
Chapter 1
On the Foundations and the Applications
of Evolutionary Computing

Pierre Del Moral, Alexandru-Adrian Tantar, and Emilia Tantar

Abstract. Genetic type particle methods are increasingly used to sample from com-
plex high-dimensional distributions. They have found a wide range of applications
in applied probability, Bayesian statistics, information theory, and engineering sci-
ences. Understanding rigorously these new Monte Carlo simulation tools leads to
fascinating mathematics related to Feynman-Kac path integral theory and their in-
teracting particle interpretations. In this chapter, we provide an introduction to the
stochastic modeling and the theoretical analysis of these particle algorithms. We
also illustrate these methods through several applications.

1.1 Introduction

Most of population-based algorithms are described in terms of interacting samples
evolving in some solution state space. The random samples are also termed solu-
tions, particles, individuals or genotypes. Their time evolution mimics natural se-
lection, physical adaptation, reinforced principles, or some social behavior. For a
detailed discussion, and an overview of these classes of evolutionary computing
models we refer the reader to the couple of books [8, 115], and references therein.

Pierre Del Moral
Centre INRIA Bordeaux Sud-Ouest, Institut de Mathématiques de Bordeaux,
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Evolutionary type algorithms are very often presented with limited regard to their
rigorous mathematical foundations, without any rigorous analysis of the underlying
random evolutionary processes. Their performance often relies on intuition driven
by numerical observations, so that evolutionary computing research sometimes falls
in obscure inspired paradigms.

In this context, several questions arise: To what extent do we accept numerical
evidence as a proof when dealing with complex systems of high risk as nuclear
plants, health care management, security or defense systems? What is the sensitivity
and the error those paradigms introduce as part of a solution’s design? What is the
impact and how uncertainties propagate w.r.t. time?

Evolutionary type algorithms can be interpreted in two different ways.
Firstly, population-based algorithms w.r.t. optimization problems can be viewed

as a gradient type hole puncher in complex solution state spaces. In this context, the
central idea is to use natural evolution mechanisms to improve step by step the pop-
ulation adaptation. For convex optimization problems, the performance and conver-
gence of the algorithm follows from standard analysis of stochastic gradient models.
For more complex optimization problems, we expect large population explorations
to escape from local minima.

On the other hand, under certain regularity conditions, most of genetic type evo-
lutionary computing algorithms converge towards some particular probability dis-
tributions. These target probability measures are often prescribed by distributions
on path spaces w.r.t. a series of conditioning events. For regulation problems, and
open loop optimal control problems, these two viewpoints can be encapsulated in a
single mathematical framework [107, 108, 119].

Answering to all the questions provided above amounts to rigorously analyzing
the convergence and the performance of these stochastic hole puncher gradients, or
these genetic particle sampling models. The second and rather recent viewpoint is
the central theme of this chapter.

We end this introduction with a brief discussion on the origins and the mathemat-
ical foundations of genetic type particle models.

Genetic type stochastic models are increasingly used to sample from complex
high-dimensional distributions. As we mentioned above, they approximate, as the
population size tends to infinty, a given target probability distributions by a large
cloud of random samples termed particles. Practically, the particles evolve randomly
around the space independently and to each particle is associated a positive poten-
tial function. Periodically we duplicate particles with high potentials at the expense
of particles with low potentials which die. This intuitive genetic mutation-selection
type mechanism appears in numerous applications ranging from nonlinear filtering
[22, 36, 52, 45, 38, 68, 67, 69, 89, 118, 120], Bayesian statistics [29, 40, 76, 123],
combinatorial counting [3], molecular and polymer simulation [90], rare events sim-
ulation [26, 27, 82], quantum Monte Carlo methods [6, 102, 125] and genetic algo-
rithms [47, 48, 87, 104], among others.

From a mathematical point of view, these methods can be interpreted as stochas-
tic numerical approximations of Feynman-Kac measures. These measures represent
the distribution of the paths of a reference Markov process, weighted by a collection
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of potential functions. These functional models are natural mathematical extensions
of the traditional change of probability measures, commonly used in importance
sampling. The particle interpretation consists in evolving a population of particles
mimicking natural evolution mechanisms. During the mutation stage, the particles
evolve independently of one another, according to the same probability transitions
as the ones of the reference Markov chain. During the selection stage, each parti-
cle evaluates the potential value of its location. The ones with small relative values
are killed, while the ones with high relative values are multiplied. The correspond-
ing genealogical tree occupation measure converges, as the population size tends to
infinity, to the complete Feynman-Kac distribution on path space.

The origins of stochastic particle simulation certainly start with the seminal paper
of N. Metropolis and S. Ulam [126] published in 1949. As explained by these two
physicists in the introduction of their pioneering article, the Monte Carlo method
is, ”essentially, a statistical approach to the study of differential equations, or more
generally, of integro-differential equations that occur in various branches of the nat-
ural sciences”. The links between genetic type particle Monte Carlo models and
quadratic type parabolic integro-differential equations have been developed in the
beginning of 2000’ in the series of articles on continuous time models [51, 52, 54].

The earlier works on heuristic type genetic particle schemes seem to have started
in Los Alamos National Labs with works of M.N. Rosenbluth and A.W. Rosen-
bluth [143], and T.E. Harris and H. Kahn [94]. We also quote the work on artificial
life of Nils Aall Barricelli at the Institute for Advanced Study in Princeton [10, 11].
In all of these works, the genetic Monte Carlo scheme is always presented as a nat-
ural heuristic resampling type algorithm to generate random population models, to
sample molecular conformations, or to estimate high energy particle distributions,
without a single convergence estimate to ensure the performance, nor the robustness
of the Monte Carlo sampler.

Since the mid 90’s, genetic particle algorithms have recorded a dramatic popu-
larity increase due to the proliferation and wide accessibility of powerful computing
resources. They are now extensively and routinely used in engineering, machine
learning, statistics and physics under sometimes different names, such as: parti-
cle filters, bootstrap or genetic filters, population Monte Carlo methods, sequen-
tial Monte Carlo models, genetic search models, branching and multi-level splitting
particle rare event simulations, condensation models, go-with-the winner, spawning
models, walkers population reconfigurations, pruning-enrichment strategies, quan-
tum and diffusion Monte Carlo, rejuvenation models, and many others.

The mathematical foundations, and the performance analysis of all of these dis-
crete generation particle models are rather recent. The first rigorous study in this
field seems to be the article published by the first author in 1996 on the applications
of particle methods to nonlinear estimation problems [36]. This article provides the
first proof of the unbiased property of particle likelihood approximation models
(lemma 3 page 12); and adaptive resampling criteria w.r.t. the weight dispersions
(see remark 1 on page p.4).

This article also presents the first convergence results for a new class of inter-
acting particle filters, originally presented as heuristic Monte Carlo schemes in the
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beginning of the 1990’s in three independent schools. A series of classified indus-
trial Research Contracts on tracking and control developed between 1990 and 1993
by the P. Del Moral, J.C. Noyer, G. Rigal, and G. Salut [59, 60, 61, 62, 63, 64],
and [23, 65, 66]. The first journal article presenting the heuristic of particle fil-
ters is the article by N.J. Gordon, D. Salmond and A.F.M. Smith [89], and the first
conference article presenting the heuristic of particle filters is the article by G. Kita-
gawa [118].

For a more thorough discussion on these models, we refer the reader to [37, 52,
38, 58, 67], as well as in [8, 115, 9, 72, 5, 152], and references therein.

1.1.1 From Evolutionary Computing to Particle Algorithms

Besides a sustained research on evolutionary computing, theoretical support and
convergence proofs were until recently regarded as non mandatory. While leading
to significant results in practice [34, 8, 115], advances were only derived on intu-
ition and empirical grounds. And while this can be sustained for a real world setup
where finite time and resource constraints are imposed, understanding the different
paradigms and afferent convergence properties demands an accurate description of
the underlying mathematical models.

A first aspect to address is what evolutionary computing is applied for and what
information is expected? As later detailed in this section, different classes of prob-
lems are considered, e.g. non-linear, non-convex, discrete or continuous, with one or
multiple objectives to optimize, highly multimodal, ill-conditioned or with epistatic
interactions defined, within dynamic environments or subject to stochastic pertur-
bations (uncertainty). All are finally connected by assumptions implying (i) no
asymptotic convergence proof, with no exact solution or reproducible (stochas-
tic) behavior expected under finite time constraints, (ii) nonexistence of a polyno-
mial time alternative approach, e.g. due to a combinatorial explosion of the search
space, intractability or exponential increase of the number of local optima, and
(iii) exploration (classically) ended with no explicit information on the distribution
of the optima, only the best found solution being provided as a result.

At the opposite end, deterministic algorithms (not covered here), e.g. interval
methods, branch-and-bound, provide an optimal solution within a finite time and
with finite resources, nonetheless requiring an exponentially increasing time (as a
function of instance size). With respect to the last assumption, while different evolu-
tionary algorithms enclose by definition intrinsic support for estimating normalizing
constants, observing ancestral and genealogical structures or convergence towards
target distributions, in most cases this information is not regarded as relevant and
discarded. And, while those aspects fall by excellence in the domain of particle algo-
rithms, commonly referred to, for example, as particle filters, sequential, diffusion or
quantum Monte Carlo, and with a focus for estimating distribution laws, evolution-
ary and particle algorithms, with marginal exceptions, follow identical conceptual
lines.
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From the probabilistic point of view, genetic type particle algorithms are a natural
class of Monte Carlo methods for sampling complex high-dimensional probability
distributions and estimating their normalizing constants. As we already mentioned,
this class of algorithms approximate a given sequence of target probability mea-
sures by a large cloud of random samples termed particles (equivalent of individu-
als in evolutionary algorithms). The particles evolve randomly in the solution space
(mutation and free exploration). A positive potential/fitness function is associated
to each particle. Periodically, the particles with high potential value are duplicated
at the expense of particles with low potentials which are discarded (selection and
replacement).

An overview of the evolutionary computing domain is offered in the following,
to no extent exhaustive, only in order to highlight connection points with particle
algorithms. For the remainder of this section, let us consider a simplified scenario
where, given an arbitrary deterministic, static black-box function, the optimal solu-
tion (or approximation of) is demanded. Having as sole assumption that the function
can be sampled within the entire definition domain, i.e. with no other information
on the nature of the function, continuous or discrete, and disregarding the encod-
ing of solutions, e.g. fixed or variable size array of binary, integer or real values,
Gray coding (reflected binary code), graphs, trees, cellular, messy, direct or indirect
encoding, a straightforward approach would be to draw samples until some termi-
nation criterion is met. Except the simplification, this portrays the basic idea of a
simple Monte Carlo algorithm. Extending this direction, a first axis of discussion
leads to single-solution based exploration paradigms. Note that while this partic-
ular class is commonly referred to as local search algorithms this only relates to
exploration being conducted by sampling from the neighborhood of a single solu-
tion, evolved in iterative manner, and does not automatically imply a limitation for
the algorithm’s exploration capabilities. A second part of the discussion focuses on
algorithms that simultaneously evolve a set of independent solutions while ensuring
a balance or trade-off between local and global exploration, later moving to hybrid
and parallel aspects.

1.1.1.1 Local Search Algorithms

As a general classification, direct and indirect search methods can be considered
[141]. The first class, also denominated as zero order methods, only relies on a
direct sampling of the objective function, with no partial derivatives, i.e. no ana-
lytic or numeric gradient employed. Initially introduced in the work of Hooke and
Jeeves [105], the direct search denomination offers an explicit delimitation from
higher complexity methods: “the phrase implies our preference, based on experi-
ence, for straightforward search strategies which employ no techniques of classi-
cal analysis [...]”. Examples include Hill-Climbing, Nelder-Mead [153, 135, 121],
where the exploration is conducted by a set of perturbations applied to a randomly
generated initial simplex, Solis and Wets [151], including self-adaptive mecha-
nisms, Tabu Search [83, 84], Variable Neighborhood Search [131, 132], Guided
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Local Search [161], Iterated Local Search [13, 124] or Simulated Annealing [117],
developed as a generalization of Metropolis Monte Carlo [127]. The latter class
can be further divided into first and second order methods, using the first, respec-
tively second or higher order derivatives (analytic or numerical approximations of)
for guiding the exploration process. Examples include steepest descent, Conjugate
Gradient [100, 101, 77, 78, 139, 150] and second order methods like the Limited
Memory BFGS [17, 79, 88, 149, 137, 140] or the Adaptive Simulated Annealing
[112, 111, 109, 110, 113].

1.1.1.2 Set of Solutions Based Algorithms

A reference in the evolutionary computing domain, Genetic Algorithms (GAs), de-
veloped through the work of Holland [104], define a structure that inspired and set
the bases for different other paradigms. The approach relies on several distinct stages
as follows: (i) initialization – a set of initial solutions (chromosomes in the case of
GAs) are randomly sampled, forming a population, (ii) selection – a subset of the
best fit solutions is constructed, (iii) recombination and perturbation – new sam-
ples are drawn by applying several operators on the previously selected solutions,
e.g. crossover and mutation operators, and (iv) replacement – least fit solutions in
the initial population are replaced, the algorithm iterating steps (ii) to (iv) until a
termination criterion is met.

While no in-depth details will be provided here, it may be worthwhile mentioning
that different strategies and operators were proposed and analyzed for all stages of a
genetic algorithm. Examples of mutation and recombination operators include (i) di-
versification oriented or mutation constructions [128] like bit-flip or swap operators,
polynomial transforms, (non) uniform, Gaussian or Cauchy distribution based, as
well as (ii) intensification, or crossover operators [97, 95, 98, 99, 96]. This latter class
was extensively investigated, leading to operators with one or multiple cutting or
intersection points, uniform, arithmetic, geometric, Wright’s heuristic, linear BGA,
α,β -blend, simulated binary crossover, fuzzy recombination or dynamic operators.
At the same time, multiple offspring operators were studied, with only the best two
offspring solutions out of all finally selected, e.g. linear or the min-max arithmetic
operator. Examples of more advanced operators include higher or adjustable arity
operators (multiple parent solutions), including global recombination, gene-pool re-
combination, linkage evolving operator or the m-tuple mating [70, 16, 148, 134].

From a mathematical point of view, disregarding recombination operators, these
methods can be interpreted as stochastic numerical approximations of Feynman-
Kac measures, representing the distribution of paths for a reference Markov pro-
cess weighted by a collection of potential functions. These functional models are
natural mathematical extensions of the traditional change of probability measures,
commonly used in importance sampling. The particle interpretation, as a direct anal-
ogy to genetic algorithms, consists in evolving a population of particles that mimic
natural evolution mechanisms. During the transition (mutation) stage, the particles
evolve independently one of another, according to the same probability transitions
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as the ones of the reference Markov chain. During the selection stage, each par-
ticle evaluates the potential value of its location and the ones with small relative
values are discarded while the ones with high relative values are multiplied. The
corresponding genealogical tree occupation measure converges, as the population
size tends to infinity, to the complete Feynman-Kac distribution on path space. As
a direct analogy, particle algorithms also rely on transition operators (equivalent of
mutation) although imposing to leave the initial distribution measure invariant. No
direct equivalent of crossover operators exists however as a straightforward under-
standing and modeling of a recombination transition does not always make sense or
is even possible and coherent in a simulation context. Analogously, different selec-
tion strategies were explored, including proportional selection, stochastic universal
sampling, tournament, (linear, exponential) ranking, sigma scaling or Boltzmann
selection, all with or without elitism or truncation. Additionally, replacement may
consider the depletion of the worst, best or most similar individuals (crowding),
replacement of parent(s) or of randomly selected individuals. While selection is
also considered in particle algorithms, semantics may differ depending on the spe-
cific application area, e.g. being referred to as resampling, filtering, absorption, etc.,
and implicitly encloses replacement. Additional examples and applications are pre-
sented in Section 1.5, allowing for a direct analogy between evolutionary computing
and particle algorithms.

Extensions of the classical genetic paradigm fostered different axes of study,
leading to co-evolution and memetic algorithms [133, 136, 1], e.g. hybrid local
vs global exploration strategies, Lamarckian evolution and Baldwin effect, meta
and hyper-heuristics [18], cultural algorithms [142], differential evolution [157],
swarm intelligence (ant colony, particle swarm, artificial immune systems, etc.)
[15, 33, 116, 35], scatter search and path relinking [85, 93], genetic programming
[122] (symbolic regression), or evolution strategies [7, 14], among many others.
All and each of these paradigms finally led to intense research on, for example,
different hybridization strategies at low-level, operator enclosed, or at high-level,
as a sequence of heuristics or independently evolving parallel algorithms, different
strategies in differential evolution, etc. Furthermore, different approaches like the
Covariance Matrix Adaptation Evolution Strategies [92, 91], Estimation of Distri-
bution Algorithms [138] or the Reactive Search [12] (sub-symbolic learning, adap-
tation and incremental model development) were introduced, exploiting landscape
information in the form of second order model approximations, estimations of op-
tima distribution or reinforcement based learning. As a side note, landscape stud-
ies developed as a standalone axis of research in an attempt to understand what
correlation exists between specific features in an objective function’s landscape or
definition and the (non) efficiency of the different exploration strategies [159, 160,
154, 155, 162]. Extensive research was also conducted on (self) tuning and adaptive
paradigms [103, 73, 71] with applications in ill-conditioned, dynamic and stochastic
problems, including online problems or aspects as state dependency and decision
making [106]. Additional axes, although out of scope and not detailed in this intro-
duction, include multi-objective evolutionary computing algorithms [31, 30] where
a set of best-compromise solutions have to be found (Pareto set and front in the
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solution, respectively objective space), and parallel models [2, 21], e.g. multi-start,
islands and topological (a)synchronous information exchange models. As a con-
verging trend, an affinity for including or exploiting aspects and techniques from
probability and statistics is emerging, making that, except for correspondences with
filtering algorithms and sampling, different analogies are possible with applications
in tracking, non-linear estimation problems, signal processing or stochastic opti-
mization [47, 48, 40, 38, 58, 67].

1.1.2 Outline of the Chapter

The remainder of this chapter includes a pedagogical introduction to the stochastic
modeling and the theoretical analysis of interacting particle algorithms in an effort
to shed new light on some interesting links between physical, engineering, statisti-
cal and mathematical domains that appear disconnected at first glance. Second, the
mathematical concepts and models are now at a point where they provide a very nat-
ural and unifying mathematical basis for a large class of Monte Carlo algorithms. To
simplify the presentation and to clarify the main ideas behind these stochastic mod-
els, we have chosen to restrict the contents of this chapter to finite or countable state
space models, avoiding any measure theory irrelevancies. In this simplified frame-
work, we develop a rigorous mathematical analysis only involving vector and matrix
operations. We emphasize that all of these particle models and the associated conver-
gence results can be extended to general state-space models, including path-space
models and excursion spaces on abstract measurable state spaces. In Section 1.5 sev-
eral application areas are presented and a detailed description of interacting particle
algorithms is provided.

1.2 Basic Notation and Motivation

In this section, we provide some basic notation and some comments on the stochas-
tic models presented in this chapter. First, we mention that probabilistic models are
always defined in terms of measures, numerical functions, as well as operators on
functions and measures. Besides the fact that measures on finite spaces can be seen
as elementary functions and linear operators as simple matrices, in order to provide
a rigorous presentation and to facilitate the extensions to more general models we
have chosen to keep the probabilistic terminology and the corresponding notation.

Let E be a finite set equipped with a matrix (Q(x,y))x,y∈E . A signed measure
on a finite set E is a mapping x ∈ E "→ µ(x) ∈ R. For any subset A ⊂ E , and any
numerical function x ∈ E "→ f (x) we set

µ(A) := ∑
x∈A

µ(x) = ∑
x∈E

µ(x) A(x) and µ( f ) = ∑
x∈E

µ(x) f (x)
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with the indicator function A of a subset A. The Dirac measure at some point x ∈ E
is the indicator function x : y ∈ E "→ x(y) of the set {x}. In this slightly abusive
notation, we have µ(A) = µ( A) and x(A) = A(x). A probability measure is a non
negative measure µ such that µ(E) = 1. Given some nonnegative measure µ on E ,
sometimes we use the proportional relation and we write

ν ∝ µ to define the probability measure ν(x) = µ(x)/∑z∈E µ(z).

The empirical measure associated with a set of N states (x1, . . . ,xN) ∈ EN is the
measure defined by

y ∈ E "→ ηN(y) :=
1
N

N

∑
i=1

xi(y)

with N ≥ 1. By construction, we have

ηN( f ) = ∑
y∈E

f (y)ηN(y) =
1
N

N

∑
i=1

f (xi)

We also denote by Q( f ) and (µQ) the function x "→ Q( f )(x) and the measure y "→
(µQ)(y) defined below

Q( f )(x) := ∑
y

Q(x,y) f (y) and (µQ)(y) := ∑
x

µ(x)Q(x,y) (1.1)

In this notation, reversing the summation order, we have µ(Q( f )) = (µQ)( f ).
For instance, for finite ordered state spaces with cardinality d ≥ 1 there is no loss

of generality to suppose that E = {1, . . . ,d}. In this case, we can identify measures
µ , matrices Q, and functions f by the conventional notation of vector calculus

µ := [µ(1), . . . ,µ(d)] Q :=




Q(1,1) · · · Q(1,d)

...
...

...
Q(d,1) · · · Q1(d,d)



 f :=




f (1)

...
f (d)





In this situation, the formulae (1.1) coincide with the usual matrix operations, with
the x-th entry Q( f )(x) of the column vector Q f , and the y-th entry (µQ)(y) of the
line vector µQ.

Given a sequence of matrices (Qn(x,y))x,y∈E , indexed by the parameter n ∈ N,
we denote by (Q1 . . .Qn) the composition of the matrices Qp, from p = 1 to p = n;
that is, we have that

(Q1 . . .Qn)(x0,xn) = ∑
x1,...,xn−1∈E

Q1(x0,x1)Q2(x1,x2) . . .Qn(xn−1,xn)

For time homogeneous matrices Qn = Q, we set Qn = (Q1 . . .Qn).
A Markov transition is a positive matrix (M(x,y))x,y∈E such that ∑y M(x,y) =

1, for any x ∈ E . These matrices are sometimes called stochastic matrices in the
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literature on probability and Markov chains. We say that a measure µ(x) on E is
reversible for a Markov transition M(x,y) if we have for any states x,y ∈ E

µ(x)M(x,y) = µ(y)M(y,x)

We say that a probability measure µ(x) is invariant for the Markov transition M(x,y)
if we have for each y ∈ E

µ(y) = ∑
x

µ(x)M(x,y)

Measures, matrices and functions are defined in the same way on more general
measurable state spaces E under appropriate well known regularity conditions. We
denote respectively by M (E), and B(E), the set of all finite signed measures on
some measurable space (E,E ), and the Banach space of all bounded and measurable
functions f equipped with the uniform norm ‖ f‖.

