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Abstract

We present a new algorithm to compute the Snell envelope in the specific case where
the criteria to optimize is associated with a small probability or a rare event. This new
approach combines the Stochastic Mesh approach of Broadie and Glasserman with a
particle approximation scheme based on a specific change of measure designed to con-
centrate the computational effort in regions pointed out by the criteria. The theoretical
analysis of this new algorithm provides non asymptotic convergence estimates. Finally,
the numerical tests confirm the practical interest of this approach.
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1 Introduction

The Snell envelope is related to the calculation of the optimal stopping time of a random
process based on a given optimality criteria. Several approximation schemes have been
proposed recently to numerically compute the Snell envelope. In this paper, we are interested
in some specific optimality criteria related to the realization of a small probability or even
rare events. In other words, given a random process (Xk)0≤k≤n and some payoff functions
(fk)0≤k≤n, we want to maximize an expected gain E(fτ (Xτ )) by choosing τ on a set of
random stopping times T . When the payoff functions fk are localized in a small region
of the space, standard Monte Carlo simulations usually fail, because of the difficulty in
ensuring enough simulation samples to realize the (relative-)rare events. For example, in
finance, when f(x) = (K − x)+, the so-called put option value is difficult to compute
when K is much smaller than the initial asset price x0. In even more complicated cases,
we can consider the maximization of E(fτ (Xτ )

∏τ−1
k=0 Bk(Xk)) for a given class of functions

(Bk)0≤k≤n modeling an obstacle. For instance in the case of barrier options, (Bk)0≤k≤n take
the form of indicator functions.

In this paper, we propose a Monte Carlo algorithm to compute the Snell envelope,
combining the Stochastic Mesh method introduced by M. Broadie and P. Glasserman [3]
and a judicious interacting particle scheme which allows to concentrate the computational
effort in the regions of interest w.r.t. the criteria. The principal idea of Broadie-Glasserman
model is to operate a change of measure to replace conditional expectations by simple
expectations. Besides, the change of measures can also be used with a variance reduction
purpose to accelerate Monte Carlo methods. However, in general, the choice of an efficient (in
term of variance) change of measure, with an explicit Radon-Nikodym derivative, leading
to an easy-to-simulate distribution is difficult. Precisely, the authors in [9] proposed an
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adaptive scheme based on an original interacting particle algorithm to approximate rare
event expectations, allowing us to bypass the tricky steps of guessing a correct change of
measure. In the present paper, we extend this adaptive scheme for the recursive computation
of the conditional expectations appearing in the context of optimal stopping problems. The
main idea of the present paper is then to mix the interacting particle algorithm in [9] with
the Stochastic Mesh algorithm of Broadie and Glassserman [3].

This article is organized as follows. In Section 2, notations and generalities on the Snell
envelope are presented. Moreover, some specific examples are outlined to motivate the scope
of the paper. In Section 3, we introduce a change of measure which allows to concentrate the
computational effort in the regions of interest w.r.t. the criteria. In Section 4, we propose
an interacting particle scheme to approximate the resulting (changed) measure. Section 5,
is devoted to the theoretical analysis of this new Stochastic Mesh algorithm based on an
interacting particle scheme. We provide non asymptotic convergence estimates and prove
that the resulting estimator is positively biased. Finally, some numerical simulations are
performed, in Section 7, showing the practical interest of the proposed algorithm.

2 Preliminary

For the convenience of the reader, we begin by introducing some notations and basic results
that will be used throughout the paper.

2.1 Notations

We denote respectively by P(E), and B(E), the set of all probability measures on some
measurable space (E, E), and the Banach space of all bounded and measurable functions
f equipped with the uniform norm ‖f‖. We let µ(f) =

∫
µ(dx) f(x), be the Lebesgue

integral of a function f ∈ B(E), w.r.t. a measure µ ∈ P(E).
We recall that a bounded integral kernel M(x, dy) from a measurable space (E, E) into an
auxiliary measurable space (E′, E ′) is an operator f $→ M(f) from B(E′) into B(E) such
that the functions

x $→ M(f)(x) :=
∫

E′
M(x, dy)f(y)

are E-measurable and bounded, for any f ∈ B(E′). In the above displayed formulae, dy
stands for an infinitesimal neighborhood of a point y in E′. Sometimes, for indicator func-
tions f = 1A, with A ∈ E , we also use the notation M(x,A) := M(1A)(x). The kernel M also
generates a dual operator µ $→ µM from M(E) into M(E′) defined by (µM)(f) := µ(M(f)).
A Markov kernel is a positive and bounded integral operator M with M(1) = 1. Given a
pair of bounded integral operators (M1,M2), we let (M1M2) be the composition operator
defined by (M1M2)(f) = M1(M2(f)). Given a sequence of bounded integral operators Mn

from some state space En−1 into another En, we set Mk,l := Mk+1Mk+2 · · ·Ml, for any
k ≤ l, with the convention Mk,k = Id, the identity operator. In the context of finite state
spaces, these integral operations coincide with the traditional matrix operations on multi-
dimensional state spaces.
We also assume that the reference Markov chain Xn with initial distribution η0 ∈ P(E0),
and elementary transitions Mn(xn−1, dxn) from En−1 into En is defined on some filtered
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probability space (Ω,F , Pη0), and we use the notation EPη0
to denote the expectations w.r.t.

Pη0 . In this notation, for all n ≥ 1 and for any fn ∈ B(En), we have that

EPη0
{fn(Xn)|Fn−1} = Mnfn(Xn−1) :=

∫

En

Mn(Xn−1, dxn) fn(xn)

with the σ-field Fn = σ(X0, . . . ,Xn) generated by the sequence of random variables Xp,
from the origin p = 0 up to the time p = n. We also use the conventions

∏
∅ = 1, and∑

∅ = 0.

