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René Carmona, Pierre Del Moral, Peng Hu and Nadia Oudjane

Abstract The aim of this article is to give a general introduction to the theory of
interacting particle methods, and an overview of its applications to computational fi-
nance. We survey the main techniques and results on interacting particle systems and
explain how they can be applied to the numerical solution of a variety of financial
applications such as pricing complex path dependent European options, computing
sensitivities, pricing American options or numerically solving partially observed
control and estimation problems.

1 Introduction

The growing field of Feynman-Kac expectations and related particle models is one
of the most active contact points between probability theory and practical appli-
cations. The particle simulation techniques they suggest are also called sequential
Monte Carlo methods in Bayesian statistics, and particle or genetic type filters in
advanced signal processing. They are used to approximate a flow of probability
measures with an increasing level of complexity. This class of probabilistic mod-
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els includes conditional distributions of signals with respect to noisy and partial
observations, non absorption probabilities in Feynman-Kac-Schrödinger models,
Boltzmann-Gibbs measures, as well as conditional distributions of stochastic pro-
cesses in critical regimes. For a thorough discussion on the application domains
of interacting particle algorithms, we refer the reader to the first rigorous study of
particle filters [30], the review article [40], the monograph [31], and the references
therein.

Recently, these interacting particle techniques have been applied in several areas
of finance. For instance, using the rare event interpretation of particle methods, R.
Carmona, J. P. Fouque and D. Vestal proposed in [16] an interacting particle algo-
rithm for the computation of the probabilities of simultaneous defaults in large credit
portfolios. These developments for credit risk computation were then improved in
the subsequent paper [15] by R. Carmona and S. Crépey, and by P. Del Moral and
F. Patras in [44].
Following the particle filtering approach which is already widely used to estimate
hidden Markov models, V. Genon-Catalot, T. Jeantheau and C. Laredo [60] in-
troduced particle methods for the estimation of stochastic volatility models. This
approach has been applied for filtering nonlinear and non-Gaussian models by R.
Casarin [19], R. Casarin and C. Trecroci [20]. More recently, M. S. Johannes, N. G.
Polson and J.R. Stroud [66] used a similar approach to filter latent variables such
as the jump times and sizes in jump diffusion price models. Particle techniques can
also be used for stochastic optimization as demonstrated by S. Ben Hamida and R.
Cont who provide in [6] a new calibration algorithm allowing for the existence of
multiple global minima. Finally, in [42], interacting particle methods were used to
estimate backward conditional expectation for American option pricing.

In this review paper, we survey the main ideas behind the particle technology al-
luded to above, with illustrations from recent applications in computational finance.
We tried to provide a synthetic picture of particle solutions to some estimation prob-
lems arising in mathematical finance. We adopted an informal style of presentation,
focusing on the ideas rather than on their detailed rigorous mathematical justifica-
tion.

The article is organized as follows. In the following section, we highlight the
natural link between option prices and Feynman-Kac formula. Then in the third
section, the main principles and results related to particle methods are recalled. Fi-
nally, we dedicate the last sections of this article to the application of these particle
techniques to some specific financial problems: credit risk analysis, sensitivity com-
putation, American option pricing and control and estimation of partially observed
models.

2 Option prices and Feynman-Kac formula

The numerical pricing of European-style options has been extensively studied in the
mathematical finance literature. It would be foolish to try to cover this subject in the
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present paper. We refer the reader to I. Karatzas and S.E. Shreve’s book [67], and
the more focused account by Y. Achdou and O. Pironneau [2] for a sample of texts
relevant to the present discussion. European option pricing is a standard numerical
problem in finance, well suited to our interpretation of option prices in terms of
Feynman-Kac formula.

2.1 Discrete time models

We first consider discrete time models (often called multi-period models by economists).
Option prices are often given by Feynman-Kac formulas of the form

Qp,n( fn)(Xp) := E

(
fn(Xn) ∏

p≤q<n
Gq(Xq)

∣∣Xp

)
, (1)

with the terminal condition Qn,n( fn)(x) = fn(Xn). Here p is the time at which the
price is computed, and n is the time of maturity of the option, f = ( fn)n is a space-
time function, i.e. a function of time n and a variable in the state space En at time n
of the possible values of the underlying interest X = (Xn)n, fn(x) giving the payoff
of the option at time n if the underlying interest has the value x, i.e. Xn = x. We
will assume throughout that X = (Xn)n is a Markov chain, and we will denote by
M = (Mp,n)p,n its transition probability

Mp,n(x,dy) := P(Xn ∈ dy|Xp = x), x ∈ Ep. (2)

We assume that the state space En of the chain at time n can change with n. We shall
use the simpler notation M when the Markov chain is time homogeneous, in which
case Mp,n = Mn−p = Mn−p, and the state space E does not change with time. The
major ingredients in the above equation are the Markov chain X and the space-time
potential G = (Gn)n, given for each n, by a non-negative measurable function on
En. The chain X is usually constructed from random factors evolving in time and
price series S j = (S j

n)n which gives the time evolution of the risky asset prices. We
give some simple example below. To conform with the terminology of the particle
models used to understand theoretically and implement numerically the Feynman-
Kac formulas of the above type, we shall sometimes call Xn a particle at time n.
Depending on the application under consideration, the role of the potential Gn will
be to capture the discounting necessary in the computation of the price, or some
constraints (like barriers) present in the indenture of the option, or the risk premium
in the form of a pricing kernel, or even to force the particle to visit some parts of the
space-time domain where rare events occur, in which case its financial interpretation
will not be possible.

We give some simple examples to illustrate the versatility of formula (1).



4 René Carmona, Pierre Del Moral, Peng Hu and Nadia Oudjane

European barrier option.

In this case, we assume that there is only one underlying stock whose time evolution
is given by a Markov chain S = (Sn)n, that Xn = Sn is the price of this underlying
stock at time n, that fn gives the payoff function if the maturity is n, and that K > 0 is
the strike of the option. If we assume that stochastic interest rates are given by a non-
negative space-time function r = (rn)n of the chain, and if we denote by A = (An)
the sequence of barrier sets Ap, then the price of the barrier option is given by the
Feynman-Kac formula (1) with

fn(Xn) = (Xn−K)+ and Gq(Xq) = 1lAq(Xq) e−rq(Xq) . (3)

Asian option

This example is important because it allows us to illustrate the use of the Feynman-
Kac formula (1) when the chain X evolves on path space. Indeed, if we assume that
S = (Sn)n is a Markov chain in a state space E giving the time evolution of the stock
price on which the Asian option is written, at each time n we define Xn as the path
from time p = 0 up to the current time p = n of the underlying Markov chain. In
other words:

Xn := (S0, . . . ,Sn) ∈ En := En+1

and the payoff of the option can be written in the form

fn(Xn) = (Hn(Xn)−K)+ , (4)

where K > 0 is the strike of the option and where, in the case of the one dimensional
fixed strike Asian option (E = R):

Hn(Xn) =
1

n+1

n

∑
p=0

Sp . (5)

Notice that this formalism for the Asian option includes the case of plain European
options if we take Hn(Xn) = fn(Sn). Notice also that, if we choose K = 0 in (4) and

Hn(Xn) =
1

n+1

n

∑
p=0

Sp−Sn ,

then we have the floating strike Asian option with a null price at the origin. Many
other payoff functions on path space can be considered, including geometric means,
better-off or worse-off lookback options related to the maximum or the minimum
values of the historical asset prices.

Remark 1. Notice that Importance Sampling models can also be encapsulated in the
Feynman-Kac formula (1). These stochastic sampling methods are simple change of
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probability measures. They are often used in rare event simulation to make events
with small occurrence probability less rare [31, 37].

2.2 Continuous time models

In continuous time finance, the stochastic factors and the underlying stock prices
are often given by diffusion models, and the reference Markov chain sequence S
or X often results from a discretization procedure, such as those given by Euler
or Milshtein schemes. For instance, let us suppose we are given an Rd-valued Itô
stochastic differential equation

dSc
t = b(Sc

t ) dt +σ(Sc
t ) dWt , (6)

with some initial random vector Sc
0 ∈ Rd with distribution η0 = Law(Sc

0). Here,
W = (Wt)t≥0 is a standard d-dimensional Wiener process, and for any x ∈ Rd ,
σ(x) = (σi, j(x))1≤i, j≤d is a d×d symmetric nonnegative definite matrix, and b(x) =
(bi(x))1≤i≤d a d-dimensional vector. The Euler discretization scheme over the regu-
lar time subdivision (also called time grid) (tn)n≥0, with the mesh (tn−tn−1) = ∆ > 0
is given by

Sn−Sn−1 = b(Sn−1) ∆ +σ (Sn−1)
(
Wtn −Wtn−1

)
. (7)

The elementary Markov transition

M(x,dy) := P(Sn ∈ dy|Sn−1 = x)

(the time subscripts are not needed because of the time homogeneity of the chain)
can alternatively be defined in the integral form on bounded test functions as below

M( f )(x) :=
∫

M(x,dy) f (y) = E
(

f
(

x+b(x)∆ +σ(x)
√

∆ Y
))

, (8)

where Y = (Y i)1≤i≤d is a sequence of independent and centred Gaussian random
variables with unit variance.

In the same vein, suppose that the evolution of the underlying prices is given by
a jump type Markov process Sc which evolves between jumps times Tn as in (6)
the jump times Tn being defined in terms of a sequence (en)n≥1 of independent and
identically exponentially distributed random variables with unit parameter by the
following recursion

Tn = inf
{

t ≥ Tn−1 :
∫ t

Tn−1

λ (Su) du≥ en

}
, (9)

with T0 = 0 and some non negative function λ . At the time Tn of a jump, the
process jumps from Sc

Tn− to a new location Sc
Tn

randomly chosen with distribution
P(Sc

Tn−,dy) where P(x,dy) is a given Markovian transition kernel.
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A discrete time approximation model Sn is defined as above by replacing the
transition M in (8), by the Markov transition MJ such that

(MJ)(x,dz) :=
∫

M(x,dy) J(y,dz) ,

with the geometric jump type Markov transition

J(y,dz) = e−λ (y)∆
δy(dz)+

(
1− e−λ (y)∆

)
P(y,dz) .

If we revisit the example of the barrier option for the sake of illustration, for
time homogeneous barrier regions An = A, and non-negative stochastic interest rates
(R(St))t≥0 given by a function R on R, if we set rn(x) = Rtn(x)∆ and X = S in (3),
then formula (1) gives a ∆ -approximation of the continuous time model

E
(

ftn(S
c
tn) 1lT≥tn exp

{
−
∫ tn

tp

Rs(Sc
u)du

}∣∣∣Sc
tp = x

)
,

where T stands for the first time the process S gets out of the barrier region A.

3 Interacting particle approximations

In this section, we present a brief introduction to interacting particle methods as
they pertain to the computation of the Feynman-Kac expectations discussed in the
previous section. These advanced stochastic techniques are becoming increasingly
popular in economics as well as in finance. A detailed survey to this field can be
found in [27, 39].

3.1 Feynman-Kac semigroups

First, we notice that the integral operators Qp,n defined in (1) can be interpreted as
the linear semigroup associated with the flow of non negative measures γn whose
values on test functions fn are given by:

γn( fn) :=
∫

γn(dx) fn(x) = E

(
fn(Xn) ∏

0≤q<n
Gq(Xq)

)
. (10)

The operators Qp,n were defined in (1) through their action on functions. Letting
them act on measures by duality we get:

γn(dy) = (γpQp,n)(dy) :=
∫

γp(dx) Qp,n(x,dy) ,
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and for 0≤ p≤ q≤ n we have the semigroup property

Qp,n(x,dz) = (Qp,qQq,n)(x,dz) :=
∫

Qp,q(x,dy) Qq,n(y,dz) .