We let µ( f ) =
∫

µ(dx) f (x), be the Lebesgue integral of a function f ∈B(E),
with respect to a measure µ ∈M (E). We recall that a bounded integral operator
M from a measurable space (E,E ) into an auxiliary measurable space (F,F ) is an
operator f "→M( f ) from B(F) into B(E) such that the functions x "→M( f )(x) :=∫

F M(x,dy) f (y) are E -measurable and bounded, for any f ∈B(F). A Markov ker-
nel is a positive and bounded integral operator M with M(1) = 1. Given a pair of
bounded integral operators (M1,M2), we let (M1M2) the composition operator de-
fined by (M1M2)( f ) = M1(M2( f )). For time homogenous state spaces, we denote
by Mm = Mm−1M = MMm−1 the m-th composition of a given bounded integral op-
erator M, with m≥ 1.

We shall slightly abuse the notation and we denote by 0 and 1 the zero and the
unit elements in the semi-rings (R,+,×) and in the set of functions on some state
space E . We recall that the gradient ∇ f and the Hessian ∇2 f of a smooth function

f : θ = (θ i)1≤i≤d ∈Rd "→ f (θ ) ∈R are defined by the functions

∇ f =
(

∂ f
∂θ 1 ,

∂ f
∂θ 2 , . . . ,

∂ f
∂θ d

)
and ∇2 f =





∂ 2 f
∂ 2θ 1

∂ 2 f
∂θ 1∂θ 2 · · · ∂ 2 f

∂θ 1θ d

∂ 2 f
∂θ 2∂θ 1

∂ 2 f
∂ 2∂θ 2 · · · ∂ 2 f

∂θ 2θ d

...
...

...
∂ 2 f

∂θ d∂θ 1
∂ 2 f

∂θ d ∂θ 2 · · · ∂ 2 f
∂ 2θ d





Given a (d × d′) matrix M with random entries M(i, j), we write E(M) the de-
terministic matrix with entries E(M(i, j)). We also denote by (.)+, (.)− and +.,
respectively the positive, negative and integer part operations. The maximum and
minimum operations are denoted respectively by ∨ and ∧

a∨b = max(a,b) and a∧b = min(a,b)

We also use the traditional conventions
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(

∑
/0
,∏

/0

)
= (0,1) and

(
sup

/0
, inf

/0

)
= (−∞,+∞)

1.3 Genetic Particle Models

Genetic algorithms are often presented as a random search heuristic that mim-
ics the process of evolution to generate useful solutions to complex optimization
problems. The genetic evolution starts with a population of N candidate possible
solutions (ξ 1

0 , . . . ,ξ N
0 ) randomly chosen w.r.t. some distribution η0(x) on some ini-

tial finite state space, say E0, where the coordinates ξ i
0 are also called individuals

or genotypes, with 1 ≤ N. In discrete generation models, the genetic evolution is
decomposed into two main steps: the selection and the mutation transitions. Dur-
ing the selection-reproduction stage, multiple individuals in the current population
(ξ 1

n , . . . ,ξ N
n ) at time n ∈ N are stochastically selected based on some problem de-

pendent fitness function Gn that measure the quality of a solution on a given finite
solution space En. In practice, we choose a random proportion Bi

n of an existing so-
lution ξ i

n in the current population with a mean value ∝ Gn(ξ i
n) to breed a brand new

generation of “improved” solutions (ξ̂ 1
n , . . . , ξ̂ N

n ). During the mutation step, every
selected individual ξ̂ i

n mutates to a new solution ξ i
n+1 = x randomly chosen with a

distribution Mn+1(ξ̂ i
n,x) on a possibly different finite solution space En+1. This gen-

erational random process is repeated until some desired termination condition has
been reached.

An informal pseudocode description is provided in figure 1.
The question of why these genetic algorithms often succeed at generating high

fitness solutions of complex practical problems is not really well understood. Some-
times some researchers say: “If God uses this natural evolution procedures why I
shouldn’t use it to solve my problem?”. More surprisingly, genetic type selection-
mutation models are currently used in a variety of application domains, including
numerical physics, biology, signal processing, Bayesian statistics, rare event simu-
lation, uncertainty propagation in numerical codes, and many others. In Sequential
Monte Carlo literature, the mutation and the selection steps are called the sam-
pling and the resampling transition. In advanced signal processing, particle filters
also coincide with these genetic models with mutation-selection stages given by the
prediction-updating steps. In Diffusion Monte Carlo methods as well as in Quan-
tum Monte Carlo methods, the mutation and the selection steps are interpreted as
the free evolution of walkers and the reconfiguration of the population. In polymer
chain simulations, the selection transition is often called pruning. Many other botan-
ical names are given to the selection transition, including cloning, replenish, go with
the winner, and many others. For a more thorough discussion on this question with
rather detailed bibliographical references, we refer the reader to [52, 38].

One crucial comment is that the size of the population N should be a precision
parameter, so that in some sense we solve the problem at hand when N tends to
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Algorithm 1.1. Genetic algorithm pseudocode
{Fix some population size (precision of the algorithm) parameter N}
Initialization
ξ0:= sample N particles, (ξ i

0)1≤i≤N randomly with some given law η0.
for k = 1 to n do

Selection
for i = 1 to N do

{For each particle}

ξ̂ i
k−1:=






ξ i
k−1, with probability Gk−1(ξ i

k−1)/max1≤ j≤N Gk−1(ξ j
k−1) (1)

ξ̃ i
k−1, a random variable with law

N

∑
i=1

Gk−1(ξ i
k−1)

∑N
j=1 Gk−1(ξ j

k−1)
δξ i

k−1
, otherwise (2).

end for
{We can replace the acceptance probability in the r.h.s. of (1) by the quantity ε Gk−1(ξ i

k−1),

for any ε ≥ 0, such that ε max1≤ j≤N Gk−1(ξ j
k−1)≤ 1. If we choose ε = 0, we simply remove

the line (1), so that the selection transition coincides with the proportional/roulette selection}

Transition
for i = 1 to N do

{For each particle}
ξ i

k:= Fk(ξ̂ i
k−1,ω i

k),
{Fk(.,ω i

k) designates the perturbation operator generating new candidate solutions. In

other words, ξ i
k = x with probability Mk(ξ̂ i

k−1,x).}
end for

end for

infinity. In other words, when the computational resources N→∞ the genetic search
model should increased its ability to find the desired solution. One way to under-
stand these questions is to analyze the genealogical tree of a given population of
individuals. If we interpret the genetic algorithm as a birth and death branching pro-
cess, then we can trace back in time the whole ancestral line of the individual ξ i

n at
the n-th generation.

ξ i
0,n←− ξ i

1,n←− . . .←− ξ i
n−1,n←− ξ i

n,n = ξ i
n

The random state ξ i
p,n represents the ancestor of the individual ξ i

n at the level p, with
0≤ p≤ n, and 1≤ i≤ N.

One could expect that this genealogical tree models have different asymptotic be-
haviors depending on their sampling and on the problem at hand. In fact, in terms of
proportions and probability measures we don’t have a lot of variability. The random
occupation measure of the tree becomes more and more deterministic and we have
the following convergence result
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lim
N→∞

1
N

N

∑
i=1

(ξ i
0,n,ξ

i
1,n,...,ξ i

n,n)
(x0,x1, . . . ,xn) =

1
Zn

{

∏
0≤p<n

Gp(xp)

}
×Pn(x0, . . . ,xn)

(1.2)
with some normalizing constant Zn, and the probability distribution of a Markov
chain sequence

Pn(x0, . . . ,xn) := η0(x0)M1(x0,x1) . . .Mn(xn−1,xn)

Furthermore, the product of the empirical population mean values of the fitness
functions we used in the genetic evolution provides an unbiased estimate of the
unknown normalizing constants

Z N
n := ∏

0≤p<n

1
N

N

∑
i=1

Gp(ξ i
p)−→N→∞ Zn

These limiting probability measures in the r.h.s. of (1.2) are often called Feynman-
Kac measures or Boltzmann-Gibbs distributions in physics and in the applied prob-
ability literature. Inversely, suppose that we have to sample from a Feynman-Kac
probability measure on some product space and/or we need to compute their nor-
malizing constants. Then, one particle sampling strategy is to run a genetic particle
approximation model.

Besides the fact that these rather surprising theoretical results give some insight
on the convergence of genetic algorithms and their range of applications, many ques-
tions remain to be answered: What is the rate of convergence in the estimates given
above? Are they uniform w.r.t. the time parameter? Is it possible to quantify the
law of a finite block of individuals? Do we have Central Limit Theorems and expo-
nentially small sub-Gaussian deviation probabilities as in conventional Monte Carlo
sampling? What is the interpretation of these limiting probability measures in prac-
tical situation and real world concrete problems? How to turn a given complex esti-
mation problem into this probabilistic framework? In this chapter, we provide some
answers to these natural questions. In Section 1.4, we provide a brief overview of
the connections between abstract positive matrices and genetic type interacting par-
ticle models. This section should not be skipped since it contains a series of recipes
on matrix models and their particle interpretations to be combined with one another
and applied in the application domains discussed in Section 1.5. The displeasure
practitioners may get when analyzing these matrix models and their particle inter-
pretations will fade since the genetic type particle approximations of these quantities
presented below will provide instantly a collection of powerful simulation tools for
the numerical solution of the problem at hand. In Section 1.5, we discuss a series
of application domains of genetic particle models, by no means exhaustive. Each
application starts with an introduction connecting the results developed in earlier
parts with the current description.
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1.4 Positive Matrices and Particle Recipes

1.4.1 Positive Matrices and Measures

1.4.1.1 Description of the Models

Let E be a finite set. We consider a collection of matrices Qn := (Qn(x,y))x,y∈E
with non negative entries Qn(x,y) ≥ 0. Given a probability measure η0 on E , we
denote by Qn the measure on the product space En :=En+1 defined for any sequence
(xp)0≤p≤n ∈ En of length n by the following formula:

Qn(x0, . . . ,xn) ∝ η0(x0) Q1(x0,x1) Q2(x1,x2) . . . Qn(xn−1,xn) (1.3)

When the matrices Qn(x,y) are such that ∑y∈E Qn(x,y) = 1, for any x ∈ E , we can
interpret Qn(x,y) as the probability of the transition Xn−1 = x! Xn = y of a given
Markov chain Xn. In this situation, we have

Qn(x0, . . . ,xn) = Proba((X0, . . . ,Xn) = (x0, . . . ,xn)) (1.4)

Moreover, if we set

Mn(x,y) = Proba(Xn = y | Xn−1 = x) and η0(x) = Proba(X0 = x)

then we find that

Qn(x0, . . . ,xn)

= Pn(x0, . . . ,xn)

:= Proba((X0, . . . ,Xn) = (x0, . . . ,xn))

= Proba(X0 = x0)Proba(X1 = x1 | X0 = x0) . . .Proba(Xn = y | Xn−1 = x)

= η0(x0)M1(x0,x1) . . .Mn(xn−1,xn)

In a variety of applications, we want to approximate the integral type mean values
of functions fn on the product space En

Qn( fn) = ∑
x0,...,xn

Qn(x0, . . . ,xn) fn(x0, . . . ,xn) (1.5)

as well as their normalizing constants

Zn := ∑
x0,...,xn

η0(x0) Q1(x0,x1) Q2(x1,x2) . . . Qn(xn−1,xn) (1.6)
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Reducing a bit our initial objective, sometimes we only want to approximate the
final time marginals

ηn(xn) := ∑
x0...,xn−1

Qn(x0, . . . ,xn−1,xn) and γn(xn) := Zn×ηn(xn)

(⇒ γn(1) = Zn) (1.7)

1.4.1.2 Path Space Models

From the pure mathematical point of view, for path space models these marginal
measure models are equivalent to the model defined in (1.3). More precisely, if we
set

∀n≥ 0 xn := (x0,n,x1,n, . . . ,xn−1,n,xn,n) ∈ En

then we find that

Qn(xn) = Qn(x0,n,x1,n, . . . ,xn−1,n,xn,n)

∝ η0(x0,n) Q1(x0,n,x1,n) Q2(x1,n,x2,n) . . . Qn(xn−1,n−1,xn,n)

∝ ∑
xn−1∈En−1

Qn−1(xn−1) Qn(xn−1,xn)

with the matrices

Qn(xn−1,xn) := xn−1(x0,n,x1,n, . . . ,xn−1,n)×Qn(xn−1,n,xn,n) (1.8)

This implies that Qn(xn) is the n-th marginal of the extended measure on the product
of the path spaces ∏0≤p≤n Ep defined by

Q(path)
n (x0, . . . ,xn) ∝ η0(x0)Q1(x0,x1)Q2(x1,x2) . . .Qn(xn−1,xn)

for any xp ∈ Ep, with 0≤ p ≤ n.
In the case of Markov transitions Qn = Mn discussed in (1.4), we have

Qn(xn−1,xn) = Mn(xn−1,xn)

:= xn−1(x0,n,x1,n, . . . ,xn−1,n)×Mn(xn−1,n,xn,n)

In other words, Mn(xn−1,xn) is the Markov transition of the historical process

Xn = (X0, . . . ,Xn)

of the Markov chain Xn with transitions Mn; that is, we have that
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Proba(Xn = xn | Xn−1 = xn−1)

Proba((X0, . . . ,Xn) = (x0,n, . . . ,xn,n) | (X0, . . . ,Xn−1) = (x0,n−1, . . . ,xn−1,n−1))

= xn−1(x0,n,x1,n, . . . ,xn−1,n)×Proba(Xn = xn,n | Xn−1 = xn−1,n)

= xn−1(x0,n,x1,n, . . . ,xn−1,n)×Mn(xn−1,n,xn,n)

Finally, in this situation we observe that

Qn(xn) =Qn(x0,n,x1,n, . . . ,xn−1,n,xn,n) = Pn(x0,n,x1,n, . . . ,xn−1,n,xn,n) = Pn(xn)

with

Pn(x0,n,x1,n, . . . ,xn−1,n,xn,n) = η0(d0,n)M1(x0,n,x1,n) . . .Mn(xn−1,n,xn,n)

Another useful state space enlargement allows to work on “transition type” state
spaces E2. These models are defined as follows. For any time n≥ 0, we set

xn := (xn−1,n,xn,n) ∈ E2 and Qn(xn−1,xn) := xn−1,n−1(xn−1,n) Qn(xn−1,n,xn,n)

We also use the convention η0(x0) = η0(x−1,0,x0,0) = η0(x0,0), for n = 0. In this
notation, for any sequence xn with xn−1,n = xn−1,n−1, we have

η0(x0)Q1(x0,x1)Q2(x1,x2) . . .Qn(xn−1,xn)

∝ η0(x0,0)Q1(x0,0,x1,1)Q2(x1,1,x2,2) . . .Qn(xn−1,n−1,xn,n)

1.4.2 Interacting Particle Models

1.4.2.1 Genetic Population Evolution

This section is concerned with the design of a genetic particle approximation of the
measures ηn introduced in (1.7). One universal way to associate a genetic population
evolution model to positive matrices Qn(xn−1,xn) is to use the decomposition

Qn(xn−1,xn) = Gn−1(xn−1)×Mn(xn−1,xn) (1.9)

with the Markov transition Mn and the potential function Gn−1

Mn(xn−1,xn) :=
Qn(xn−1,xn)

∑xn Qn(xn−1,xn)
and Gn−1(xn−1) = ∑

xn

Qn(xn−1,xn) (1.10)

We let Xn be a Markov chain with initial distribution η0 and Markov transitions
Mn. By the definition of the measure Qn, the integral type formula (1.5) has the
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following probabilistic interpretation

Qn( fn) ∝ ∑
x1,...,xn

fn(x0, . . . ,xn)

{

∏
0≤p<n

Gp(xp)

}
×
{

η0(x0) ∏
1≤p≤n

Mp(xp−1,xp)

}

∝ E
[

fn(X0, . . . ,Xn)

{

∏
0≤p<n

Gp(Xp)

}]
(1.11)

with the normalizing constant

Zn := E
[

∏
0≤p<n

Gp(Xp)

]

For unit potential functions Gn(x) = 1, the model resumes to the Markov transitions
model Qn = Mn discussed in (1.4). In this context, we clearly have that Zn = 1 and

Qn( fn) = Pn( fn) = E [ fn(X0, . . . ,Xn)]

In this situation, we can approximate these expectation by sampling N independent
copies Xi

n of the Markov chain Xn and using the traditional Monte Carlo empirical
estimates

PN
n ( fn) :=

1
N

N

∑
i=1

fn(Xi
0, . . . ,X

i
n)

In more general situations, the potential functions Gn may change radically the prob-
ability mass distributions of the measures Qn. For instance, for indicator functions
Gn = 1A, we have

Zn := E
[

∏
0≤p<n

Gp(Xp)

]
= Proba(Xp ∈ A, ∀0≤ p < n)

and
Qn = Law((X0, . . . ,Xn) | Xp ∈ A, ∀0≤ p < n)

as soon as Zn > 0. In this situation, the probability measure Qn only charges ran-
dom trajectories that remains in the set A, for any time 0 ≤ p < n. This situation is
discussed in some details in section 1.5.1.1 dedicated to particle absorption models.
We already mention that in this case we often have

Proba(Xp ∈ A, ∀0≤ p < n)→n↑∞ 0

so that it becomes more and more unlikely that a random sample copy of Xn re-
mains in the set A for all times 0 ≤ p < n during a large horizon n. when all the N
independent copies Xi

n have left the desired A, we have
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1
N

N

∑
i=1

fn(Xi
0, . . . ,X

i
n) ∏

0≤p<n
Gp(Xi

p) = 0

To avoid this ”technical” problem, we use a genetic type acceptance rejection sam-
pling scheme. To avoid some unnecessary technical discussion, we further assume
that the functions Gn take values in ]0,1]. As we shall see, this condition can be
removed. Practically, we approximate the desired target measures ηn(xn) by a large
cloud of N random samples also termed particles ξ i

n, with 1≤ i≤ N; that is, at any
time n≥ 0, we have that

ηN
n (x) :=

1
N

N

∑
i=1

ξ i
n
(x)−→N→∞ ηn(x) (1.12)

The particle system ξn :=
(
ξ i

n
)

1≤i≤N is a simple genetic sampling model combing a
mutation transition and a selection transition

ξn := (ξ i
n)1≤i≤N

selection
−−−−−−−−−−−−→ ξ̂n := (ξ̂ i

n)1≤i≤N
mutation

−−−−−−−−−−−−→ξn+1 (1.13)

During the mutation transition, every individual performs a local random move ac-
cording to the Markov transition Mn. During the selection step, every individual
evaluates its potential value Gn(ξ i

n), with 1≤ i≤ N. For every index i, with a prob-
ability Gn(ξ i

n), we set ξ̂ i
n = ξ i

n, otherwise we replace ξ i
n by a fresh new individual

ξ̂ i
n = ξ j

n randomly chosen in the whole population with a probability ∝ Gn(ξ j
n ).

For more general potential functions, we can replace the acceptance rate Gn(ξ i
n)

of any individual ξ i
n by any acceptance rate of the form εn(ξn)Gn(ξ i

n) with some
εn(ξn) ≥ 0 that may depend on the whole population and s.t. εn(ξn)Gn(ξ i

n) ∈ [0,1].
For instance, we can chose εn = 0 or εn(ξn) = 1/max1≤i≤N Gn(ξ i

n). In the first case,
the selection transition is often called the “proportional selection”. In the second
case, we notice that the best fit individuals are always accepted. In all cases, the
acceptance probability of an individual ξ i

n is proportional to Gn(ξ i
n). In the further

development of this chapter, we write that the acceptance probability is ∝ Gn(ξ i
n).

We end this section with a second important remark:
Let us suppose that Qn has the following form

Qn(xn−1,xn) = Kn(xn−1,xn)×Hn(xn)

for some Markov transition Kn and some potential function Hn. In this situation, the
decomposition (1.10) is met with

Mn(xn−1,xn) :=
Kn(xn−1,xn)Hn(xn)

∑xn Kn(xn−1,xn)Hn(xn)
and Gn−1(xn−1) = ∑

xn

Kn(xn−1,xn)Hn(xn)

In practice, the numerical solving of the sum in the r.h.s. equation and the com-
putational cost of sampling a mutation xn−1 ! xn with the transition Mn can be
prohibitive. One way to solve these problems is to sample a sequence of transitions
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ξ i
n−1! ζ i, j

n , with 1≤ j≤N′ using the Markov transition Kn so that for any 1≤ i≤N
we have

KN′
n (ξ i

n−1,xn) =
1
N′

N′

∑
i=1

ζ i, j
n
(xn)3N′↑∞ Kn(ξ i

n−1,xn)

We let MN′
n and GN′

n−1 be the Markov transitions and the potential functions defined
as Mn and Gn−1, replacing Kn by KN′

n in the above equations; that is, we have

MN′
n (ξ i

n−1,xn) :=
N′

∑
j=1

Hn(ζ i, j
n )

∑N′
k=1 Hn(ζ i,k

n ) ζ i, j
n
(xn) and GN′

n−1(ξ i
n−1) =

1
N′

N′

∑
j=1

Hn(ζ i, j
n )

Another strategy is to observe that the measures (1.3) are given by

Qn(x0, . . . ,xn) ∝
[
η0(x0) Q′1(x0,x1) Q′2(x1,x2) . . . Q′n(xn−1,xn)

]
Hn(xn)

with
Q′n(xn−1,xn) = Hn−1(xn−1) Kn(xn−1,xn)

and the convention H0 = 1, for n = 1. In this interpretation, we approximate the
measures

Q′n(x0, . . . ,xn) ∝ η0(x0) Q′1(x0,x1) Q′2(x1,x2) . . . Q′n(xn−1,xn)

using the particle occupation measures defined above (with mutation transitions Kn
and selection fitness functions Hn) weighted by the function Hn(xn)

N

∑
i=1

Hn(ξ i
n)

∑N
j=1 Hn(ξ j

n )
ξ i

n
(x)−→N→∞ ηn(x)

1.4.2.2 Particle Normalizing Constants

In this section, we present an unbiased particle approximation of the normalizing
constants Zn introduced in (1.6). Using the decomposition

Qn(x0, . . . ,xn) =
Zn−1

Zn
Qn−1(x0, . . . ,xn−1) Qn(xn−1,xn)

we find the following matrix formulae

ηn =
Zn−1

Zn
ηn−1Qn =⇒ Zn

Zn−1
= ηn−1Qn(1) = ηn−1(Gn−1) and γn = γn−1Qn

Now, it is also easily checked that

γn(1) = γn−1Qn(1) = γn−1(1) ηn−1Qn(1) = · · ·= ∏
0≤p<n

ηpQp+1(1) = ∏
0≤p<n

ηp(Gp)



22 P. Del Moral, A.-A. Tantar, and E. Tantar

Mimicking the r.h.s. multiplicative formula, an N-particle approximation of the nor-
malizing constants Zn is given by the following unbiased estimates

Z N
n := ∏

0≤p<n
ηN

p (Gp)−→N→∞ Zn = ∏
0≤p<n

ηp(Gp)

and for any x ∈ E

γN
n (x) := Z N

n ηN
n (x)−→N→∞ γn(x) := Zn ηn(x) (1.14)

Furthermore, the particle estimate γN
n (x) is unbiased in the sense that for any x ∈ E ,

and for any n≥ 0, we have
E
(
γN

n (x)
)
= γn(x)

The proof of this property is not so obvious. To our knowledge, in the context of
nonlinear filtering this property has first been proved in [36]. See also [52] and [38]
for more general models.