2.2 Robustness Lemma

In the discrete time setting, the Snell envelope are defined in terms of a given Markov process
(Xk)k≥0 taking values in some sequence of measurable state spaces (En, Ek)k≥0 adapted to
the natural filtration F = (Fk)k≥0. We let η0 = Law(X0) be the initial distribution on
E0, and we denote by Mk(xk−1, dxk) the elementary Markov transition of the chain from
Ek−1 into Ek. For a given time horizon n and any k ∈ {0, . . . , n}, we let Tk be the set
of all stopping times τ taking values in {k, . . . , n}. For a given sequence of non negative
measurable functions fk on Ek, we define a target process Zk = fk(Xk). Then (Uk)0≤k≤n

the Snell envelope of process (Zk)0≤k≤n is defined by a recursive formula:

Uk = Zk ∨ E(Uk+1|Fk)

with terminal condition Un = Zn. The main property of the Snell envelope defined as above
is

Uk = sup
τ∈Tk

E(Zτ |Fk) = E(Zτ∗k
|Fk) with τ∗k = min {k ≤ j ≤ n : Uj = Zj} ∈ Tk .

Then the computation of the Snell envelope (Uk)0≤k≤n amounts to solving the following
backward functional equation.

uk = fk ∨ Mk+1(uk+1) (2.1)

for any 0 ≤ k < n with the terminal condition un = fn.
But at this level of generality, we can hardly have a closed solution of the function

uk. In this context, lots of numerical approximation schemes have been proposed. Most
of them amount to replacing in recursion (2.1) the pair of functions and Markov transi-
tions (fk,Mk)0≤k≤n by some approximation model (f̂k, M̂k)0≤k≤n on some possibly reduced
measurable subsets Êk ⊂ Ek. In paper [10], the authors provided the following robustness
lemma to estimate the error related to the resulting approximation ûk of the Snell envelope
uk, for several types of approximation models (f̂k, M̂k)0≤k≤n.

Lemma 2.1 For any 0 ≤ k < n, on the state space Êk, we have that

|uk − ûk| ≤
n∑

l=k

M̂k,l|fl − f̂l| +
n−1∑

l=k

M̂k,l|(Ml+1 − M̂l+1)ul+1| ,

where M̂k,l is the composition operator defined as M̂k,l = M̂k+1M̂k+2 . . . M̂l, for any k ≤ l.

This lemma provides a natural way to compare and combine different approximation models.
In the present paper, this Lemma will be applied in the specific framework for the small
probability criteria.
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2.3 Motivations

The choice of nonhomogeneous state spaces En is not innocent. In several application areas
the underlying Markov model is a path-space Markov chain:

Xn = (X0, . . . ,Xn) ∈ En = (E0 × . . . × En) . (2.2)

The elementary prime variables Xn represent an elementary Markov chain with Markov
transitions Mk(xk−1, dxk) from Ek−1 into Ek. In this situation, the historical process Xn

can be seen as a Markov chain with transitions given for any xk−1 = (x0, . . . , xk−1) ∈ Ek−1

and yk = (y0, . . . , yk) ∈ Ek by the following formula

Mk(xk−1, dyk) = δxk−1(dyk−1) Mk(yk−1, dyk) .

As we will see in this sequel, this path space framework is, for instance, well suited when
dealing with path dependent options as Asian options or Barrier options. Besides, this path
space framework is also well suited for the analysis of the Snell envelope under different
probability measures.

The multiplicatively path dependent case Now come back to the multiplicatively
path dependent Snell envelope that we mentioned in the introduction and formalize the the
path space model. For a given collection of real valued functions (fk)0≤k≤n and (Bk)0≤k≤n,
defined on (Ek)0≤k≤n, we define a class of real valued functions (Fk)0≤k≤n defined on the
path spaces (Ek)0≤k≤n by

Fk(xk) := fk(xk)
∏

0≤p≤k−1

Bp(xp) , for all 0 ≤ k ≤ n ,

for all xk = (x0, · · · , xk) ∈ Ek. Instead of E(fτ (Xτ )) we want to maximize the expected gain
E(Fτ (Xτ )) w.r.t. τ in a set of random stopping times T . In other words, one is interested
in computing the Snell envelope (uk)0≤k≤n associated to the gain functions (Fk)0<k≤n; it
satisfies the recursion:

{
un(xn) = Fn(xn)
uk(xk) = Fk(xk) ∨ Mk+1(uk+1)(xk),∀ 0 ≤ k ≤ n − 1 .

(2.3)

At this stage, two difficulties may arise. First, the above recursion seems to require the
approximation of high dimensional conditional expectations, defined on the path spaces Ek,
at each time step from k = n − 1 up to k = 0. Second, when the optimality criteria Bp

is localized in a specific region of Ep, for each p, then the product
∏k−1

p=0 Bp(xp) can be
interpreted as a rare event. Hence, at first glance, the computation of Snell envelopes in the
multiplicatively path dependent case seems to combine two additional numerical difficulties
w.r.t. the standard case, related to the computation of conditional expectations in both high
dimensional and rare event situations. The dimensionality problem is easily bypassed by
considering an intermediate standard Snell envelope without path dependent criteria, which
is directly related to the multiplicatively path dependent Snell envelope. Indeed, consider the
standard (non path dependent) Snell envelope (vk)0≤k≤n satisfying the following recursion:

{
vn(xn) = fn(xn)
vk(xk) = fk(xk) ∨

[
Bk(xk)Mk+1(vk+1)(xk)

]
, ∀ 0 ≤ k ≤ n − 1 .

(2.4)
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For all 0 ≤ k ≤ n, let us denote by vk the real valued functions defined on Ek, such that
vk(xk) := vk(xk)

∏k−1
p=0 Gp(xp). By construction, one can easily check that for all 0 ≤ k ≤ n,

uk ≡ vk and in particular u0(x0) = v0(x0). Indeed, one can verify that (vk)0≤k≤n follow the
same recursion (2.3) as (uk)0≤k≤n and have the same terminal condition. Now that we have
underlined the link between uk and vk, the computation of the original Snell envelope uk

can be done by using one of the many approximation schemes developed for the standard
(non path dependent) case.

