcal{P}(E)$

• Q(x, dy) integral operator over E (composition (Q_1Q_2))

$$Q(f)(x) = \int Q(x, dy) f(y)$$

[\mu Q](dy) = $\int \mu(dx) Q(x, dy)$ (\leftarrow [\mu Q](f) := \mu [Q(f)])

Boltzmann-Gibbs transformation : $G \ge 0$ s.t. $\mu(G) > 0$

$$\Psi_G(\mu)(dx) = \frac{1}{\mu(G)} G(x) \mu(dx)$$

$$\Downarrow$$

∃ Markov transport equation

$$\Psi_G(\mu)(dy) = \int \mu(dx) S_\mu(x, dy) \Longleftrightarrow \Psi_G(\mu) = \mu S_\mu$$

Ex. : $(G \le 1) \rightsquigarrow accept/reject/recycling/interacting jumps$

$$S_{\mu}(x,dy) = G(x)\delta_x(dy) + (1-G(x)) \Psi_G(\mu)(dy)$$

Boltzmann-Gibbs transformation : $G \ge 0$ s.t. $\mu(G) > 0$

$$\Psi_G(\mu)(dx) = \frac{1}{\mu(G)} G(x) \mu(dx)$$

$$\Downarrow$$

∃ Markov transport equation

$$\Psi_G(\mu)(dy) = \int \mu(dx) S_\mu(x, dy) \Longleftrightarrow \Psi_G(\mu) = \mu S_\mu$$

Ex. : $(G \le 1) \rightsquigarrow accept/reject/recycling/interacting jumps$

$$S_\mu(x,dy) = G(x)\delta_x(dy) + (1-G(x)) \Psi_G(\mu)(dy)$$

Note :

$$S_{\frac{1}{N}\sum_{1\leq j\leq N}\delta_{\chi j}}(X^{i},dy)$$

$$= G(X^{i})\delta_{X^{i}}(dy) + (1 - G(X^{i})) \sum_{1 \le j \le N} \frac{G(X^{j})}{\sum_{1 \le k \le N} G(X^{k})} \delta_{X^{j}}(dy)$$

Spatial Branching models (time index $n \in \mathbb{N}$, state spaces E_n)

- ▶ 3 ingredients : $G_n(x) \ge 1$, $\mu_n(dx) \ge 0$, and $M_n(x_{n-1}, dx_n)$ Markov.
 - Branching rule (spawning) :

 $x \rightsquigarrow g_n(x)$ offsprings, with $\mathbb{E}(g_n(x)) = G_n(x)$

 \supset survival rates $e_n(x)$ + cemetery states : $G_n \rightsquigarrow e_n(x)G_n(x)$

- **Spontaneous births:** Spatial Poisson with intensity $\mu_n(dx)$
- ► Free motion between branching times : M_n-evolutions

Random occupation measure (after the *n*-th evolution step)

$$\mathcal{X}_n = \sum_{i=1}^{N_n} \delta_{X_n^i}$$

 $E_n := \{ \text{types, locations, labels, excursions, paths,...} \}$

Spatial Branching models (time index $n \in \mathbb{N}$, state spaces E_n)

First moment recursion = branching intensity distribution

$$\gamma_{n+1}(f) := \mathbb{E}\left(\mathcal{X}_{n+1}(f)\right) = \gamma_n(Q_{n+1}(f)) + \mu_{n+1}(f)$$

with

$$Q_{n+1}(x,dy) = G_n(x)M_{n+1}(x,dy)$$

Spatial Branching models (time index $n \in \mathbb{N}$, state spaces E_n)

First moment recursion = branching intensity distribution

$$\gamma_{n+1}(f) := \mathbb{E}\left(\mathcal{X}_{n+1}(f)\right) = \gamma_n(Q_{n+1}(f)) + \mu_{n+1}(f)$$

with

$$Q_{n+1}(x, dy) = G_n(x)M_{n+1}(x, dy)$$

Sketched proof
$$(\mu_n = 0)$$
: $\mathcal{X}_{n+1} = \sum_{i=1}^{N_{n+1}} \delta_{X_{n+1}^i} = \sum_{i=1}^{N_n} \sum_{j=1}^{g_n^i(X_n^j)} \delta_{X_{n+1}^{i,j}}$
 \Downarrow
 $\mathbb{E}(\mathcal{X}_{n+1}(f) \mid \mathcal{X}_n, g_n(X_n)) = \sum_{i=1}^{N_n} g_n^i(X_n^i) M_{n+1}(f)(X_n^i)$
 \Downarrow
 $\mathbb{E}(\mathcal{X}_{n+1}(f) \mid \mathcal{X}_n) = \sum_{i=1}^{N_n} G_n(X_n^i) M_{n+1}(f)(X_n^i) = \mathcal{X}_n(Q_{n+1}(f))$