1.4.3 Genealogical and Ancestral Structures

1.4.3.1 Genealogical Trees

The aim of this section is to use the genealogical tree structure of the genetic popula-
tion model defined in the previous sections to approximate the measures Qn defined
in (1.3).

Running back in time, we can trace back the complete ancestral lines of the in-
dividuals and the time evolution of the genealogical tree model associated with the
genetic algorithm described above. For instance, a realization of that tree for N = 3
individuals and n = 4 iterations is given by

ξ 1
0

!! ξ 1
1 ξ 1

2
!! ξ 1

3
!! ξ 1

4
!! ξ 1

5

ξ 2
0

!! ξ 2
1

""!
!!

!!
!!

##"""""""
!! ξ 2

2 ξ 2
3

!! ξ 2
4

$$#
##

##
##

!! ξ 2
5

ξ 3
0

!! ξ 3
1 ξ 3

2

%%$$$$$$$
!! ξ 3

3
!! ξ 3

4 ξ 3
5

One way to encode the ancestral line of a current individual, say ξ 2
5 , is to write ξ 2

p,5

with the level index 0 ≤ p ≤ 5 of the ancestor; with the convention ξ 2
5,5 = ξ 2

5 , for
p = 5. In this notation, we obtain N = 3 ancestral lines, and the line associated with
the i-th current individual ξ i

n is the random vector in the product space En given by
(
ξ i

0,n,ξ i
1,n,ξ i

2,n, . . . ,ξ i
n−1,n,ξ i

n,n
)
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An N-particle approximation of Qn is given by the occupation measure of these
ancestral lines

1
N

N

∑
i=1

(ξ i
0,n,ξ

i
1,n,...,ξ i

n,n)
(x0, . . . ,xn)−→N→∞ Qn(x0, . . . ,xn) (1.15)

Furthermore, the evolution model of the genealogical N ancestral lines

ξ i
n := (ξ i

0,n,ξ i
1,n, . . . ,ξ i

n,n)

with 1≤ i≤ N, coincides with the genetic model defined in (1.13) on product state
spaces En = En with matrices Qn(xn−1,xn) defined in (1.8). In the path space nota-
tion used in (1.8), the convergence result (1.15) takes the following form

1
N

N

∑
i=1

ξ i
n
(xn)−→N→∞ Qn(xn)

for any xn := (x0,n,x1,n, . . . ,xn−1,n,xn,n) ∈ En; and this property coincides with
(1.12).

Once again, this state space enlargement property is not really obvious. To our
knowledge, this property has first been proved in [53].

1.4.3.2 Complete Ancestral Trees

To simplify the presentation, sometimes we denote by Ξn the sequence of complete
genealogical trees ξp := (ξ i

p)1≤i≤N , from the origin p = 0, up to time p = n; that is,
we set

Ξn = (Ξ0,n,Ξ1,n, . . . ,Ξn,n) := (ξ0, . . . ,ξn) ∈ ∏
0≤p≤n

EN
p

with

Ξp,n = (Ξ i
p,n)1≤i≤N = (ξ i

p)1≤i≤N and Ξ i
p,n := ξ i

p :=
(
ξ i

0,p,ξ i
1,p, . . . ,ξ i

p,p
)

for any 0≤ p≤ n.
Combining this observation with the exchangeability of the particle system and

with the unbiased property of the unnormalized measures (1.14) discussed above,
we conclude that for any function fn on the product space En

E
(

ηN
n ( fn) Z

N
n

)
= E

(
fn
(
ξ 1

n
)

Z
N
n

)
=Qn( fn) with Z

N
n := Z N

n /Zn

and with the first ancestral line ξ 1
n =

(
ξ 1

0,n,ξ 1
1,n, . . . ,ξ 1

n,n

)
of the genealogical tree.

In other words, we have that

E
(
Z

N
n | ξ 1

n = xn

)
×Proba(ξ 1

n = xn) =Qn(xn)
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for any xn := (x0,n,x1,n, . . . ,xn,n) ∈ En. In addition, the measure defined by

TN
n (Fn) := E

(
Fn(Ξn) Z

N
n

)
(1.16)

for any function Fn on the product space ∏0≤p≤n EN
p , is a probability measure whose

ξ i
n-marginals on En coincide with Qn, for any 1≤ i≤ N.

1.4.4 Complete Genealogical Tree Model

The aim of this section is to use the genealogical tree structure of the genetic popula-
tion model defined in the previous sections to approximate the measures Qn defined
in (1.3).

1.4.4.1 Ancestral Lines Occupation Measures

The complete ancestral tree of the genetic model is the set of all the populations of
individuals ξp, from the origin p = 0, up to the final time horizon p = n. Notice that
these systems contain all the information about the genetic evolution, including the
ancestral lines that have disappeared. A basic convergence estimate is the following

1
N ∑N

i=1 (ξ i
0,ξ

i
1,...,ξ i

n)
(x0, . . . ,xn)

−→N→∞ η0(x0)×K1,η0(x0,x1)×K2,η1(x1,x2)× · · ·×Kn,ηn−1(xn−1,xn)

with the stochastic matrices

Kn,ηn−1(x,y) = Gn−1(x) Mn(x,y)+ (1−Gn−1(x)) ∑
z

ηn−1(z)Gn−1(z)
ηn−1(Gn−1)

Mn(z,y)

It is instructive to notice that the selection-mutation Markov transition ξn−1 ! ξn
defined in (1.13) is given by

Proba
(
ξn = (x1, . . . ,xN) | ξn−1

)
:= ∏

1≤i≤N
Kn,ηN

n−1
(ξ i

n−1,x
i)

We recall that ηN
n−1(x) := 1

N ∑N
i=1 ξ i

n−1
(x) stands for the occupation measures of the

genetic population at time (n− 1) so that the probability Kn,ηN
n−1

(ξ i
n−1,x

i) that an

individual ξ i
n = xi is given by

Gn−1(ξ i
n−1) Mn(ξ i

n−1,x
i)+ (1−Gn−1(ξ i

n−1)) ∑N
j=1

Gn−1(ξ
j

n−1)

∑N
k=1 Gn−1(ξ k

n−1)
Mn(ξ j

n−1,x
i)
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Without altering the above convergence results, we can replace the fitness function
Gn in the selection transition of the genetic model defined in section 1.4.2 by any
function of the form εnGn, for any constant εn ≥ 0 s.t. εnGn ∈ [0,1]. The selection
transition associated with the choice ε = 0 is often called a simple selection, a pro-
portional selection, as well as a multinomial branching model. In this situation, we
have the following convergence result

1
N

N

∑
i=1

(ξ i
0,ξ

i
1,...,ξ i

n)
(x0, . . . ,xn)−→N→∞ η0(x0)×η1(x1)× · · ·×ηn(xn) (1.17)

1.4.4.2 Backward Markov Chain Model

Using the matrix formulae given above, we observe that

ηn−1Qn(xn)

ηn(xn)
× ηn−2Qn−1(xn−1)

ηn−1(xn−1)
× · · ·× η0Q1(x1)

η1(x1)
=

Zn

Zn−1
×Zn−1

Zn−2
× · · ·×Z1

Z0
=Zn

From this observation, we readily prove the following backward representation of
Qn

Qn(x0, . . . ,xn)

= ηn(xn)×
ηn−1(xn−1)Qn(xn−1,xn)

ηn−1Qn(xn)
· · · η1(x1)Q2(x1,x2)

η1Q2(x2)
× η0(x0)Q1(x0,x1)

η0Q1(x1)

:= ηn(xn)× Q!
n,ηn−1

(xn,xn−1) · · · Q!
2,η1

(x2,x1)×Q!
1,η0

(x1,x0)
(1.18)

with the time reversal Markov matrices Q!
n,ηn−1

(xn,xn−1) defined below

Q!
n,ηn−1

(xn,xn−1) =
ηn−1(xn−1)Qn(xn−1,xn)

ηn−1Qn(xn)

Mimicking formula (1.18) an alternative particle approximation of the measures Qn
by the following estimate

QN
n (x0, . . . ,xn) = ηN

n (xn)×Q!
n,ηN

n−1
(xn,xn−1) · · ·Q!

2,ηN
1
(x2,x1)×Q!

1,ηN
0
(x1,x0)

→N↑∞ Qn(x0, . . . ,xn) (1.19)

with the time reversal random matrices Q!
n,ηN

n−1
(xn,xn−1) defined by

Q!
n,ηN

n−1
(xn,xn−1) =

ηN
n−1(xn−1)Qn(xn−1,xn)

ηN
n−1Qn(xn)

=
N

∑
i=1

Qn(ξ i
n−1,xn)

∑N
j=1 Qn(ξ j

n−1,xn)
ξ i

n−1
(xn−1)
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Once again, for any function fn on the product space En, we have the following
unbiased property

E
(
Z

N
n QN

n ( fn)
)
= E

(
Z

N
n fn(ζn)

)
=Qn( fn)

where ζn := (ζn,n,ζn−1,n, . . . ,ζ1,n,ζ0,n) stands for a backward Markov chain (as well
as a complete ancestral line) with distribution QN

n . In other words, if we set

xn := (x0,n,x1,n, . . . ,xn−1,n,xn,n) ∈ En with
←
x n= (xn,n,xn−1,n, . . . ,x1,n,x0,n)

then we have that

E
(
Z

N
n | ζn =

←
x n

)
×Proba(ζn =

←
x n) =Qn(xn)

In addition, the measures AN
n defined by

AN
n (Fn) := E

(
Fn(Ξn,ζn) Z

N
n

)

for any function Fn on the product space
{[

∏0≤p≤n EN
p
]
×En

}
, is a probability mea-

sure whose ζn-marginals on En coincide with the measure Qn, for any 1≤ i≤ N.

1.4.5 Particle Derivation and Conditioning Principles

1.4.5.1 Particle Derivation Models

Besides the fact that the computation of Qn and Zn comes from a specific estima-
tion problem, in some application areas, the distribution η(θ)

0 , as well as the matrices

Q(θ)
n (x,y) also depend on some parameter θ ∈Rd , and we want to estimate the gra-

dient ∇Q(θ)
n and ∇Z (θ)

n of the corresponding functions θ "→ Q(θ)
n and θ "→Z (θ)

n .
The computation of these quantities is again connected to the integral type compu-
tation w.r.t. the measure Q(θ)

n , with the following easy to check formulae

∇ logZ (θ)
n =Q(θ)

n (Λ (θ)
n ) and ∇ logQ(θ)

n = Λ (θ)
n −Q(θ)

n (Λ (θ)
n ) (1.20)

with the gradient

Λ (θ)
n := ∇L(θ)

n of the additive functional L(θ)
n (x0, . . . ,xn) :=

n

∑
p=0

logQ(θ)
p (xp−1,xp)

In the above display, we have used the convention Q0(x−1,x0) = η0(x0), for p = 0.
We also have the correlation representation of the Hessian functions
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∇2 logZ (θ)
n =Q(θ)

n

[(
Λ (θ)

n −Q(θ)
n (Λ (θ)

n )
)′(

Λ (θ)
n −Q(θ)

n (Λ (θ)
n )

)]
(1.21)

and for any fn on En

∇2Q(θ)
n ( fn) = Q(θ)

n

[
fn

(
Λ (θ)

n −Q(θ)
n (Λ (θ)

n )
)′(

Λ (θ)
n −Q(θ)

n (Λ (θ)
n )

)]

− Q(θ)
n

[
fn

(
∇2L(θ)

n −Q(θ)
n (∇2L(θ)

n )
)] (1.22)

The physical interpretations or the engineering meaning of these rather abstract
mathematical objects depend on the application domain they are thought for.

Next, we design particle approximations of these derivative models. We denote
by η(θ ,N)

n the occupation measures associated with a genetic particle model with
mutation transitions and fitness potential function defined by

M(θ)
n (x,y) := Q(θ)

n (x,y)/∑
z

Q(θ)
n (x,z) and Gθ

n (x) := ∑
z

Q(θ)
n+1(x,z)

We also denote by Q(θ ,N)
n the random measures on path space defined by

Q(θ ,N)
n (x0, . . . ,xn) := η(θ ,N)

n (xn)×Q!

n,η(θ ,N)
n−1

(xn,xn−1) · · ·Q!

2,η(θ ,N)
1

(x2,x1)

×Q!

1,η(θ ,N)
0

(x1,x0) (1.23)

and the corresponding particle normalizing constants

Z (θ ,N)
n := ∏

0≤p<n
η(θ ,N)

p

(
Gθ

p

)

Mimicking the derivation formulae (1.20) we define the particle derivation of the
logarithm of the normalizing constants by

∇N logZ (θ)
n :=Q(θ ,N)

n (Λ (θ)
n ) −→N↑∞ ∇ logZ (θ)

n

In the same vein, the particle derivation of the measure Q(θ)
n is defined by the fol-

lowing correlation formulae

∇NQ(θ)
n ( fn) :=Q(θ ,N)

(
fn

[
Λ (θ)

n −Q(N,θ)
n (Λ (θ)

n )
])
−→N↑∞ ∇Q(θ)

n ( fn)

for any function fn on En with the additive functional

Λ (θ)
n (x0, . . . ,xn) :=

n

∑
p=0

∇ logQ(θ)
p (xp−1,xp)

and the convention Q0(x−1,x0) = η0(x0) for p = 0.
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Analogously, we define the particle Hessian functions ∇2
N logZ (θ)

n and
∇2

NQ
(θ)
n ( fn) replacing in (1.21) and (1.22) the measures Q(θ)

n by Q(θ ,N)
n .

1.4.5.2 Particle Conditioning Models

This section is concerned with some conditional distributions of the measure Qn and
their particle approximations. First, we observe that

Q(n)
p (x0, . . . ,xp) := ∑

xp+1,...,xn

Qn(x0, . . . ,xp,xp+1, . . . ,xn)

= ηp|n(xp) Q!
p,ηp−1

(xp,xp−1) · · ·Q!
1,η0

(x1,x0) (1.24)

with the p-th marginal ηp|n of the measure Qn defined by the matrix formula

ηp|n := ηnQ!
n,ηn−1

· · ·Q!
p+1,ηp

This clearly implies that

Qn|p((xp+1, . . . ,xn) | (x0, . . . ,xp))

:=Qn(x0, . . . ,xp,xp+1, . . . ,xn)/Q(n)
p (x0, . . . ,xp)

=
1

ηp|n(xp)
ηn(xn)Q!

n,ηn−1
(xn,xn−1) · · ·Q!

p+1,ηp
(xp+1,xp)

The distributions ηp|n(xp) and Qn|p((xp+1, . . . ,xn) | (x0, . . . ,xp) = Qn|p((xp+1, . . . ,
xn) | xp) can be approximated using the complete ancestral tree and replacing in
the above formulae the measures ηp by their particle approximations ηN

p , with
0≤ p≤ n:

ηN
p|n := ηN

n Q!
n,ηN

n−1
· · ·Q!

p+1,ηN
p

(1.25)

and

QN
n|p((xp+1, . . . ,xn) | xp) =

1
ηN

p|n(xp)
ηN

n (xn)Q!
n,ηN

n−1
(xn,xn−1) · · ·Q!

p+1,ηN
p
(xp+1,xp)

We end this section with a probabilistic interpretation of these mathematical objects.
First, using (1.9) we find the following decomposition

Qn(x0, . . . ,xn) =
1

Zn

{

∏
0≤p<n

Gp(xp)

}
Pn(x0, . . . ,xn)

with the distribution Pn(x0, . . . ,xn) of the Markov chain sequence with initial condi-
tion Law(X0) = η0 and Markov transitions Mn
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Pn(x0, . . . ,xn) = Proba((X0, . . . ,Xn) = (x0, . . . ,xn))

= η0(x0)M1(x0,x1)M2(x1,x2) · · ·Mn(xn−1,xn)

In this interpretation, we have

Q(n)
p (x0, . . . ,xp) :=

Zn|p(xp)

Zn

{

∏
0≤q<p

Gq(xq)

}
Pp(x0, . . . ,xp)

=
Zn|p(xp)

Zn|p
Qp(x0, . . . ,xp)

=
Zn|p(xp)

Zn|p
ηp(xp)

[
Q!

p,ηp−1
(xp,xp−1) · · ·Q!

1,η0
(x1,x0)

]

with Zn|p and Zn|p(xp) defined by

Zn|p = Zn/Zp = ∏
p≤q<n

ηq(Gq) and Zn|p(xp) := E
({

∏
p≤q<n

Gq(xq)

}
|Xp = xp

)

Using (1.24), this implies that

ηp|n(xp) =
1

Zn|p
Zn|p(xp) ηp(xp) (1.26)

and

Qn|p((xp+1, . . . ,xn) | xp) =
1

Zn|p(xp)

{

∏
p≤q<n

Gq(xq)

}
Pn|p((xp+1, . . . ,xn)|xp)

with the conditional distribution

Pn|p((xp+1, . . . ,xn)|xp) = Proba((Xp+1, . . . ,Xn) = (xp+1, . . . ,xn)|Xp = xp)

= Mp+1(xp,xp+1) · · ·Mn(xn−1,xn)

Combining (1.25) and (1.26) we also have the following particle approximations

ηN
p (x) Z N

n|p(x) :=

{

∏
p≤q<n

ηN
q (Gq)

}
ηN

p|n(x)3N↑∞ ηp(x)Zn|p(x)
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1.5 Some Application Domains

1.5.1 Particle Absorption Models

1.5.1.1 Random Walks Confined in a Set

We consider a symmetric random walk Xn on the integers Z starting at the ori-
gin X0 = 0. More formally, we take independent random variables Un, where
P(Un = 1) = P(Un =−1) = 1/2 and we set Xn = X0 + ∑1≤p≤nUp. We fix A =
{−a+ 1,−a+ 2, ...,a−1}, with a ∈ N. We want to compute the conditional distri-
butions

Law
(
(X0, . . . ,Xn)

∣∣ ∀0≤ p≤ n, Xp ∈ A
)

(1.27)

as well as the quantities

Zn := P(∀0≤ p < n, Xp ∈ A)

This problem can be solved by simulation using the following particle algorithm.
We start with N particles at the origin denoted by ξ i

0 = 0, with i = 1, . . . ,N. Each of
them evolve ξ i

0! ξ i
1 according to one transition of the random walk; more formally,

we sample N independent copies (Ui
1)1≤i≤N of the random variables U1, and we set

ξ i
1 = ξ i

0 +Ui
1. We denote

ηN
1 ( A) =

1
N ∑

1≤i≤N
A(ξ i

1) =
1
N

Card
{

1≤ i≤ N : ξ i
1 ∈ A

}

the proportion of points ξ i
1 in the set A. We define from the sample population

(
ξ i

1

)
1≤i≤N a new population of N individuals

(
ξ̂ i

1

)

1≤i≤N
as follows. For each

i= 1, . . . ,N, we perform the following operation: if ξ i
1 ∈ A, we set ξ̂ i

1 = ξ i
1. If ξ i

1 4∈A,
we pick randomly an individual ξ̃ i

1 among those ξ j
1 in the set A and we set ξ̂ i

1 = ξ̃ i
1.

In other words, individuals within A do not move, while the individuals outside A
are replaced by a randomly chosen individual among those in the set A. It may hap-
pen that all individuals ξ i

1 are outside of the set A. In this case, the algorithm stops
and we set τN = 1 to report the time of this event. If the algorithm has not stopped,
we have a new configuration

(
ξ̂ i

1

)

1≤i≤N
of N individuals in the set A. We evolve

ξ̂ i
1! ξ i

2 according to one transition of the random walk; that is we sample N inde-
pendent copies (Ui

2)1≤i≤N of the random variables U2, we set ξ i
2 = ξ̂ i

1 +Ui
2 and we

define
ηN

2 ( A) =
1
N ∑

1≤i≤N
A(ξ i

2) =
1
N

Card
{

1≤ i≤ N : ξ i
2 ∈ A

}
.

As before, we define from the sample population
(
ξ i

2

)
1≤i≤N a new population of

N individuals
(

ξ̂ i
2

)

1≤i≤N
: individuals within A do not move, while the individuals
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outside the desired set are replaced by a randomly chosen individual among those
in the set A. If all individuals ξ i

2 fall are outside of the set A, we set τN = 2. Iterating
this stochastic process, for every time n (< τN), we define a sequence of genetic
type populations

ξn :=
(
ξ i

n
)

1≤i≤N ∈ ZN selection
−−−−−−−−→ ξ̂n :=

(
ξ̂ i

n

)

1≤i≤N
∈ ZN mutation

−−−−−−−→ ξn+1 ∈ ZN

(1.28)
This stochastic algorithm can be interpreted as a genetic type model with mutation
transitions given by the one of a symmetric random walk and an acceptance-rejection
selection type transition associated with the potential indicator type function A.
Several estimates can be extracted from this interacting sampling algorithm.