Besides, to deal with the rare event problem, we propose a change of measure which
allows to concentrate the computational effort in the regions of interest w.r.t. the criteria
(Bk)0≤k≤n−1.

Rare event associated with Payoff function Another Snell envelope problem associ-
ated with a small probability event comes from the payoff function when f(Xn) is difficult
to simulate. An example arises from the Bermudan put options when the strike K is much
smaller than the initial price of the underlying asset. In this case, the standard Monte Carlo
approach is not able to concentrate the computational effort in regions where the payoff
function x $→ f(x) = (K − x)+ does not vanish to zero. In full generality, for a payoff func-
tion f concentrated in a relative small region of the space, the choice of an efficient change
of measure for computing the recursive conditional expectations is difficult. This problem
becomes even more tricky when the number of the underlying assets is greater than three.
In the following section, we propose a simple adaptive scheme that allows to approximate
an efficient change of measure without requiring any a priori information.

3 Snell envelope and change of measure

Now, recall the reduced Snell envelope for the multiplicatively path dependent case:
{

vn(xn) = fn(xn)
vk(xk) = fk(xk) ∨

[
Bk(xk)Mk+1(vk+1)(xk)

]
, ∀ 0 ≤ k ≤ n − 1 .

The above recursion implies that it is not relevant to compute precisely the conditional
expectation Mk+1(vk+1)(xk) when the value of the criteria Bk(xk) is zero or very small, or
when the gain function fk is zero or very small. Hence from a variance reduction point of
view, when approximating the conditional expectation Mk+1(vk+1)(xk) by a Monte Carlo
method, it seems relevant to concentrate the simulations in the regions of Ek+1 where Bk+1

and/or fk+1 reach high values. Hence, to avoid the potential rare events B, we consider a
change of measure on the measurable product space (E0 × · · · ×En, E0 × · · · × En), with the
following form

dQn =
1

Zn

[
n−1∏

k=0

Gk(Xk)

]

dPn , with Zn = E
(

n−1∏

k=0

Gk(Xk)

)

=
n−1∏

k=0

ηk(Gk) , (3.1)

where (Gk)0≤k<n is a sequence of non-negative functions defined on (Ek)0≤k<n (typically
Gk := Bk, and Gk is written instead of Bk in further development of this article) and ηk is
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the probability measure defined on Ek such that, for any measurable function f on Ek

ηk(f) :=
E
(
f(Xk)

∏k−1
p=0 Gp(Xp)

)

E
(∏k−1

p=0 Gp(Xp)
) .

The measures (ηk)0≤k≤n defined above can be seen as the laws of random states (X̄k)0≤k≤n

under the probability measures (Qk)0≤k≤n. More interestingly, in Section 4 we will see that
the sequence of random states (X̄k)0≤k≤n forms a nonlinear Markov chain with transitions
X̄k ! X̄k+1 that depends on the current distribution ηk, at time k. The behavior of this
chain is dictated by the potential functions (Gk)0≤k≤n and the Markov transitions (Mk)≤k≤n

of the reference process (Xk)0≤k≤n. Regions with high Gk−values are visited more likely.
To illustrate this remark, we examine the situation where Gk(xk) = Bk(xk) := 1Ak(xk)

with Ak ⊂ Ek. In this situation, law(Xk|Xp ∈ Ap, p < k) = law(X̄k) = ηk is the conditional
distribution of Xk given the fact that Xp ∈ Ap, for any p < k. In this special case, the
process (X̄k)0≤k≤n is restricted to regions related to the choice of the sequence (Ak)0≤k≤n.
This change of measure is know as the optimal twisted measure for sampling a Markov
chain restricted to the subset regions Ak. More general change of measure are addressed in
section 6. These models are direct extension of 3.1 to potential functions that depend on
the transition of the reference Markov chain.

When the rare event problem comes from the payoff, we can construct a collection of
Gk to force the particle step by step to achieve the payoff. But in this case, there is no
more explicit obstacle Bk to help us to construct such potential functions. A choice of Gk

is provided in section 7.2. For further reading, readers are referred to [9]. The authors have
proposed several choices to minimize the variance.

At this stage, it is important to emphasize that the analysis of the both case where the
choice of Gk is explicit or not, are mathematically equivalent. The only difference comes
from the fact that the recursion 2.4 has additional term Bk compared to 2.1. And the
mathematical analysis of the later is easier and can be induced directly from the former (by
deleting all the Bk appeared in the Snell envelope recursion in the analysis). So only the
analysis of the multiplicatively path dependent case are provided in this paper.

Furthermore, it is also important to observe that, for any measurable function f on Ek

ηk(f) =
ηk−1(Gk−1Mk(f))

ηk−1(Gk−1)
. (3.2)

We denote the recursive relation between ηk and ηk−1 by introducing the operators Φk such
that, for all 1 ≤ k ≤ n

ηk = Φk(ηk−1) . (3.3)

Let us now introduce the integral operator Qk such that, for all 1 ≤ k ≤ n

Qk(f)(xk−1) :=
∫

Gk−1(xk−1)Mk(xk−1, dxk)f(xk) . (3.4)

In further developments of this article, we suppose that Mk(xk−1, ·) are equivalent to some
measures λk, for any 0 ≤ k ≤ n and xk−1 ∈ Ek−1, i.e. there exists a collection of positive
functions Hk and measures λk such that:

Mk(xk−1, dxk) = Hk(xk−1, xk)λk(dxk) . (3.5)
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Now, we are in a position to state the following Lemma.

Lemma 3.1 For any measure η on Ek, recursion (2.4) defining vk can be rewritten:

vk(xk) = fk(xk) ∨ Qk+1(vk+1)(xk) = fk(xk) ∨Φk+1(η)
(

dQk+1(xk, ·)
dΦk+1(η)

vk+1

)
,

for any xk ∈ Ek, where

dQk+1(xk, ·)
dΦk+1(η)

(xk+1) =
Gk(xk)Hk+1(xk, xk+1)η(Gk)

η(GkHk+1(·, xk+1))
,

for any (xk, xk+1) ∈ Ek × Ek+1.