Continuous time models

► Geometric clocks \rightsquigarrow exponential rates time mesh $(t_n - t_{n-1}) \simeq 0$

$$X_n = X_{t_n}$$

 $G_n = \text{survival} \times [\text{spawning} \times \text{mean} \ \sharp \text{ offsprings} + (1 - \text{spawning})]$

Continuous time models

► Geometric clocks \rightsquigarrow exponential rates time mesh $(t_n - t_{n-1}) \simeq 0$

$$X_n = X_{t_n}$$

 $G_n = \text{survival} \times [\text{spawning} \times \text{mean} \ \sharp \text{ offsprings} + (1 - \text{spawning})]$

▶
$$(t_n - t_{n-1}) \downarrow 0 \rightsquigarrow G = 1 + V dt$$
 and $M = Id + L dt$ and $t_n \rightarrow t$

$$\frac{d}{dt}\gamma_t(f) = \gamma_t(L^V(f)) + \mu_t(f) \quad \text{with} \quad L^V = L + V$$

$\mu_n = 0 \Rightarrow$ Classical Feynman-Kac models

► Feynman-Kac representation (⊃ ↑ Application domains)

$$\gamma_{n+1}(f) = \gamma_0(1) \mathbb{E}_{\eta_0}\left(f(X_{n+1}) \prod_{0 \leq \rho \leq n} G_{\rho}(X_{\rho})\right)$$

Particle approximations = Genetic type algo = Particle filters = ...

$$Q_{n+1}(x, dy) = \underbrace{G_n(x)}_{K} \times \underbrace{M_{n+1}(x, y)}_{K}$$

Selection potential Mutation transition

 \supset Nonlinear (single object) filtering models

► $G_n(x_n) := p(y_n|x_n) \rightsquigarrow \supset$ Discrete time filtering equations $\gamma_{n+1}(dx_{n+1}) \propto p(x_{n+1}|(y_0, ..., y_n))$ and $\gamma_{n+1}(1) = p(y_0, ..., y_n)$

► ⊃ Continuous time filtering models $d\mathcal{Y}_t \stackrel{(d=1)}{=} h_t(\mathcal{X}_t)dt + d\mathcal{V}_t$

$$X_n = \mathcal{X}_{[t_n, t_{n+1}]}$$
 and $\log G_n(X_n) = \int_{t_n}^{t_{n+1}} (h_s(\mathcal{X}_s) d\mathcal{Y}_s - h_s(\mathcal{X}_s)^2/2 ds)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − のへで

 \supset Nonlinear (single object) filtering models

► $G_n(x_n) := p(y_n | x_n) \rightsquigarrow \supset$ Discrete time filtering equations $\gamma_{n+1}(dx_{n+1}) \propto p(x_{n+1} | (y_0, ..., y_n))$ and $\gamma_{n+1}(1) = p(y_0, ..., y_n)$

► ⊃ Continuous time filtering models $d\mathcal{Y}_t \stackrel{(d=1)}{=} h_t(\mathcal{X}_t) dt + d\mathcal{V}_t$

$$X_n = \mathcal{X}_{[t_n, t_{n+1}]}$$
 and $\log G_n(X_n) = \int_{t_n}^{t_{n+1}} \left(h_s(\mathcal{X}_s)d\mathcal{Y}_s - h_s(\mathcal{X}_s)^2/2 \ ds\right)$

► For any mesh sequence

 $\gamma_n \propto \operatorname{Law}\left(\mathcal{X}_{[t_n,t_{n+1}]} \mid \mathcal{F}_{t_n}^{\mathcal{Y}}\right) \quad ext{with} \quad \mathcal{F}_{t_n}^{\mathcal{Y}} = \sigma(\mathcal{Y}_s, \ s \leq t_n)$