First, we mention that the stopping time τN tends to infinity as the size of the
population N→∞. More precisely, the probability that the algorithm stops at a given
time n tends to zero exponentially fast, as N tends to infinity. More interestingly, the
product of the proportions of surviving particles at each time step

Z N
n := ∏

0≤p<n
ηN

p ( A)

is asymptotically a consistent estimate of the quantity Pn(A) and it is unbiased; that
is we have

lim
N→∞

Z N
n = Zn and E

(
Z N

n
)
= Zn (1.29)

The convergence on the l.h.s. is an almost sure asymptotic convergence. It can be
made precise by non asymptotic estimates including non asymptotic variance es-
timates and more refined exponential type deviations. If we interpret the selection
transition as a birth and death process, then the important notion of the ancestral line
of a current individual arises. More precisely, when a particle ξ̂ i

n−1−→ ξ i
n evolves to

a new location ξ i
n, we can interpret ξ̂ i

n−1 as the parent of ξ i
n. Looking backwards in

time and recalling that the particle ξ̂ i
n−1 has selected a site ξ j

n−1 in the configuration

at time (n−1), we can interpret this site ξ j
n−1 as the parent of ξ̂ i

n−1 and therefore as
the ancestor ξ i

n−1,n at level (n−1) of ξ i
n. Running back in time we can construct the

whole ancestral line

ξ i
0,n←− ξ i

1,n←− . . .←− ξ i
n−1,n←− ξ i

n,n = ξ i
n (1.30)

of each current individual. The occupation measures of the corresponding N-
genealogical tree model converge as N → ∞ to the conditional distribution (1.27).
In a sense to be given, for any function f on the set Zn+1, we have the convergence,
as N→ ∞,

lim
N→∞

1
N

N

∑
i=1

f (ξ i
0,n,ξ i

1,n, . . . ,ξ i
n,n) τN>n = E

(
f (X0, . . . ,Xn)

∣∣ ∀0≤ p < n, Xp ∈ A
)

(1.31)
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This convergence result can be refined in various directions. For instance, we can
prove that the ancestral lines are “almost” independent with a common distribution
given by the limiting conditional distribution. This is often called the propagation
of chaos property in applied probability. It refers to the fact that the initial popula-
tion consists of independent and identically distributed random variables and that
this property “propagates” approximately despite the introduction of interactions.
Many other results can be derived including the fluctuations and the exponential
concentration of the occupation measures of the genealogical tree around the limit-
ing conditional distribution.

Besides the fact that the particle model approximate the (rare event) probabilities
(1.29) and the conditional distributions (1.31) in path spaces, it also contains some
information about the top of the spectrum of the matrix Q defined below

∀(x,y) ∈ {−a,−a+ 1, ...,a− 1,a} Q(x,y) := G(x) M(x,y)

with
G(x) := A(x) and M(x,y) =

1
2 x−1(y)+

1
2 x+1(y)

Indeed, if we consider λ to be the top eigenvalue of Q and we denote by h the
corresponding eigenvector s.t. ∑x h(x) = 1, then we have

lim
N→∞

lim
n→∞

1
n ∑

0≤p≤n
logηN

p ( A) = logλ

In addition, the value h(x) coincides with the long time proportion of visits of the
algorithm to the state x. In other words, h(x) can be interpreted as the limiting dis-
tribution of the individuals within the set A; that is

lim
N,n→∞

1
n ∑

0≤p≤n

1
N ∑

1≤i≤N
x(ξ̂ i

n) τN>n = h(x) = lim
N,n→∞

1
N ∑

1≤i≤N
x(ξ̂ i

n) τN>n

The particle approximation model discussed above is far from unique. Many other
interacting sampling strategies can be introduced by a simple change of probability
measure. For instance, we can replace the mutation or the free evolution of the
individuals in the previous algorithm by local moves restricted to the desired set
A. These mutation type transitions ξ̂n−1 ! ξn can also be seen as transitions of a
simple random walk on Z reflected at the boundaries of the set A. By construction
all the individuals ξ i

n at any time horizon n and for any index i = 1, . . . ,N are in the
desired set A.

The corresponding selection transition ξn! ξ̂n is now defined as follows: each
individual ξ i

n = x on the boundary x ∈ ∂A = {−a+ 1,(a− 1)} of the set A has a
probability G(x) := 1/2 to stay in A, while the other individuals ξ i

n (which are in the
set A) have a probability G(x) = 1 to stay in A. The population ξ̂n is now defined as
follows. For every index i, with a probability G(ξ i

n), we set ξ̂ i
n = ξ i

n, otherwise we re-
place ξ i

n by a new individual ξ̂ i
n = ξ j

n randomly chosen in the whole population with
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a probability proportional to G(ξ j
n ). If we now write ηN

n (G) = 1
N ∑1≤i≤N G(ξ i

n), all
the previous particle approximation results (corresponding to G(x) = A(x)) remain
valid for this new particle algorithm.

1.5.1.2 Feynman-Kac Model

The sampling techniques described in section 1.5.1.1 are far from being restricted
to random walks models confined to a set. These strategies apply to a variety of
application areas including computational physics, nonlinear filtering, biology, as
well as rare event analysis. From the pure mathematical point of view, they corre-
spond to interacting particle approximation models of Feynman-Kac measures in
path spaces.

To introduce these models, we recall that the conditional distributions discussed
in (1.27) can be represented in terms of the distributions of the free path evolution

Pn(x0, . . . ,xn) = Proba((X0, . . . ,Xn) = (x0, . . . ,xn))

= 0(x0) M1 (x0,x1) . . . Mn (xn−1,xn) (1.32)

of the simple random walk starting at the origin with elementary transitions given
by the matrix Mn := (Mn(x,y))x,y∈Z with entries given by

Mn (x,y) :=
1
2 x−1(y)+

1
2 x+1(y)

More formally, if we set

Qn(x0, . . . ,xn) := Proba
(
(X0, . . . ,Xn) = (x0, . . . ,xn)

∣∣ ∀0≤ p < n, Xp ∈ A
)

then we have

Qn(x0, . . . ,xn) =
1

Zn

{

∏
0≤p<n

Gp(xp)

}
Pn(x0, . . . ,xn) (1.33)

with the indicator potential functions Gn(x) = A(x) and Pn(x0, . . . ,xn) being the
distribution of a free path of length n of the symmetric random walk. In (1.33), Zn
is the normalizing constant given by

Zn = P(∀0≤ p < n, Xp ∈ A) = E
(

∏
0≤p<n

Gp(Xp)

)

These path integration type models are called Feynman-Kac measures in reference
to Feynman path integral formulation of quantum mechanics where the classical no-
tion of a single deterministic trajectory for a system is replaced by a sum over all
possible trajectories weighted by the contributions of all the histories in configura-
tion space.
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1.5.1.3 A Killed Markov Chain

The Feynman-Kac measures presented in (1.33) can be regarded as the distribution
of the paths of a Markov particle evolving using the Markov transitions Mn in an
environment with absorbing obstacles related to potential functions Gn, and starting
with some initial distribution Law(X0) = η0 with η0 (x0) = 0(x0) in (1.32). To be
more precise, we consider an auxiliary coffin or cemetery state c and we set Ec =E∪
{c}. We define an Ec-valued Markov chain Xc

n with two separate killing/exploration
transitions:

Xc
n

killing
−−−−−−−−−→ X̂ c

n

exploration
−−−−−−−−−→Xc

n+1 (1.34)

This killing/exploration mechanism are defined as follows:

• Killing: If Xc
n = c, we set X̂ c

n = c. Otherwise the particle Xc
n is still alive. In this

case, with a probability Gn(Xc
n ), it remains in the same site so that X̂ c

n = Xc
n , and

with a probability 1−Gn(Xc
n ) it is killed and we set X̂ c

n = c.
• Exploration: Once a particle has been killed, it can not be brought back to life

so if X̂ c
n = c then we set X̂ c

p = Xp = c for any p > n. Otherwise, the particle
X̂ c

n ∈ E evolves to a new location Xc
n+1 = x in E randomly chosen according to

the distribution Mn+1(Xc
n ,x).

In this physical interpretation, the measureQn represent the conditional distributions
of the paths of a non absorbed Markov particle. To see this claim, we denote by T
the time at which the particle has been killed

T = inf{n≥ 0 ; X̂ c
n = c}

By construction, we have

Proba(T > n− 1)

= Proba(X̂ c
0 ∈ E, . . . , X̂ c

n−1 ∈ E)

=
∫

En

η0(dx0) G0(x0) M1(x0,dx1) . . .Mn−1(xn−2,dxn−1)Gn−1(xn−1)

= E
(

n−1

∏
p=0

Gp(Xp)

)

This also shows that the normalizing constants Zn represent respectively the proba-
bility for the particle to be alive at time n− 1. In other words, we have that

Zn = Proba(T > n− 1)

Similar arguments yield that the distribution of a particle conditional of being alive
at time n− 1 is

Qn(x0, . . . ,xn) = Proba((Xc
0 , . . . ,X

c
n ) = (x0, . . . ,xn) | T > n− 1)
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Using (1.18) we also have the following backward representation of Qn

Qn(x0, . . . ,xn) = ηn(xn)×Q!
n,ηn−1

(xn,xn−1) · · ·Q!
2,η1

(x2,x1)×Q!
1,η0

(x1,x0)

(1.35)

with the time reversal Markov matrices Q!
n,ηn−1

(xn,xn−1) defined below

Q!
n,ηn−1

(xn,xn−1) =
ηn−1(xn−1)Qn(xn−1,xn)

ηn−1Qn(xn)

1.5.1.4 A Particle Sampling Model

The particle sampling technique of any distributionQn associated with some Markov
transition Mn and some sequence of [0,1]-valued potential function Gn on some
(countable) state space E is defined as before in terms of a genetic type algorithm
with Mn-mutations and Gn-selection type transitions. More precisely, at every time
step n, we sample the mutation-selection transitions as follows: during the mutation
step, every individual performs a local random move according to the Markov tran-
sition Mn. During the selection step, every individual evaluates its potential value
Gn(ξ i

n), with 1≤ i≤N. For every index i, with a probability Gn(ξ i
n), we set ξ̂ i

n = ξ i
n,

otherwise we replace ξ i
n be a fresh new individual ξ̂ i

n = ξ j
n randomly chosen from

the population with a probability proportional to Gn(ξ j
n ).

As in the confinement model (discussed in the previous section), it may happen
that all individuals ξ i

n have a null potential value Gn(ξ i
n) = 0, at some time period n

. In this case, the algorithm stops and we set τN = n to report the time of this event.
Under some rather weak regularity properties, we also mention that the stopping
time τN tends to infinity as the size of the population N→ ∞.

For any time horizon n and any function f on the set En, we have

lim
N→∞

1
N

N

∑
i=1

f (ξ i
0,n,ξ i

1,n, . . . ,ξ i
n,n) τN>n = ∑

x0,...,xn

f (x0, . . . ,xn) Qn(x0, . . . ,xn) (1.36)

Furthermore, the unbiased approximations of the normalizing constants Zn are
given by

Z N
n := ∏

0≤p<n
ηN

p (Gp) with ∀n ∈N ηN
n (Gn) :=

1
N ∑

1≤i≤N
Gn(ξ i

n) (1.37)

In addition, mimicking formula (1.41), an alternative particle approximation of the
measures Qn is defined, replacing the measures ηn by their particle approximations

QN
n (x0, . . . ,xn) = ηN

n (xn)×Q!
n,ηN

n−1
(xn,xn−1) · · ·Q!

2,ηN
1
(x2,x1)×Q!

1,ηN
0
(x1,x0)

→N↑∞ Qn(x0, . . . ,xn)
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with the time reversal random matrices Q!
n,ηN

n−1
(xn,xn−1) defined below

Q!
n,ηN

n−1
(xn,xn−1) =

ηN
n−1(xn−1)Qn(xn−1,xn)

ηN
n−1Qn(xn)

=
N

∑
i=1

Qn(ξ i
n−1,xn)

∑N
j=1 Qn(ξ j

n−1,xn)
ξ i

n−1
(xn−1)

For time homogeneous models (Gn,Mn) = (G,M) associated with a reversible ma-
trix M w.r.t. to some measure µ on E , i.e. µ (x)M (x,y) = µ (y)M (y,x), the corre-
sponding particle model also contains information about the top of the spectrum of
the matrix Q defined through

∀(x,y) ∈ E Q(x,y) := G(x) M(x,y)

More precisely, if we consider λ to be the top eigenvalue of Q in L2(µ) and we
denote by h the corresponding eigenvector s.t. ∑x µ(x)h(x) = 1, then we have

lim
N→∞

lim
n→∞

1
n ∑

0≤p≤n
logηN

p (G) = logλ

as well as

lim
N,n→∞

1
n ∑

0≤p≤n

1
N ∑

1≤i≤N
x(ξ̂ i

n) τN>n = µ(x)h(x) = lim
N,n→∞

1
N ∑

1≤i≤N
x(ξ̂ i

n) τN>n

For further details on this subject, we refer the reader to [38, 39, 54] and references
therein.

1.5.2 Signal Processing and Bayesian Inference

1.5.2.1 Nonlinear Filtering Problems

We discuss here the application of these particle model to filtering problems. Sup-
pose that at every time step the state of the Markov chain Xn is partially observed
according to the following schematic picture

X0 −→ X1 −→ X2 −→ . . .
↓ ↓ ↓
Y0 Y1 Y2 . . .

with some random variables Yn whose values only depend on the current state of the
chain

Proba(Yn = yn | Xn = xn ) := G(xn,yn) (1.38)

We consider the following pair of events
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An(x):={(X0, . . . ,Xn)=(x0, . . . ,xn)} and Bn−1(y):={(Y0, . . . ,Yn−1)=(y0, . . . ,yn−1)}

The filtering problem consists of computing the conditional distributions of the
state variables An(x) given the observations Bn(y). By construction, given An(x),
the random variables Yn are independent and identically distributed with a distribu-
tion given by

Proba(Bn−1(y) |An(x) ) = ∏
0≤p<n

G(xp,yp)

By direct application of Bayes’ rule we have the following formula

Proba(An(x)∩Bn−1(y)) = Proba(Bn−1(y) |An(x) )×Proba(An(x))

=

{

∏
0≤p<n

G(xp,yp)

}
Pn(x0, . . . ,xn) (1.39)

with the distributions of the path sequence (X0, . . . ,Xn) given by

Pn(x0, . . . ,xn) = Proba(X0 = x0, . . . ,Xn = xn)

from which we conclude that

Proba(An(x) | Bn−1(y) ) =
1

Zn(y)

{

∏
0≤p<n

G(xp,yp)

}
Pn(x0, . . . ,xn)

with the normalizing constants

Zn(y) := Proba(Bn−1(y)) = ∑
x0,...,xn

{

∏
0≤p<n

G(xp,yp)

}
Pn(x0, . . . ,xn)

These Feynman-Kac formulae express the conditional distributions of the path se-
quence (X0, . . . ,Xn) as the distribution Pn(x0, . . . ,xn) of the signal paths
(X0, . . . ,Xn) = (x0, . . . ,xn) weighted by the product of the likelihood functions
G(xp,yp) from the origin p = 0 up to time p = n.

If we fix the observation sequence Yn = yn and set

Gn(xn) := G(xn,yn)

then we find that these measures have exactly the same form as the one presented in
(1.33). We can also rewrite these conditional distributions as follows

Qn(x0, . . . ,xn) = Proba(An(x) | Bn−1(y) )

∝

{

∏
0≤p<n

Gp(xp)

} {
η0(x0) ∏

1≤p≤n
Mp(xp−1,xp)

}

︸ ︷︷ ︸
Pn(x0,...,xn)

= η0(x0)Q1(x0,x1)Q2(x1,x2) . . .Qn(xn−1,xn) (1.40)
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with the positive matrices Qn(xn−1,xn) defined for any n≥ 1 by

Qn(xn−1,xn) := Gn−1(xn−1) Mn(xn−1,xn)

The corresponding particle approximations defined in section 1.5.1.4 are often re-
ferred to as particle filters in signal processing and statistics [36, 37, 52, 38, 67].
These particle algorithms can also be used to approximate the log-likelihood func-
tions using (1.37); that is the log-likelihood

Ln(y) := logZn(y)

is approximated using

LN
n (y) := logZ N

n (y) = ∑
0≤p<n

logηN
p (Gp).

1.5.2.2 Smoothing Estimation Models

Smoothing problems consist of estimating some values of the signal Xp at some time
p, given s series of observations Yq = yq, with 0≤ q≤ n, and p≤ n. One strategy is
to estimate the whole signal path sequence (X0, . . . ,Xn) given the observations from
the origin, up to the time horizon n. The conditional distributions on path space
defined in section 1.5.2.1 can be estimated using three methods:

• the genealogical tree evolution of the particle filters;
• the particle backward Markovian interpretation of conditional distributions;
• the particle conditional distributions of the noise of the signal.

These three methods are described below.

• The genealogical tree evolution of the particle filters. To describe with some
precision these models, let E be the finite state space of the signal, and let
En = E(n+1). These N particle approximations on path spaces coincide with a
simple genetic type evolution model with N path-valued particles

ξ i
n :=

(
ξ i

0,n,ξ i
1,n, . . . ,ξ i

n,n
)

and ξ̂ i
n :=

(
ξ̂ i

0,n, ξ̂ i
1,n, . . . , ξ̂ i

n,n

)
∈ En

During the selection stage, with a probability G(ξ i
n,n,yn) every path-valued in-

dividual ξ i
n stays in the same place ξ̂ i

n = ξ i
n; otherwise, we replace ξ i

n be a new
individual ξ̂ i

n = ξ j
n randomly chosen among the individuals ξ j

0 with a probability
proportional to its weight G(ξ i

n,n,yn). This mechanism is intended to favor more

likely signal path sequences. During the mutation transition, ξ̂ i
n evolves randomly

to a new path sequence

ξ i
n+1 = ((ξ i

0,n+1, . . . ,ξ i
n,n+1),ξ i

n+1,n+1) = ((ξ̂ i
0,n, . . . . . . , ξ̂ i

n,n),ξ i
n+1,n+1) ∈ En+1

= (En×E)
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If ξ̂ i
n = xn, then ξ i

n+1,n+1 is a random variable that takes the value x with the
distribution Proba(Xn+1 = xn+1|Xn = xn). As usual, for any function f on En =
E(n+1) and any time horizon n, we have

lim
N→∞

1
N

N

∑
i=1

f (ξ i
0,n,ξ i

1,n, . . . ,ξ i
n,n) = ∑

x0,...,xn

Qn(x0, . . . ,xn) f (x0, . . . ,xn)

• Particle backward Markov models. An alternative approach is to use the back-
ward representation (1.18) of the conditional distribution Qn defined in (1.40)

Qn(x0, . . . ,xn) = ηn(xn)×Q!
n,ηn−1

(xn,xn−1) · · ·Q!
2,η1

(x2,x1)×Q!
1,η0

(x1,x0)

(1.41)

with the time reversal Markov matrices Q!
n,ηn−1

(xn,xn−1) defined below:

Q!
n,ηn−1

(xn,xn−1)=
ηn−1(xn−1)Qn(xn−1,xn)

ηn−1Qn(xn)
=

ηn−1(xn−1)Gn−1(xn−1)Mn(xn−1,xn)

∑x ηn−1(x)Gn−1(x)Mn(x,xn)

Replacing the measures ηn by their particle estimates ηN
n , we define the particle

approximation of Qn by setting

QN
n (x0, . . . ,xn) = ηN

n (xn)×Q!
n,ηN

n−1
(xn,xn−1) · · ·Q!

2,ηN
1
(x2,x1)×Q!

1,ηN
0
(x1,x0)

→N↑∞ Qn(x0, . . . ,xn)

with the time reversal random matrices Q!
n,ηN

n−1
(xn,xn−1) defined by

Q!
n,ηN

n−1
(xn,xn−1) =

ηN
n−1(xn−1)Qn(xn−1,xn)

ηN
n−1Qn(xn)

=
N

∑
i=1

Gn−1(ξ i
n−1,)Mn(ξ i

n−1,xn)

∑N
j=1 Gn−1(xi j

n−1)Mn(ξ j
n−1,xn)

ξ i
n−1

(xn−1)

• Particle approximations of the noise of the signal. We further assume that the
signal process given by recursive equations on some finite state space E of the
following form

Xn := Fn(Xn−1,Un) (1.42)

with some independent random variables Un, and with distribution νn indepen-
dent of X0 on the finite set U . If we consider the following events

Cn(u) = {(X0,(U0, . . . ,Un)) = (x0,(u1, . . . ,un))}

then we find that
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Proba(Cn(u) |Bn−1(y) ) =
1

Zn(y)

{

∏
0≤p<n

G(X (x0,u)
p ,yp)

}
Pn(x0,(u1, . . . ,un))

(1.43)
where X (x0,u)

n stands for the solution of the discrete generation system (1.42)
associated with a given realization (un)n≥1 and some initial condition x0. The
function G is the likelihood function defined in (1.38).
In the semigroup formulation, X (x0,u)

n is a function of the initial state and the
control sequence (u1, . . . ,un); that is, we have that X (x0,u)

n = φn(x0,(u1, . . . ,un))
for some function φn from (E×U n) into E . For any n≥ 0, we set

Hn(x0,(u1, . . . ,un)) := G(φn(x0,(u1, . . . ,un)),yn)

In this notation we have

Proba(Cn(u) |Bn−1(y) )=
1

Zn(y)

{

∏
0≤p<n

Hp(x0,(u1, . . . ,up))

}
Pn(x0,(u1, . . . ,un))

As above, the N particle approximation of these probability measures on control
sequences is again described by genetic evolution models with N path-valued
particles

ξ i
n :=

(
ξ i

0,n,ξ i
1,n, . . . ,ξ i

n,n
)

ξ̂ i
n :=

(
ξ̂ i

0,n, ξ̂ i
1,n, . . . , ξ̂ i

n,n

)
∈ En := (E×U n)

During the selection stage, with a probability Hn(ξ i
n) every path-valued individ-

ual stays in the same place ξ̂ i
n = ξ i

n; otherwise, we replace ξ i
n by a new individual

ξ̂ i
n = ξ j

n randomly chosen among the individuals ξ j
0 with a probability propor-

tional to its weight Hn(ξ i
n). This mechanism is intended to favor more likely

noise sequences w.r.t. the observations. During the mutation transition, to every
selected signal-noise sequence ξ̂ i

n we add randomly new possible values of the
noise at time (n+ 1); that is, we set

ξ i
n+1 = ((ξ i

0,n+1, . . . ,ξ i
n,n+1),ξ i

n+1,n+1)

= ((ξ̂ i
0,n, . . . . . . , ξ̂ i

n,n),ξ i
n+1,n+1) ∈ En+1 = (En×U ) (1.44)

where ξ i
n+1,n+1 is a random variable with distribution νn on U . Various asymp-

totic estimates can be derived. For instance, for any function f on En = En and
any time horizon n, we have

lim
N→∞

1
N

N

∑
i=1

f (ξ i
0,n,ξ i

1,n, . . . ,ξ i
n,n) = ∑

x0,...,xn

Qn(x0,(u1, . . . ,un)) f (x0,(u1, . . . ,un))

(1.45)
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In other words, the occupation measures of the genealogical tree evolution, like
the one illustrated below for (N,n) = (4,5)

ξ 1
2,5

!! ξ 1
3,5

!! ξ 1
4,5

!! ξ 1
5,5

ξ i0
0,5

!! ξ i1
1,5

$$%
%%

%%
%%

%%&&&&&&&

ξ i3
3,5

!! ξ i4
4,5

&&'
''

''
''

'
!! ξ 2

5,5

ξ i2
2,5

''&&&&&&&
!! ξ 4

3,5
!! ξ 4

4,5

&&(
((

((
((

(
ξ 3

5,5

ξ 4
5,5

with any i0 ∈ {1,2,3,4}, i2 ∈ {2,3,4}, i3 ∈ {2,3}, i4 ∈ {2,3}, represent the con-
ditional distribution of (X0,(U1,U2,U3,U4,U5)) w.r.t. the observations (Y0,Y1,Y2,
Y3,Y4), in terms of the more likely initial condition ξ i0

0,5 and the four more likely
signal-noise sequences (ξ i

1,5,ξ i
2,5,ξ i

3,5,ξ i
4,5,ξ i

5,5)i=1,2,3,4.