Proof:
Under Assumption (3.5), we have immediately the following formula

Mk+1(xk, dxk+1) = Hk+1(xk, xk+1)
ηk(Gk)

ηk(GkHk+1(·, xk+1))
ηk+1(dxk+1) . (3.6)

Now, note that the above equation is still valid for any measure η,

Mk+1(xk, dxk+1) = Hk+1(xk, xk+1)
η(Gk)

η(GkHk+1(·, xk+1))
Φk+1(η)(dxk+1) . (3.7)

Hence, the Radon Nikodym derivative of Mk+1(xk, dxk+1) w.r.t. Φk+1(η) is such that

dMk+1(xk, ·)
dΦk+1(η)

(xk+1) = Hk+1(xk, xk+1)
η(Gk)

η(GkHk+1(·, xk+1))
. (3.8)

We end the proof by applying the arguments above to recursion (2.4).

4 A particle approximation scheme

In this section, we first propose a particle model to sample the random variables according
to these distributions. This sample scheme is then combined with the Stochastic Mesh
scheme to finally provide an original particle algorithm to approximate the Snell envelope
(vk)0≤k≤n.
By definition (3.3) of Φk+1, we have the following formula

Φk(ηk−1) = ηk−1Kk,ηk−1
= ηk−1Sk−1,ηk−1

Mk = ΨGk−1(ηk−1)Mk . (4.1)

Where Kk,ηk−1
, Sk−1,ηk−1

and ΨGk−1 are defined as follows:





Kk,ηk−1
(xk−1, dxk) = (Sk−1,ηk−1

Mk)(xk−1, dxk)

=
∫

Sk−1,ηk−1
(xk−1, dx′

k−1)Mk(x′
k−1, dxk) ,

Sk−1,ηk−1
(x, dx′) = εGk−1(x)δx(dx′) + (1 − εGk−1(x))ΨGk−1(ηk−1)(dx′)

ΨGk−1(ηk−1)(dx) = Gk−1(x)
ηk−1(Gk−1)ηk−1(dx) ,
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where the real ε is such that εG takes its values in [0, 1].
More generally, the operations Ψ and S can be expressed as ΨG(η)(f) = η(Gf)

η(G) = ηSη(f)
with Sη(f) = εGf + (1 − εG)ΨG(η)(f). We recall from [8] that ηk = law(X̄k), where
X̄k−1 ! X̄k is a Markov chain with transitions Kk,ηk−1

defined above.
The particle approximation provided in the present paper is defined in terms of a Markov

chain ξ(N)
k = (ξ(i,N)

k )1≤i≤N on the product state spaces EN
k , where the given integer N

is the number of particles sampled in every instant. The initial particle system, ξ(N)
0 =(

ξ(i,N)
0

)

1≤i≤N
, is a collection of N i.i.d. random copies of X0. We let FN

k be the sigma-field
generated by the particle approximation model from the origin, up to time k. To simplify
the presentation, when there is no confusion we suppress the population size parameter N ,
and we write ξk and ξi

k instead of ξ(N)
k and ξ(i,N)

k . By construction, ξk is a particle model
with a selection transition and a mutation type exploration i.e. the evolution from ξk to
ξk+1 is composed by two steps:

ξk ∈ EN
k

Selection
−−−−−−−−→

S
k,ηN

k

ξ̂k :=
(
ξ̂i
k

)

1≤i≤N
∈ EN

k

Mutation
−−−−−−−→

Mk+1

ξk+1 ∈ EN
k+1 . (4.2)

Then we define ηN
k and η̂N

k as the occupation measures after the mutation and the selection
steps. More precisely,

ηN
k :=

1
N

∑

1≤i≤N

δξi
k

and η̂N
k :=

1
N

∑

1≤i≤N

δbξi
k

.

During the selection transition Sk,ηN
k

, for 0 ≤ i ≤ N with a probability εGk(ξi
k) we decide to

skip the selection step i.e. we let ξ̂i
k stay on particle ξi

k, and with probability 1− εGk(ξi
k) we

decide to do the following selection: ξ̂i
k randomly takes the value in ξj

k for 0 ≤ j ≤ N with

distribution Gk(ξj
k)

PN
l=1 Gk(ξl

k)
. Note that when εGk ≡ 1, the selection is skipped ( i.e. ξ̂k = ξk) so

that the model corresponds exactly to the Broadie-Glasserman type model analysed by P.
Del Moral et al. [10]. Hence, the factor ε can be interpreted as a level of selection against
the rare events.
During the mutation transition ξ̂k ! ξk+1, every selected individual ξ̂i

k evolves randomly to a
new individual ξi

k+1 = x randomly chosen with the distribution Mk+1(ξ̂i
k, dx), for 1 ≤ i ≤ N .

It is important to observe that by construction, ηN
k+1 is the empirical measure associated

with N conditionally independent and identically distributed random individual ξi
k+1 with

common distribution Φk+1(ηN
k ).

Now, we are in a position to describe precisely the new approximation scheme proposed
to estimate the Snell envelope (vk)0≤k≤n. The main idea consists in taking η = ηN

k , in
Lemma 3.1, then observing that Snell envelope (vk)0≤k≤n is solution of the following recur-
sion, for all 0 ≤ k < n,

vk(xk) = fk(xk) ∨ Φk+1(ηN
k )

(
dQk+1(xk, ·)
dΦk+1(ηN

k )
vk+1

)
.

Now, if Φk+1(ηN
k ) is well estimated by ηN

k+1, it is relevant to approximate vk by v̂k defined

9



by the following backward recursion





v̂n = fn

v̂k(xk) = fk(xk) ∨ ηN
k+1

(
dQk+1(xk, ·)
dΦk+1(ηN

k )
v̂k+1

)
for all 0 ≤ k < n ,

(4.3)

Note that in the above formula (4.3), the function vk is defined not only on EN
k but on the

whole state space Ek.
To simplify notations, we set

Q̂k+1(xk, dxk+1) = ηN
k+1(dxk+1)

dQk+1(xk, ·)
dΦk+1(ηN

k )
(xk+1) .