• When $(t_{n+1} - t_n) \simeq 0 \Rightarrow$ Zakai SPDE

 $\forall f \text{ sufficiently regular } d\gamma_t(f) = \gamma_t(L_t^{\mathcal{X}}(f)) + \gamma_t(h_t) d\mathcal{Y}_{s_{\text{supple}}}$

Introduction

Multiple objects branching signals

Evolution equations Stability properties Three typical scenarios An extended Feynman-Kac model Mean field particle interpretations Some convergence results

Multiple targets filtering models

General measure valued equations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

More general spatial Branching models (hyp. $\gamma_0 = \mu_0$)

$$\gamma_n = \gamma_{n-1}Q_n + \mu_n \quad \text{and} \quad \eta_n := \gamma_n/\gamma_n(1)$$
 $(\gamma_n(1), \eta_n) := \Gamma_{p,n} (\gamma_p(1), \eta_p)$

Some problems

- ▶ Problem 1: Mass $\gamma_n(1)$ "unstable" $\gamma_n(1) \uparrow \infty$ or $\gamma_n(1) \downarrow 0$ as $n \uparrow \infty$
- ▶ Problem 2: $X_n = \sum_{i=1}^{N_n} \delta_{X_n^i}$ generally NOT POISSON random field.
- ► Problem 3: ∃ non degenerate numerical sampling method?
- ▶ Problem 4: \exists non degenerate approximation of γ_n ?

 \Leftrightarrow Continuous time models (G, M) = (1 + Vdt, Id + Ldt)

$$\Rightarrow \quad \frac{d}{dt}\gamma_t(f) = \gamma_t(L^V(f)) + \mu_t(f) \quad \text{with} \quad L^V = L + V$$

Three scenarios $M_n = M$, $G_n = G \in [g_-, g_+]$, $\mu_n = \mu$ 1. $G = 1 \Rightarrow \eta_{\infty} := \eta_{\infty} M$ (independent of μ) $\gamma_n(1) = \gamma_0(1) + n\mu(1)$ and $\|\eta_n - \eta_{\infty}\|_{tv} = O(1/n)$

2. $g_+ < 1 \Rightarrow \eta_\infty := \gamma_\infty/\gamma_\infty(1)$ with γ_∞ given by

$$\gamma_{\infty} := \sum_{n \ge 0} \mu Q^n \iff \text{Poisson equation } \gamma_{\infty}(Id - Q) = \mu$$

and

$$|\gamma_n(f) - \gamma_\infty(f)| \vee |\eta_n(f) - \eta_\infty(f)| \leq c g_+^n ||f||$$

・ロト・日本・モート モー うへぐ

Three scenarios $M_n = M$, $G_n = G \in [g_-, g_+]$, $\mu_n = \mu$ 1. $G = 1 \Rightarrow \eta_\infty := \eta_\infty M$ (independent of μ) $\gamma_n(1) = \gamma_0(1) + n\mu(1)$ and $\|\eta_n - \eta_\infty\|_{tv} = O(1/n)$

2. $g_+ < 1 \Rightarrow \eta_\infty := \gamma_\infty/\gamma_\infty(1)$ with γ_∞ given by

$$\gamma_{\infty} := \sum_{n \ge 0} \mu Q^n \iff \text{Poisson equation } \gamma_{\infty}(Id - Q) = \mu$$

and

$$|\gamma_n(f) - \gamma_\infty(f)| \vee |\eta_n(f) - \eta_\infty(f)| \leq c g_+^n ||f||$$

Continuous time models $G = e^{-V\Delta t}$ & $M = L \Delta t + Id$

$$\gamma_t(f) = \int_0^t \mathbb{E}_\mu \left(f(X_s) \exp\left(-\int_0^s V(X_r) dr\right) \right) ds$$

$$t \to \infty \rightsquigarrow \text{Poisson equation } \gamma_\infty L^V = \mu, \text{ with } L^V = L + V$$

・ロト ・ 通 ト ・ 目 ト ・ 目 ・ の へ ()・

The 3-rd scenario $(M_n = M, G_n = G \in [g_-, g_+], \mu_n = \mu)$

$$g_{-} > 1 \Rightarrow \eta_{\infty}(f) := \eta_{\infty}Q(f)/\eta_{\infty}Q(1) \quad (\text{independent of } \mu)$$

$$\downarrow$$

$$\lim_{n \to \infty} \frac{1}{n} \log \gamma_{n}(1) = \log \eta_{\infty}(G) \quad \text{and} \quad \|\eta_{n} - \eta_{\infty}\|_{\text{tv}} \le c \ e^{-\lambda n}$$

 η_{∞} = [quasi-invariant meas., Yaglom meas., ground states, Feynman-Kac sg fixed points, infinite population stationary measure, . . .]