Using these formulas in numerical implementations requires extensive calculations
due to the fact that the total mass of the measures γn obtained by choosing the
constant function fn(x) ≡ 1 in (10) is very costly to compute with a reasonable
precision. To illustrate this assertion, let us suppose that Gp = 1lA, for any p ≤ n.
Then, the total mass γn(1l) coincides with the probability that the trajectories of the
Markov chain X stay in the set A for all times:

γn(1l) = E

(
∏

0≤q<n
Gq(Xq)

)
= P(Xp ∈ A 0≤ p < n) ,

which is, in most cases, difficult to compute. One natural way to resolve this esti-
mation problem is to work with the normalized distributions ηn defined by:

ηn( fn) := γn( fn)/γn(1l) . (11)

which should be a reasonable alternative since the original unnormalized measures
can be recovered from the normalized ones with the following easily checked mul-
tiplicative formula:

γn( fn) = ηn( fn)× ∏
0≤p<n

ηp(Gp) . (12)

The second key observation is that the normalized distributions ηn satisfy the fol-
lowing recursive equation giving a nonlinear transition in ηn−1:

ηn(dy) =
(
ηn−1Kn,ηn−1

)
(dy) =

∫
Kn,ηn−1(x,dy)ηn−1(dx) , (13)

where for each probability measure η on En−1, the Markovian transition kernel Kn,η

on En−1 is defined by

Kn,η(x,dz) =
∫

Sn−1,η(x,dy)Mn−1,n(y,dz) , (14)

where in the above displayed formula, Sn−1,η is the selection-jump type Markov
transition defined by

Sn−1,η(x,dy) = Gn−1(x) δx(y)+(1−Gn−1(x)) ΨGn−1(η)(dy) , (15)

with the Boltzmann-Gibbs transformation

Ψg(η)(dy) =
g(y)
η(g)

η(dy) . (16)
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Remark 2. It is instructive, and in fact crucial given the use of the above result in the
next subsection, to understand the effect of this Boltzmann-Gibbs transformation
(16) in the case of point measures. Indeed, in this case:

η =
N

∑
i=1

αiδxi ↪→ ψg(η) =
N

∑
i=1

βiδxi

where the new weights βi are given by:

βi =
αig(xi)

∑
N
j=1 α jg(x j)

, i = 1, · · · ,N

which shows that de facto, the Boltzmann-Gibbs transformation is a resampling
with replacement of the xi’s according to the weights αig(xi) given by the origi-
nal weights and the function g. This interpretation will be extremely important for
Monte Carlo implementation purposes.

Remark 3. Formulas (13) and (14) show that the passage from ηn−1 to ηn is done
in two steps. The individual particles x ∈ En−1 distributed as ηn−1, are first moved
into dy according to the transition Sn−1,ηn−1(x,dy). This is a selection since (15)
says that the particle remains at x with probability Gn−1(x), and with probability
1−Gn−1(x) it is chosen at random (independently of its current position x ∈ En−1)
according to the distribution Ψηn−1(ηn−1)(dy). The resulting particles y ∈ En−1 are
then mutated into particle z ∈ En according to the transition Mn−1,n of the original
Markov chain X = (Xn)n. The interpretation of the selection step will be crystal clear
when we implement it in for probability distributions with finite supports which we
will interpret as empirical distributions of particle systems.

Remark 4. Note that the above interpretation is not limited to [0,1]-valued potential
functions G as long as G is non-negative and bounded, and as long as we replace Gn
by εnGn in (15) and (16) with εn such that εnGn ∈ [0,1].

3.2 Interacting particle methodologies

We now revisit the measure flows of the previous subsection in the case of point
measures given by the empirical distribution of a fixed but large number N of parti-
cles. Let ξ := (ξn)n≥0 be a Markov chain with product EN

n as state space at time n.
So at each time n, ξn is an N-tuple ξn := (ξ i

n)1≤i≤N . We assume that the transition
probability of this chain is given by:

P
(
ξn ∈ dx1×·· ·× xN |ξn−1

)
= ∏

1≤i≤N
Kn,ηN

n−1
(ξ i

n−1,dxi) , (17)

where ηN
n−1 denotes the empirical measure of the components of ξn−1:
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η
N
n−1 :=

1
N

N

∑
i=1

δ
ξ i

n−1
.

We assume that the initial law ηN
0 is a product distribution of the form ηN

0 =
(η0× ·· · ×η0), or in other words that the initial system ξ0 = (ξ i

0)1≤i≤N consists
of N independent and identically distributed random variables ξ i

0 with common law
η0. The transition mechanism of the chain ξ depends only upon the empirical dis-
tribution of the components of its state, not the actual values of these components.
Indeed, given the empirical distribution ηN

n−1 of the ξ i
n−1’s, these ξ i

n−1’s evolve inde-
pendently of each other, each ξ i

n−1 moving according to the transition kernel Kn,ηN
n−1

.
So the interaction between the N particles is highly symmetric, and only through the
empirical distribution of the particles. For this reasons, the name mean field particle
system is used, still as a reference to the particle physics models for which they were
introduced.

An interacting particle implementation of the measure flow introduced in the
previous subsection is done via the flow of measures (ηN

n )n viewed as an approxi-
mation of the flow (ηn)n. The rationale behind this approximation is that since ηN

n
is the empirical distribution of N independent random variables with distributions
Kn,ηN

n−1
(ξ i

n−1,x), we expect that when ηN
n−1 is a good approximation of ηn−1 then

in view of (17), ηN
n should be a good approximation of ηn. We define the approxi-

mation error (which is stochastic because of the randomness of the particles ξ i
n) in

terms of a sequence of centered random fields V N
n defined by:

V N =
√

N(ηn−η
N
n ) =

√
N(ηN

n−1Kn,ηN
n−1
−ηn−1Kn,ηn−1). (18)

Then, under rather weak regularity conditions, one can prove that (V N
n )n≥0 con-

verges in law as N→∞, toward a sequence of independent centered Gaussian fields
V = (Vn)n≥0 with a variance function that can be explicitly expressed in terms of
the Markov transitions Kn,ηn−1 . This can be checked by induction [30] on the time
parameter, or using martingale decompositions in terms of local sampling random
fields [31, 40].

Using formula (12) as rationale, the unnormalized measures γn are approximated
by the unbiased particle (unnormalized) measures γN

n defined by their actions on test
functions by:

γ
N
n ( fn) = η

N
n ( fn)× ∏

0≤p<n
η

N
p (Gp),

and the weak consistency results

lim
N→∞

γ
N
n ( fn) = γn( fn)

for each fixed test function fn is proven by an elementary argument.
The stochastic perturbation analysis discussed above is developed in some details

in [31, 43, 40, 46], and in the recent book [34]. Under some appropriate regularity
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conditions on the flow of measures ηn, for any bounded measurable function f , any
time horizon n, any N ≥ 1, and any λ , the probability to have any of the following
estimates is greater that 1−2e−λ∣∣ηN

n ( f )−ηn( f )
∣∣≤ (1+

√
2λ ) c/

√
N

and ∣∣1− γ
N
n (1l)/γn(1l)

∣∣≤ n
(

c1

(
1+2(λ +

√
λ )
)

/N +
√

c2λ/N
)

,

for some constants c,c1,c2 < ∞, whose values do not depend upon time.
By construction, the flow of Feynman-Kac measures evolves according to the

two-step updating/prediction transitions,

ηn
Sn,ηn

−−−−−−−−→ η̂n = ηnSn,ηn = ΨGn(ηn)
Mn+1

−−−−−−−→ ηn+1 = η̂nMn+1 . (19)

In the corresponding N-mean field particle model, this pair of recursions is replaced
by a two-step selection/mutation transition in product spaces

ξn ∈ EN selection
−−−−−−−−→ ξ̂n ∈ EN mutation

−−−−−−−→ ξn+1 ∈ EN . (20)

The genetic type evolution of the system is summarized by the following synthetic
diagram: 

ξ 1
n
...

ξ i
n
...

ξ N
n


Sn,ηN

n
−−−−−−−−−−→



ξ̂ 1
n

Mn+1
−−−−−−−−−−→

...
ξ̂ i

n −−−−−−−−−−→
...

ξ̂ N
n −−−−−−−−−−→

ξ 1
n+1
...

ξ i
n+1
...

ξ N
n+1


with the selection Markov transition:

Sn,ηN
n
(ξ i

n,x) := Gn(ξ i
n) 1lξ i

n
(x)+

(
1−Gn(ξ i

n)
)

∑
1≤ j≤N

Gn(ξ
j

n )
∑1≤k≤N Gn(ξ k

n )
1l

ξ
j

n
(x) .

(21)
For general non necessarily [0,1]-valued potential functions G, we replace the ac-
ceptance rate Gn(ξ i

n) by Gn(ξ i
n)/max j Gn(ξ

j
n ).

3.3 Path space models

We now work in the path space set up introduced earlier in our discussion of the
Asian option example. In other words, we assume that the reference Markov chains
X and the potential function G in (10) are defined on path spaces:
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Xn := (S0, · · · ,Sn) ∈ En = En+1 and Gn(Xn) := Gn (S0, . . . ,Sn) . (22)

3.3.1 Genealogical tree based algorithms

The abstract Feynman-Kac formulae discussed above are more general than it may
appear. They can be used to analyze path spaces models, including historical pro-
cesses or transition space models, as well as finite excursion models. These stochas-
tic models also encapsulate quenched Feynman-Kac models with respect to some
parameter, island type coarse grained particle algorithms, Brownian type bridges
and linear Gaussian Markov chains conditioned on starting and end points. For n
extensive discussion on these path space models, we refer the interested reader to
Section 2.4, Section 2.6, and Chapters 11-12 in the monograph [31], as well as Sec-
tion 2.6 of the lecture notes [43], and Section 3.4 and Section 7.3 of the present
article.

In the situation of this subsection, γn is a measure on En+1 defined by

γn( fn) = E

(
fn(S0, . . . ,Sn) ∏

0≤q<n
Gq(S0, . . . ,Sq)

)
.

Its mean field particle approximation is defined as before, but now, a particle at time
n is a path of length n + 1. The selection transition consists in selecting a path-
particle with high potential value, while the mutation transition simply consists in
extending the path with an elementary move according to the auxiliary process X ′n =
Sn, with Markov transitions M′n on the state space E. When the potential functions
only depend upon the terminal value of the paths

Gn(Xn) := G′n(Sn) ,

for some G′n which we sometimes call fitness function, we can check that the path
particle model gives the evolution of the genealogical tree model associated with the
time evolution of the individuals ξ i

n evolving with M′n-mutations and G′n-selections.
In this situation, if

ξ
i
n := (ξ i

0,n,ξ
i
1,n, . . . ,ξ

i
n,n)

stands for the i-th ancestral line of the current individual ξ i
n,n after the n-th mutation,

then for any function fn on En, we have that

lim
N→∞

1
N

N

∑
i=1

fn
(
ξ

i
0,n,ξ

i
1,n, . . . ,ξ

i
n,n
)

=
E
(

fn(S0, . . . ,Sn) ∏0≤p<n G′p(Sp)
)

E
(
∏0≤p<n G′p(Sp)

) . (23)

In addition, we also have the unbiased unnormalized estimates in the sense that:
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1
N

N

∑
i=1

fn
(
ξ

i
0,n,ξ

i
1,n, . . . ,ξ

i
n,n
)
× ∏

0≤p<n

1
N

N

∑
i=1

G′p(ξ
i
p,p)

'N↑∞ E
(

fn(S0, . . . ,Sn) ∏0≤p<n G′p(Sp)
)

.

(24)

If we look at what this particle algorithm gives in the case of the one dimensional
fixed strike Asian option (5) with stochastic interest rates rp(X ′p) > 0 and time ho-
mogeneous barrier set Ap = A, we have the unbiased estimates:

E

((
1

n+1

n

∑
p=0

Sp−K

)
+

1lT≥n exp

{
∑

0≤q<n
rq(Sq)

})

'N↑∞
1
N

N

∑
i=1

(
1

n+1

n

∑
p=0

ξ
i
p,n−K

)
+

× ∏
0≤p<n

1
N

N

∑
i=1

e−rp(ξ i
p,p)1lA(ξ i

p,p) ,

where T stands for the first exit time of the process S outside the barrier A. The
approximation of European barrier call option prices with strike K > 0, stochastic
interest rates rp(Sp), and time homogeneous barrier set A is even simpler. It is given
by the unbiased estimates:

E
(
(Sn−K)+ 1lT≥n exp

{
∑0≤q<n rq(Sq)

})
'N↑∞

1
N

N

∑
i=1

(
ξ

i
n,n−K

)
+× ∏

0≤p<n

1
N

N

∑
i=1

e−rp(ξ i
p,p)1lA(ξ i

p,p) .