Finally, with this notation, the real Snell envelope (vk)0≤k≤n and the approximation (v̂k)0≤k≤n

are such that, for all 0 ≤ k < n,

vk = fk ∨ Qk+1(vk+1)
v̂k = fk ∨ Q̂k+1(v̂k+1) .

In the change of measure interpretation presented in section 3, the particle algorithm
developed above can be seen as a stochastic acceptance-rejection technique with recycling
transitions. This type of particle sampling model has been used in other contexts, including
financial risk analysis in [4, 6]. For an overview of these novel particle algorithms in financial
mathematics, we refer the interested reader to the book [5].

5 Convergence and bias analysis

By the previous construction, we can approximate Φk+1(ηN
k ) by ηN

k+1. In this section, we will
first analyze the error associated with that approximation and then derive an error bound
for the resulting Snell envelope approximation scheme. To simplify notations, in further
development, we consider the random fields V N

k defined as

V N
k :=

√
N

(
ηN

k − Φk(ηN
k−1)

)
.

The following lemma shows the conditional zero-bias property and mean error estimates for
the approximation ηN

k+1 of Φk+1(ηN
k ).

Lemma 5.1 For any integer p ≥ 1, we denote by p′ the smallest even integer greater than
p. In this notation, for any 0 ≤ k ≤ n and any integrable function f on Ek+1, we have

E
(
ηN

k+1(f)|FN
k

)
= Φk+1(ηN

k )(f)

and

E
(∣∣V N

k (f)
∣∣p |FN

k

) 1
p ≤ 2 a(p)

[
Φk+1(ηN

k )(|f |p′)
] 1

p′

with the collection of constants

a(2p)2p = (2p)p 2−p and a(2p + 1)2p+1 =
(2p + 1)p+1√

p + 1/2
2−(p+1/2) .
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Proof : The conditional zero-bias property is easily proved as follows

E
(
ηN

k+1(f)|ηN
k

)
=

1
N

N∑

i=1

E(f(ξi
k+1)|ηN

k )

=
1
N

N∑

i=1

Kk+1,ηN
k

(f)(ξi
k)

= (ηN
k Kk+1,ηN

k
)(f) = Φk+1(ηN

k )(f) .

Then the above equality implies

E
(∣∣[ηN

k+1 − Φk+1(ηN
k )

]
(f)

∣∣p |FN
k

) 1
p ≤ E

(∣∣[ηN
k+1 − µN

k+1

]
(f)

∣∣p |FN
k

) 1
p

,

where µN
k+1 := 1

N

∑N
i=1 δY i

k+1
stands for an independent copy of ηN

k+1 given ηN
k . Using

Khintchine’s type inequalities yields that

√
N E

(∣∣[ηN
k+1 − µN

k+1](f)
∣∣p ∣∣FN

k

) 1
p ≤ 2 a(p) E

(∣∣f
(
ξ1
k+1

)∣∣p′ | FN
k

) 1
p′

= 2 a(p)
[
Φk+1(ηN

k )(|f |p′)
] 1

p′ .

We refer the reader to lemma 7.3.3 on page 223 of [8], for the proof of this kind of Khintchine’s
inequalities. We end the proof by combining the above two inequalities.

A consequence of the zero-bias property proved in Lemma 5.1 is that

E(Q̂k+1(f)(xk)|ηN
k ) = Qk+1(f)(xk) .

To estimate the error between vk and the approximation v̂k, it is useful to introduce the
following random integral operator RN

k such that for any measurable function on Ek+1,

RN
k+1(f)(xk) =

√
N

(
Q̂k+1(f)(xk) − Qk+1(f)(xk)

)
.

Note that
RN

k+1(f)(xk) :=
∫

V N
k+1(dxk+1)

dQk+1(xk, .)
dΦk+1(ηN

k )
(xk+1) f(xk+1) ,

then, applying again Lemma 5.1 implies the following Khintchine’s type inequality

E(
∣∣RN

k+1(vk+1)(xk)
∣∣p |ηN

k )
1
p

≤ 2 a(p)

[∫

Ek+1

Φk+1(ηN
k )(dxk+1)

(
dQk+1(xk, ·)
dΦk+1(ηN

k )
(xk+1)vk+1(xk+1)

)p′
] 1

p′

Let Q̂k,l = Q̂k+1Q̂k+2 . . . Q̂l for any 0 ≤ k < l ≤ n, then it follows easily, by recursion, that

E(Q̂k,l(f)(xk)|ηN
k ) = Qk,l(f)(xk) .

11



Now, by Lemma 2.1, we conclude
√

N |(vk − v̂k)| ≤
∑

k<l<n

Q̂k,l|(RN
l+1)(vl+1)| . (5.1)

We are now in position to state the main result of this paper.

Theorem 5.2 For any 0 ≤ k ≤ n and any integer p ≥ 1, we have

sup
x∈Ek

‖(v̂k − vk)(x)‖Lp
≤

∑

k<l<n

2 a(p)√
N

qk,l

[
Qk,l+1(h

p′−1
l+1 vp′

l+1)(x)
] 1

p′ ,

with a collection of constants qk,l and functions hk defined as

qk,l :=

[
‖hk+1‖

l∏

m=k

‖Gm‖
] p′−1

p′

and hk(xk) := sup
x,y∈Ek−1

Hk(x, xk)
Hk(y, xk)

. (5.2)

Proof : First, decomposition (5.1) yields
√

N ‖(v̂k − vk)(x)‖Lp
≤

∑

k<l<n

∥∥∥Q̂k,l|(RN
l+1)(vl+1)|(x)

∥∥∥
Lp

, for all x ∈ Ek .

Note that

‖Q̂k,l(1)‖ ≤ bk,l , where bk,l := ‖hk+1‖
l−1∏

m=k

‖Gm‖ .