1.5.2.3 Approximate Bayesian Computation

Approximate Bayesian computation (abbreviate ABC) techniques are Bayesian in-
ference methods currently used to evaluate posterior distributions without having
to calculate likelihoods. For instance, in biology applications and more particularly
in predictive bacteriology and food risk analysis, the observations of a kinetic bio-
logical complex system are given by counting bacteria individuals after successive
dilutions of a food sample coming from an in vitro culture [74, 75, 80, 81]. Of
course, this experimental observation process is often modeled by a series of Pois-
son type dependent random variables but the computation of the likelihood function
often requires successive summations over the set of all the integers. In this situation
likelihood functions are computationally intractable or very costly to estimate.

One of the central ideas of ABC methods is to replace the evaluation of the like-
lihood function by a simulation-based procedure of the observation process coupled
with a numerical comparison between the observed and simulated data. This strat-
egy is rather well known in particle filtering literature, see for instance [45, 46, 44].
In the same manner, these additional levels of simulation-based approximations can
also be extended to compute the posterior distribution of fixed parameters in hidden
Markov chain models. In signal processing literature, these ABC type particle mod-
els are sometimes called convolution particle filters, see for instance [19, 20, 144].

First, we notice that the transition probabilities of the signal-observation Markov
chain Xn := (Xn,Yn) are given by

Proba(Xn = (xn,yn) | Xn = (xn−1,yn−1)) = Mn(xn−1,xn)×G(xn,yn) (1.46)
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with the likelihood function G defined in (1.38) and the Markov transitions of the
chain Xn

Proba(Xn = xn | Xn = xn−1) = Mn(xn−1,xn)

Suppose that at every time step the state of the pair signal-observation Markov chain
Xn := (Xn,Yn) is partially observed according to the following schematic picture

X0 :=




X0
↓
Y0



 −→ X1 :=




X1
↓
Y1



 −→ X2 :=




X2
↓
Y2



 −→ . . .

↓ ↓ ↓
Y ε

0 Y ε
1 Y ε

2 . . .

with some random variables Y ε
n whose values only depend on the second component

Yn of the current state (Xn,Yn) of the chain

Proba(Y ε
n = yn | (Xn,Yn) = (xn,zn) ) := Gε(zn,yn)

We further assume that the likelihood function Gε(z,y) is a Markov transition in-
dexed by some parameter ε ∈ [0,1] s.t. limε→0 Gε(z,y) = y(z). When the state
space of the observation process is equipped with some neighborhood system, we
can take

Gε(z,y) =
1

Card(Vε(z))
Vε (z)(y)

where Vε(z) is a collection of neighborhoods of the point z s.t. Vε(z)→ε→0 {z}. For
instance, if the observation state space is equipped with some distance function d
we can take Vε(z) = {y : d(z,y) ≤ ε}. In this situation, given the the current state
of the chain (Xn,Yn), the observation Y ε

n is randomly chosen in the set Vε(Yn).
Using (1.46) we prove that the distribution Pn((x0,y0), . . . ,(xn,yn)) of the signal-

observation paths

(X0, . . . ,Xn) := ((X0,Y0), . . . ,(Xn,Yn)) = ((x0,y0), . . . ,(xn,yn))

is given by

Pn((x0,y0), . . . ,(xn,yn)) = Proba(An(x)∩Bn(z))

=

{

∏
0≤p≤n

G(xp,zp)

}
Pn(x0, . . . ,xn)

with the pair of events

An(x) := {(X0, . . . ,Xn) = (x0, . . . ,xn)} and Bn(z) := {(Y0, . . . ,Yn) = (z0, . . . ,zn)}

and the distribution Pn(x0, . . . ,xn) := Proba(An(x)) of the paths (X0, . . . ,Xn) =
(x0, . . . ,xn). We consider the following events
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An((x,z)) := An(x)∩Bn(z) and Bε
n(y) := {(Y ε

0 , . . . ,Y
ε
n ) = (y0, . . . ,yn)}

As in section 1.5.2.1, the filtering problem defined above consists of computing
the conditional distributions of the state variables An(x,z) given the observations
Bε

n(y). By construction, given An(x,z), the random variables Y ε
n are independent

and identically distributed with a distribution given by

Proba(Bε
n(y) |An(x,z) ) = ∏

0≤p≤n
Gε (zp,yp) −→ε→0 (y0,...,yn)(z0, . . . ,zn)

from which we conclude that

Proba(An(x,z) | Bε
n(y) ) =

1
Z ε

n (y)

{

∏
0≤p≤n

Gε(zp,yp)

}
Pn((x0,z0), . . . ,(xn,zn))

→ε↓0 Proba(An(x)∩Bn(y))

with the normalizing constants

Z ε
n (y) := Proba(Bε

n(y))= ∑
(x0,z0),...,(xn,zn)

{

∏
0≤p≤n

Gε(zp,yp)

}
Pn((x0,z0), . . . ,(xn,zn))

→ε↓0 Proba(Bn(y))

As in section 1.5.2.1 these posterior distributions have exactly the same form as the
one presented in (1.33). Notice that in this situation, at every time step n the stochas-
tic model consists of N-particle samples ξ i

n := (ξ i,1
n ,ξ i,2

n ) with a signal component
ξ i,1

n and the corresponding observation component ξ i,2
n , with 1 ≤ i ≤ N. Given a

series of observations (yn)n≥0, the conditional distributions defined above are ap-
proximated by the N-empirical measures of the particle model

ηN
n :=

1
N

N

∑
i=1

(ξ i,1
n ,ξ i,2

n )
−→N→∞ Proba

(
An(x,z)

∣∣ Bε
n−1(y)

)

and an unbiased estimate of the normalizing constants Z ε
n (y) is given by

Z ε,N
n (y) := ∏

0≤p≤n

1
N

N

∑
i=1

Gε(ξ i,2
p ,yp)−→N→∞ Z ε

n (y) = Proba(Bε
n(y))

1.5.3 Interacting Kalman Filters

1.5.3.1 A Brief Introduction to Kalman Filters

We consider a Rp+q-valued Markov chain (Xn,Yn) defined by the recursive relations



44 P. Del Moral, A.-A. Tantar, and E. Tantar

{
Xn = AnXn−1 +BnWn , n≥ 1
Yn = CnXn +DnVn , n≥ 0

(1.47)

for some Rdw and Rdv-valued independent random sequences Wn and Vn, indepen-
dent of X0, and some matrices An,Bn,Cn,Dn with appropriate dimensions. We fur-
ther assume that Wn and Vn are centered Gaussian random sequences with covariance
matrices Rv

n, Rw
n and X0 is a Gaussian random variable in Rp with a mean X̂−0 and

covariance matrix P̂−0 . In the further development of this section we shall denote
by N (m,R) a Gaussian distribution in a d-dimensional space Rd with mean vector
m ∈ Rd and covariance matrix R ∈ Rd×d

N (m,R)(dx) =
1

(2π)d/2
√
|R|

exp [−2−1(x−m)R−1(x−m)′] dx

Using this notation, we have

Law(Xn |Y0, . . . ,Yn−1) = N (X̂−n ,P−n ) and Law(Xn | Y0, . . . ,Yn−1,Yn) = N (X̂n,Pn)

The synthesis of the conditional mean and covariance matrices is carried out using
the traditional Kalman-Bucy recursive equations

(
X̂−n ,P−n

) updating
−−−−−−−−→

(
X̂n,Pn

) prediction
−−−−−−−→

(
X̂−n+1,P

−
n+1

)
(1.48)

The updating and the prediction step are given below

[Updating] X̂n = X̂−n +Gn (Yn−CnX̂−n ) and Pn = P−n −GnCnP−n

with the gain matrix Gn = P−n C′n(CnP−n +DnRv
nD′n)

−1, and

[Prediction] X̂−n+1 = An+1X̂n and P−n+1 = An+1 Pn A′n+1 +Bn+1 Rw
n+1 B′n+1

Proof. The proof of the updating recursion equation is based on the fact that

X̂n := X̂−n +Gn (Yn− Ŷ−n ) with Ŷ−n = E(Yn|Y0, . . . ,Yn−1) =CnX̂−n

Since E((Xn− X̂n)(Yn− Ŷ−n )′) = 0, we find E((Xn− X̂−n )(Yn− Ŷ−n )′) = Gn E((Yn−
Ŷ−n )(Yn− Ŷ−n )′), from which we find the gain matrix. Finally using the decompo-
sition Xn− X̂n = (Xn− X̂−n )+ (X̂−n − X̂n) and by symmetry argument we conclude
that

Pn = P−n −E((X̂−n − X̂n)(X̂−n − X̂n)
′)

= P−n −GnE((Yn− Ŷ−n )(Yn− Ŷ−n )′)G′n = P−n −GnCnP−n

The proof of the prediction recursion is rather elementary. The first assertion is clear.
The second one comes from the fact that
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P−n+1 = E((An+1(Xn− X̂n)+Bn+1Wn+1)(An+1(Xn− X̂n)+Bn+1Wn+1)
′)

= An+1 Pn A′n+1 +Bn+1 Rw
n+1 B′n+1

It is also useful to observe that

Law(Yn | Y0, . . . ,Yn−1) = N (CnX̂−n ,Cn P−n C′n +Rv
n)

We prove this claim using the fact that, given (Y0, . . . ,Yn−1), the current observation
takes the form

Yn=CnX̃n+DnVn with some variable X̃n s.t. Law
(
X̃n | Y0, . . . ,Yn−1

)
:=N (X̂−n ,P−n ).

We slight abuse the notation and we denote by N (m,R)(x) the density of a Gaus-
sian distribution N (m,R)(dx) = N (m,R)(x)dx w.r.t. the Lebesgue measure dx.
In this notation, the density pn(y0, . . . ,yn) of the random sequence of observation
(Y0, . . . ,Yn) evaluated at the random observation path (Y0, . . . ,Yn) is given by

pn(Y0, . . . ,Yn) =
n

∏
k=0

N (CkX̂−k ,Ck P−k C′k +Rv
k)(Yk)

In Bayesian inference literature, this formula is sometimes written in the following
form

pn(Y0, . . . ,Yn) = pn(Yn |Y0, . . . ,Yn−1)× pn−1(Y0, . . . ,Yn−1) =
n

∏
k=0

pk(Yk |Y0, . . . ,Yk−1).

1.5.3.2 Interacting Kalman Filters

We consider a Markov chain Θn taking values in some finite state space E , and
a collection of matrices An(θ ),Bn(θ ),Cn(θ ),Dn(θ ) indexed by θ ∈ E , and of the
same dimension as the matrices (An,Bn,Cn,Dn) introduced in (1.47)indexed We let
(Θn,Xn,Yn) be the (E×Rp+q)-valued Markov chain defined by the same recursive
relations as in (1.47)

{
Xn = An(Θn)Xn−1 +Bn(Θn)Wn , n≥ 1
Yn = Cn(Θn)Xn +Dn(Θn)Vn , n≥ 0

(1.49)

Arguing as above, given a realization of the chain Θ = (Θn)n≥0, we have

Law(Xn |Θ , Y0, . . . ,Yn−1) = N (X̂Θ ,−
n ,PΘ ,−

n )

Law(Xn | Θ , Y0, . . . ,Yn−1,Yn) = N (X̂Θ
n ,PΘ

n )

with some parameters (X̂Θ ,−
n ,PΘ ,−

n ) and (X̂Θ
n ,PΘ

n ) that can be computed using the
same Kalman recursions given above by replacing the matrices (An,Bn,Cn,Dn) by
the matrices (An(Θn),Bn(Θn),Cn(Θn),Dn(Θn)). We observe that (X̂Θ ,−

n ,PΘ ,−
n ) only



46 P. Del Moral, A.-A. Tantar, and E. Tantar

depends on the random sequence (Θ0, . . . ,Θn) so that

N (Cn(Θn)X̂Θ ,−
n ,Cn(Θn) PΘ ,−

n C′n(Θn)+Rv
n)(Yn) := Gn,Yn (Θ0, . . . ,Θn) (1.50)

Therefore, the density pn((y0, . . . ,yn) | (θ0, . . . ,θn)) of the random sequence of ob-
servation (Y0, . . . ,Yn) evaluated at the random observation path (Y0, . . . ,Yn) and given
a realization of the parameters (Θ0, . . . ,Θn) = (θ0, . . . ,θn) is given by

pn((Y0, . . . ,Yn)| (θ0, . . . ,θn)) =
n

∏
k=0

Gk,Yk (θ0, . . . ,θn) (1.51)

If we denote by Pn(θ0, . . . ,θn) the probability measure of the sequence of random
parameters (Θ0, . . . ,Θn), then using Bayes’ rule we find that the probability measure

Qn(θ0, . . . ,θn) :=
1

Zn,Y

{

∏
0≤k<n

Gk,Yk (θ0, . . . ,θn)

}
Pn(θ0, . . . ,θn) (1.52)

(with some normalizing constant Zn,Y ) coincides with the conditional distribution
of the random sequence (Θ0, . . . ,Θn) given the observations (Y0, . . . ,Yn−1); that is,
we have that

Qn = Law((Θ0, . . . ,Θn) | (Y0, . . . ,Yn−1))

The corresponding particle approximations on the set of sequences are often re-
ferred as particle methods in path space in signal processing literature and Bayesian
inference studies (see for instance [38, 53, 67], and references therein).

1.5.4 Stochastic Optimization Algorithms

1.5.4.1 Interacting MCMC Models

We present now a genetic type particle strategy for sampling random states accord-
ing to a sequence of probability measures on some finite state space E given by

µn(x) =
1

λ (Gn)
Gn(x) λ (x) with Gn(x) := Gn−1(x)× gn−1(x) = ∏

0≤p<n
gp(x)

where λ (x) is a probability measure and gn is a collection of positive functions on
E .

The interacting particle sampler of these measures is defined as follows. We start
with a population of N independent individuals ξ0 :=

(
ξ i

0

)
1≤i≤N randomly cho-

sen in E according to µ0. We perform a selection transition ξ0! ξ̂0 :=
(

ξ̂ i
0

)

1≤i≤N
using the potential functions g0. More precisely, every individual evaluates its po-
tential value g0(ξ i

0). For every index i, with a probability g0(ξ i
0), we set ξ̂ i

0 = ξ i
0,
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otherwise we replace ξ i
0 by a new individual ξ̂ i

0 = ξ j
0 randomly chosen in the whole

population with a probability proportional to g0(ξ j
0 ). During the mutation transition

ξ̂0! ξ1 :=
(
ξ i

1

)
1≤i≤N , every selected individual ξ̂ i

0 performs a local random move

ξ̂ i
0 ! ξ i

1 (independently of one another) according to the Markov transition P1 as-
sociated with an MCMC sampler with invariant measure µ1. Then, we perform a
selection transition ξ1! ξ̂1 :=

(
ξ̂ i

1

)

1≤i≤N
using the fitness functions g1. After this

selection stage we mutate each selected individual using the Markov transition P2
associated with an MCMC sampler with invariant measure µ2, and so on. Iterating
these transitions, we define a simple genetic model with mutations transitions Pn
and selection fitness functions gn:

ξn :=
(
ξ i

n
)

1≤i≤N ∈ EN selection
−−−−−−−−→ ξ̂n :=

(
ξ̂ i

n

)

1≤i≤N
∈ EN mutation

−−−−−−−→ ξn+1 ∈ EN

(1.53)
This algorithm belongs to the class of sequential Monte Carlo samplers proposed
in [40]. Many convergence results can be established. For instance, under some
weak regularity conditions we can show that for any 1≤ q≤N, and any time horizon
n ≥ 0, the first q random samples (ξ i

n)1≤i≤q among N are almost independent and
identically distributed with the desired target measure µn; that is, we have that

∑
x1,...,xq

∣∣Proba
(
ξ 1

n = x1, . . . ,ξ q
n = xq)− µn(x1) · · ·µn(xq)

∣∣≤ c(n)min
(

q2

N
,

√
q
N

)

and some finite constant c(n)< ∞. We also have that for any x ∈ E and any n≥ 0

lim
N→∞

1
N ∑

1≤i≤N
ξ i

n
(x) = µn(x) and Z N

n := ∏
0≤p<n

ηN
p (gp)−→N→∞ Zn

1.5.4.2 Interacting Monte Carlo Markov Chains

Suppose we want to compute the global minima of a given non negative cost
function V on some finite state space E equipped with the counting measure
λ (x) := 1

Card(E) . From the probabilistic point of view, this problem amounts to
sampling random states according to the Boltzmann-Gibbs distributions associated
with a large inverse temperature parameter β and given

µβ (x) :=
1

Zβ
e−βV(x) λ (x) with Zβ := ∑

x
e−βV(x) λ (x)

There is no loss of generality to assume that infx V (x) = 0 and for any state x 4∈V0 :=
V−1({0}), V (x)≥ δ for some δ > 0. It follows that we have

Card(V0)≤Zβ ≤ Card(V0)+Card(V c
0 ) e−β δ →β↑∞ Card(V0)
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and therefore
lim

β→∞
µβ (x) = µ∞(x) := V0(x)/Card(V0)

This simple observation shows that sampling according to µβ is roughly equivalent
to randomly sampling an unknown state variable with minimal cost. For very large
state spaces, it is typically impossible to sample from µβ directly.The celebrated
simulated annealing algorithm to sample from µ∞ consists of sampling approxi-
mately from a sequence of distributions µβn where βn is a non-decreasing sequence
going to ∞. The rationale is that it is “easier” to sample from µβ when β is small; if
β = 0 then µ0 is the uniform counting measure on E from which it is trivial to sam-
ple. For βn > 0, we sample approximately from each intermediate distribution µβn

using Markov chain Monte Carlo (MCMC) sampling techniques; that is we select
a transition matrix Mβn =

(
Mβn(x,y)

)
x,y∈E with left eigenvector µβn associated with

the eigenvalue 1, that is

∑
x

µβn(x)Mβn(x,y) = µβn(y)

The probabilistic interpretation of the above equation is as follows: pick randomly
a state x with distribution µβn(x) and take a random transition x! y from the dis-
tribution Mβn(x,y), then the probability of being at state y is again µβn(y). The liter-
ature on MCMC methods discusses numerous choices of transitions Mβn satisfying
this property. The most famous is the Metropolis-Hastings transition associated to a
symmetric transition matrix K(x,y) = K(y,x) and defined by

Mβn(x,y)

=K(x,y) min
(

1,e−βn(V (y)−V (x))
)
+
(

1−∑z K(x,z) min
(

1,e−βn(V (z)−V (x))
))

x(y)

Using the fundamental ergodic theorem for regular Markov chains, starting from
any initial state x0, the n-th step of a run of the Markov chain with transitions Mβn

has a probability very close to µβn(y) of being at the site y, for a large n. Practically,
we select β1 and we run the chain starting at X0 = x0 for a large enough number of
runs n1 such that the law of the state Xn1 is close to µβ1

X0 = x0
Mβ1−→ X1

Mβ1−→ . . .
Mβ1−→ Xn1 with n1 large enough s.t. Law(Xn1)3 µβ1

Notice that the choice of n1 depends on β1: the larger β1 is, the “peakier” µβ1
is and

the larger n1 is. When the chain is stabilized, we choose a β2 > β1 and we run the
chain starting at Xn1 for a new large enough number of time steps n2 such that the
law of the state Xn1+n2 is close to µβ2

Xn1

Mβ2−→ Xn1+1
Mβ2−→ . . .

Mβ2−→ Xn1+n2 with n2 large enough s.t. Law(Xn1+n2)3 µβ2
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The theoretical “optimal” inverse temperature parameter ensuring convergence in
some sense of the Markov chain to µ∞ is logarithmic. This amounts to saying that
we change by one unit the parameter β on every time interval with exponential
length. This is unrealistic from a practical point of view.