Hyper-refs :

- On the stability of interacting processes with applications to filtering and genetic algorithms. (joint work with A. Guionnet) Annales IHP (2001).
- Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. (joint work with L. Miclo) ESAIM: P&S (2003).

Particle Motions in Absorbing Medium with Hard and Soft Obstacles. (joint work with A. Doucet) Stochastic Analysis and Applications (2004).

Nonlinear equations

Nonlinear & interacting mass + proba measures equations

$$\begin{cases} \gamma_{n+1}(1) = \gamma_n(1) \eta_n(G_n) + \mu_{n+1}(1) \\ \\ \eta_{n+1} = \Psi_{G_n}(\eta_n) M_{n+1,(\gamma_n(1),\eta_n)} \end{cases}$$

with the Markov transitions:

$$M_{n+1,(\boldsymbol{m},\boldsymbol{\eta})}(x,dy) := \alpha_n(\boldsymbol{m},\boldsymbol{\eta}) M_{n+1}(x,dy) + (1-\alpha_n(\boldsymbol{m},\boldsymbol{\eta})) \overline{\mu}_{n+1}(dy)$$

and the collection of $\left[0,1\right]\mbox{-}parameters$

$$\alpha_n(\boldsymbol{m},\eta) = \frac{\boldsymbol{m} \ \eta(\boldsymbol{G}_n)}{\boldsymbol{m} \ \eta(\boldsymbol{G}_n) + \mu_{n+1}(1)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

An extended Feynman-Kac model

$$\eta_n \xrightarrow{\text{updating}} \widehat{\eta}_n := \Psi_{G_n}(\eta_n) = \eta_n \underbrace{S_{n,\eta_n}}_{\text{prediction}} \eta_{n+1} := \widehat{\eta}_n \underbrace{M_{n+1,(\gamma_n(1),\eta_n)}}_{\text{prediction}}$$

A couple of equations:

The total mass evolution

$$\gamma_{n+1}(1) = \gamma_n(1) \eta_n(G_n) + \mu_{n+1}(1)$$

▶ The "nonlinear filtering/Feynman-Kac type" conservative equations

$$\eta_{n+1} = \eta_n S_{n,\eta_n} M_{n+1,(\gamma_n(1),\eta_n)} := \eta_n \underbrace{\mathcal{K}_{n+1,(\gamma_n(1),\eta_n)}}_{\text{Markov transition}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mean field interacting particle models

$$\eta_n^{m{N}} = rac{1}{N}\sum_{1\leq i\leq N} \delta_{\xi_n^i} \simeq_{N\uparrow\infty} \eta_n \quad ext{and} \quad \gamma_n^{m{N}}(1) \simeq_{N\uparrow\infty} \gamma_n(1)$$

the total mass evolution ["deterministic"]

$$\gamma_{n+1}^{\mathsf{N}}(1) := \gamma_n^{\mathsf{N}}(1) \ \eta_n^{\mathsf{N}}(G_n) + \mu_{n+1}(1)$$

Mean field particle model

$$\begin{split} \xi_{n+1}^{i} = \text{r.v. with distribution} \quad & \mathcal{K}_{n+1,(\gamma_{n}^{N}(1),\eta_{n}^{N})}(\xi_{n}^{i},dx_{n+1}) \\ & \Downarrow \end{split}$$

(Local) Stochastic perturbation model:

$$\eta_{n+1}^{\mathsf{N}} := \eta_n^{\mathsf{N}} \mathcal{K}_{n+1,(\gamma_n^{\mathsf{N}}(1),\eta_n^{\mathsf{N}})} + \frac{1}{\sqrt{\mathsf{N}}} W_{n+1}^{\mathsf{N}}$$

Independent local sampling error fluctuations

 $(W_n^N)_{n\geq 0}\simeq_{N\uparrow\infty}$ iid centered Gaussian fields $(W_n)_{n\geq 0}$