Then it follows easily that for any integrable function f on El

(Q̂k,l(f))p ≤ (bk,l)p−1Q̂k,l(fp) .

This yields that

∥∥∥Q̂k,l

∣∣(RN
l+1))(vl+1)

∣∣ (x)
∥∥∥

Lp

≤ (bk,l)
p−1

p E
(
Q̂k,l

(∣∣(RN
l+1))(vl+1)

∣∣)p (x)
) 1

p
.

Applying Lemma 5.1 to the right-hand side of the above inequality, we obtain for any xl ∈ El

E
(∣∣(RN

l+1))(vl+1)(xl)
∣∣p |ηN

l

) 1
p

≤ 2 a(p)

[∫

El+1

Φl+1(ηN
l )(dxl+1)

(
dQl+1(xl, ·)
dΦl+1(ηN

l )
(xl+1)vl+1(xl+1)

)p′
] 1

p′

from which we find that

E
(∣∣(RN

l+1))(vl+1)(xl)
∣∣p |ηN

l

) 1
p

≤ 2 a(p)

[∫

El+1

Ql+1(xl, dxl+1)
(

dQl+1(xl, ·)
dΦl+1(ηN

l )
(xl+1)

)p′−1

vl+1(xl+1)p
′

] 1
p′

12



By definition (5.2) of functions hl+1 and in developing the Radon Nikodym derivative, we
obtain

dQl+1(xl, ·)
dΦl+1(ηN

l )
(xl+1) =

ηN
l (Gl)Gl(xl)Hl+1(xl, xl+1)
ηN

l (GlHl+1)(·, xl+1)
≤ ‖Gl‖hl+1(xl+1) ,

which implies

E
(∣∣(RN

l+1))(vl+1)(xl)
∣∣p |ηN

l

) 1
p

≤ 2 a(p)‖Gl‖
p′−1

p′

[∫

El+1

Ql+1(xl, dxl+1) (hl+1(xl+1))p′−1 vl+1(xl+1)p
′

] 1
p′

Gathering the above arguments, we conclude that

‖(v̂k − vk) (x)‖Lp
≤

∑

k<l<n

2 a(p)√
N

qk,l

(
Qk,l+1(h

p′−1
l+1 vp′

l+1)(x)
) 1

p′
.

Remarks : The constants qk,l could be largely reduced. In fact, qk,l comes from bounding
‖
∏

m ηN
m(Gm)‖Lp . In [7], the authors proved ‖

∏
m Gm‖L2 + constant

N as a non asymptotic
boundary for ‖

∏
m ηN

m(Gm)‖L2 . In most cases, the functions G take their values in [0, 1],
then the boundary ‖

∏
m Gm‖ ≤ 1 holds, but ‖

∏
m Gm‖L2 is very small.

When the function G vanishes in some regions of the state space, we also mention that
the particle model is only defined up to the first time τN = k such that ηN

k (Gk) = 0. We
can prove that the event {τN ≤ n} has an exponentially small probability to occur, with
the number of particles N . In fact, the estimates presented in the above theorems can be
extended to this singular situation by replacing v̂k by the particle estimates v̂k1τN≥n. The
stochastic analysis of these singular models are quite technical, for further details we refer
the reader to section 7.2.2 and section 7.4 in the book [8].

It is also very natural to assume the functions (vk)0≤k≤n are bounded by M in the sense
that (

Qk,l+1(v
p
l+1)(x)

) 1
p < M

, for any integer p. Then a new weak bound

2 a(p) (n − k)√
N

M
(
1 ∨

(
‖h‖2‖G‖n−k

))

is provided to simplify the notations, where ‖h‖ = maxk ‖hk‖ and ‖G‖ = maxk ‖Gk‖ To
understand better the Lp-mean error bounds in the theorem, we deduce the following expo-
nential concentration inequality:

Proposition 5.3 For any 0 ≤ k ≤ n and any ε > 0, we have

sup
x∈Ek

P
(
|vk(x) − v̂k(x)| >

c√
N

+ ε

)
≤ exp

(
−Nε2/c2

)
, (5.3)

with constant c = 2(n − k)M
(
1 ∨

(
‖hk‖2‖G‖n−k

))
.
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Proof : This result is a direct consequence from the fact that for any non negative random
variable U such that

∃b < ∞ s.t. ∀r ≥ 1 E (U r)
1
r ≤ a(r) b ⇒ P (U ≥ b + ε) ≤ exp

(
−ε2/(2b2)

)
.

To check this claim, we develop the exponential and verify that

∀t ≥ 0 E
(
etU

)
≤ exp

(
(bt)2

2
+ bt

)
⇒ P(U ≥ b + ε) ≤ exp

(
− sup

t≥0
(εt − (bt)2

2
)
)

Similarly to Broadie-Glasserman model, the following proposition shows that in this
model we also over-estimate the Snell envelope.

Proposition 5.4 For any 0 ≤ k ≤ n and any xk ∈ Ek

E (v̂k(xk)) ≥ vk(xk) . (5.4)

Proof:
We can easily prove this inequality with a simple backward induction. The terminal condi-
tion v̂n = vn implies directly the inequality at instant n. Assuming the inequality at time
k + 1, then the Jensen’s inequality implies

E (v̂k(xk)) ≥ fk(xk) ∨ E
(
Q̂k+1v̂k+1(xk)

)

= fk(xk) ∨ E
(∫

EN
k+1

Q̂k+1(xk, dxk+1)E
(
v̂k+1(xk+1)|FN

k+1

)
)

.

By the induction assumption at time k + 1, we have

E
(∫

EN
k+1

Q̂k+1(xk, dxk+1)E
(
v̂k+1(xk+1)|FN

k+1

)
)

≥ E
(
Q̂k+1vk+1(xk)

)

= Qk+1vk+1(xk) .

Then the inequality still holds at time k, which completes the proof.