We present now an alternative particle strategy for sampling random states ac-
cording to the sequence of measures µβn associated with a given non decreasing
sequence of inverse temperature parameters βn. We suppose that β0 = 0 so that µβ0
coincides with the uniform counting measure on the set E . We start with N inde-
pendent individuals ξ0 :=

(
ξ i

0

)
1≤i≤N randomly chosen in E according to µβ0 . We

perform a selection transition ξ0! ξ̂0 :=
(

ξ̂ i
0

)

1≤i≤N
using the potential functions

G0 defined by

G0(x) = exp(−(β1−β0)V (x))

In other words, every individual evaluates its potential value G0(ξ i
0). For every in-

dex i, with a probability G0(ξ i
0), we set ξ̂ i

0 = ξ i
0, otherwise we replace ξ i

0 by a new
individual ξ̂ i

0 = ξ j
0 randomly chosen in the whole population with a probability pro-

portional to G0(ξ j
0 ). During the mutation step ξ̂0! ξ1 :=

(
ξ i

1

)
1≤i≤N , every selected

individual ξ̂ i
0 performs a local random move ξ̂ i

0 ! ξ i
1 (independently of one an-

other) according to the Markov transition Mβ1 . Then, we perform another selection

transition ξ1! ξ̂1 :=
(

ξ̂ i
1

)

1≤i≤N
using the fitness functions G1 defined below:

G1(x) = exp(−(β2−β1)V (x))

After this selection stage we mutate each selected individual using the Markov tran-
sition Mβ2 , and so on. Iterating these transitions, we define a simple genetic model
with mutation transitions Mβn and selection fitness functions Gn:

ξn :=
(
ξ i

n
)

1≤i≤N ∈ EN selection
−−−−−−−−→ ξ̂n :=

(
ξ̂ i

n

)

1≤i≤N
∈ EN mutation

−−−−−−−→ ξn+1 ∈ EN

(1.54)
This algorithm was first proposed in [40]. A variety of convergence results can be
established for this algorithm. For instance, for any function f on E and any time
horizon, we have

lim
N→∞

1
N ∑

1≤i≤N
f (ξ i

n) = ∑
x

µβn(x) f (x)

In addition, if we set ηN
n (Gn) := 1

N ∑1≤i≤N Gn(ξ i
n), the unbiased N-particle approx-

imation Z N
βn

of the normalizing constants Zβn is given by

Z N
βn

:= ∏
0≤p<n

ηN
p (Gp)−→N→∞ Zβn



50 P. Del Moral, A.-A. Tantar, and E. Tantar

1.5.4.3 Combinatorial Counting and Sampling

Suppose we want to compute the cardinality of a given subset A of some finite state
space E equipped with the counting measure λ (x) := 1

Card(E) . Once again, from a
probabilistic point of view, this problem is equivalent to computing the normalizing
constant of the following Boltzmann-Gibbs distribution

µA(x) :=
1

ZA
A(x) λ (x) with ZA := ∑

x
A(x) λ (x)

To sample from µA and compute ZA, the idea consists of selecting a judicious se-
quence of decreasing subsets An in such a way that it is easy to sample states in An
starting from the set An−1. We suppose that A0 = E so that µA0 coincides with the
uniform counting measure on the set E . The algorithm is thus very similar to the
one described previously for optimization. For any set An, we introduce an MCMC
transition matrix MAn = (MAn(x,y))x,y∈E with left eigenvector µAn associated with
the eigenvalue 1, that is

∑
x

µAn(x)MAn(x,y) = µAn(y)

A simple Metropolis-Hasting type transition associated with a symmetric transition
matrix K(x,y) = K(y,x) is given by

MAn(x,y) = K(x,y) An(y)+

(
1−∑

z
K(x,z) An(z)

)

x(y)

The N-particle stochastic algorithm is defined as follows. We start with N inde-
pendent random individuals ξ0 :=

(
ξ i

0

)
1≤i≤N randomly chosen in E with µA0 . We

perform a selection transition ξ0 ! ξ̂0 :=
(

ξ̂ i
0

)

1≤i≤N
using the fitness functions

G0 = A1 . In other words, every individual in the set A1 stays in the same place
ξ̂ i

0 = ξ i
0, otherwise we replace ξ i

0 by a fresh new individual ξ̂ i
0 = ξ j

0 randomly cho-
sen among the individuals ξ j

0 ∈ A1. When no individuals ξ j
0 are in the set A1, the

algorithm stops and we set τN = 0. Assuming that τN > 0, during the mutation step
ξ̂0! ξ1 :=

(
ξ i

1

)
1≤i≤N , every selected individual ξ̂ i

0 performs a local random move

ξ̂ i
0! ξ i

1 (independently of one another) in the set A1 according to the Markov tran-

sition MA1 . Then, we perform another selection transition ξ1 ! ξ̂1 :=
(

ξ̂ i
1

)

1≤i≤N

using the fitness functions G1 = A2 . When no individuals ξ j
1 are in the set A2, the

algorithm stops and we set τN = 1. After this selection stage we mutate each se-
lected individual using the Markov transition MA2 , and so on. For any function f on
E and any time horizon n, we have
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lim
N→∞

1
N ∑

1≤i≤N
f (ξ i

n) τN>n = ∑
x

µAn(x) f (x)

In addition, if we set ηN
n (Gn) := 1

N ∑1≤i≤N Gn(ξ i
n), the proportion of individuals

in An+1 after the n-th mutation, the unbiased N-particle approximation Z N
An

of the
normalizing constants ZAn is given by

Z N
An

:= ∏
0≤p<n

ηN
p (Gp)−→N→∞ ZAn = Card(An)/Card(E)

1.5.4.4 Genetic Search Algorithms

We consider an energy function or a cost criteriaV : x∈E "→ (x) on some finite state
space E where we assume infx V (x) = 0 without loss of generality. The objective is
to find the global minima points x! ∈ E s.t. V (x!) = infx∈E V (x). Let V ! denote the
set of these points. We describe in Section 1.5.4.2 an interacting particle algorithm
to solve this problem which relies on interacting simulated annealing type chains.
We present here the more standard genetic algorithm with mutation and proportional
selection.

To construct this algorithm, we introduce a collection of Markov transitions
Mn(x,y) from E into itself. This collection of transition matrices represents the
probability Mn(x,y) that a individual at site x evolves to a new state x during the
n-th mutation transition.

The genetic algorithm with N individuals is defined as follows. We start with
N independent random individuals ξ0 :=

(
ξ i

0

)
1≤i≤N randomly chosen in E with

some distribution η0. We perform a proportional type selection transition ξ0! ξ̂0 :=(
ξ̂ i

0

)

1≤i≤N
using the potential functions G0

(
ξ i

0

)
= exp(−β0V

(
ξ i

0

)
), where β0 ≥ 0

is an inverse temperature parameter. In other words, with probability G0(ξ i
0) ev-

ery individual stays in the same place ξ̂ i
0 = ξ i

0; otherwise, we replace ξ i
0 by a new

individual ξ̂ i
0 = ξ j

0 randomly chosen among the individuals ξ j
0 with a probability

proportional to its weight G0(ξ i
0). Formally, we set

ξ̂ i
0 = ε i

0 ξ i
0 +
(
1− ε i

0
)

ξ̃ i
0

where ε i
0 stands for a sequence of independent {0,1}-valued Bernoulli random vari-

ables with distributions

G0(ξ i
0) := Proba

(
ε i

0 = 1 | ξ0
)
= 1−Proba

(
ε i

0 = 0 | ξ0
)

and ξ̃0 :=
(

ξ̃ i
0

)

1≤i≤N
are independent, identically distributed and

{
ξ j

0 , 1≤ j ≤ N
}

-

valued random variables with common distributions given for any index 1≤ i≤ N
by
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∀1≤ j ≤ N Proba
(

ξ̃ i
0 = ξ j

0 | ξ0

)
= G0(ξ j

0 )/ ∑
1≤ j≤N

G0(ξ j
0 )

During the mutation step ξ̂0 ! ξ1 :=
(
ξ i

1

)
1≤i≤N , every selected individual ξ̂ i

0 per-

forms a local random move ξ̂ i
0 ! ξ i

1 (independently of one another) according
to the Markov transition M1. Then, we perform another proportional type se-
lection transition ξ1 ! ξ̂1 :=

(
ξ̂ i

1

)

1≤i≤N
using the potential functions G1

(
ξ i

1

)
=

exp(−β1V
(
ξ i

1

)
), where β1 ≥ 0 is another inverse temperature parameter, and so

on. We define in this way a sequence of genetic type populations ξn, ξ̂n, as in (1.28)
and the corresponding genealogical tree model (1.30) associated with the ancestral
lines

(
ξ i

p,n
)

0≤p≤n
of every i-th individuals after the n-th mutation. In the same way,

running back in time we have the whole ancestral line

ξ̂ i
0,n←− ξ̂ i

1,n←− . . .←− ξ̂ i
n−1,n←− ξ̂ i

n,n = ξ̂ i
n (1.55)

of every i-th individual after the n-th selection.
For any function f on En and any time horizon n, we can prove that

lim
N→∞

1
N

N

∑
i=1

f (ξ̂ i
0,n, ξ̂ i

1,n, . . . , ξ̂ i
n,n) =

E
(

fn(X0, . . . ,Xn) exp
(
−∑0≤p≤n βp V (Xp)

))

E
(
exp
(
−∑0≤p≤n βp V (Xp)

))

In other words, the proportion of paths (ξ̂ i
0,n, ξ̂ i

1,n, . . . , ξ̂ i
n,n) taking some value

(x0, . . . ,xn) is given by

lim
N→∞

1
N

N

∑
i=1

(x0,...,xn)(ξ̂
i
0,n, ξ̂ i

1,n, . . . , ξ̂ i
n,n) =

1
Zn+1

exp

(
− ∑

0≤p≤n
βp V (xp)

)
Pn(x0, . . . ,xn)

with the probability of a free evolution path involving only mutation transitions

Pn(x0, . . . ,xn) = η0(x0)M1(x0,x1) . . .Mn(xn−1,xn)

where Zn+1 is a normalizing constant.
Suppose that every free evolution path has the same chance to be sampled, in the

sense that
Pn(x0, . . . ,xn) = Pn(y0, . . . ,yn)

for any admissible pair of paths (x0, . . . ,xn) and (y0, . . . ,yn). This condition is satis-
fied if η0 is the uniform counting measure on E and the mutation transitions Mn(x,y)
correspond to local random choices of the same number of neighbors, starting from
any state x. In this case, for any admissible path (x0, . . . ,xn) we have that

lim
N→∞

1
N

N

∑
i=1

(x0,...,xn)(ξ̂
i
0,n, ξ̂ i

1,n, . . . , ξ̂ i
n,n) =

1
Z ′

n
exp

(
− ∑

0≤p≤n
βp V (xp)

)
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for some normalizing constant Z ′
n . When the inverse temperature parameter βp in-

creases the r.h.s. probability mass quantity only charges admissible paths (x0, . . . ,xn)
that minimize the path potential function

Vn(x0, . . . ,xn) = inf
(y0,...,yn)

∑
0≤p≤n

V (yp)

In other words at low temperatures, the ancestral lines of the simple genetic model
described above converge to the uniform measure on all the paths (x0, . . . ,xn) of
length n that minimize the energy function Vn. For time homogenous mutation tran-
sitions associated with stochastic matrices Mn(x,y) = M(x,y) satisfying the follow-
ing condition for some integer m≥ 1 and any pair (x,y) ∈ E2

M(x,x) > 0 and Mm(x,y)≥ εMm(x,z)

we also have the convergence result

lim
n→∞

lim
N→∞

1
N

N

∑
i=1

V!(ξ̂ i
n) = 1

as soon as βn = C log(n+ 1) for some constant C that depends on m and on the
oscillations of the function V . This convergence result is also true for βn = C (n+
1)α , with any α ∈]0,1[, as soon as the above condition is met for m = 1.

Further details on these concentration properties can be found in [55]. Related
convergence results for fixed population sizes can be found in [24]. To give a flavor
of these results, let us suppose that the mutation transitions Mn(x,y) also depend on
the inverse temperature parameter and

Mn(x,y)→n→∞ x(y) as βn ↑ ∞

Intuitively speaking, the genetic mutations become rare transitions at low tempera-
tures. In this situation, we can prove that there exists a “critical population size” N!

that depends on the energy function as well as on the free evolution model such that

∀N ≥ N! lim
n→∞

Proba
(
∀1≤ i≤ N ξ̂ i

n ∈V !
)
= 1

1.5.5 Analysis of Convergence under Uncertain Behavior

The following analysis focuses on a particular class of genetic type algorithms for
which it is assumed that operators have a nonzero probability of erroneous or un-
certain behavior. A direct example may be found in practice for distributed environ-
ments where remote nodes carry part of the steps of the algorithm and where nodes
are prone to processing or communication errors and malicious behavior. Different
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questions arise in this context on the influence of erroneous (or abnormal) operation
on the convergence of the algorithm.

In this work we do not concentrate on proving that we have a probability one in
reaching the optimal solution when time goes to infinity, given a fixed population
size, as these results are already present in the literature [145, 146], but rather on
bounding the probability that the obtained results are within a certain error thresh-
old. Another line of research is concerned with results using Feynman-Kac repre-
sentations, focusing on the asymptotic stability and uniform convergence of genetic
algorithms [47]. Note that in the following we will address convergence in finite
spaces.

Finally, connections to dynamic optimization or in the presence of uncertainties
could be made by considering noise or time dependent external factors as being an
integrated part of how the operators function.

Let (Xn)n≥0, Xn ∈ E , be a Markov chain, with E being an arbitrary space, for
which a transition kernel is given as

M(x,dy) = P(Xn ∈ dy|Xn−1 = x).

Assumption A1: There exists ν , a probability measure over E , λ > 0, m≥ 1 s. t.

P(Xm ∈ dx|X0 = x0)≥ λ ν(dx)

Example 1.5.1. Let E = {x1,x2, . . . ,xd} be a finite space and M(x,y) ≥ δ > 0 a
Markov transition

(
M(x,y) ≥ δd× 1

d

)
. Having ν(y) = 1

d a uniform measure over
E and by denoting with λ = δd, we obtain that

M(x,y) = P(X1 = y|X0 = x)≥ λ ν(y).

Example 1.5.2. Let E = {x1,x2, . . . ,xd} be a finite space and Mm(x,y) a Markov
transition involving the application of the M kernel m times, with Mm(x,y) ≥ δ >
0⇔Mm(x,y)≥ δd× 1

d . By denoting as previously λ = δd, we obtain thus

Mm(x,y) = P(Xm = y|X0 = x)≥ λ ν(y).

Under Assumption (A1), it is well known that there exists an unique probability
measure π s.t. πM = π . This measure π is said to be an invariant measure.

Remark 1.5.3. We further assume that E is finite and Assumption (A1) is met for
m= 1, and some measure ν s.t. ν(x)> 0 for any x∈E. We also let π be the invariant
measure for the Markov chain of transition M. In this case, for any x ∈ E we clearly
have that:

π(x) = ∑
y

π(y)M(y,x) > 0,∀x

The same goes for the case involving m successive transition steps (see Example
1.5.2.):
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π(x) = ∑
y

π(x)Mm(x,y)> 0,∀x, as Mm(x,y)> 0,∀x.

For more general state spaces E, for any measurable subset A⊂ E we have

π(A) =
∫

A
π(dx) =

∫
π(dx)Mm(x,A)> 0,∀x, as Mm(x,A)> 0,∀x.

Notation: We let πn = 1
n ∑

0≤p<n
δXp be the occupation measure of the Markov chain

(Xp)p≥0 at time n, starting at some initial state, say X0 = x0. For any bounded mea-
surable function f on E , we set

πn( f ) =
∫

f (x) πn(dx) =
1
n ∑

0≤p<n
f (Xp) and π( f ) =

∫
f (x) π(dx)

In order to obtain stronger bounds we will base our further investigations on the
result presented in [86], adjusted to our context, i.e. ‖ f‖ = 1 and using the afore-
mentioned notation.

Theorem 1.5.4. (Glynn and Ormoneit [86]) Under the conditions of Assumption
(A1), for any bounded measurable function f s.t. ‖ f‖= 1, and for any n> 2m/(λ ε)
and ε > 0, we have that

P(πn( f )−E(πn( f ))≥ ε)≤ e−
λ2(nε−2m/λ)2

2nm2

When considering the absolute value, it is implied moreover that

P(|πn( f )−E(πn( f ))|≥ ε)≤ 2× e−
λ2

2m2 (ε− 2m
λn )

2

(1.56)

Example 1.5.5. As a direct application of this result, for m = 1 and ∀n > 2/(λ ε),
we have that

P(πn( f )−E(πn( f ))≥ ε)≤ e−
λ2
2n (nε− 2

λ )
2

= e−
λ2n

2 (ε− 2
λn )

2

We further assume that Assumption (A1) is met for some parameters λ > 0 and
m≥ 1, and some probability measure ν on E . We notice that

E
(

1
n ∑

0≤p<n
f (Xp)

)
=

1
n ∑

0≤p<n
E( f (Xp)) =

1
n ∑

0≤p<n
Mp( f )(x0).

On the other hand, under our assumptions it is well known that

sup
x0,y0

|Mp( f )(x0)−Mp( f )(y0)|≤ c1(m) e−c2(m) p
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for any p≥ 0, and any measurable function f on E s.t. ‖ f‖= 1, for some nonnegative
and finite constants c1(m) and c2(m) whose values only depend on the parameters
λ and m. For a detailed proof of these inequalities we refer the reader to [38].

Thus, recalling that π = πMp, for any p ≥ 0, the following relations can be
derived:

(πn( f ))−π( f ) =
1
n ∑

0≤p<n
[Mp( f )(x0)−π( f )] =

1
n ∑

0≤p<n
[Mp( f )(x0)−πMp( f )]

so that

| (πn( f ))−π( f )| = 1
n

∣∣∣∣∣ ∑
0≤p<n

[Mp( f )(x0)−πMp( f )]

∣∣∣∣∣

≤ c1(m)× 1
n ∑

0≤p<n
e−c2(m) p ≤ c3(m)/n

for some constant
c3(m)≤ c1(m)/(1− e−c2(m))

Considering these results with Theorem 1.5.4. one can conclude that

P(|πn( f )−π( f )|≥ ε)≤ P(|πn( f )−E(πn( f ))|+ |E(πn( f ))−π( f )|≥ ε)
≤ P(|πn( f )−E(πn( f ))|≥ ε− c3(m)/n)

≤ 2e−
λ2n

2 (ε−[c3(m)+2/λ ]/n)2

(1.57)

for any n ≥ 1 and any ε > 0 such that ε > [c3(m)+ 2/λ ]/n. We summarize the
above discussion with the following corollary:

Corollary 1.5.6. Under the conditions of Assumption (A1), for any bounded mea-
surable function f s.t. ‖ f‖ = 1, any ε > 0 and any n > [c3(m)+ 2/λ ]/ε , we have
the exponential concentration inequality

P(|πn( f )−π( f )|≥ ε)≤ 2e−
λ2n

2 (ε−[c3(m)+2/λ ]/n)2

with some finite constant c3(m)≤ c1(m)/(1− e−c2(m)).

1.5.5.1 Application in Optimization and Archive Models

As already mentioned, the existing results are mainly intended on the study of
the behavior in an optimization environment, focusing on the limiting behavior
[145, 146] as well as the limit probability distribution over populations as depicted
in [147]. Further results, see for instance [130], deduce properties of the stationary
distribution of the Markov chain associated with the evolutionary process by con-
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structing a quotient chain associated with the original chain. The advantage offered
by the herein depicted new result resides in the fact that it is based on an assump-
tion that concerns the overall transitions, without being bounded to specific types
of operators (mutation, selection) and without requiring any additional stronger as-
sumptions. In fact, it provides the means of building specific transition operators
that need only to satisfy the conditions from assumption (A1).

In order to apply the results presented in the previous section, in an optimiza-
tion context, we consider a finite state space E for which |E| = d and an objective
function V having the set of optimal solutions defined as V ∗ = {x|V(x) = inf(V )}=
{x∗1,x

∗
2, . . . ,x

∗
d∗}.

The aforementioned existing convergence results from [145, 146] were applied
in an optimization context and considered the study of the behavior of the algorithm
in limit, when time tends ot infinity. In the current case we consider the probability
of deviation from the invariant measure to be bounded by a positive vlaue ε and
establish bounds on these probability.

Let us also assume π an invariant measure such that ∀i= {1,2, . . . ,d∗}, π(x∗i )> 0

and π(V ∗) =
d∗

∑
i=1

π(x∗i ). Let us further consider the optimization context modeled as

{
X∗n = Argmin{V(X0),V (X1), . . . ,V (Xn)},
V (X∗n ) = min

(
V (X∗n−1),V (Xn)

)
,

(1.58)

where X∗n−1 ∈V ∗ is the equivalent of having
1
n

n−1

∑
i=0

V ∗(Xi)> 0.

When applying the previously obtained results from equation (1.57), for f = V ∗

and by considering the measure π on V ∗, the following holds:

P
(∣∣∣∣∣

1
n

n−1

∑
i=0

V∗(Xi)−π(V ∗)

∣∣∣∣∣≥ ε
)

≤ 2e−
λ2n

2 (ε−[c3(m)+2/λ ]/n)2
(1.59)

for any n > [c3(m)+ 2/λ ]/ε . Adopting an opposite perspective, i.e. for the proba-
bility of having a deviation smaller than a given threshold, the following expression
is derived:

P
(∣∣∣∣∣

1
n

n−1

∑
i=0

V ∗(Xi)−π(V∗)

∣∣∣∣∣< ε
)

≥ 1− 2e−
λ2n

2 (ε−[c3(m)+2/λ ]/n)2 (1.60)

for any n > [c3(m)+ 2/λ ]/ε . At the same time, without any loss of generality, we
consider ε = ε ′π(V ∗), with ε ′ ∈ [0,1[, which leads to

P
(∣∣∣∣∣

1
n

n−1

∑
i=0

V ∗(Xi)−π(V∗)

∣∣∣∣∣< ε
)
≤ P

(
1
n

n−1

∑
i=0

V∗(Xi)≥ π(V ∗)− ε
)

(1.61)
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where the right part of the expression can be rewritten as follows:

P
(

1
n

n−1

∑
i=0

V∗(Xi)≥ π(V ∗)(1− ε ′)
)
≥ 1− 2× e−

λ2n
2 (ε ′π(V∗)−[c3(m)+2/λ ]/n)2

(1.62)

for any n > [c3(m)+ 2/λ ]/ε ′π(V ∗). Nonetheless, given that the following stands,
in relation with the above result, we conclude the following

P
(

1
n

n−1

∑
i=0

V∗(Xi)≥ π(V ∗)(1− ε ′)
)
≤ P(X∗n ∈V ∗) (1.63)

and
P(X∗n ∈V ∗)≥ 1− 2× e−

λ2n
2 (ε ′π(V∗)−[c3(m)+2/λ ]/n)2

for any 0 < ε ′ < 1 and any n > [c3(m)+ 2/λ ]/ε ′π(V ∗). For instance, taking ε ′ =
1/2 we find that

n > 4(c3(m)+ 2/λ )/π(V ∗)⇒ π(V ∗)/2− [c3(m)+ 2/λ ]/n > π(V ∗)/4

From these observations, we obtain the following theorem:

Theorem 1.5.7. Under the conditions of Assumption (A1), we have that

∀n > 4
c3(m)+ 2/λ

π(V ∗) , P(X∗n ∈V ∗)≥ 1− 2e−n (λ π(V∗))2/32

The above result clearly shows that convergence is attained exponentially fast as
n→∞. As a consideration for application in practice, if π(V ∗) or λ are close to zero,
a large value is required for n, i.e. the algorithm needs a large number of iterations in
order to converge. The current result reaches generality as it provides clear bounds
on the probability that the evolutionary algorithm modeled as a Markov process,
approaches the actual global optima of the optimization problem, without focusing
on limit properties when time goes to infinity and without considering the absence
of mutation/selection [129].