If we use as before the notations ηN
n and ηn for the occupation measures of the

ancestral lines and its limiting measures defined in (24), using the concentration
analysis of mean field particle models developed in [46], the following exponential
estimate was proved in [43]. Under some natural regularity conditions on the flow
of the n-th time marginal measures, for any bounded measurable function fn on path
space, time horizon n, N ≥ 1, and λ , the following estimate:∣∣ηN

n ( fn)−ηn( fn)
∣∣≤ (c1 (n+1)

(
1+2(λ +

√
λ )
)

/N + c2
√

λ (n+1)/N
)

,

holds with probability greater that 1− 2e−λ . Here c1 and c2 are finite constants
whose values do not depend on the time parameter.

3.3.2 Backward Markov chain model

To distinguish path space measures and their finite time marginals, we denote by Γn
and Qn the measures on path space defined for any function Fn on En by
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Γn(Fn) = E

(
Fn(S0, . . . ,Sn) ∏

0≤q<n
Gq(Sq)

)
and Qn(Fn) = Γn(Fn)/Γn(1l) , (25)

for some Markov chain S = (Sn)n on the state space E with initial distribution η0,
and some space time potential G = (Gn)n. We also denote by γn and ηn the n-th
marginal measure defined for any function fn on E by

γn( fn) = E

(
fn(Sn) ∏

0≤q<n
Gq(Sq)

)
and ηn(Fn) = γn(Fn)/γn(1l) .

We observe that

Γn(d(s0, . . . ,sn)) :=

{
∏

0≤q<n
Gq(sq)

}
Pn(ds0×·· ·×dsn) , (26)

with the probability measure Pn on the path space En defined by

Pn(ds0×·· ·×dsn) = η0(ds0)M1(s0,ds1) . . .Mn(sn−1,dsn) .

We further assume that the Markov transitions Mn(s,ds′) of the reference Markov
chain S has a density Hn(s,s′) with respect to some measure λn(ds′):

Mn(s,ds′) = Hn(s,s′) λn(ds′) .

In this case, one easily derives the following backward representation:

Qn(d(s0, . . . ,sn))

:= ηn(dsn)× Mn,ηn−1(sn,dsn−1) · · · M2,η1(s2,ds1)×M1,η0(s1,ds0) ,
(27)

with the time reversal Markov transitions Mn,ηn−1(sn,dsn−1) defined by

Mn,ηn−1(sn,dsn−1) :=
ηn−1(dsn−1)Gn−1(sn−1)Hn(sn−1,sn)

ηn−1 (Gn−1Hn(.,sn))
.

We refer the interested reader to the article [36] for a detailed discussion on these
Markov transitions. Mimicking formula (27) an alternative particle approximation
of the measures Qn by the following estimates

QN
n (d(s0, . . . ,sn))

:= ηN
n (dsn)×Mn,ηN

n−1
(sn,dsn−1) · · ·M2,ηN

1
(s2,ds1)×M1,ηN

0
(s1,ds0)

→N↑∞ Qn(d(s0, . . . ,sn))

(28)

and the unbiased unnormalized estimates
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Γ N
n (d(s0, . . . ,sn))

:= γN
n (1l)×QN

n (d(s0, . . . ,sn))

= γN
n (dsn)×Mn,ηN

n−1
(sn,dsn−1) · · ·M2,ηN

1
(s2,ds1)×M1,ηN

0
(s1,ds0)

→N↑∞ Qn(d(s0, . . . ,sn)) .

(29)

Notice also that the computation of sums with respect to these particle measures
are reduced to summations over the particles locations ξ i

n. It is therefore natural to
identify a population of individual (ξ 1

n , . . . ,ξ N
n ) at time n to a specific ordering of

the set {1, . . . ,N} of indexes. In this case, the occupation measures and the functions
are identified with the following row and column vectors

η
N
n :=

[
1
N

, . . . ,
1
N

]
and fn :=

 fn(ξ 1l
n )

...
fn(ξ N

n )


and the matrices Mn,ηN

n−1
by the N×N matrices

Mn,ηN
n−1

:=


Mn,ηN

n−1
(ξ 1l

n ,ξ 1l
n−1) · · · Mn,ηN

n−1
(ξ 1l

n ,ξ N
n−1)

...
...

...
Mn,ηN

n−1
(ξ N

n ,ξ 1l
n−1) · · · Mn,ηN

n−1
(ξ N

n ,ξ N
n−1)

 ,

with the (i, j)-entry Mn,ηN
n−1

(ξ i
n,ξ

j
n−1) defined by:

Mn,ηN
n−1

(ξ i
n,ξ

j
n−1) =

Gn−1(ξ
j

n−1)Hn(ξ
j

n−1,ξ
i
n)

∑
N
k=1 Gn−1(ξ k

n−1)Hn(ξ k
n−1,ξ

i
n)

.

For instance, the Qn-integration of normalized additive linear functionals of the
form

Fn(s0, . . . ,sn) =
1

n+1 ∑
0≤p≤n

fp(sp) (30)

is given in the particle matrix approximation model by:

QN
n (Fn) =

1
n+1 ∑

0≤p≤n
η

N
n Mn,ηN

n−1
Mn−1,ηN

n−2
. . .Mp+1,ηN

p
( fp) . (31)

Several non asymptotic convergence estimates have been developed in [36], distin-
guishing the bias error

sup
n≥0

∣∣∣E(QN
n (Fn)

)
−QN

n (Fn)
∣∣∣≤ c

N
,
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and the mean quadratic error

E
∣∣QN

n (Fn)−Qn(Fn)
∣∣2 ≤ c

N

(
1

n+1
+

1
N

)
, for all n≥ 0 ,

where c is some finite constant that does not depend on the time parameter n. Thus,
for any large time horizon n ≥ N, the upper bound on the mean square error given
in the above right hand side is of the order 1/N2. More recently, a different estimate
was proven in [43] using the concentration methodology developed in [46]. Under
some appropriate regularity conditions on the flow of the n-th time marginal mea-
sures, for any sequence of bounded measurable functions fn, any time horizon n,
any N ≥ 1, and any λ , the estimate∣∣QN

n (Fn)−Qn(Fn)
∣∣≤ (c1

(
1+2(λ +

√
λ )
)

/N + c2
√

λ/(N(n+1))
)

,

for some constants c1,c2 < ∞ whose values do not depend upon n, holds with prob-
ability greater that 1−2e−λ .

Additive functionals of the form (30) arise in many applications in finance. For
instance, in the context of continuous Asian option, this approach could allow to im-
prove seriously the trade-off between the bias induced by the discrete approximation
of the continuous integral payoff and the variance of the Monte Carlo method ap-
proximating the expectation. We refer to [58] for a survey of numerical methods
for this type of options. As an example we consider the case of continuous Asian
options with payoff functions of the following general form

FT ((Sc
t )0≤t≤T ) =

(
1
T

∫ T

0
f (u,Sc

u)du−K
)+

.

The strategy coming out of the above discussion suggests to first estimate the payoff
by the following arithmetic average

Fn(Sc
t0 , · · · ,S

c
tn) =

1
n+1 ∑

0≤p≤n
f (tp,Stp) ,

with a time discretization tp+1− tp = T/(n+1), inducing an approximation error of
order 1/n. Then the backward Markov chain scheme (31) can be used to estimate
the expectation with N ≥ n particles, inducing the same order of approximation error
1/n. Of course, usual variance reduction techniques as control variate can be applied
in addition to that approach.

This type of additive functionals will be used in Section 5 in our discussion of
sensitivity measure computations.
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3.4 Parallel island particle models

Island genetic models are powerful parallel computational techniques used to speed
up interacting genetic search algorithms. These coarse grained parallel procedures
are very popular in genetic algorithms literature (see for instance [26, 96],[74], and
the references therein).

In our context, we run in parallel several genetic type interacting particle algo-
rithms on a collection of islands. At a geometric stochastic rate, the populations be-
tween islands interact according to some selective migration processes. The island
selection mechanism is defined in terms of the averaged fitness of the individuals in
the island population.

To define these island particle models more precisely, we observe that the unbi-
ased properties of the unnormalized Feynman-Kac measures γN

n can be rewritten as
follows

E

(
fn(Sn) ∏

0≤q<n
Gq(Sq)

)
= E

(
Fn(Xn) ∏

0≤p<n
Gp(Xp)

)
, (32)

with the Markov chain Xn = (ξ i
n)1≤i≤N on the product spaces En = EN

n , an the
empirical functionals Fn, and Gn defined by

Fn(Xn) = η
N
n ( fn) =

1
N

N

∑
i=1

fn(ξ i
n) and Gn(Xn) = η

N
n (Gn) =

1
N

N

∑
i=1

Gn(ξ i
n) .

Now, it is important to notice that the r.h.s. term in formula (32) has exactly the
same mathematical form as the Feynman-Kac measures γn introduced in (10). Thus,
applying the particle methodologies developed in Section 3.2 to these models, we
define an N-interacting island particle model with a mutation and a selection transi-
tion on the space of islands En.

During the mutation stage, the population in each island evolve independently
one another according to the genetic type Markov transitions of the chain Xn. In
other words, we run in parallel the selection mutation transitions of N genetic par-
ticle models (20). During the selection stage, we evaluate the Gn-potential value of
each island. As in (21), at a geometric rate we select the island populations using
the empirical potential function Gn.

We observe that the island version of the acceptance ratio in the selection transi-
tion (21) discussed in the end of Section 3.2 tends to 1, as the number of individuals
in each island tends to infinity. In other words, the independence degree between
the islands increases with respect to the size of their populations. As proposed in
the recent article [1], an alternative sampling approach is to use an independent
Metropolis-Hasting model with a target measure defined by the r.h.s. term in for-
mula (32) (up to some normalizing constant). One again, the unbiased property (32)
ensures that the limiting target measure coincides with the desired Feynman-Kac
measures ηn, as well as the measure Qn for the path space version of these island
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models. These island particle models will be used in Section 7.3 dedicated to fixed
parameter estimation in Hidden Markov chain models.

4 Application in credit risk analysis

The simulation of credit events with remarkably small probabilities is a key issue
for regulatory and risk management purposes, as well as for the pricing of credit
derivatives. The main variance reduction technique used in Monte Carlo computa-
tions of rare events is importance sampling. However in general multi-name credit
models, desirable changes of measure favoring sample paths realizing rare events
are highly unlikely to lead to explicit formula. In this case importance sampling is
no longer an option. A natural alternative is then interacting particles methods.

Though interacting particle systems are known to provide very efficient variance
reductions in Monte Carlo approximations of rare events, these algorithms have only
appeared recently in the credit risk literature with for instance the articles of Car-
mona, Fouque and Vestal [16] and Carmona and Crepey [15]. In Chapter 21 of [12],
the authors provide an overview of the main techniques and results of the appli-
cation of interacting particle systems to credit risk analysis. We also refer to [44]
for some recent applications of these techniques in the financial risk area. All these
results show the strengths of IPS based Monte Carlo computations of small default
probabilities, especially when other methods fail. A systematic comparison with
importance sampling is provided in [15].

4.1 Change of measure for rare events and Feynman-Kac formula

We consider a Markov chain S = (Sn)0≤n≤T representing at each time n, d correlated
risky sources Sn = (S1

n, . . . ,S
d
n) ∈ E. We are interested in understanding the asymp-

totic behavior of probabilities of rare events of the form {VT (ST )≥K} or more gen-
erally {VT (S0, . . . ,ST ) ≥ K}, where VT is some real positive function whose value
can be thought of as a risk measure.