6 Applications and extensions

In this section, we apply the Feynman-Kac methodology developed in section 4 to two type
of importance sampling Monte Carlo techniques. We start with some important observations
related to potential functions on transitions spaces.

For potential functions Gk(Xk,Xk+1) depending on the local transitions (Xk,Xk+1) of
the reference process, the change of measure has the same form as in 3.1, replacing Xk
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by the Markov chain Xk = (Xk,Xk+1). In this situation, the Snell envelop vk(x0, . . . , xk)
associated with the payoff functions given bellow:

Fk(x0, . . . , xk) = fk(xk)
∏

0≤p<k

Gp(xp, xp+1),

has the form
vk(x0, . . . , xk) = vk(xk)

∏

0≤p<k

Gp(xp, xp+1). (6.1)

The sequence of functions (uk)0≤k≤n satisfies the backward recursion:

un = fn

uk(xp) = fp(xp) ∨
∫

Mk+1(xk, dxk+1)Gk(xk, xk+1)uk+1(xk+1). (6.2)

This equation has exactly the same form as 2.4, by replacing the function Bk(xk) by the
function Gk(xk, xk+1).

We illustrate these properties in two situations.
The first one concerns the design of more general change of reference measure. For

instance, let us suppose we are given a judicious Markov transition M ′
k(xk−1, xk) such that

M ′
k(xk−1, ·) is absolutely continuous w.r.t. Mk(xk−1, ·). In this situation, we have

E(fn(Xn)
∏

0≤p<n

Gp(Xp))

= E



fn(X ′
n)

∏

0≤p<n

[

Gp(X ′
p)

dMp+1(X ′
p, ·)

dM ′
p+1(X ′

p, ·)
(X ′

p+1)

]

 , (6.3)

where (X ′
p)0≤p≤n is a Markov chain with initial condition η′0 = η0 = law(X0), and Markov

transitions M ′
p. We can rewrite 6.3 as follows:

E(fn(Xn)
∏

0≤p<n

Gp(Xp)) = E(fn(X ′
n)

∏

0≤p<n

G′
p(X

′
p,X

′
p+1)),

with G′
p(xp, xp+1) = Gp(xp)

dMp+1(xp,·)
dM ′

p+1(xp,·)(xp+1).
The second example concerns the design of an importance sampling strategy. Suppose

we are given a sequence of positive payoff functions (fk)0≤k≤n, with f0 ≡ 1. In this situation,
we have

E(fn(Xn)) = E(
∏

0≤p<n

Gp(Xp,Xp+1))

, with the potential function Gp(xp, xp+1) = fp+1(xp+1)
fp(xp) . In this context, the Snell envelop

6.1 and 6.2 are given by the backward recursion:

un = 1

up(xp) = 1 ∨
∫

Mp+1(xp, dxp+1)Gp(xp, xp+1)up+1(xp+1).
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7 Numerical simulations

In this section, we give numerical examples to test our new algorithm, the Stochastic Mesh
with Change of Measure (SMCM), on Bermudan options from dimension 1 up to 5, compared
with the standard Stochastic Mesh (SM) algorithm without change of measure.

7.1 Prices dynamics and options model

In our numerical tests we have considered a simple Black-Scholes price model. However,
notice that both algorithms (SM and SMCM ) can be applied in a general Markovian frame-
work. The asset prices are modeled by a d-dimensional Markov process (St) such that each
component (i.e. each asset) follows a geometric Brownian motion under the risk-neutral
measure, that is, for assets i = 1, · · · , d,

dSt(i) = St(i)(rdt + σdzi
t) , (7.1)

where zi, for i = 1, · · · , d are independent one dimensional standard Brownian motions.
Unless otherwise specified, the interest rate r is set to 10% annually and the volatility is
supposed to be the same for all assets, σ = 20% annually. The starting prices of the assets
are for all i = 1, · · · , d, St0(i) = 1. We consider two types of Bermudan options with
maturity T = 1 year and 11 equally distributed exercise opportunities at dates tk = kT/n
with k = 0, 1, · · · , n = 10, associated with two different payoffs:

1. Geometric average put option with payoff (K −
∏d

i=1 ST (i))+,

2. Arithmetic average put option with payoff (K − 1
d

∑d
i=1 ST (i))+,

Note that the geometric average put payoff involves the process
∏d

i=1 S(i) which can be
identified to a one-dimensional non standard exponential Brownian motion. For this specific
case of geometric put payoff, we chose to vary, in our simulations, the short term interest
rate and the volatility with the number of underlying assets d, such that the option value
remains the same for all d:

r(d) = r/d , and σ(d) = σ/
√

d . (7.2)

Then, we chose as a benchmark value the estimate obtained by the standard Stochastic
Mesh approach with N = 6400 mesh points for d = 1 asset. These benchmark values are
reported on Table 1.

Strike K = 0.95 K = 0.85 K = 0.75
Option value 0.0279 0.0081 0.0015

Table 1: Benchmark values for the geometric put option obtained by using the Stochastic Mesh
method with 10000 particles. n = 11 exercise opportunities, T = 1, S0 = 1 and r = 10%/d, σi =
20%/

√
d for the geometric payoff and r = 10%, σi = 20% for the arithmetic payoff.
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7.2 Choice of potential functions

We consider the Markov chain (Xk)0≤k≤n, taking values on Ek = R+d, obtained by dis-
cretization of the time-continuous process S defined by (7.1) at times of exercise opportu-
nities, 0 = t0 < · · · < tn = T , such that for all k = 0, · · · , n , Xk = Stk .
Now, we can introduce the sequence of positive functions (Gk)1≤k≤n, defining the change of
measure (3.1), as follows:






G0(x1) = (f1(x1) ∨ ε)α ,

Gk(xk, xk+1) = (fk+1(xk+1)∨ε)α

(fk(xk)∨ε)α , for all k = 1 , · · · , n − 1 ,
(7.3)

where fk are the payoff functions and α ∈ (0, 1] and ε > 0. In this choice of potential
function G, the parameter α has to be fine-tuned to the particular class of rare events of
interest. In our simulations we set α = 1/5 and ε = 10−7.