1.5.5.2 Bounds on Perturbed Processes

The current section aims at quantifying the error that a given stochastic perturba-
tion has on the behavior of a genetic algorithm. Perturbations are considered to be
induced, for example, as a result of external stochastic factors affecting the tran-
sition kernel and/or the selection kernel based on the use of a potential function.
While the semantics of what exactly perturbed behavior means are widely open,
e.g. some functional error, malicious behavior, etc., we will only consider that, with
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some known probability, the operators behave in some different manner than what is
expected. In order to model this behavior we consider a genetic algorithm for which
the transition kernel and the potential function are given by Mn, respectively Gn. A
perturbed version of the algorithm, in the limits of the previous terms, is considered
to be defined on Mε

n and Gε
n , where, with some fixed probability ε , the behavior of

the transition kernel, for example, is different than what the Mn kernel models, while
with probability 1− ε , the Mn kernel applies. An analogous definition is considered
for Gε

n, i.e. with probability ε the potential of a solution is given by Gε
n, otherwise,

with probability 1− ε , being given by Gn. Examples may be found in practice, e.g.
algorithms executed across volatile resources or with the support of external, unreli-
able participants that offer or share computational power, and where, due to failures
or malicious behavior, the way different operators act can not be ensured – a brief
outline and discussion is offered by the end of this section.

A question that one may ask is, knowing that Mn and Mε
n are comparable up

to some constant, what impact on convergence does the Mε
n transition kernel have,

i.e. is there a significant difference between ηε,N
n ( f ) and ηN

n ( f ), do the algorithms
converge to similar or comparable results? A similar remark can be raised by ob-
serving the effect Gε

n has on convergence. An analysis of both cases is presented in
the following, within some assumptions on the relative difference of Mε

n and Mn,
respectively of Gε

n and Gn.
We recall that the total variance distance is defined by

Definition 1.5.8. (Total variance distance)

‖µ−ν‖tv = sup
f :ω( f )≤1

|µ( f )−ν( f )|

Given a positive and bounded potential function Gn on E , we start by introducing the
mappings (φn)n≥1, (ψGn)n≥0, respectively (φn)ε

n≥1 and (ψGn)
ε
n≥0 from P(E) into it-

self, with Mn being some Markov transition; ψGn can be, for example, a Boltzmann-
Gibbs mapping.

{
φε

n+1(η) =ΨGε
n
(η)Mε

n+1

φn+1(η) =ΨGn(η)Mn+1
(1.64)

In order to quantify the difference in behavior of the two different variants, we would
like to estimate φε

n+1(η)−φn+1(η), which can be further decomposed as

φε
n+1(η)−φn+1(η) =ΨGε

n
(η)Mε

n+1−ΨGn(η)Mn+1

=ΨGε
n
(Mε

n+1−Mn+1)+ [ΨGε
n
(η)−ΨGn(η)]Mn+1

(1.65)

By denoting with ν =ΨGn(η), we notice that

ΨGε
n
(η)−ΨGn(η) = [ΨGε

n/ Gn(ν)−ν]( f )

=
1

ν (Gε
n/ Gn)

ν
((

Gε
n

Gn

)
[ f −ν( f )]

)
(1.66)
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Next, we denote the oscillation of a function f by ω( f ) and use it to define two
working hypothesis, as described in the following:

Hypothesis H 1. The Markovian transition kernels Mε
n and Mn differ up to some

constant c1, the ε probability of having some alternative behavior than what is ex-
pected, and the oscillation of f

‖Mε
n ( f )−Mn( f )‖ ≤ c1εω( f ) (1.67)

Example 1.5.9. A simple example can be constructed by defining Mε
n as Mε

n =
εnKn +(1− εn)Mn, with ε = sup

n
(εn) and Kn(x,dy) = δn(dy), Mn Markov transi-

tions. Following this rationale, the following relation can be inferred:

Mε
n ( f )(x) = εnKn( f )(x)+ (1− εn)Mn( f )(x)

Mε
n ( f )(x)−Mn( f )(x) = εn(Kn( f )(x)−Mn( f )(x))

|Mε
n ( f )(x)−Mn( f )(x)| ≤ εn

∣∣∣∣
∫∫

Kn(x,dy)Mn(x,dz)( f (y)− f (z))
∣∣∣∣

Nonetheless, as f (y)− f (z)≤ω( f ), it directly follows that |Mε
n ( f )(x)−Mn( f )(x)|≤

εnω( f ) which, when taking ε = sup
n

εn, leads to the following relation:

sup
n
|Mε

n ( f )(x)−Mn( f )(x)| = ‖Mε
n ( f )−Mn( f )‖ ≤ εω( f ).

Hypothesis H 2. The difference between the potential functions is bounded,
meaning:

‖Gε
n/Gn‖ ≤ c2 ε (1.68)

which is equivalent to
1− c2 ε ≤ Gε

n/Gn ≤ 1+ c2 ε (1.69)

Example 1.5.10. As a direct example we can take Gε
n = e−V ε

n and Gn = e−Vn, lead-
ing to Gε

n/Gn = e−(V
ε
n −Vn ). The expression can be rewritten to read |Gε

n/Gn− 1|=
|eVn −V ε

n − e0| where the following stands:

|e(Vn −V ε
n )(x)− e0|≤ |(Vn −V ε

n )(x)|× e‖Vn ‖+‖V ε
n ‖

Further, knowing that ‖Vn ‖< ∞ and that supε ‖V ε
n ‖< ∞, there exists a constant v1

such that ‖V −V ε‖ ≤ εv1. Next, given that e‖Vn ‖+‖V ε
n ‖ ≤ e2max(‖Vn ‖, supε ‖V ε

n ‖), the
following relation holds:

‖Gε
n/Gn− 1‖ ≤ ε c2, where c2 ≤ v1 e2max(‖Vn ‖, supε ‖V ε

n ‖).
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Example 1.5.11. We adopt a different perspective, considering that V ε
n = (1−

ε)Vn + εWn , or in a different form, that V ε
n −Vn = ε(Wn −Vn ). Knowing that

supn ‖Wn ‖ < ∞ and that supn ‖Vn ‖ < ∞, we obtain ‖V ε
n −Vn ‖ ≤ εc2, with c2 =

supn ‖Vn ‖+ supn ‖Wn ‖. In analogous manner we have the following:

‖V ε
n ‖ ≤ (1− ε)sup

n
‖Vn ‖+ ε sup

n
‖Wn ‖ ≤max(sup

n
‖Vn ‖, sup

n
‖Wn ‖).

From the second hypothesis (H2), for any ε < 1
2c2

we obtain that

[ΨGε
n/ Gn(ν)( f )−ν]( f ) ≤ c2ε

1− c2ε ν(| f −ν( f )|)≤ c2ε
1− c2ε ,

‖ΨGε
n
(η)−ΨGn(η)‖tv = sup

f : ω( f )≤1
|ΨGε

n
(η)( f )−ΨGn(η)( f )| ≤ c2ε

1− c2ε ,
(1.70)

Furthermore, equation (1.65), defining the difference between two mappings, can
be rewritten as:

‖φε
n+1(η)−φn+1(η)‖tv = c1εω( f )+

c2ε
1− c2ε ω(Mn( f ))

≤ c1ε + c2ε
1− c2ε as soon as ω( f ) ≤ 1

≤ (c1 + 2c2)ε for any ε < 1/(2c2).

(1.71)

In summary, we have proved the following technical lemma.

Lemma 1.5.12. In the conditions defined by hypotheses (H1) and (H2), for any
ε < 1/(2c2) and any probability measure η we obtain that

‖φε
n+1(η)−φn+1(η)‖tv ≤ (c1 + 2c2)ε

Let (γn,ηn) be the Feynman-Kac model associated with the potential function Gn
and the transition kernel Mn, representing the normalized, respectively unnormal-
ized Feynman-Kac measures. At first we consider defining the sequential update of
the flow of distributions (ηn)n≥0 (standard case) and (ηε

n )n≥0 (perturbed variant):

ηε
n = φε

n (ηε
n−1), (1.72)

where ηn is the measure associated with N independent samples of common law
φn(ηn−1). We will adopt the convention that for p = 0, η0 = φ0(ηε

n−1).
An additional mapping notation is further considered φp,n = φn ◦ . . . ◦ φp+1. For

p = n we consider that φp,n = φn,n = Id, the identity mapping, and

φp,n(ηp) = ηn. (1.73)

For the normalized Feynman-Kac measure, we consider it as defined by



62 P. Del Moral, A.-A. Tantar, and E. Tantar

γpQp,n = γn (1.74)

with Qp,n having the following functional representation

Qp,n( f )(xp) =

(
f (Xn)

n−1

∏
k=p

Gk(Xn)|Xp = xp

)
. (1.75)

The rationale behind introducing the additional mapping notation is to ease the de-
scription of the difference between the empirical measures in the presence of exter-
nal stochastic factors and in the classical case, defined as follows:

ηε
n −ηn =

n

∑
p=0

[φp,n(ηε
p)−φp,n(φp(ηε

p−1))] (1.76)

The proof of the above has been obtained using a telescoping sum decomposition.
Let us now consider the following regularity properties.

Hypothesis H. There exists some integer m≥ 1 and some parameter ε > 0 such that
for any p≥ 1, any (x,y) ∈ E2 and any measurable subset A we have that

Mp+1, . . . ,Mp+m(x,A)≥ ε×Mp+1, . . . ,Mp+m(y,A)

g = sup
p

sup
x,y

Gp(x)
Gp(y)

< ∞
(1.77)

The following contraction inequalities are proved in [38, 42, 43, 49], see also [58]
for a more recent development on these stability properties.

Theorem 1.5.13. We assume (H) is met for some parameters (m,ε). In this situa-
tion, there exists some δ ∈]0,1[ such that for any probability measures (η ,ν), and
for any p≤ n, we have

‖φp,n(η)−φp,n(ν)‖tv ≤c (1− δ )(n−p)/m‖η−ν‖tv. (1.78)

for some finite constant c<∞ whose values do not depend the parameters (p,n,η ,ν).

Replacing η with ηε
n and ν with ηn, we find that

‖ηε
n −ηn‖tv ≤

n

∑
p=0

c(1− δ )
n−p

m ‖φε
p(ηε

p−1)−φp(ηε
p−1)‖tv

≤ c (c1 + 2c2)ε ×∑
p≥0

(1− δ )
p
m

(1.79)

for any ε < 1/(2c2). The second implication comes from Lemma 1.5.12., under the
conditions (H1) and (H2). We conclude that

sup
n≥0
‖ηε

n −ηn‖tv ≤ c(δ )ε with c(δ )≤ c (c1 + 2c2)/(1− (1− δ )1/m) (1.80)
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We recall that we consider a population of N individuals and the occupation mea-
sures of the population for the two variants (standard and perturbed) are approxi-
mated as follows:

ηε,N
n =

1
N

N

∑
i=1

δξ ε,i
n
, with

{
Mε

n mutation
Gε

n selection

ηN
n =

1
N

N

∑
i=1

δξ i
n
, with

{
Mn mutation
Gn selection

(1.81)

Hypothesis Hε There exists some integer m ≥ 1 and some parameter ε ′ > 0 such
that for any p≥ 1, any (x,y) ∈ E2, and ε > 0, and any measurable subset A we have
that

sup
ε≥0

sup
p

sup
x,y

Gε
p(x)

Gε
p(y)

< ∞

Mε
p+1, . . . ,M

ε
p+m(x,A)≥ ε ′ Mε

p+1, . . . ,M
ε
p+m(y,A)

(1.82)

Under the assumptions (H) and (Hε), based on the Proposition 2.9 from [52] (see
also [43, 58]) it can be deduced that (∀p≥ 1) and (∀ f : ω( f )≤ 1)

sup
n≥0

(
|ηN

n ( f )−ηn( f )|p
) 1

p ≤ c(p)/
√

N

sup
n≥0

(
|ηN,ε

n ( f )−ηε
n ( f )|p

) 1
p ≤ c(p)/

√
N

(1.83)

for some finite constant c(p). This implies that

(
|ηN

n ( f )−ηε,N
n ( f )|p

) 1
p ≤ 2c(p)√

N
+ c(δ )ε ≤ c(p,δ )

(
1√
N
+ ε
)

(1.84)

for some finite constant c(p,δ )≤max(2c(p),c(δ )).
Some exponential estimates can also be deduced using Bernstein-type martin-

gales inequalities or alternatively by employing the Hoeffding’s inequality [58, 57].
Under the assumptions (H1) and (H2) for any measurable function f , s.t. ‖ f‖ ≤ 1,
for any x > 0 and any N ≥ 1, when considering c1 as being a finite constant related
to the bias of the particle model and c2 a constant related to the variance of the
method, we have
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P
(
(ηN

n −ηn)( f ) ≤ c1

N
(1+ x+

√
x)+

c2√
N

√
x)
)
≥ 1− e−x (1.85)

P
(∣∣ηN

n ( f )−ηn( f )
∣∣≤ c1

N
(1+ x+

√
x)+

c2√
N

√
x)
)
≥ 1− 2e−x. (1.86)

Next, by taking

(ηN,ε
n −ηN

n )( f ) = (ηN,ε
n −ηε

n )( f )+ (ηε
n −ηn)( f )+ (ηn−ηN

n )( f )

where the middle term is bounded with respect to ε up to some constant b1, i.e.
(ηε

n −ηn)( f )≤ b1ε , and the relation in Equation (1.86) (with respect to the first and
third terms), we obtain the following concentration inequalities

P
(
(ηN,ε

n −ηN
n )( f ) ≤ 2

(
c1

N
(1+ x+

√
x)+

c2√
N

√
x
)
+ b1ε

)
≥ 1− 2e−x

P
(∣∣(ηN,ε

n −ηN
n )( f )

∣∣≤ 2
(

c1

N
(1+ x+

√
x)+

c2√
N

√
x
)
+ b1ε

)
≥ 1− 4e−x.

Direct applications of this result could find a way into, for example, distributed
desktop computing. For a few notorious examples, one can refer to the Seti@Home
(Search for Extraterrestrial Intelligence) [4], Leiden Classical (desktop computer
grid dedicated to general classical dynamics) [158], Rosetta@Home (protein fold-
ing, design, and docking) [156] or MilkyWay@Home (highly accurate model of our
galaxy) [32]. A common part all those projects have is the use of desktop resources
offered by (anonymous) users all over the world. As underlying principles of how
the workload is managed, the aspects hereafter need to be considered, within the
limits of the herein results, i.e. genetic algorithms like structure:

• a high complexity of the problem to deal with, e.g. sampling a large confor-
mational space or running a computationally intensive analysis over enormous
amounts of data, surpassing the power provided by classical resources like clus-
ters or even grids; a second important element is the use of spare computational
cycles (or specified amount), allowing to give a meaning to otherwise wasted en-
ergy and computing power while simultaneously contributing to an advance of
our knowledge on important scientific problems;

• the problem allows a decomposition into independent sub-tasks that can be in-
dependently processed – each of the participating users only needs to deal with
such sub-tasks (locally installed clients) and does not see the complete picture the
problem draws; as a straightforward example, this may be the equivalent of re-
ceiving a set of instances from a server (input data), processing and last, sending
back the results.

While this (simplified) design has several advantages, it is not difficult to understand
that it is also subject to several issues that direct to security or data integrity aspects.
Errors, as a result of network or processing faults, may lead to data loss or corrup-
tion. At the same time, malicious behavior, while unlikely, can not be excluded – if
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reasons exist for malware and viruses, why would this particular context be any dif-
ferent? A question one may raise is how errors can be controlled or how results can
be legitimated. While different approaches exist, the result presented in this section
implies that an exponential decrease of the probability of having a difference above
a given threshold can be obtained.

1.5.5.3 Weak Bounds for Behavior under Perturbation

We are modeling in the following a stochastic behavior that can occur for evolution-

ary algorithms. Let a candidate solution be modeled as a Markov chain Xn =

(
εn
Yn

)

taking values in the product space ({0,1}× E). The parameter εn represents the
stochastic factor, modeling the presence or absence of an uncertain behavior. We
further assume that εn is a sequence of independent Bernoulli random variables
with common law

P(εn = 0) = (1−P(εn = 1)) = p

Let us now consider that the behavior involving no external stochastic factor and the
absence of uncertainty is modeled through a value of zero attributed to the stochastic
marker as (ε0, . . . ,εn) = (0, . . . ,0). Given a realization (εp)0≤p≤n = (up)0≤p≤n, the
second component Yn forms a Markov chain with transitions Mn+1,un that depends
on the parameter un, the initial random variable Y0 is also distributed w.r.t. some
probability measure η0,u0 that depends on u0.

We consider the space of possible values for the stochastic marker as Ωn and let

Ω 0
n = {∀0≤ p≤ n ,εp = 0}, (1.87)

and (Ω 0
n )

C the complementary set. For a given function f , we use the following
notation

f (0)n (y) = fn

(
0
y

)
and f (1)n (y) = fn

(
1
y

)

We also set Gn

(
0
y

)
= G(0)

n (y) and consider the uniform norm be given by ‖ f‖ =

sup
u∈{0,1},y∈E

∣∣∣∣ f
(

u
y

)∣∣∣∣.

Given the number of transitions that the algorithm is subject to, given by n, the
normalized Feynman-Kac measure associated with the perturbed process behavior
is given by

γn( f ) = E
(

f (Xn)
n−1

∏
k=0

Gk(Xk)

)
(1.88)

We let γ(0)n be the Feynman-Kac measure defined by
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γ(0)n

(
f (0)n

)
= E

(
f (0)n (Y (0)

n )
n−1

∏
k=0

G(0)
n (Y (0)

k )

)
(1.89)

where Y (0)
n stands for the Markov chain with transitions Mn+1,0 and initial

distribution η0,0.
The relation defined in equation (1.88) can be further decomposed in two cases

according to the complete absence of external stochastic factors and the presence of
perturbations.

γn( f ) =E
(

f (Xn)
n−1

∏
k=0

Gk(Xk) Ω0
n

)
+E

(
f (Xn)

n−1

∏
k=0

Gk(Xk) (Ω0
n )

C

)

=γ(0)n

(
f (0)n

)
(Ω 0

n )+E
(

f (Xn)
n−1

∏
k=0

Gk(Xk) (Ω0
n )

C

)
.

(1.90)

From equation 1.90 we can further derive

|γn( f )− γ(0)n

(
f (0)n

)
|≤|γ(0)n

(
f (0)n

)
|
(

1− (1− p)n+1
)
+

∣∣∣∣∣E
(

f (Xn)
n−1

∏
k=0

Gk(Xk) (Ω 0
n )

C

)∣∣∣∣∣

≤|γ(0)n

(
f (0)n

)
||(1− p)n+1−1|+‖ f ‖

n−1

∏
k=0
‖Gk‖(1−P(Ω 0

n ))

≤(1− (1− p)n+1)

(
|γ(0)n

(
f (0)n

)
|+‖ f ‖

n−1

∏
k=0
‖Gk‖

)

(1.91)
This implies that

|γn( f )− γ(0)n

(
f (0)n

)
|≤ (1− (1− p)n+1) c(n)

for some constant c(n)≤ 2‖ f‖∏n−1
k=0 ‖Gk‖.

In practice, when subject to a corrupted computing environment (e.g. involving
malicious/cheating behavior or faults of the hardware material) this result provides
a quantitative measure of the fault-tolerance accepted by the system. This can be
useful in assesing the level of accuracy of the results.

1.5.6 Rare Events Stochastic Models

1.5.6.1 Calibration and Uncertainty Propagation

Modern computers are capable of simulating complex physical and engineering sys-
tems. Nevertheless, formalized mathematical models are rarely certain and error-
free. For instance, the physical environment is often too complex to formalize
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perfectly, and all the different physical scales are difficult to capture with high pre-
cision. In addition, the reliability and the accuracy of computational approximation
models often relies on complex calibration processes combined with the dispersion
analysis of inputs and other sources of randomness.

Given some reference physical observation we would like to calibrate the model
parameters so that the outputs simulated by some numerical code coincide with this
reference data, or at least behave as much as possible as these physical observations.

In another context, with a successfully calibrated model one may be also inter-
ested in computing the probability that simulation outputs belong to some critical
event; that is, to find the law of the input parameters and the sources of randomness
leading to such events.

This couple of important issues can be formulated in terms of a classical input-
output transformation

Inputs = I︸ ︷︷ ︸
sources of randomness
uncertainty representations
tuning parameters
unknown kinetic parameters

−→ [Black-box simulation model] −→ Outputs O =C(I)︸ ︷︷ ︸
physical, biological or forecasting predictions
partial differential equation profiles
mechanical forces
hydrodynamic profiles

The prototype of question arising in practice is the following. We are given a
desired domain, say O , in the space of the outputs, and we want to estimate both
the probability that the outputs fails into this set and the distribution of the inputs
leading to these outputs; that is, we want to compute the following quantities

Proba(O ∈ O) and Law(I | O ∈ O)

• The set O represents some critical event with a very small occurrence probability,
say 10−9. In this context, we are interested in computing rare event probabilities
as well as the distribution of the random sources leading to this critical regime.
The conditional distribution provides all the statistical information on the differ-
ent contributions of the input parameters and the random sources on ”the desired”
critical rare event.

• The domain O is related to some distance-like criteria that measure the adequacy
of some output profile with some reference data or some observations delivered
by some sensors. In this context, we are interested in computing the chance that
some collection of models may reach a given precision w.r.t. the physical data.
Furthermore, we are also often interested in calibrating the numerical code with
the selection of the most accurate input parameters that achieve a given precision
w.r.t. the data.

• The couple of situations discussed above can be combined. For instance, we may
be interested in computing the probability of a critical rare event given some
observations, or reversely the law of some input parameters given some observa-
tions as well as some critical event.

Of course, the choice of the stochastic particle algorithm that solves these three
questions is far from being unique. The design of an appropriate Monte Carlo simu-
lation model strongly depends on the physical problem at hand, including the nature
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of the numerical code, the quantification of the sources of randomness, the specifi-
cation of the inputs and the outputs profiles.