To compute P(VT (ST ) ≥ K), standard Monte Carlo simulations usually fail, be-
cause of the difficulty to ensure that enough simulation samples realize the rare
event. A partial remedy amounts to providing a reasonably tight upper-bound based
on large deviations ideas. Indeed, for any λ ≥ 0, we have:

P(VT (ST )≥K) = (E
(

1VT (ST )≥KeλVT (ST )e−λVT (ST )
)
≤ e−λKE

(
1VT (ST )≥KeλVT (ST )

)
,

and if we denote by E(λ ) the expectation under the probability P(λ ) defined by

dP(λ )
∝ eλVT (ST )dP ,
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we have
E
(

1VT (ST )≥KeλVT (ST )
)

= E(λ ) (1VT (ST )≥K
)
E
(

eλVT (ST )
)

,

and using the fact that:
E(λ ) (1VT (ST )≥K

)
≤ 1,

we get:
P(VT (ST )≥ K)≤ e−supλ≥0(λK−Λ(λ )) , (33)

where Λ(λ ) is defined by Fenchel transformation as log(E(λVT (ST ))).
From the above argument we see that we can approximate the desired probability

by searching a proper λ . This large deviation type approach is widely used, but in
the form of (33), it requires extensive calculations in order to obtain a reasonable
approximation of the desired probability.

Del Moral and Garnier provide in [37] a zero-bias estimate with interacting par-
ticle systems. The idea is to construct a genealogical tree based model as mentioned
in Section 3.3.1 instead of the large deviation type inequality used above.

Using again the same change of measure from P to P(λ ), we remark that the
target probability

P(VT (ST )≥ K) = E
(

1VT (ST )≥KeλVT (ST )e−λVT (ST )
)

can be written as

E(λ )
(

1VT (ST )≥Ke−λVT (ST )
)

E
(

eλVT (ST )
)

= E(λ ) ( fT (ST ))E
(

eλVT (ST )
)

,

with fT (ST ) := 1VT (ST )≥Ke−λVT (ST ). It is also important to notice that, with the con-
vention V0 = 0, we have the following decomposition

eλVT (ST ) ≡
T

∏
p=1

eλ (Vp(Sp)−Vp−1(Sp−1)) .

By using the notation Xk = (Sk,Sk+1) for 0 ≤ k < T , the above product can be
defined as

T

∏
p=1

Gp−1(Xp−1) , where Gp−1(Xp−1) := eλ (Vp(Sp)−Vp−1(Sp−1)) .

Using the notation FT (XT ) = fT (ST ), we see that we need to simulate the same
formulae as in Section 3.3.1.

E(λ ) ( fT (ST )) =
E
(
FT (XT )∏

T
p=1 Gp(XP)

)
E
(
∏

T
p=1 Gp(XP)

) := ηT (FT ) .

The general discussion of the previous section shows that these quantities can be
approximated efficiently by interacting particle systems.
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In practice, we are interested in the conditional law L
(
(S0, . . . ,ST )|VT (ST ) ≥

K
)

. By modifying the function FT in the above analysis, the same framework can
be applied directly. Particle models are very flexible, but the choice of the space-
time potential function on path space can become very tricky and the performance
of the algorithm can deteriorate with a poor choice of this potential. The particular
choice

Gp(s0, . . . ,sp) = µeλ(Vp(s0,...,sp)−Vp−1(s0,...,sp−1)) (34)

was proposed and analyzed in [37] where µ is chosen so that Gp ≤ 1 and λ can be
fine-tuned to the given rare event set.

4.2 On the choice of the potential functions

As mentioned earlier, the choice of suitable space-time potential functions G is a
key ingredient in the ability of interacting particle systems to tackle rare events
problems. In the recent work of Carmona, Fouque and Vestal [16], the authors pro-
pose a choice of the potential functions that departs from the one given above in
(34). Their construction illustrates the flexibility of the particle methods regarding
the crucial point of choice of the potential functions. In the case of large credit port-
folios, typically with d = 125, we write the dynamics of the various assets values as
a Markov chain Si

n, with time n = 1, · · · ,T and i = 1, . . . ,d associated to

Gn = exp

−α

d

∑
i=1

log
min

0≤l≤n
Si

l

min
0≤l≤n−1

Si
l

 ,

where the parameter α has to be fine-tuned to the particular class of rare events
of interest. Numerical performance of this technique is dicussed in [16] where ex-
amples are provided under a structural model with stochastic volatility. The authors
demonstrate the efficiency of this method, especially in situations where importance
sampling is not possible or numerically unstable.

In a similar vein, a fast algorithm without requirement of fine-tuned parameters
has been recently developed for multiple defaults models by setting the potential
function

Gp(x) = 1−1{c}(x) , (35)

where the c stands for a cemetery state under a multilevel splitting approach intro-
duced in Chapter 12 in [31]. Let S = (Sn)0≤n≤T be a Markov chain on a sequence
of state spaces E = (En)0≤n≤T and Xn (resp. Fn = E0×·· ·×En) the corresponding
path space Markov chain (resp. sequence of path state spaces). We assume that a
sequence of subsets U1, . . . ,UT , Up ∈ Fp is fixed. We are typically interested in the
probability 1−P(X1 /∈U1, . . . ,XT /∈UT ) that the trajectory does enter at least one of
these subsets. The key idea is to introduce a series of intermediate events interpo-



20 René Carmona, Pierre Del Moral, Peng Hu and Nadia Oudjane

lating between the series of the full state space E1, . . . ,ET of the path space and the
target rare event series U1, . . . ,UT . Then we assume that such a series is given:

∀ p≤ T, Up = U (k)
p ⊂U (k−1)

p ⊂ ·· · ⊂U (1)
p ⊂U (0)

p = Fp .

Then the state {c} appearing in (35) is defined in the construction of a new Markov
chain in constant state space F := F0 ∪ ·· · ∪ FT ∪ {c}. With a series of stopping
times:

τ j := (T +1)∧ inf{p,Xp ∈U j
p}

with the convention that XT+1 := c. Then the process Z0 := X0, Z1 := Xτ1 , . . . ,Zk :=
Xτk is a Markov chain on F . In this context, the potential functions (35) consist in,
roughly speaking, killing the trajectories at some point of the recursion of the par-
ticle algorithm when they reach some of the intermediate rare event sets associated
to c.

5 Sensitivity computation

Partial derivatives of financial option values allow traders to determine how sensi-
tive the values of options are to small changes in the set of parameters on which
they depend, such as the volatility parameter, the risk free stochastic interest rates
or prices of assets related to the option. The computation of these sensitivities, often
called Greeks (because they are traditionally denoted by Greek letters) is a central
problem in computational finance that must be addressed for risk analysis appli-
cations. Besides, in the specific case of sensitivities with respect to assets prices,
(called delta and gamma for the first and second order derivatives) the practical is-
sue is even more crucial since they are the basic ingredients of dynamic hedging
strategies.

There are mainly three approaches to compute sensitivities. We refer to the sur-
vey paper of Kohatsu-Higa and Montero [68], for a detailed presentation and com-
parison of those methods. The most natural and simple approach to compute sensi-
tivities is the usual finite difference method. It is easily implemented but known to
necessitate large computing budgets (requiring for instance two option calculations
in the case of a first order sensitivity) and unstable with a subtle trade-off between
bias and variance. We focus here on the two alternative approaches introduced in
the pioneering paper of Broadie and Glasserman [13], namely the likelihood ratio
method and the pathwise, or tangent process method. In this section, these tech-
niques are presented in terms Feynman-Kac formula, showing in some specific ex-
amples how particle methods can be used.
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5.1 Likelihood ratio: application to dynamic parameter derivatives

This technique introduced in [13] requires that the underlying interest on which
a European option is written admits a sufficiently regular density with respect to
Lebesgue measure, also known as state price density. The main idea is to inter-
change differentiation and integration and whenever the derivative with respect to
a variable not appearing in the payoff function, to apply the differentiation on the
density of the distribution. The advantage of this approach is that it does not require
any regularity assumption on the payoff function, allowing for kinks and discontinu-
ities. This approach has been generalized by Fournié, Lasry, Lebuchoux, Lions and
Touzi [56] to path space using Malliavin integration-by-parts argument, allowing
for a wide class Greek weights.

In this subsection, we focus on the computation of the sensitivity of an option
to dynamic parameters related to the risky asset evolution or to the risk free rate
variations.

We let θ ∈ Rd be a parameter that may represent the volatility of some asset
price movements, or any other kinetic parameter. We assume that the evolution of
the risky asset price S(θ)

k associated to some value of the parameter θ , is given by a
one-step probability transition of the form

M(θ)
k (s,ds′) := Proba

(
S(θ)

k ∈ ds′|S(θ)
k−1 = s

)
= H(θ)

k (s,s′) λk(ds′) ,

for some positive density functions H(θ)
k (s,s′) and some reference measure λk. We

also consider a collection of functions G(θ)
k (s) = e−r(θ)

k (s) that depend on θ . We also
assume that the gradient and the Hessian of the logarithms of these functions with
respect to the parameter θ are well defined.

In this situation, following the Feynman-Kac representation (1) or (25), a general
form of the option price on path space is provided by

Γ
θ

n (Fn) = E

(
Fn(S

(θ)
0 , . . . ,S(θ)

n ) ∏
0≤p<n

G(θ)
p

(
S(θ)

p

))
. (36)

For each value of the parameter θ , we denote by Γ
(θ ,N)

n the N-particle approxi-
mation measures associated with a given value of the parameter θ and defined in
(29). Simple derivations, show that the first order derivative of the option value with
respect to θ is given by

∇Γ
(θ)

n (Fn) = Γ
(θ)

n (FnΛ
(θ)
n )

∇
2
Γ

(θ)
n (Fn) = Γ

(θ)
n

[
Fn(∇L(θ)

n )′(∇L(θ)
n )+Fn∇

2L(θ)
n

]
with Λ

(θ)
n := ∇L(θ)

n and
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L(θ)
n (x0, . . . ,xn) :=

n

∑
p=1

log
(

G(θ)
p−1(sp−1)H

(θ)
p (sp−1,sp)

)
.

These quantities can be approximated by the unbiased particle models

∇NΓ
(θ)

n (Fn) := Γ
(θ ,N)

n (FnΛ
(θ)
n )

∇
2
NΓ

(θ)
n (Fn) = Γ

(θ ,N)
n

[
Fn(∇L(θ)

n )′(∇L(θ)
n )+Fn∇

2L(θ)
n

]
.

We illustrate the above discussion with the computation of the Vega of the option,
i.e. the sensitivity to changes in the diffusion volatility coefficient of the stochastic
equation (7), with d = 1. We suppose X (θ)

n = S(θ)
n satisfies equation

S(θ)
n −S(θ)

n−1 = b
(

S(θ)
n−1

)
∆ +

[
σ

(
S(θ)

n−1

)
+θ σ

′
(

S(θ)
n−1

)] (
Wtn −Wtn−1

)
,

for some function σ ′ such that σ +θ σ ′ > 0 for any θ ∈ [0,1]. In this situation, we
have

∂

∂θ

n

∑
p=1

log
(

H(θ)
p (sp−1,sp)

)

=
n

∑
p=1

σ ′(sp−1)
σ(sp−1)+θσ ′(sp−1)

( (sp− sp−1)−b(sp−1)∆
(σ(sp−1)+θσ ′(sp−1))

√
∆

)2

−1

 .

To compute the rho of the option, i.e. the sensitivity to changes in the drift of the
stochastic equation (7), with d = 1, we assume that X (θ)

n satisfies equation

S(θ)
n −S(θ)

n−1 =
[
b
(

S(θ)
n−1

)
+θb′

(
S(θ)

n−1

)]
∆ +σ

(
S(θ)

n−1

) (
Wtn −Wtn−1

)
,

for some function b′. In this situation, we have

∂

∂θ

n

∑
p=1

log
(

H(θ)
p (sp−1,sp)

)

=
n

∑
p=1

[
(sp− sp−1)−

[
b(sp−1)+θb′(sp−1)

]
∆
]
×b(sp−1)/σ

2(sp−1) .