7.3 Numerical results

For each example, we have performed the algorithm for different numbers of mesh points
N = 100 , 200 , 400 , 800 , 1600 , 3200 , 6400. 1000 runs of both algorithms ( Stochastic
Mesh (SM) and Stochastic Mesh with Change of Measure (SMCM)) were performed to
compute the mean and confidence intervals of each estimate.

Simulations results are reported in Figure 1, 2 and 3 for the geometric and arithmetic
put payoff, with strikes corresponding to standard out of the money puts to deep out of
the money puts: K = 0.95, K = 0.85 and K = 0.75. Notice that both algorithms (the
Stochastic Mesh algorithm with and without Change of Measure) have been implemented
without any standard variance reduction technique (control variate, stratification, . . . ). In
term of complexity, the Stochastic Mesh algorithm with Change of Measure is equivalent
to the standard Stochastic Mesh algorithm: the complexity is in both cases quadratic with
the number of mesh points O(N2) since the number of operations required to operate the
change of measure is negligible.

We have reported on our graphs to types of estimates:

• the Positively-biased estimator provided by the backward induction on the value func-
tion;

• the Negatively-biased estimator provided by the associated optimal exercise policy.
This estimate is obtained via a two-step procedure: first, the optimal policy is approx-
imated in the backward induction on the value function, then the policy is evaluated
using the standard forward Monte Carlo procedure. Note that the resulting estimator
is known to provide a lower bound (in average) to the option price. In our simulation,
we have used Nforward = 10000 Monte Carlo forward simulations.

As expected, one can observe on Table 2, that the SMCM algorithm allows to obtain an
estimate, v̂SMCM , with the same complexity but with a smaller variance than the standard
SM algorithm estimate, v̂SM , especially for deep out the money options.
More surprisingly, one can observe on Table 2 and Figure 1, 2 and 3 that the SMCM algo-
rithm also allows to reduce significantly the estimator bias which is known to compose the
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growing part of the error when the number of underlying assets increases. For instance, one
can notice that the SMCM algorithm achieves the convergence in average of the Positively-
biased estimate to the Negatively-biased estimate for a number of mesh points much smaller
than for the SM algorithm. Hence, the SMCM could also be a way to deal with high di-
mensional optimal stopping problems since the algorithm complexity remains insensitive to
the dimension whereas the convergence rate is not significantly reduced.

Payoff K d = 1 d = 2 d = 3 d = 4 d = 5
Geometric 0.95 1 (1%) 1 (3%) 1 (6%) 1 (9%) 1 (10%)

Put 0.85 5 (2%) 8 (6%) 6 (11%) 4 (14%) 3 (14%)
0.75 18 (6%) 28 (11%) 18 (17%) 16 (18%) 11 (16%)

Arithmetic 0.95 1 (1%) 3 (2%) 3 (7%) 4 (13%) 5 (18%)
Put 0.85 5 (2%) 13 (6%) 24 (19%) 56 (24%) 100 (20%)

0.75 18 (6%) 71 (15%) 363 (14%) 866 (16%) − (−)

Table 2: Variance ratio ( V ar(v̂SM )
V ar(v̂SMCM )) and Bias ratio (E(v̂SM )−E(v̂SMCM)

E(v̂SM ) ) (within parentheses) com-
puted over 1000 runs for N = 3200 mesh points. (For the arithmetic put, when d = 5 and K = 0.75,
the 1000 estimates provided by the standard SM algorithm were all equal to zero, hence the associated
variance ratio has not been reported).
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(a) Geometric Put with d = 3 assets
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(b) Arithmetic Put with d = 3 assets
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(c) Geometric Put with d = 4 assets
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(d) Arithmetic Put with d = 4 assets
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(e) Geometric Put with d = 5 assets
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(f) Arithmetic Put with d = 5 assets

Figure 1: Positively-biased option values estimates (average estimates with 95% confidence interval
computed over 1000 runs) and Negatively-biased option values estimates (average estimates over
the 1000 runs each forward estimate being evaluated over 10000 forward Monte Carlo simulations),
computed by the SM algorithm (in blue line) and the SMCM algorithm (in red line), as a function of
the number of mesh points for geometric (on the left column) and arithmetic (on the right column)
put options with strike K = 0.95.
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(a) Geometric Put with d = 3 assets
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(b) Arithmetic Put with d = 3 assets
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(c) Geometric Put with d = 4 assets
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(d) Arithmetic Put with d = 4 assets
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(e) Geometric Put with d = 5 assets
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(f) Arithmetic Put with d = 5 assets

Figure 2: Positively-biased option values estimates (average estimates with 95% confidence interval
computed over 1000 runs) and Negatively-biased option values estimates (average estimates over
the 1000 runs each forward estimate being evaluated over 10000 forward Monte Carlo simulations),
computed by the SM algorithm (in blue line) and the SMCM algorithm (in red line), as a function of
the number of mesh points for geometric (on the left column) and arithmetic (on the right column)
put options with strike K = 0.85.
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(a) Geometric Put with d = 3 assets
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(b) Arithmetic Put with d = 3 assets
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(c) Geometric Put with d = 4 assets
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(d) Arithmetic Put with d = 4 assets
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(e) Geometric Put with d = 5 assets
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(f) Arithmetic Put with d = 5 assets

Figure 3: Positively-biased option values estimates (average estimates with 95% confidence interval
computed over 1000 runs) and Negatively-biased option values estimates (average estimates over
the 1000 runs each forward estimate being evaluated over 10000 forward Monte Carlo simulations),
computed by the SM algorithm (in blue line) and the SMCM algorithm (in red line), as a function of
the number of mesh points for geometric (on the left column) and arithmetic (on the right column)
put options with strike K = 0.75. (For the clarity of the graph (f), the Negatively-biased estimate is
not reported, the associated variance (for 10 000 forward Monte Carlo simulations) being relatively
strong).
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