Independent local sampling error fluctuations

 $(W_n^N)_{n\geq 0} \simeq_{N\uparrow\infty}$ iid centered Gaussian fields $(W_n)_{n\geq 0}$

• Functional CLT(s) (with $[\gamma_n^N := \gamma_n^N(1) \times \eta_n^N]$)

$$V_n^{\gamma,N} := \sqrt{N} \left(\gamma_n^N - \gamma_n \right) \quad \& \quad V_n^{\eta,N} := \sqrt{N} \left(\eta_n^N - \eta_n \right) \quad \rightarrow_N \quad V_n^{\gamma} \quad \& \quad V_n^{\eta}$$

Independent local sampling error fluctuations

 $(W_n^N)_{n\geq 0} \simeq_{N\uparrow\infty}$ iid centered Gaussian fields $(W_n)_{n\geq 0}$

Functional CLT(s) (with $[\gamma_n^N := \gamma_n^N(1) \times \eta_n^N]$)

$$V_n^{\gamma,N} := \sqrt{N} \left(\gamma_n^N - \gamma_n \right) \quad \& \quad V_n^{\eta,N} := \sqrt{N} \left(\eta_n^N - \eta_n \right) \quad \rightarrow_N \quad V_n^{\gamma} \quad \& \quad V_n^{\eta}$$

▶ Uniform cv results (under some mixing conditions on M_n)

$$\sup_{n\geq 0} \mathbb{E}\left(\left|\left[\eta_n^N - \eta_n\right](f)\right|^p\right) \leq c(p)/N^{p/2} \quad (\oplus \text{ uniform concentration})$$

Independent local sampling error fluctuations

 $(W_n^N)_{n\geq 0} \simeq_{N\uparrow\infty}$ iid centered Gaussian fields $(W_n)_{n\geq 0}$

• Functional CLT(s) (with $\left[\gamma_n^N := \gamma_n^N(1) \times \eta_n^N\right]$)

$$V_n^{\gamma,N} := \sqrt{N} \left(\gamma_n^N - \gamma_n \right) \quad \& \quad V_n^{\eta,N} := \sqrt{N} \left(\eta_n^N - \eta_n \right) \quad \rightarrow_N \quad V_n^{\gamma} \quad \& \quad V_n^{\eta}$$

Uniform cv results (under some mixing conditions on M_n)

 $\sup_{n\geq 0} \mathbb{E}\left(\left|\left[\eta_n^N - \eta_n\right](f)\right|^p\right) \leq c(p)/N^{p/2} \quad (\oplus \text{ uniform concentration})$

• Unbiased particle total mass with variance $(N \ge n)$

$$\mathbb{E}\left(\left[1-\gamma_n^N(1)/\gamma_n(1)\right]^2\right) \leq c n/N$$

Introduction

Multiple objects branching signals

Multiple targets filtering models Conditioning principles PHD filtering equation Stability properties

General measure valued equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Poisson point process \mathcal{X} with intensity $\gamma(dx_1) Q(x_1, dx_2)$ on $E = (E_1 \times E_2)$

$$\mathcal{X} := m_N(X_1, X_2) = \sum_{1 \leq i \leq N} \delta_{(X_1^i, X_2^i)} \quad \text{and} \quad \mathcal{X}_j := m_N(X_j) = \sum_{1 \leq i \leq N} \delta_{X_j^i}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Poisson point process \mathcal{X} with intensity $\gamma(dx_1) Q(x_1, dx_2)$ on $E = (E_1 \times E_2)$

$$\mathcal{X} := m_N(X_1, X_2) = \sum_{1 \leq i \leq N} \delta_{(X_1^i, X_2^i)} \quad \text{and} \quad \mathcal{X}_j := m_N(X_j) = \sum_{1 \leq i \leq N} \delta_{X_j^i}$$

▶ 2 Bayes' rules: Normalization $p(x_2|x_1) \oplus$ Markov operator $p(x_1|x_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\overline{Q}(x_1, dx_2) = \frac{Q(x_1, dx_2)}{Q(x_1, E_2)} \text{ and } \gamma(dx_1) \ Q(x_1, dx_2) = (\gamma Q) (dx_2) \ Q_{\gamma}(x_2, dx_1)$$