Finally, if we assume that changes in the stochastic interest rates are given by the
space-time potential function

Gn(x) = exp
(
−
[
rn(x)+θr′n(x)

])
,

for some non negative functions rn and r′n, then we have:
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∂

∂θ
∑

0≤p<n
log
(

G(θ)
p (sp)

)
=− ∑

0≤p<n
r′p(sp) .

We illustrate these particle models with an European option associated with a
risky asset S(θ)

n = Sn whose values do not depend on θ , and payoff function fn(Sn).
In this situation, the option price is given by the formula

γ
(θ)
n ( fn) = E

(
fn(Sn) exp

{
− ∑

0≤q<n
r(θ)

q (Sq)

})
.

Then using the backward Markov chain model developed in Section 3.3.2, we obtain
the following unbiased particle matrix approximation for the sensitivity with respect
to the interest rate r:

∇γ
(θ)
n ( fn) = − ∑

0≤p<n
γ

(θ)
n

(
fn M

n,η
(θ)
n−1

. . .M
p+1,η

(θ)
p

(
∇r(θ)

p

))
'N↑∞ − ∑

0≤p<n
γ

(θ ,N)
n

(
fn M

n,η
(θ ,N)
n−1

. . .M
p+1,η

(θ ,N)
p

(
∇r(θ)

p

))
.

5.2 Tangent process: application to initial state derivatives

We review the tangent process approach introduced by Broadie and Glasserman
in [13], and focus on the computation of the sensitivity of an option price to pertur-
bations of the initial value of the underlying asset price – this sensitivity is usually
called the delta of the option – which is in general more complex than in the case
of the sensitivity measures with respect to the dynamic parameters parameters. Ef-
ficient numerical schemes for the implementation of the method we are about to
discuss can be found in Giles and Glasserman [64].

To simplify our presentation, we only consider European-style options with
smooth payoff functions f − ( fn)n.

As before, the strategy is to interchange the differentiation and expectation oper-
ations. However, in the present situation. this requires regularity of the payoff func-
tion, so discontinuous payoff profiles will have to be regularized using Gaussian
kernel convolution type techniques, or any related smoothing method. For instance,
we can approximate the call option (3) by the following smoothed payoff profile

fε(x) =
1
2

[
(x−K)+

√
(K− x)2 + ε

]
→ε↓0 f (x) = (x−K)+ .

We assume that the stochastic dynamics of the underlying stock price S = (Sn)n are
given by an induction equation of the type:

Sn+1 := Fn(Sn) = (Fn ◦Fn−1 ◦ · · · ◦F0)(S0) (37)
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starting at some random state S0, where the random functions Fn are of the form of
the form

Fn(x) = Fn(x,Wn) , (38)

for functions Fn
Fn : Rd+d′ 3 (x,w) ↪→Fn(x,w) ∈ Rd

and some independent random variables Wn taking values in Rd′ , with d′ ≥ 1. We
also assume that these random variables are also independent of S0. Under these as-
sumptions, the prices of European options are given by the semigroup of the Markov
chain S defined for any regular function f and initial state x by

Pn+1( f )(x) := E( f (Sn+1) | S0 = x) = E( f (Sn+1(x))) ,

with the random flows (Sn( ·))n≥0 defined for any n≥ 0 and x ∈ E by:

Sn+1(x) = Fn(Sn(x)) ,

with the initial condition S0(x) = x. By the chain rule, for any 1 ≤ i, j ≤ d and any
x ∈ Rd we have

∂Si
n+1

∂x j (x) = ∑
1≤k≤d

∂F i
n

∂xk (Sn(x))
∂Sk

n

∂x j (x) . (39)

Interchanging derivations and expectations in the definition of the semigroup we
get:

∂Pn+1( f )
∂x j (x) = E

(
∑

1≤i≤d

∂ f
∂xi (Sn+1(x))

∂Si
n+1

∂x j (x)

)
. (40)

Let us denote by Vn = (V (i, j)
n )1≤i, j≤d and An = (A(i, j)

n )1≤i, j≤d the random d×d ma-
trices whose entries are given by:

V (i, j)
n (x) =

∂Si
n

∂x j (x)

and

A(i, j)
n (x) =

∂F i
n

∂x j (x) =
∂F i

n(.,Wn)
∂x j (x) := A

(i, j)
n (x,Wn) .

With this notation in hand, equation (39) can be rewritten in terms of the following
random matrix formulae

Vn+1(x) = An(Sn(x)) Vn(x)

= An(Sn(x))An−1(Sn−1(x)) · · ·A1(S1(x))A0(x) :=
n

∏
p=0

Ap(Sp(x)) , (41)

with a product ∏
n
p=0 Ap of non commutative random elements Ap taken in the order

An, An−1,. . . , A0. Using equation (40) with the payoff function f = fn+1, we get:
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∇Pn+1( fn+1)(x) = E(∇ fn+1(Sn+1(x)) Vn+1(x))

= E

(
∇ fn+1(Sn+1) ∏

0≤p≤n
Ap(Sp) | S0 = x

)
, (42)

which is, except for the fact that we are dealing with products of non-commuting
random matrices, of the form of the Feynman-Kac formulas studied in this paper.

For one dimensional models of the form

Sn+1 = Sn +b(Sn) ∆ +σ (Sn)
√

∆ Wn , (43)

with a sequence of independent and and identically distributed mean zero Gaussian
random variables Wn, it is readily checked that

An(x) = An(x,Wn) =
(

1+
∂b
∂x

(x) ∆ +
∂σ

∂x
(x)
√

∆ Wn

)
and therefore

Vn+1(x) =
n

∏
p=0

(
1+

∂b
∂x

(Sp) ∆ +
∂σ

∂x
(Sp)

√
∆ Wp

)
'∆↓0 exp ∑

0≤p≤n

(
∂b
∂x

(Sp) ∆ +
∂σ

∂x
(Sp)

√
∆ Wp

)
.

As already mentioned, for non smooth payoff functions we can use the following
Gaussian regularization kernel

Pn+1,ε( fn+1)(x) := E( fn+1(Sn+1(x)+ εY ))'ε↓0 Pn+1,ε( fn+1)(x) , (44)

for some auxiliary Gaussian variable, independent of Sn and Wn. In this case, we
have the following formula

∂

∂x
Pn+1,ε( fn+1)(x) = E

(
ε
−1 [ fn+1(Sn+1(x)+ εY )− fn+1(Sn+1(x))] Y Vn+1(x)

)
.

In the particular case d = 1, the particle interpretation developed in Section 3.2
applies directly. W

Remark 5. As an aside, we also mention that these expansions are closely related
to the time discretization of the stochastic integrals arising in exponential weights
of the Feynman-Kac interpretation of the Kushner-Stratonovitch filtering equa-
tion [29]. In this interpretation, the particle interpretations of the Feynman-Kac for-
mulae (42) coincide with the particle filters developed in the last referenced article.

Before getting into multi-dimensional models, let us pause for a while to discuss
the connexions of the above methodology with the existing literature. Firstly, we
observe that the Gaussian regularization formula (44) can be interpreted as the addi-
tion of an extra Gaussian move. This suggests that we can alternatively use the last
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transition to regularize the model.

Pn+1( fn+1)(x) = E
(
E
(

fn+1
(
Sn+1(x)

)∣∣Sn(x)
))

.

Letting Hn+1(xn,xn+1) be the density of the Markov transition Sn = xn Sn+1 with
respect to the Lebesgue measure, arguing as above we find that

∂

∂x
Pn+1( fn+1)(x) = E( fn+1(Sn+1(x)) dHn+1(Sn(x),Sn+1(x)) Vn(x)) ,

with the weight function

dHn+1(xn,xn+1)

=
∂

∂xn
logHn+1(xn,xn+1)

=
((

(xn+1−xn)−b(xn)∆
σ(xn)

√
∆

)2
−1
)

∂

∂x
logσ(xn)−

(
(xn+1−xn)−b(xn)∆

σ(xn)
√

∆

) 1+ ∂b
∂x (xn)∆

σ(xn)
√

∆
.

These formulae and the corresponding conventional weighted Monte Carlo approx-
imations have been recently proposed by N. Chen and P. Glasserman [22] as an
alternative to the Malliavin calculus computation of the Greeks introduced by E.
Fournié, J.M. Lasry, J. Lebuchoux, P.L. Lions, and N. Touzi in their groundbreaking
articles [56, 57]. If Ps,t denotes the semigroup associated with the (continuous time)
diffusion equation (6) (recall that d = 1 in the present discussion):

Ps,t( f )(Ss) = E( f (St) | Ss) ,

one easily checks that, for any 0≤ s≤ t it holds:

Ps,t( f )(Ss) = P0,t( f )(S0)+
∫ s

0

∂Pr,t( f )
∂x

(Sr) σ(Sr) dWr ,

and if we set s = t in the above equation, then we find that

E
[

f (St(x))
∫ t

0

∂Ss

∂x
(x) σ

−1(Ss(x))) dWs

]
= E

[∫ t

0

∂Ps,t( f )
∂x

(Ss(x))
∂Ss

∂x
(x) ds

]
,

whenever σ is a smooth positive function bounded away from 0. Recalling that

∂

∂x
P0,t( f )(x) =

∂

∂x
E [Ps,t( f )(Ss(x))] = E

[
∂Ps,t( f )

∂x
(Ss(x))

∂Ss

∂x
(x)
]

,

we arrive at a Malliavin formulation of the semigroup derivatives

∂

∂x
P0,t( f )(x) = E

[
f (St(x))

1
t

∫ t

0
σ
−1(Ss(x))

∂Ss

∂x
(x) dWs

]
.
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A rigorous derivation of the above equations is provided in [56, 57]. We also refer
the reader to the contribution of B. Bouchard and X. Warin in the present volume.

The Euler time discretization scheme justifies using the discrete time approxi-
mate model:

S(n+1)∆ −Sn∆ = b(Sn∆ ) ∆ +σ (Sn∆ )
√

∆ Yn , (45)

for a sequence of independent mean zero Gaussian random variables Yn. We thus
have the approximation model

∂

∂x P0,(n+1)∆ ( f )(x)'∆↓0
1

(n+1)
√

∆
∑

0≤p≤n
E
(

f (S(n+1)∆ (x))Zp(x)
)

, (46)

with the random weights

Zp(x) := ϕ
(
Sp∆ (x),Yp

)
∏

0≤q<p
Gq(Sq∆ (x),Yq)

ϕ (x,y) = σ
−1(x) y and Gq(x,y) = 1+

∂b
∂x

(x) ∆ +
∂σ

∂x
(x)
√

∆ y .

The ratio 1/
√

∆ in the right hand side of (46) may induce numerical degeneracies.
One way to overcome this problem and to remove this term from the numerical
scheme is to use the following formula

E
(

f (S(n+1)∆ (x))Zp(x)
)

= E
(
ϒp+1,n+1( f )

[
Sp∆ (x),Yp

]
×Zp(x)

)
,

with the function

ϒp+1,n+1( f )[x,y]
= P(p+1)∆ ,(n+1)∆ ( f )

(
x+b(x)∆ +σ(x)

√
∆y
)
−P(p+1)∆ ,(n+1)∆ ( f )(x+b(x)∆) .

Under some appropriate regularity conditions, we notice that

ϒp+1,n+1( f )[x,y]
'∆↓0 Pp∆ ,(n+1)∆ ( f )

(
x+b(x)∆ +σ(x)

√
∆y
)
−Pp∆ ,(n+1)∆ ( f )(x+b(x)∆)

'∆↓0
∂Pp∆ ,(n+1)∆ ( f )

∂x (x) σ(x)
√

∆ y ,

which implies that

∂

∂x P0,(n+1)∆ ( f )(x)

'∆↓0
1

(n+1) ∑
0≤p≤n

E

(
∂Pp∆ ,(n+1)∆ ( f )

∂x

(
Sp∆ (x)

)
Y 2

p ∏
0≤q<p

Gq(Sq∆ (x),Yq)

)
.