In the following we consider the case where some fixed critical level exists, given
by a value h and the rare event of interest is the fact that the output value passes the
maximal value h

The inputs are represented by a function like d-dimensional vector I =(I1, . . . , Id)
and the set O represents a failure region. The outputs of the numerical code are
represented by a function like d′-dimensional vector O = (O1, . . . ,Od′). In this sit-
uation, we are given some critical threshold value h and a random event of interest
is the fact that the forces acting on the provided structure get above this maximal
value; the corresponding probabilistic quantities of interest are given below

Proba

(
sup

1≤t≤d′
|Oi|≥ h

)
and Law

(
(I1, . . . , Id) | sup

1≤t≤d′
|Oi|≥ h

)

Our next objective is to relate these questions to the probabilistic model of combina-
torial counting and sampling presented in section 1.5.4.3. To this end, let us assume
that the random input parameters I are distributed according to some probability
measure λ on some finite or countable state space; that is we have that

Proba(I = x) = λ (x)

We also suppose that the input-output function is given by some mapping C : x "→
C(x), and we set

A := {x : C(x) ∈O}

In this notation, the uncertainty propagation models presented above coincide with
the ones discussed in section 1.5.4.3; that is, we have that

Proba(O ∈ O) = Proba(I ∈ A)λ (A) := ∑
x∈A

λ (x)

and
Proba(I = x | O ∈O) = µA(x) :=

1
ZA

A(x) λ (x)

with the normalizing constant ZA = λ (A).
In engineering literature, the multilevel genetic type splitting particle algorithms

presented in section 1.5.4.3 are also called subset-simulation models. The central
idea is to express a rather small failure probability as the product of not so small
conditional probabilities:

Proba(I ∈ A) =
m

∏
p=0

Proba(I ∈ Ap+1|I ∈ Ap) (1.92)

The intermediate levels Ap are judiciously chosen failure regions s.t.

A0 ⊃ A1 ⊃ ...⊃ Am = A
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In this interpretation, the computation of the small failure probability Proba(I ∈ A)
is now reduced to the computation of larger conditional probabilities Proba(I ∈
Ap+1|I ∈ Ap). In the marine engineering problem discussed above, these failure re-
gions are characterized by the choice of an increasing sequence of critical threshold
values hp; that is, if we set

I =(I1, . . . , Id)=(x1, . . . ,xd) "→O=C(I)=(C1(I), . . . ,Cd′(I))=(C1(x), . . . ,Cd′(x))

then we have that

hp ↑ ⇒ Ap :=

{
x = (x1, . . . ,xd) | sup

1≤t≤d′
|Ct(x)|≥ hp

}
↓

1.5.6.2 An Universal Particle Algorithm Based on Multilevel Splitting

In this section we introduce a generic particle simulation algorithm based on a
multilevel splitting mechanism. A simple stochastic particle algorithm consists in
propagating a population of N individuals representing potential solutions at each
iteration. Hereafter we start by providing the main structure and pseudo-code of a
generic multilevel splitting particle algorithm, depicted in Algorithm 1.2.

The algorithm is initialized with N random configurations chosen according to
some distribution law ν0 (in this case we consider it as uniform i.i.d. sampling) in
the A0 set. The algorithm considers a critical level to be reached, in order for the
rare event to take place, denoted in the pseudo-code by cn.

In the following pN
1 stands for the proportion of individuals that succeed to reach

the level A1, these individuals in A1 being further selected for the next step of the
algorithm. As we consider N as a fixed value, the notation will be simplified to p1
instead of pN

1 . The rejected configurations are then randomly redistributed among
the ones that passed into A1 such that the number of individuals in the population
remains constant, N. The following step consists on diversifying and enriching the
population of solutions selected in A1 during the first step. This is performed by
applying the transition or perturbation operator F , leading to new candidate samples,
while leaving the measure µ1

A invariant. In its most simple variants the transition
operator can be seen as a mutation operator.

Each individual independently explores the space defined by A1 following a local
Markovian transition that leaves the measure µA1 invariant. As for the previous step,
we denote by p2 the proportion of individuals having succeeded to pass to the level
A2. We select afterwards the configurations having succeeded to pass at the second
level A2. The rejected configurations are again redistributed randomly among the
previously selected ones. Each individual explores afterwards, in an independent
manner, the space A2 following a local Markovian transition that leaves the measure
µA2 invariant. The process is reiterated until the last level n is reached.

1 Note: h is the equivalent of hm when A = Am.
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Algorithm 1.2. Multilevel splitting particle algorithm
A0 := E , hi := threshold levels, j := 0
Sample N particles, (ξ i

0)1≤i≤N from a given distribution µ0 in A0

{Ai =

{
x = (x1, . . . ,xd ) | sup

1≤t≤d′
|Ct (x)|≥ hi

}
, i ≤ m+1 s.t. hm+1 = h the fixed critical level.1}

while
1
N

N

∑
i=1

Am+1 (ξ
i
j) = 0 do

p̂ j+1(A j+1 | A j) :=
1
N

N

∑
i=1

Aj+1 (ξ
i
j)

ξ j(A j+1) := {ξ l
j | 1≤ l ≤ N s. t. ξ l

j ∈ A j+1}

Selection
for i = 1 to N do

ξ̂ i
j :=

{
ξ i

j , i f ξ i
j ∈ A j+1

sample randomly in the set ξ j(A j+1), otherwise.
end for

Transition
for i = 1 to N do

ξ i
j+1 :=

{
F(ξ̂ i

j), i f F(ξ̂ i
j) ∈ A j+1

ξ̂ i
j, otherwise.

end for

j := j+1
end while

For the multilevel splitting, the result of this simulation can be explained as fol-
lows. When N is increased, the population of solutions obtained at each kth iteration
is distributed according to the law of the variable X restricted to the set Ak. This is
equivalent to saying, that at each iteration k, the variables I(i,N)

k , 1 ≤ i ≤ N, simu-
lated on the Ak set are distributed approximately as a sequence of random variables
I(i,N)

k , 1≤ i≤ N, independent and having the same law µAk . This approximation can
be further detailed in several forms. For example, we can have:

∥∥∥Law
(

I(1,N)
k , . . . , I(q,N)

k

)
−Law

(
I(1,N)

k , . . . , I(q,N)
k

)∥∥∥
tv
≤ q

N
c(k)

for all q≤ N and for a finite constant c(k)< ∞ which can be specified according to
the parameters of the model. In the preceding equation, ‖P−Q‖tv denotes the total
variation distance between two probability measures P and Q. For any bounded
function f and for any ε > 0, the following exponential error probabilities are
verified:

P
(∣∣∣∣∣

1
N

N

∑
i=1

f
(

I(i,N)
k

)
−E( f (I) | I ∈ Ak)

∣∣∣∣∣≥ ε
)
≤ c1(k) e

− Nε2
c2(k)
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Algorithm 1.3. Particle algorithm using acceptance-rejection
A0 := E
Â := {A1, A2, . . . , An} {Constants specifying the fixed levels (Ak)1≤k≤n }
Initialization
ξ0:= sample N particles, (ξ i

0)1≤i≤N randomly of law η0.
for k = 1 to n do

{For each of the intermediate levels (Ak)1≤k≤n }

Selection
for i = 1 to N do

{For each particle}

ξ̂ i
k−1:=






ξ i
k−1, i f ξ i

k−1 ∈ Ak

ξ̃ i
k−1, random variable o f law

N

∑
i=1

Ak (ξ
i
k−1)

∑N
j=1 Ak (ξ

j
k−1)

δξ i
k−1

otherwise.

end for

Transition
for i = 1 to N do

{For each particle}

ξ i
k:=

{
F(ξ̂ i

k−1), i f F(ξ̂ i
k−1) ∈ Ak

ξ̂ i
k−1, otherwise

{F designates the perturbation operator generating new candidate solutions and ξ i
k of law

Mk(ξ̂ i
k−1, · ) with a Markovian transition Mk leaving the measure µAk invariant.}

end for
end for

for a couple of finite constants c1(k),c2(k)< ∞ they may be specified depending on
the model parameters.

Furthermore, the product of the proportions of success
k

∏
l=1

pN
l is an unbiased esti-

mator of the probability that the variable I is in Ak. Under certain regularity assump-
tions ([27]), the following convergence result can be proved (holds):

E
(

k

∏
l=1

pN
l

)
= P(I ∈ Ak) and E




[

k

∏
l=1

pN
l −P(I ∈ Ak)

]2


≤ c
N

k P(I ∈ Ak)
2,

for a finite universal constant c < ∞. Other convergence results, including estimates
of error probability exponentially small are described in the book [38] and also in
the articles [52, 41, 57].
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1.5.6.3 Variants of Multilevel Splitting Simulation

In the description of the preceding algorithm, it is worth mentioning that the param-
eters (N,An) must be chosen judiciously so that at least one solution among the N
ones is in An, otherwise the algorithm stops at the nth iteration. For this to be ful-
filled we propose choosing a first level disparity (An−An−1) sufficiently low. Either
case, when the number of proposed solutions N′ increases, we can prove that all the
levels are reachable and that the algorithm converges towards the desired solutions.
It is also possible to chose the levels An adaptively online according to the proposed
candidate samples. For example, one option consists in choosing the first level A1
such that a given proportion of the current solutions (e.g. 80 percent) of the solu-
tions proposed in A0 reach the next level. These adaptive splitting algorithms can
be recast in terms of sequential Monte Carlo models with adaptive resampling pro-
cedures. For a detailed discussion on these models with precise reference pointers
we refer the reader to [41]. To our knowledge these adaptive resampling techniques
were first introduced as an heuristic scheme in [36] (remark 1, section 2.1), see also
[37]. These adaptive criteria for the choice of the levels were also discussed in three
recent studies [26, 28, 27]. For a detailed theoretical analysis of these models, in-
cluding central limit theorems and exponential cumulative ratios, we refer the reader
to [41].

There are also other variants allowing the exploration of the search space accord-
ing to these new data and solving this stopping problem. These techniques are more
complex to describe and they will be detailed in the follow up. The main idea behind
this is to create new candidate solutions until configurations in A1 are reached. This
step can also be catastrophic if the level A1 is badly chosen.

We start by differentiating the two types of multilevel splitting considered in the
following, according to the mechanism used in establishing the different splitting
levels. The levels can be either fixed a priori or established adaptively at each iter-
ation step by the threshold passed by a percentage of the sampled solutions. Also,
two types of selection mechanisms are considered: the uniform selection and the
acceptance-rejection selection.

1.5.6.4 Case Study

We illustrate these rather abstract models with a marine engineering problem we
recently analyzed with Z. Guede from the French marine research institute (IFRE-
MER). In this situation, we want to assess the reliability of an offshore structure,
both at the design stage, as to validate the design choice, and in service for main-
tenance and inspection planning. The goal is to check whether the structure is able
to withstand the loads from its environment for its entire planned lifetime, defined
according to a physical criterion with respect to the structural response. The struc-
tural response is computed by a hydrodynamic numerical code with strong physical
and geometrical non-linearity that lead to a complex failure region geometry. In this
context, the input parameters are of different natures, some of them representing
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Algorithm 1.4. Fixed levels particle algorithm
A0 := E , hi := threshold levels, j := 0
Sample N particles, (ξ i

0)1≤i≤N uniformly i.i.d. in A0

{Ai =

{
x = (x1, . . . ,xd ) | sup

1≤t≤d′
|Ct (x)|≥ hi

}
, i ≤ m+1 s.t. hm+1 = h the fixed critical level}

while
1
N

N

∑
i=1

Am+1 (ξ
i
j) = 0 do

p̂ j+1(A j+1 | A j) :=
1
N

N

∑
i=1

Aj+1 (ξ
i
j)

ξ j(A j+1) := {ξ l
j | 1≤ l ≤ N s. t. ξ l

j ∈ A j+1}

for i = 1 to N do

ξ̂ i
j :=

{
ξ i

j , i f ξ i
j ∈ A j+1

ξ̃ i
j a randomly chosen particle in the set A j+1, otherwise.

end for

for i = 1 to N do

ξ i
j+1 :=

{
F(ξ̂ i

j), i f F(ξ̂ i
j) ∈ A j+1

ξ̂ i
j, otherwise.

end for

j := j+1
end while

the spectral properties of wave mixtures, while the other ones represent temperature
variations, waves periods and their direction. The outputs of the numerical code are
represented by a function like d prime-dimensional vector O = (O1, . . . ,Od′) denot-
ing the forces that act on the offshore structure surface at different time periods. In
this situation, we are given some critical threshold value h for which a random event
of interest is given by the fact that the forces acting on the offshore structure get
above this maximal value.

In order to test the performance and the validity of the approaches in a general
context, we employ as testbed the estimation of the evolution of a variable that
follows a known law. The choice for χ2 is due, among others, to its resemblance with
the quadratic nature appearing in the real-life experiment proposed by IFREMER.

Let U1,U2, ...,Uk be k independent random variables following the same standard
normal law, then the U variable is defined such that

P(max
1≤i≤n

X2
i ≥ c) (1.93)

P( max
1≤i≤n

X2
i ≥ c) = 1− (Fn

X2
1
(c)) (1.94)
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Algorithm 1.5. Adaptive particle algorithm
A0 := E , h := constant {Critical level}, k0 := 0, p := 1
ξ0 := (ξ i

0)1≤i≤N {N independent particles of law η0}

while kp−1 ≤ c do

kp := inf

{
k > kp−1 : ηp−1( Ak ) =

1
N

N

∑
i=1

Ak (ξ
i
p−1)≤ αp,αp ∈ ]0,1[

}

p̂p(Akp |Akp−1 ) =
1
N

N

∑
i=1

Akp
(ξ i

p−1)

Selection
Select N particles (ξ̂ i

p−1)1≤i≤N
from the Akp set

{by using either an accept/reject technique or an uniform sampling}

Transition
for i = 1 to N do

ξ i
p constructed by successively applying np+1 Markovian elementary transitions Mkp (of

invariant measure ηkp ).
end for

p := p+1
end while

U = max
1≤i≤k

U2
i (1.95)

follows a law χ2 with one degree of freedom. For experimental purposes, we con-
sider a number of k = 2048 random variables, as this number of degrees of freedom
is considered also relevant for the practical IFREMER application.

P
(

max
1≤i≤k

U2
i ≥ c

)
= 1−P(max

1≤i≤k
U2

i < c)

= 1−FU2
1
(c)n = 1−

(
1− 2P

(
U1 ≥

√
c
))n (1.96)

From this we obtain in fact the value of the distribution function of the variable Un,
which is denoted in the follow up by FU2

1
(c), where c represents a real value corre-

sponding to a given critical level. Furthermore, the computation of the distribution
function for a given level c and a variable X =U2

i , 1≤ i≤ k can be done by using:

FX(c) =

(
γ
( c

2 ,
1
2

)

Γ ( 1
2 )

)n

=

[
1√
π

∫ c
2

0

e−t
√

t
dt
]n

(1.97)

where γ is the lower incomplete gamma function. We can also use the following
estimations in the formula (1.96)
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Fig. 1.1 Histogram depicting the number of levels for the adaptive algorithm with α set to 0.1

1√
2π

1
c+ 1/c

e−
c2
2 ≤ P(U1 ≥ c)≤ 1√

2π
1
c

e−
c2
2

A proof of these analytic estimations can be found in the book [56].
In order to prepare the calibration for the practical problem and prepare the test-

ing environment we first studied the distribution of the number of levels employed
for the adaptive method, as depicted in Figure 1.1. In concordance with the results,
the number of chosen levels for the adaptive method was set to 15, this being given
by the central tendency of the number of levels for the two adaptive cases.

The next step considered the analysis of the algorithms’ evolution according to
the theoretical estimate, obtained as described in Equation 1.96. Figure 1.2 depicts
on the ordinate axis the distribution of the values obtained for the probability of pass-
ing the intermediate levels, while the abscissa represents the values of the system’s
response, i.e. from 15.0 to 52.2513 (critical level). The evolution of the adaptive
algorithms (where the intermediate levels vary among two different executions) is
approximated by a least squares method applied on the entire set of obtained values
(cloud of points). The approximation in this latter case is done by estimating the av-
erage and standard deviation for a normal density. A comparison of the algorithms’
evolution is illustrated in Figure 1.2 successively focusing closer to the critical level
region. It is thus possible to evaluate the stalling of the algorithm using fixed levels
as compared with the curve of the theoretical
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Fig. 1.3 The difference between the final probability attained by the four algorithm variants
(averaged over 500 tests) and the theoretical estimate

estimate. Finally, one should note that adaptive variant whose averaged values fol-
low the best the curve of the values estimated by Equation 1.96 is the one using the
uniform selection. By considering the simulation of the normal variable described
above, for comparative purposes, the adaptive method was compared with the fixed
levels variant, by employing two types of selection. The comparison is done by
considering the distance between the average of the final probability (obtained on
500 tests per algorithm) and the theoretical estimate of the final probability. As
illustrated in Figure 1.3, the best results were obtained with the adaptive variant
employing the uniform selection.

1.5.6.5 Multilevel Splitting Simulation

The analysis of rare events arise in various scientific areas including physics, biol-
ogy, engineering science and financial mathematics. For instance in nuclear physics
to study of the performance of a radiation source containment we are interested in
computing the probability that a neutron particle emitted by the radiation source
escapes from the containment before being absorbed and desintegrated by some ob-
stacle. In biology they may represent an extinction probability of a given population
evolution model. In engineering science these rare events are sometimes related to a
catastrophic failure such as a buffer excedence in communication networks. Finally
in financial mathematics they may represent a ruin process.
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The random excursion model is defined in terms of some Markov chain (X ′n)n≥0
taking values in some finite state space E ′. We assume that the chain X ′n starts in
some given subset X0 ∈ A⊂ E ′ with a given distribution ν0. We also let (B,C) be a
pair of subsets (B,C) such that A∩C = /0 = B∩C. We also assume that the triplet
(A,B,C) is chosen so that for any initial state x ∈ A the chain X ′n hits one of the sets
B or C in finite time.

We let TA be the entrance time of X ′ into a given subset A; that is, we have

TA = inf{n≥ 0 : X ′n ∈ A}

One would like to estimate the probability that the chain hits B before C

P(TB∪C < TC) = P(X ′TB∪C
∈ B) = E( B(X ′TB∪C

))

and the law of the random excursion given the fact that it reached B before C

Law(X ′t ; 0≤ t ≤ TB∪C | TB∪C < TC) = Law(X ′t ; 0≤ t ≤ TB∪C | X ′TB∪C
∈ B)

Of course we have implicitly assumed that P(TB∪C < TC)> 0 so that the conditional
distributions are well defined.

In connection with the previous examples discussed in the early part of this sec-
tion the rare level set B may represent the outside of the radiation containment,
an undesired critical population size or buffer excedance as well as ruin level of a
given company. The level set C is usually far from being rare but it corresponds to
an almost sure event. For instance in the radiation containment model the set C rep-
resents the set of physical obstacles which hopefully absorb the radiation and avoid
the particle to come out of the containment. In communication networks models the
set C represents a recurrent and well behave buffer size level. In population models
C is related to a natural fluctuation size level of the population evolution and in ruin
processes it corresponds to a predicted gain or a desired equilibrium level.

During its excursion from A to (B∪C) the process passes through a decreasing
sequence of level sets B = (Bn)n=0,...,m with

A = B0 ⊃ B1 ⊃ . . .⊃ Bm = B

Here again the splitting parameter m and the choice of the level sets B depends on
the problem at hand.

This decomposition reflects the successive levels the stochastic process needs to
cross before to enter into the relevant rare event. In other words the increasing levels
behave as gateways from which the rare event is more and more likely to happen.

To clarify the presentation we shall slight abuse the notation and we write Tn
instead of TBn∪C the entrance time of X into Bn ∪C. To capture the behavior of X
between the different levels we introduce the excursion-valued Markov chain
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Xn = (Tn,(X ′t ; Tn−1 ≤ t ≤ Tn)) ∈ E = ∪p≤q({q}× (E ′)(q−p+1)) (1.98)

By a direct inspection we see that the random sequence of level-crossing times
(Tn)0≤n≤m is increasing and whenever Tn < TC the second component of Xn rep-
resents the excursion of the process X ′ between the successive levels Bn−1 and Bn
so that Tn can be alternatively be defined by the inductive formulae

Tn = inf{Tn−1 ≤ t : X ′t ∈ Bn∪C}

Under our assumptions we also observe that these entrance times are finite and

(TB∪C < TC) = (Tm < TC) = (T1 < TC, . . . ,Tm < TC)

One simple way to check whether or not a random path has succeeded to reach the
desired n-th level is to consider the potential functions Gn on E defined for each
n ∈ {0, . . . ,m} and x = (xq)p≤q≤r ∈ (E ′)(r−p+1) by

Gn(t,x) = Bn(xr) (1.99)

In this notation we have for each n≤ m

(Tn < TC) = (T1 < TC, . . . ,Tn < TC) = (G1(X1) = 1 . . . ,Gn(Xn) = 1)

and
(X0, . . . ,Xn)

= ((0,X ′0),(T1,(X ′t ; 0≤ t ≤ T1)), . . . ,(Tn,(X ′t ; Tn−1 ≤ t ≤ Tn)))

In we write [X ′t ; 0 ≤ t ≤ Tn] instead of (X0, . . . ,Xn) the sequence of excursions of
X ′ between the levels, then for any n≤ m and any function fn on the product space
En we have

Eν0

(
fn(X0, . . . ,Xn)

n

∏
p=1

Gp(Xp)

)
= Eν0

(
fn([X ′t ; 0≤ t ≤ Tn]) Tn<TC

)

We denote by Pn the law of the excursion-valued Markov chain from the origin
p = 0, up to the time p = n

Pn(x0, . . . ,xn) = P(X0 = x0, . . . ,Xn = xn)

If we set

Qn(x0, . . . ,xn) =
1

Zn

{

∏
0≤p<n

Gp(xp)

}
Pn(x0, . . . ,xn)

with the unit potential function G0 = 1 then we have
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Qn = Law
([

X ′t ; 0≤ t ≤ Tn
]
| Tn−1 < TC

)
and Zn = P(Tn−1 < TC)

Once again, these measures have exactly the same form as the one presented in
(1.33). The corresponding particle approximations are often referred as multilevel
splitting particle methods or sequential Monte Carlo samplers in the literature on
rare event simulation (see for instance [25, 26, 50, 114], and references therein).
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