• Poisson point process \mathcal{X} with intensity $\gamma(dx_1) Q(x_1, dx_2)$ on $E = (E_1 \times E_2)$

$$\mathcal{X} := m_N(X_1, X_2) = \sum_{1 \leq i \leq N} \delta_{(X_1^i, X_2^i)} \quad \text{and} \quad \mathcal{X}_j := m_N(X_j) = \sum_{1 \leq i \leq N} \delta_{X_j^i}$$

▶ 2 Bayes' rules: Normalization $p(x_2|x_1) \oplus$ Markov operator $p(x_1|x_2)$

$$\overline{Q}(x_1, dx_2) = \frac{Q(x_1, dx_2)}{Q(x_1, E_2)} \text{ and } \gamma(dx_1) \ Q(x_1, dx_2) = (\gamma Q) (dx_2) \ Q_{\gamma}(x_2, dx_1)$$

► ⇒ 2 conditional distributions formulae:

•
$$(\mathcal{X}_1, \mathcal{X}_2) = (\mathcal{X}, \mathcal{Y}), \mathcal{X}$$
 Poisson Signal $\gamma(dx) \rightsquigarrow \mathcal{Y}$ Poisson Obs.

$$\begin{cases}
(X^i = x) \rightsquigarrow (Y^i = y) \sim \alpha(x) g(x, y) \lambda(dy) + (1 - \alpha(x)) \delta_c(dy) \\
\oplus \text{ Clutter } \mathcal{Y}' \text{ Poisson with intensity } \nu(dy) = h(y) \lambda(dy)
\end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ► $(\mathcal{X}_1, \mathcal{X}_2) = (\mathcal{X}, \mathcal{Y}), \mathcal{X}$ Poisson Signal $\gamma(dx) \rightsquigarrow \mathcal{Y}$ Poisson Obs. $\begin{cases}
 (X^i = x) \rightsquigarrow (Y^i = y) \sim \alpha(x) g(x, y) \lambda(dy) + (1 - \alpha(x)) \delta_c(dy) \\
 \oplus \quad \text{Clutter} \quad \mathcal{Y}' \text{ Poisson with intensity } \nu(dy) = h(y) \lambda(dy)
 \end{cases}$
- Observables $\mathcal{Y}^0 = \mathcal{Y} \times \mathbf{1}_{\neq c}$ ($\Leftrightarrow \alpha = \text{detection rate}$)

$$egin{array}{lll} \widehat{\gamma}(f) &:= & \mathbb{E}\left(\mathcal{X}(f) \mid \mathcal{Y}^{\mathrm{o}}
ight) \ &= & \gamma((1-lpha)f) + \int \ \mathcal{Y}^{\mathrm{o}}(dy)\left(1-eta_{\gamma}(y)
ight) \ \Psi_{lpha g(y, \centerdot)}(\gamma)(f) \end{array}$$

with "the conditional clutter probability density"

$$\beta_{\gamma}(y) = h(y) / [h(y) + \gamma(\alpha g(y, .))]$$

Ex.: full detect and no clutter lpha=1 & $h=0\rightsquigarrow \mathcal{Y}^{\mathrm{o}}=\mathcal{Y}$

Conditional mean number of targets and "their distributions"

$$\widehat{\gamma}(1) = \mathcal{Y}(1)$$

and

$$\widehat{\eta}(f) := \frac{\widehat{\gamma}(f)}{\widehat{\gamma}(1)} = \int \underbrace{\overline{\mathcal{Y}}(dy)}_{=\mathcal{Y}/\mathcal{Y}(1)} \qquad \underbrace{\Psi_{g(y,.)}(\eta)(f)}_{\text{Bayes' rule}} \quad \text{with} \quad \eta := \gamma/\gamma(1)$$

Single target $\Leftrightarrow \mathcal{Y}^{o} = \delta_{Y} \Leftrightarrow \mathbf{Classical filtering updating equations}$ $\widehat{\eta} = \Psi_{g(Y, \star)}(\eta)$

PHD filtering equation [Signal branching model (Q_n, μ_n)]

<u>Hyp.</u>: \mathcal{X}_{n+1} Poisson $\gamma_{n+1} = \widehat{\gamma}_n Q_n + \mu_n \oplus$ with obs. \mathcal{Y}_{n+1}^0 as before