In higher dimensions, the calculations are more involved. To analyze these models,
we design a Feynman-Kac interpretation of the distributions of product of random
matrices.
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Using the notation ‖.‖ for a fixed norm in Rd , we assume that for any state U0 in
the unit sphere S d−1, we have∥∥∥∥∥

[
∏

0≤p≤n
Ap(Sp)

]
U0

∥∥∥∥∥> 0 .

In this situation, we have the multiplicative formulae[
∇ fn+1(Sn+1) ∏

0≤p≤n
Ap(Sp)

]
U0 = [∇ fn+1(Sn+1) Un+1] ∏

0≤p≤n

∥∥Ap(Sp) Up
∥∥ ,

with the well defined S d−1-valued Markov chain defined by

Un+1 =
An(Sn)Un

‖An(Sn)Un‖
=

[
∏0≤p≤n Ap(Sp)

]
U0∥∥[∏0≤p≤n Ap(Sp)
]

U0
∥∥ .

If we choose U0 = u0, then we obtain the following Feynman-Kac interpretation of
the gradient of a semigroup

∇Pn+1( fn+1)(x) u0 = E

(
Fn+1(Xn+1) ∏

0≤p≤n
Gp (Xp)

)
.

In the above display, Xn is the multivariate Markov chain sequence

Xn := (Sn,Un,Wn)

and the functions Fn+1 and Gn are defined by

Fn+1(x,u,w) := ∇ fn+1(x) u and Gn (x,u,w) := ‖An(x,w) u‖ .

In physics literature, the mean field particle approximations of these non commu-
tative Feynman-Kac models are often referred as Resampled Monte Carlo meth-
ods [94].

6 American-style option pricing

6.1 Description of the model

Optimal stopping problems are at the heart of the theory of stochastic control. Their
importance in quantitative finance is due to the large number of financial instruments
with American exercises, sometimes called Bermudan exercises in the framework
of discrete time models.
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In this section, n stands for a fixed final time horizon, and for each k ∈ {0, . . . ,n},
we let Fk denote the set of events known at time k and Tk the set of Fk - stopping
times τ taking values in {k, . . . ,n}. These stopping times are used to model the deci-
sion by the holder of the option to exercise it at a given time of his or her choice. The
payoff is given by an adapted (no crystal ball can be used in this model!) stochas-
tic process Z = (Zk)0≤k≤n. For each k ∈ {0, . . . ,n}, Zk represents the reward to the
holder for exercising the option at time k. To recast the problem in the framework
used so far, we assume that the filtration F = (Fk)0≤k≤n is generated by a Markov
chain X = (Xk)0≤k≤n in some measurable state space E, and that Zk = Fk(X0, . . . ,Xk)
for some known deterministic functions Fk on Ek+1. As usual, we shall use the no-
tation M = (Mk)k to denote the transition probability of the Markov chain X .

The Snell envelope of (Zk)0≤k≤n, is the stochastic process (Uk)0≤k≤n defined for
any 0≤ k < n by the following backward equation

Uk = Zk ∨E(Uk+1|(X0, . . . ,Xk)) ,

with the terminal condition Un = Zn. The main property of this stochastic process is
that

Uk = sup
τ∈Tk

E(Zτ |(X0, . . . ,Xk)) = E(Zτ∗k
|(X0, . . . ,Xk)) (47)

with τ
∗
k = min{k ≤ l ≤ n : Ul = Zl} ∈Tk .

Notice that Uk ≥ Zk, for any 0 ≤ k ≤ n and τ∗k is given by the following backward
formula

τ
∗
k = k 1Zk≥Uk + τ

∗
k+1 1Zk<Uk with τ

∗
n = n .

To get one step further, we let η0 = Law(X0) be the initial distribution on E, and
we denote by Mk(x,y) the elementary Markov transition of the chain Xk from E into
itself.

To be more specific we also assume that

Zk = Fk(X0, . . . ,Xk) := fk(Xk) ∏
0≤l<k

Gl(Xl), 0≤ k ≤ n,

for some non negative space-time functions f =( fk)k and G =(Gk)k on {0,1, · · · ,n}×
E. In this situation, the Snell envelope process is given in terms of deterministic
functions uk through

Uk = uk(Xk) ∏
0≤p<k

Gp(Xp),

where the functions uk are given inductively by the backward functional equation

uk = Hk+1(uk+1), 0≤ k < n, (48)

with the terminal value un = fn, and the functional transformations

Hk+1(uk+1) := fk ∨Qk+1(uk+1) with Qk+1(x,dy) = Gk(x) Mk+1(x,dy) .
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In the above displayed formula, Qk+1(uk+1) stands for the measurable function on
E defined for any xk ∈ E by the conditional expectation:

Qk+1(uk+1)(x) = Gk(x) E(uk+1(Xk+1)|Xk = x) =
∫

Qk+1(x,dy) uk+1(y) .

For a detailed derivation of these formulae, we refer the interested reader to the
article [41].

We let Hk,l = Hk+1 ◦Hk+1,l , with k≤ l ≤ n, be the nonlinear semigroups associ-
ated with the backward equations (48). We use the convention Hk,k = I, the identity
operator, so that uk = Hk,l(ul), for any k ≤ l ≤ n.

If for any given sequence of bounded integral operators (Qk)k from some state
space E into itself, we denote by Qk,l the iterated composition operator defined by

Qk,l := Qk+1Qk+2 · · ·Ql ,

for any k ≤ l, with the convention Qk,k = I, then one can check that a necessary
and sufficient condition for the existence of the Snell envelope (uk)0≤k≤n is that
Qk,l fl(x) < ∞ for any 1 ≤ k ≤ l ≤ n, and any state x ∈ E. To check this claim, we
simply notice that

fk ≤ uk ≤ fk +Qk+1uk+1 ∀ 1≤ k ≤ n

implies that
fk ≤ uk ≤ ∑

k≤l≤n
Qk,l fl ∀ 1≤ k ≤ n . (49)

From the readily proved Lipschitz property |Hk(u)−Hk(v)| ≤ Qk+1 (|u− v|), for
any functions u,v on E, we also have that∣∣Hk,l(u)−Hk,l(v)

∣∣≤ Qk,l (|u− v|) , (50)

for any functions u,v on E, and any k ≤ l ≤ n.

6.2 A perturbation analysis

Even if it may look innocent at first, solving numerically the recursion (48) often
requires extensive calculations. The major issue is to compute the conditional ex-
pectations Mk+1(uk+1) on the whole state space E, at every time step 0≤ k < n.

For Markov chain models taking values in some finite state spaces, the above
expectations can be computed by systematic backward inspection of the realization
tree that lists all possible outcomes and every transition of the chain. For excessively
large state spaces, or more general situations, we need to resort to approximation
strategies.
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Over the last two decades, several approximation methodologies have been pro-
posed, including Longstaff-Schwartz’s functional regression style methods [18, 23,
72, 92], refined singular values decomposition strategies [9], Monte Carlo simula-
tion methods [14, 45, 41, 42, 71], and the quantization grid technology developed
by Pagès and his co-authors [76, 77, 78, 79, 80].

Most of the numerical approximation schemes amount to replacing the pair
( fk,Qk)0≤k≤n by some approximation model ( f̂k, Q̂k)0≤k≤n on some possibly re-
duced finite subsets Ê ⊂ E. We let ûk be the Snell envelope on Êk associated with
the functions f̂k and the sequence of transition operators M̂k from Ê into itself.

ûk = Ĥk+1(ûk+1) := f̂k ∨ Q̂k+1(ûk+1) . (51)

Let also Ĥk,l = Ĥk+1◦Ĥk+1,l with k≤ l < n be the nonlinear semigroups associated
with the backward equations (51) so that ûk = Ĥk,l(ûl) for any k≤ l ≤ n. Using the
elementary inequality |a∨ a′− b∨ b′| ≤ |a− b|+ |a′− b′| which is valid for any
a,a′,b,b′ ∈R, for any 0≤ k < n and for any functions u on Ek+1 one readily obtains
the local approximation inequality∣∣∣Hk+1(u)−Ĥk+1(u)

∣∣∣≤ | fk− f̂k|+ |(Qk+1− Q̂k+1)(u)| . (52)

To transfer these local estimates to the semigroups Hk,l and Ĥk,l we use a perturba-
tion analysis. The difference between the approximate and the exact Snell envelope
can be written as a telescoping sum

uk− ûk =
n

∑
l=k

[
Ĥk,l(Hl+1(ul+1))−Ĥk,l(Ĥl+1(ul+1))

]
,

setting for simplicity Hn+1(un+1) = un and Ĥn+1(un+1) = ûn, for l = n. Combining
the Lipschitz property (50) of the semigroup Ĥk,l with the local estimate (52), one
gets the final estimates:

|uk− ûk| ≤
n

∑
l=k

Q̂k,l | fl− f̂l |+
n−1

∑
l=k

Q̂k,l |(Ql+1− Q̂l+1)ul+1| .

The perturbation analysis of nonlinear semigroups discussed above is a natural
and fundamental tool for the analysis of the Snell envelope approximations. It can
be used sequentially, and without further work, to obtain non asymptotic estimates
for models combining several levels of approximations. In the same vein, and when-
ever possible, it can also be used as a technical tool to reduce the analysis of Snell
approximation models on compact state spaces or even on finite but possibly large
quantization trees or Monte Carlo grids. This perturbation analysis is clearly not
new, it has been used with success in [32, 38, 63, 93] in the context of nonlinear
filtering semigroups and particle approximation models. In the context of optimal
stopping problems and numerical quantization schemes, these techniques were also
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used for instance in the papers of Egloff [51] and Gobet, Lemor and Warin [65] or
Pagès [79]. To the best of our knowledge, the general and abstract formulation given
above has first been presented in the recent article [42].

6.3 Particle approximations

In this subsection, we focus on a type of Monte Carlo importance sampling scheme
which is a version called average density of the Stochastic Mesh schemes proposed
by Broadie and Glasserman in [14]. The formulation of this algorithm in terms of
interacting particles was crucial to derive precise convergence results in [42].

We let ηn be the normalized Feynman-Kac measures defined in (11). By (19), we
have that

ηk+1 = ΨGk (ηk)Mk+1 .

Now, we assume that the Markov transitions Mk have a density Hk with respect to
some reference measure λk

Mk+1(x,dy) = Hk(x,y) λk(dy) .

Under this assumption, we can rewrite Qk+1(uk+1)(x) as follows

Qk+1(uk+1)(x) = ηk(Gk)
∫

ηk+1(y)
Gk(x)Hk+1(x,y)∫

ηk(dz)Gk(z)Hk+1(z,y)
uk+1(y) , (53)

and as before, we let

η
N
n :=

1
N

N

∑
i=1

δξ i
n
→N→∞ ηn

be the particle approximation of the measures ηn defined in Section 3.2 . We de-
note by Q̂k+1 the matrix obtained by replacing the measures ηk by their N-particle
approximations:

Q̂k+1( f )(x) := η
N
k (Gk)

∫
η

N
k+1(y)

Gk(x)Hk+1(x,y)∫
ηN

k (dz)Gk(z)Hk+1(z,y)
f (y)

= η
N
k (Gk)

N

∑
j=1

Gk(x)Hk+1(x,ξ
j

k+1)

∑
N
j′=1 Gk(ξ

j′
k )Hk+1(ξ

j′
k ,ξ j

k+1)
f (ξ j

k+1) ,

for any test function f on E. Notice that these expressions are easily computed
(with computational cost N2) at any state ξ i

k of the k-th population when the values
f (ξ j

k+1) of the function f are known

Q̂k+1( f )(ξ i
k) = η

N
k (Gk)

N

∑
j=1

Gk(ξ i
k)Hk+1(ξ i

k,ξ
j

k+1)

∑
N
j′=1 Gk(ξ

j′
k )Hk+1(ξ

j′
k ,ξ j

k+1)
f (ξ j

k+1) .
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By (51) the corresponding backward particle approximation of the Snell envelope is
given by the following equations, for i = 1, · · ·N,

ûk(ξ i
k) = fk(ξ i

k)∨

(
η

N
k (Gk)

N

∑
j=1

Gk(ξ i
k)Hk+1(ξ i

k,ξ
j

k+1)

∑
N
j′=1 Gk(ξ

j′
k )Hk+1(ξ

j′
k ,ξ j

k+1)
ûk+1(ξ

j
k+1)

)
.

Also notice that the values ûk(x) on any state x can be computed using the formula

ûk(x) = fk(x)∨

(
η

N
k (Gk)

N

∑
j=1

Gk(x)Hk+1(x,ξ
j

k+1)

∑
N
j′=1 Gk(ξ

j′
k )Hk+1(ξ

j′
k ,ξ j

k+1)
ûk+1(ξ

j
k+1)

)
.

For a thorough discussion on these particle models, their convergence analysis, and
a variety of related approximation grid type models, we refer the reader to the pair of
articles [41, 42]. In particular, this formalization allows to prove that the Lp mean er-
ror induced by this version of Stochastic Mesh approximation vanishes, under mild
assumptions, with a rate 1/

√
N. Also, a new Monte Carlo approximation scheme

is proposed in [42] using simulations of a genealogical tree with neutral selections
and mutations associated with a discrete-space Markov chain approximating the
price dynamics. The main advantage of this new scheme is the fact that the compu-
tational effort of the algorithm is linear in the number of sampled points, as opposed
to quadratic as for the Stochastic Mesh scheme.

7 Pricing models with partial observation models

Managing large portfolios and pricing financial instruments under partial observa-
tions are quite common problems in quantitative finance. See for instance the series
of articles [69, 82, 84, 85], and references therein. The case of stochastic volatility
models is the epitome of these situations: one can more or less observe stock prices
but not the evolution of the stochastic volatility.

7.1 Abstract formulation and particle approximation

We work in discrete time and we recast the dynamical financial model in the
framework of hidden Markov models. The basic object is a pair process (X ,Y ) =
((Xn,Yn))n forming a Markov chain on some product space EX ×EY with elemen-
tary transitions given

P((Xn,Yn) ∈ d(x,y) | (Xn−1,Yn−1)) = Mn(Xn−1,dx)×gn(x,y) λn(dy) , (54)

for some positive likelihood function gn, and some reference probability measure λn
on EY . According to our setup throughout the paper, the marginal process X = (Xn)n
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is also assumed to be a Markov chain and as usual, we denote by Mn its transition
probability. We can think of Xn as a vector of prices and random factors (instanta-
neous volatility could be one of them), and Yn a vector of observations of quantities
derived from the components of Xn. We can also consider Xn as a stochastic volatility
model, and Yn the stock price observations. For the sake of definiteness, we choose
to illustrate the particle methods on a pricing problem, so we assume that we are
given a European payoff function fn(Xn,Yn) for each time n ≥ 0. The price of the
contingent claim is given at time p≤ n by:

Vp,n( fn) := E

[
fn(Xn,Yn) ∏

p≤q<n
G′q(Xq,Yq)

∣∣ (Y0, . . . ,Yp)

]
.

for some non negative functions G′p related to barrier sets or stochastic interest rates,
as explained in Section 3. It is important to observe that the conditional expectations

Up,n( fn)(x,y) := E

[
fn(Xn,Yn) ∏

p≤q<n
G′q(Xq,Yq)

∣∣ (Xp,Yp) = (x,y)

]

have the same form as the Feynman-Kac definitions of the measures introduced in
(10), with the reference Markov chain (Xq,Yq), from the initial time q = p, starting
from (Xp,Yp) = (x,y) at time p. For any starting point (Xp,Yp) = (x,y), these un-
normalized distributions can be approximated by running an N-particle model on
(EX ×EY ), with selection potential functions G′q. We denote by UN

p,n( fn)(x,y) the
corresponding unbiased particle approximation. Fix an observation sequence Y = y,
and consider the Feynman-Kac models (10) associated with the likelihood potential
functions:

Gp(x) := gp(x,yp) 0≤ p≤ n .

To emphasize the dependence of the Feynman-Kac measures on the observation
sequence, we use the notations

η
[y0,...,yn]
n+1 and γ

[y0,...,yn]
n+1 (55)

for the normalized and unnormalized measures associated with the series of obser-
vations Yp = yp, for 0≤ p≤ n. These conditional distributions can be approximated
using an N-particle model on EX , with selection potential functions Gq. We denote
by

η
([y0,...,yn],N)
n+1 :=

1
N

N

∑
i=1

δ
ξ

([Y0 ,...,Yn−1 ],i)
n+1

the empirical measures providing the particle approximation. Notice that

Law(Xn | Yp = yp, 0≤ p < n) = η
[y0,...,yn−1]
n (56)

and by the Bayes rule
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Law(Xn | Yp = yp, 0≤ p≤ n) := Ψgn(.,yn)

(
η

[y0,...,yn−1]
n

)
= η̂

[y0,...,yn]
n , (57)

and by construction, we have:

Vp,n( fn) =
∫

Ψgp(.,Yp)

(
η

[Y0,...,Yn−1]
n

)
(dx) Up,n( fn)(x,Yp) ,

and these quantities can be approximated combining the particle estimates defined
above. Indeed, we have that

Vp,n( fn)'N↑∞ V N
p,n( fn) ,

with

V N
p,n( fn) :=

∫
Ψgp(.,Yp)

(
η

([Y0,...,Yn−1],N)
n

)
(dx) UN

p,n( fn)(x,Yp)

=
N

∑
i=1

gp(ξ
([Y0,...,Yp−1],i)
p ,Yp)

∑
N
j=1 gp(ξ

([Y0,...,Yp−1], j)
p ,Yp)

UN
p,n( fn)(ξ

([Y0,...,Yp−1],i)
p ,Yp) .

7.2 Optimal stopping with partial observation

We work with the setup of a pair (Xn,Yn) Markov chain model introduced in the
previous section. According to our discussion in Section 6.1, the Snell envelop as-
sociated with an American option with finite maturity n, payoffs Zk = fk(Xk,Yk) is
given by

Uk := sup
τ∈T Y

k

E( fτ(Xτ ,Yτ)|(Y0, . . . ,Yk)) ,

where T Y
k stands for the set of all FY

k - stopping times τ taking values in {k, . . . ,n},
where the filtration is know given by the sigma fields FY

k generated by the observa-

tion sequence Yp, from p = 0 up to the time k. We denote by η
[y0,...,yn−1]
n and η̂

[y0,...,yn]
n

the conditional distributions defined in (56) and (57). With these notations, for any
0≤ k ≤ n we have that

E( fτ(Xτ ,Yτ)|(Y0, . . . ,Yk)) = E

(
n

∑
p=k

1τ=p E( fp(Xp,Yp) | (Y0, . . . ,Yp)) | (Y0, . . . ,Yk)

)
= E

(
Fτ

(
Yτ , η̂

[Y0,...,Yτ ]
τ

)
| (Y0, . . . ,Yk)

)
, (58)

with the conditional payoff function

Fp

(
Yp, η̂

[Y0,...,Yp]
p

)
=
∫

η̂
[Y0,...,Yp]
p (dx) fp(x,Yp) .

It is well known that
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Xp :=
(

Xp,Yp, η̂
[Y0,...,Yp]
p

)
is a Markov chain with elementary transitions defined by, for any integrable function
F on product space EX ×EY ×P(EX ),

E
[
F
(

Xp,Yp, η̂
[Y0,...,Yp]
p

) ∣∣∣ (Xp−1,Yp−1, η̂
[Y0,...,Yp−1]
p−1

)
= (x,y,µ)

]
=
∫ ∫

λp(dyp) Mp (x,dxp)gp(xp,yp) F
(

xp,yp,Ψgp(.,yp) (µMp)
)

.

A proof of this assertion can be found in any textbook on advanced stochastic fil-
tering. For instance, the book of W. Runggaldier and L. Stettner [90] provides a
detailed treatment of discrete time partially observed models, their non linear filter-
ing, and related partially observed control problems.

Roughly speaking, using Bayesian notation, we have

η
[y0,...,yp−1]
p (dxp) = d pp(xp | (y0, . . . ,yp−1))

=
∫

d pp(xp | xp−1)× pn(xp−1 | (y0, . . . ,yp−1))

= η̂
[y0,...,yp−1]
p−1 Mp(dxp)

and
Ψgp(.,yp)

(
η̂

[y0,...,yp−1]
p−1 Mp

)
(dxp)

=
p(yp|xp)∫

pp(yp | x′p) d pp(x′p | (y0, . . . ,yp−1))
d pp(xp | (y0, . . . ,yp−1))

= d pp(xp | (y0, . . . ,yp−1,yp)) ,

from which we can prove that

µMp(gp(.,yp)) =
∫

pp(yp | xp) d pp(xp | (y0, . . . ,yp−1))

= pp(yp | (y0, . . . ,yp−1))

and
Ψgp(.,yp) (µMp) = η̂

[y0,...,yp]
p ,

as long as µ = η̂
[y0,...,yp−1]
p−1

(
⇒ µMp = η

[y0,...,yp−1]
p

)
.

The above discussion suggests the following interpretation. We can rewrite (58)
as the Snell envelop of a fully observed augmented Markov chain:

E( fτ(Xτ ,Yτ)|(Y0, . . . ,Yk)) = E(Fτ (Xτ) | (X0, . . . ,Xk)) .



An Introduction to Particle Methods with Financial Applications 37

This Markov chain Xn takes values in an infinite dimensional state space, and it can
rarely be sampled without some addition level of approximation. Therefore, most
of the grid or Monte Carlo simulation based techniques for solving these models
require the introduction of a specific grid approximation of conditional distributions,
or judicious approximation sampling schemes. The particle methodology advocated
in this paper provides a natural strategy. Using the particle approximations discussed
in Section 3.2, we can replace the chain Xn by the N-particle approximation defined
by

X N
n :=

(
Yp, η̂

([Y0,...,Yp],N)
p

)
,

where
η̂

([Y0,...,Yp],N)
p := Ψgp( · ,Yp)

(
η̂

([Y0,...,Yp−1,N)]
p−1

)
stands for the updated measure associated with the particle scheme associated with
the likelihood selection functions gp( · ,Yp). The corresponding N-particle approxi-
mation of the Snell envelop is now given by

E( fτ(Xτ ,Yτ)|(Y0, . . . ,Yk))'N↑∞ E
(
Fτ

(
X N

τ

)
| (X N

0 , . . . ,X N
k )
)

.

In this setup, the approximated optimal stopping problem requires the computation
of the quantities

UN
k := sup

τ∈T N
k

E
(
Fτ

(
X N

τ

)
| (X N

0 , . . . ,X N
k )
)

,

where T N
k stands for the set of F

X N
k

k - stopping times τ taking values in {k, . . . ,n},
where the filtration is formed by the sigma fields generated by the Markov chain
random variables X N

k , from p = 0 up to the current time k.

We close this section with an alternative representation in terms of the unnormal-
ized filters γ

[Y0,...,Yn−1]
n defined in (55). We let Pn be the probability distribution of

a Markov chain (Xp,Yp)0≤p≤n defined in (54), and P(0)
n the probability distribution

of the Markov chain (Xp,Yp)0≤p≤n with independent random observations Yp with
distribution λp with p ≤ n, also assume to be independent of the chain (Xp)0≤p≤n,.
By construction, Pn is absolutely continuous with respect to P(0)

n , and its Radon-
Nykodym derivative is given by:

dPn

dP(0)
n

= ∏
0≤p≤n

gp(Xp,Yp) .

Now, for any τ ∈T Y
0 we observe that

E( fτ(Xτ ,Yτ)) = E(0)

(
n

∑
p=0

1τ=p E(0)

(
fp(Xp,Yp) ∏

0≤q≤p
gq(Xq,Yq) | (Y0, . . . ,Yp)

))

and
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E(0) ( fp(Xp,Yp) ∏0≤q≤p gq(Xq,Yq) | (Y0, . . . ,Yp)
)

= γ
[Y0,...,Yp−1]
p ( fp(.,Yp)gp( · ,Yp))

= η
[Y0,...,Yp−1]
p ( fp(.,Yp)gp( · ,Yp))×∏0≤q<n η

[Y0,...,Yq−1]
q (gq( · ,Yq)) .