∜

\implies PHD filtering equations:

$$\gamma_{n+1} := \widehat{\gamma}_n Q_n + \mu_n$$

$$\widehat{\gamma}_n(f) := \gamma_n((1-\alpha_n)f) + \int \mathcal{Y}_n^{\circ}(dy) (1-\beta_{\gamma_n}(y)) \Psi_{\alpha_n g_n(y, \cdot)}(\gamma_n)(f)$$

∜

 \subset A class of measure valued equations \supset PHD; Bernoulli filters, etc.

$$\gamma_{n+1} = \gamma_n Q_{n+1,\gamma_n}$$

Stability properties of meas. valued equations

 $\eta_n = \gamma_n / \gamma_n(1) \rightsquigarrow \text{Nonlinear semigroup} \quad (\gamma_n(1), \eta_n) = \Gamma_{p,n}(\gamma_p(1), \eta_p)$ Stability Theorem :

$$\|\Gamma_{p,n}(m',\eta') - \Gamma_{p,n}(m,\eta)\| \le c \ e^{-\lambda(n-p)}$$

$$\Downarrow$$

Regularity prop. ~> 3 natural conditions on the PHD filter/model

- 1. small clutter intensities
- 2. high detection probability
- 3. high spontaneous birth rates

Introduction

Multiple objects branching signals

Multiple targets filtering models

General measure valued equations Nonlinear evolution equations Mean field particle approximation Particle association measures Association particle genealogies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nonlinear equations

$$egin{aligned} &\gamma_{n+1} = \gamma_n Q_{n+1,\gamma_n} & \rightsquigarrow & \eta_n := \gamma_n / \gamma_n(1) & ext{and} & G_{n,\gamma_n} = Q_{n+1,\gamma_n}(1) \ & \downarrow \end{aligned}$$

The total mass evolution

$$\gamma_{n+1}(1) = \gamma_n(1) \ \eta_n(G_{n,\gamma_n(1)\eta_n})$$

▶ The "nonlinear filtering" conservative equations

$$\eta_{n+1}(f) = \frac{\eta_n Q_{n,\gamma_n(1)\eta_n}(f)}{\eta_n Q_{n,\gamma_n(1)\eta_n}(1)} := \eta_n K_{n,\gamma_n(1)\eta_n}(f)$$

Mean field particle models

$$\eta_n^{N} = \frac{1}{N} \sum_{1 \le i \le N} \delta_{\xi_n^i} \simeq_{N \uparrow \infty} \eta_n \quad \text{and} \quad \gamma_n^{N}(1) \simeq_{N \uparrow \infty} \gamma_n(1)$$

with

$$\begin{array}{lll} \gamma_{n+1}^{N}(1) &=& \gamma_{n}^{N}(1) \times \eta_{n}^{N}(G_{n,\gamma_{n}^{N}(1)\eta_{n}^{N}}) \\ \xi_{n+1}^{i} &=& \mathrm{random \ var. \ with \ law} \quad K_{n+1,(\gamma_{n}^{N}(1)\eta_{n}^{N})}(\xi_{n}^{i},dx) \\ & \downarrow \end{array}$$

Same theorems as before with uniform convergence estimates

Mean field particle models

$$\eta_n^{N} = \frac{1}{N} \sum_{1 \le i \le N} \delta_{\xi_n^i} \simeq_{N \uparrow \infty} \eta_n \quad \text{and} \quad \gamma_n^{N}(1) \simeq_{N \uparrow \infty} \gamma_n(1)$$

with

$$\begin{array}{lll} \gamma_{n+1}^{N}(1) &=& \gamma_{n}^{N}(1) \times \eta_{n}^{N}(G_{n,\gamma_{n}^{N}(1)\eta_{n}^{N}}) \\ \xi_{n+1}^{i} &=& \mathrm{random \ var. \ with \ law} \quad \mathcal{K}_{n+1,(\gamma_{n}^{N}(1)\eta_{n}^{N})}(\xi_{n}^{i},dx) \\ & \downarrow \end{array}$$

Same theorems as before with uniform convergence estimates

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Abstract general models
 - $\blacktriangleright \supset \forall$ numerical scheme with local errors
 - ► ⊃ Interacting Kalman type filters ~→ particle associations measures (~ GM-PHD)

Association measures $[\alpha = 1 \& h = 0 \& Q_n = M_n]$

Ex. : Computable (exact or approximate) filters

The mappings
$$\eta \mapsto \Phi_{n+1}^{y_n}(\eta) := \Psi_{g_n(y_n, \cdot)}(\eta) M_{n+1}$$

 \subset {Kalman, EKF, Ensemble Kalman filters, particle filters,...}

Initial association measure

$$\eta_1 := \int \ \overline{\mathcal{Y}}_0(dy_0) \ \Phi_1^{y_0}(\eta_0) \simeq \eta_1^{\mathsf{N}} := \int \ \overline{\mathcal{Y}}_0^{\mathsf{N}}(dy_0) \ \Phi_1^{y_0}(\eta_0)$$

for instance

$$\overline{\mathcal{Y}}_0^{\boldsymbol{N}} = \frac{1}{N} \sum_{1 \leq i \leq N} \delta_{\boldsymbol{Y}_0^i} \text{ i.i.d. samples from } \overline{\mathcal{Y}}_0 \text{ or (if possible)} \quad \overline{\mathcal{Y}}_0^{\boldsymbol{N}} = \overline{\mathcal{Y}}_0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Particle association measures $[\alpha = 1 \& h = 0 \& Q_n = M_n]$

$$\begin{split} \eta_{2} &\simeq \int \overline{\mathcal{Y}}_{1}(dy_{1}) \ \Phi_{2}^{y_{1}}(\eta_{1}^{N}) \\ &= \int \underbrace{\overline{\mathcal{Y}}_{1}(dy_{1}) \ \overline{\mathcal{Y}}_{0}^{N}(dy_{0}) \frac{\Phi_{1}^{y_{0}}(\eta_{0})(g_{1}(y_{1},.))}{\int \overline{\mathcal{Y}}_{0}^{N}(dy_{0}) \ \Phi_{1}^{y_{0}}(\eta_{0})(g_{1}(y_{1},.))}} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ &\simeq \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} \end{bmatrix} (\eta_{0}) \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1}))} \ \begin{bmatrix} \Phi_{2}^{y_{1}} \circ \ \Phi_{1}^{y_{0}} & \oplus \\ \\ & = \int \underbrace{\overline{\mathcal{Y}}_{0,1}^{N}(d(y_{0},y_{1})} \\ & = \int \underbrace{\overline{\mathcal{Y}}$$

for instance

$$\overline{\mathcal{Y}}_{0,1}^{N} = \frac{1}{N} \sum_{1 \le i \le N} \delta_{(\mathbf{Y}_{0,1}^{i}, \mathbf{Y}_{1,1}^{i})}$$

i.i.d. samples from the $N imes \mathcal{Y}_1(1)$ supported measures

$$\overline{\mathcal{Y}}_{1}(dy_{1}) \ \overline{\mathcal{Y}}_{0}^{N}(dy_{0}) \frac{\Phi_{1}^{y_{0}}(\eta_{0})(g_{1}(y_{1},.))}{\int \overline{\mathcal{Y}}_{0}^{N}(dy_{0}) \ \Phi_{1}^{y_{0}}(\eta_{0})(g_{1}(y_{1},.))} \ \delta_{(y_{0},y_{1})}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and so on . . .

Particle association measures - Track management

Association particle tree genealogies

$$\eta_{n+1}^{N} := \int \mathcal{Y}_{0,n}^{N}(d(y_0,\ldots,y_n)) \quad \left[\Phi_{n+1}^{y_n}\circ\ldots\circ\Phi_1^{y_0}\right](\eta_0)$$

with

$$\mathcal{Y}_{0,n}^{N} := \frac{1}{N} \sum_{1 \le i \le N} \delta_{(\mathbf{Y}_{0,n}^{i}, \mathbf{Y}_{1,n}^{i}, \dots, \mathbf{Y}_{n,n}^{i})}$$

Stochastic models and cv analysis :

► General case :

(miss-detect, survival, spontaneous birth) = as before virtual obs.

- \subset Abstract models of the form $\gamma_{n+1} = \gamma_n Q_{n+1,\gamma_n}$.
- ► Mean field particle models ⇔ Association particle measures.
- ▶ $\rightsquigarrow \mathbb{L}_p$ -bounds \oplus Concentration sub-Gaussian inequalities.