The last assertion is a direct consequence of the multiplicative formula (12) for
unnormalized Feynman-Kac measures. Arguing as above, we introduce the Markov
chain

Xn :=
(

Yn,η
[Y0,...,Yn−1]
n

)
the payoff and the potential functions

Fn(Xn) := η
[Y0,...,Yn−1]
n ( fn(.,Yn)gn(.,Yn)) and Gn(Xn) := η

[Y0,...,Yn−1]
n (gn(.,Yn)) .

By construction, we have

E( fτ(Xτ ,Yτ)) = E(0)

(
Fτ(Xτ) ∏

0≤p<τ

Gp(Xp)

)
.

We have now reduced the optimal stopping problem with partial observations to
a conventional optimal stopping problem of a measure valued Markov chain Xn
with stochastic potential functions Gp(Xp), and independent random observations
sequences. Once more, using the particle approximation models discussed in Sec-
tion 3.2, we can replace the chain Xn by the N-particle approximation model defined
by

X N
n :=

(
Yp,η

([Y0,...,Yp],N)
p

)
.

Here again, we have turned a complex optimal stopping problem under partial ob-
servations into an almost equivalent optimal stopping problem of an easy to sample
Markov chain sequence of the same form as the one discussed in Section 6.1. These
particle transformations can also be used for more general stochastic control prob-
lems with partial observations. We refer the reader to [8, 90] for a more thorough
discussion on this subject.

7.3 Parameter estimation in hidden Markov chain models

In many economic and financial applications, the parameters are unknown and must
be estimated from partial and noisy observations. This situation is typical of hidden
Markov chain problems which arise in a variety of domains, ranging from signal
processing, medical Bayesian inference, communication and information theory.
For an overview of some of the problems occurring in finance and econometrics
we refer the reader to [4, 24, 25, 28, 61], to mention only a few.

As in (54) these models are framed in terms of a signal-observation type pair
Markov chain (Xn,Yn)n with a collection of transition probabilities Mθ ,n and likeli-
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hood functions gθ ,n that depend upon the realization of a random parameter Θ = θ

taking values in some state space S, equipped with a probability measure µ . We also
denote by ηθ ,0 the conditional distribution of X0 given Θ = θ .

The example we have in mind is the quintessential calibration problem in par-
tially observed models arising in computational finance. One way to set up a
stochastic volatility model as a filtering problem in discrete time is to choose
(Xn,Yn) = (σn,Sn). In this case Xn = σn represents the instantaneous stochastic
volatility, and the observation Yn = Sn is given by the price of the asset. In most prac-
tical applications, the evolution of these quantities is given by a parametric model
of the form:

σk = F1
θ ,n(σn−1,Sn−1,W 1

n )

Sk = F2
θ ,n(σn−1,Sn−1,W 2

n ),

where F1
θ ,n and F2

θ ,n are functions depending upon some unknown parameter θ . The
objective is to compute the conditional distribution Law(θ |S0, . . . ,Sn) of θ given
the observations of the price. To be more specific, we can precise our illustration by
choosing the popular Heston’s stochastic volatility model. In our framework, this
model is given by:

F1
θ ,n(σn−1,Sn−1,W 1

n ) = (ab+(1−a)σn−1)∆ t + c
√

σn−1∆W 1
n

F2
θ ,n(σn−1,Sn−1,W 2

n ) = Sk−1(1+d)∆ t +Sk−1
√

σn−1∆W 2
n ,

where θ = (a,b,c,d) is the collection of parameters to calibrate.
Using the notations of Section 3.3.2, the conditional distribution of the random

path (X0, . . . ,Xn), given Θ = θ , and the sequence (Y0, . . . ,Yn−1) = (y0, . . . ,yn−1) of
observations is given by the Feynman-Kac measures

Qθ ,n(dx0×·· ·×dxn) =
1

Zn(θ)

{
∏

0≤q<n
Gθ ,q(xq)

}
Pθ ,n(dx0×·· ·×dxn) ,

with the potential functions Gθ ,q(xq) = gθ ,n(xq,yq), and the conditional distribu-
tion Pθ ,n of the random path (X0, . . . ,Xn) given Θ = θ . As in (12), the normalizing
constants Zn(θ) are given by the multiplicative formula

Zn(θ) = ∏
0≤p<n

η
[y0,...,yp−1]
θ ,p (Gθ ,p) ,

with the p-th marginal distributions η
[y0,...,yp−1]
θ ,p of the measure Qθ ,n i.e. the con-

ditional distribution of the random variable Xp given Θ = θ , and the sequence
(Y0, . . . ,Yp−1) = (y0, . . . ,yp−1) of observations. In the Bayesian literature, the nor-
malizing constants Zn+1(θ) are often called the likelihood functions of the parame-
ter θ , given the observation data (y0, . . . ,yn), and they are denoted by p(y0, . . . ,yn | θ)
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to emphasize that they are given by the conditional density of the observations given
the unknown parameter.

In this section, the observation sequence Y = y is fixed, so in order to stream-
line the notations we suppress the superscript [y0,...,yn]and write ηθ ,p and η̂θ ,p =

ΨGθ ,n

(
ηθ ,p

)
for the one step predictor η

[y0,...,yp−1]
θ ,p and the optimal filter η̂

[y0,...,yp]
θ ,p .

From the previous discussion, it should be clear that the conditional distributions
of the parameter Θ with respect to the sequence of observations (Y0, . . . ,Yn−1) =
(y0, . . . ,yn−1) is given by the measures

µn(dθ) :=
1

Zn

(
∏

0≤p<n
hp(θ)

)
µ(dθ) with the functions hp(θ) = ηθ ,p(Gθ ,p)

(59)
for some normalizing constant Zn. In the Bayesian literature, the likelihood func-
tions hp(θ) are often denoted by p(yp | (y0, . . . ,yp−1),θ). In some instances, such as
classical linear-Gaussian models for example, the local likelihood functions hp(θ)
can be computed explicitly in terms of Gaussian densities and optimal one-step
predictors given by the Kalman recursions. In this case, we can use a dedicated
Monte Carlo Markov Chain model (MCMC for short) algorithm to sample from the
Boltzmann-Gibbs measures (59). One can also turn this MCMC algorithm into an
interacting MCMC model. This is done by letting Kn be a MCMC transition with
target measure µn = µnKn. By definition of the Boltzmann-Gibbs transformation
(16), we readily see that

µn+1 = Ψhn(µn)⇒ µn+1 = Ψhn(µn)Kn+1,

which shows that µn is given by the normalized Feynman-Kac measure defined for
any measurable function f on S, by the following equation

µn( f ) ∝ E

(
f (Θn) ∏

0≤p<n
hp(Θp)

)
,

where Θn is a Markov chain on S with initial distribution µ0 = µ and Markov tran-
sitions Kn. The interacting particle approximation

µ
N
n =

1
N ∑

1≤i≤N
δΘ i

n

of the measures µn (and their normalizing constants) is a genetic type particle model
on the product space SN

Θn =
(
Θ

i
n
)

1≤i≤N ∈ SN selection
−−−−−−−−→ Θ̂n =

(
Θ̂

i
n

)
1≤i≤N

∈ SN mutation
−−−−−−−→ Θn+1 ∈ SN .

(60)
The mutation transitions are given by the MCMC transitions Kn, and the selection
transitions are obtained from the selection potential functions hn. The complete con-
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ditional distribution of the random sequence (Θ ,(X0, . . . ,Xn)) given the sequence of
observations (Y0, . . . ,Yn−1) = (y0, . . . ,yn−1) is given by the Feynman-Kac measures

µn(dθ)×Qθ ,n(d(x0, . . . ,xn))'N↑∞ µ
N
n (dθ)×QN

θ ,n(d(x0, . . . ,xn)) .

The measures QN
θ ,n appearing in the above right hand side stand for the particle

backward model defined in (28). Alternatively, we can also use the genealogical
tree approximation discussed in (3.3.1).

For linear-Gaussian models, we emphasize that the measure Qθ ,n can be com-
puted explicitly. More precisely, the backward Markov chain formula (27) can be
computed using the updating transition of the Kalman filter, with the Gaussian like-
lihood density function Hθ ,n+1 of the transition Mθ ,n+1. In this case, (27) is the
backward product of the Gaussian transitions given below

Mθ ,n+1,ηθ ,n(xn+1,dxn) :=
Hθ ,n+1(xn,xn+1)

η̂θ ,n
(
Hθ ,n+1(.,xn+1)

) η̂θ ,n(dxn) .

When the local likelihood functions hn are not known, we need to add another ap-
proximation level. To this end, we also consider the probability distribution P(θ ,dξ )
of the N-particle model

ξθ :=
(
ξθ ,0,ξθ ,1, . . . ,ξθ ,T

)
,

on the interval [0,T ], with mutation transitions Mθ ,n, and potential selection func-
tions Gθ ,n, with n ≤ T . We fix a large time horizon T , and for any 0 ≤ n ≤ T , we
set

µn(d(ξ ,θ)) =
1

Z n

{
∏

0≤p<n
hp(ξ ,θ)

}
µ(d(ξ ,θ)) , (61)

for some normalizing constants Z n, the reference measure µ being given by

µ(d(ξ ,θ)) = µ(dθ) P(θ ,dξ ),

and the potential functions hn on the product space
((

∏0≤p≤T EN
p
)
×S
)

defined by

hn(ξ ,θ) =
1
N ∑

1≤i≤N
Gθ ,n(ξ i

θ ,n) = η
N
θ ,n
(
Gθ ,n

)
∈ (0,∞) .

Firstly, we observe that these target measures have the same form as the Boltzmann-
Gibbs measures (59). Thus, they can be sampled using the MCMC or the interacting
MCMC methodologies discused above. For a detailed discussion these types of so-
phisticated serial MCMC methodologies, we refer the reader to the recent article [1].

More interestingly, using the unbiased property of the unnormalized particle
models presented in (32), we clearly have Z n = Zn and
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∫
P(θ ,dξ )

{
∏

0≤p<n
hp(ξ ,θ)

}
= E

(
∏

0≤p<n
η

N
θ ,p
(
Gθ ,p

))
= ∏

0≤p<n
ηθ ,p(Gθ ,p) ,

from which we conclude that the Θ -marginal of µn coincides with the desired target
measure

(
µn ◦Θ

−1)(dθ) = µn(dθ) =
1

Zn

{
∏

0≤p<n
ηθ ,p(Gθ ,p)

}
ν(dθ) .
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46 René Carmona, Pierre Del Moral, Peng Hu and Nadia Oudjane

89. V. Rossi and J. P. Vila. Nonlinear filtering in discrete time : A particle convolution approach.
Ann. I.SU.P., vol.50, no. 3, pp. 71–102 (2006).

90. W. Runggaldier and L. Stettner. Approximations of Discrete Time Partially Observed Control
Problems Applied Mathematics Monographs CNR, Giardini Editori, Pisa (1994).

91. M. Schweizer. Variance-optimal hedging in discrete time. Math. Oper. Res., vol. 20, no. 1,
pp. 1–32 (1995).

92. J. N. Tsitsiklis and B. Van Roy. Regression Methods for Pricing Complex American-Style
Options. IEEE Transactions on Neural Networks, Vol. 12, No. 4 (special issue on computa-
tional finance), pp. 694-703 (2001).

93. R. Van Handel. Uniform time average consistency of Monte Carlo particle filters, Stoch. Proc.
Appl., 119, pp. 3835–3861 (2009).

94. J. Vanneste. Estimating generalized Lyapunov exponents for products of random matrices.
Phys. Rev. E, vol. 81, 036701 (2010).

95. F. Viens. Portfolio optimization under partially observed stochastic volatility. Proceedings of
the 8th international conference on advances in communication and control : telecommuni-
cations / signal processing, pp. 3–12, (2001).

96. D. Whitley, S. Rana and R.B. Heckendorn. The island Model Genetic algorithm: On separa-
bility, population size and convergence. CIT. Journal of computing and information technol-
ogy. vol. 7, no. 1, pp. 33-47 (1999).


