Symposium, Univ. Bonn MDV Sept. 2006 Stochastic Algorithms and Markov Processes

Feynman-Kac particle models Coalescent tree based functional representations

P. DEL MORAL, F. PATRAS, S. RUBENTHALER Lab. J.A. Dieudonné, Univ. Nice Sophia Antipolis, France

 \hookrightarrow Coalescent tree based functional representations for some Feynman-Kac particle models

https://hal.ccsd.cnrs.fr/ccsd-00086532

- \hookrightarrow (delmoral@math.unice.fr)
- \hookrightarrow [preprints+info.] http://math1.unice.fr/ delmoral/

Introduction

- Evolutionary models and Feynman-Kac formulae
- Genetic genealogical models and Feynman-Kac limiting measures
- Functional representations \simeq precise propagations of chaos expansions.
 - Combinatorial differential calculus
 - Permutation group analysis of (colored) forests
 (wreath product of permutation groups, Hilbert series techniques,...)
- (Applications).

Discrete time models \rightsquigarrow Continuous time version = Moran type genetic models

(~ joint works with L. Miclo, see also [PhD \oplus articles] M. Rousset)

Evolutionary type models

Simple Genetic Branching Algo.	Mutation	Selection/Branching
Metropolis-Hastings Algo.	Proposal	Acceptance/Rejection
Sequential Monte Carlo methods	Sampling	Resampling (SIR)
Filtering/Smoothing	Prediction	Updating/Correction
Particle \in Absorbing Medium	Evolution	Killing/Creation/Anhiling

<u>Other Botanical Names</u>: multi-level splitting (Khan-Harris 51), prune enrichment (Rosenbluth 1955), switching algo. (Magill 65), matrix reconfiguration (Hetherington 84), restart (Villen-Altamirano 91), particle filters (Rigal-Salut-DM 92), SIR filters (Gordon-Salmon-Smith 93, Kitagawa 96), go-with-the-winner (Vazirani-Aldous 94), ensemble Kalman-filters (Evensen 1994), quantum Monte Carlo methods (Melik-Nightingale 1999), sequential Monte Carlo Methods (Arnaud Doucet 2001), spawning filters (Fisher-Maybeck 2002), SIR Pilot Exploration Resampling (Liu-Zhang 2002),...

\iff Particle Interpretations of Feynman-Kac models

Since R. Feynman's phD. on path integrals 1942

 $\mathsf{Physics} \longleftrightarrow \mathsf{Biology} \longleftrightarrow \mathsf{Engineering} \ \mathsf{Sciences} \longleftrightarrow \mathsf{Probability}/\mathsf{Statistics}$

- Physics :
 - $FKS \in$ nonlinear integro-diff. éq. (~ generalized Boltzmann models).
 - Spectral analysis of Schrödinger operators and large matrices with nonnegative entries. (particle evolutions in disordered/absorbing media)
 - Multiplicative Dirichlet problems with boundary conditions.
 - Microscopic and macroscopic interacting particle interpretations.
- Biology:
 - Self-avoiding walks, macromolecular polymerizations.
 - Branching and genetic population models.
 - Coalescent and Genealogical evolutions.

- Rare events analysis:
 - Multisplitting and branching particle models (Restart).
 - Importance sampling and twisted probability measures.
 - Genealogical tree based simulation methods.
- Advanced Signal processing:
 - Optimal filtering/smoothing/regulation, open loop optimal control.
 - Interacting Kalman-Bucy filters.
 - Stochastic and adaptative grid approximation-models

• Statistics/Probability:

- Restricted Markov chains (w.r.t terminal values, visiting regions,...)
- Analysis of Boltzmann-Gibbs type distributions (simulation, partition functions,...).
- Random search evolutionary algorithms, interacting Metropolis/simulated annealing algo.

Simple Genetic evolution/simulation models — only 2 ingredients!!

(Discrete time parameter $n \in \mathbb{N} = \{0, 1, 2, ...\}$, state spaces E_n ($\in \{\mathbb{Z}^d, \mathbb{R}^d, \underbrace{\mathbb{R}^d \times \ldots \times \mathbb{R}^d}_{(n+1)-times}$, ...})

• *Mutation/exploration/prediction/proposal* :

 \rightarrow Markov transitions $M_n(x_{n-1}, dx_n)$ from E_{n-1} into E_n .

• Selection/absorption/updating/acceptance :

 \rightarrow Potential functions G_n from E_n into [0,1].

A Genetic Evolution Model \Rightarrow Markov chain $\xi_n = (\xi_n^1, \dots, \xi_n^N) \in E_n^N = \underbrace{E_n \times \dots \times E_n}_{N-times}$

$$\xi_n \in E_n^N \xrightarrow{\text{selection}} \widehat{\xi_n} \in E_n^N \xrightarrow{\text{mutation}} \xi_{n+1} \in E_{n+1}^N$$

• Selection transition ($\exists \neq types \rightarrow Ex.: accept/reject$)

 $\xi_n^i \rightsquigarrow \widehat{\xi}_n^i = \xi_n^i$ with proba. $G_n(\xi_n^i)$ [Acceptance]

Otherwise we select a better fitted individual in the current configuration

$$\widehat{\xi}_n^i = \xi_n^j$$
 with proba. $G_n(\xi_n^j) / \sum_{k=1}^N G_n(\xi_n^k)$ [Rejection + Selection]

• Mutation transition

$$\widehat{\xi}_n^i \rightsquigarrow \xi_{n+1}^i \sim M_{n+1}(\widehat{\xi}_n^i, \bullet)$$

A Genealogical tree model

Important observation [Historical process]

$$X'_n\in E'_n$$
 Markov chain $onumber \ X_n=(X'_0,\ldots,X'_n)\in E_n=(E'_0 imes\ldots imes E'_n)$ Markov chain \in path spaces

 \rightarrow Markov transitions $M_n(x_{n-1}, dx_n)$ [elementary extensions]

$$X_{n+1} = ((X'_0, \dots, X'_n), X'_{n+1}) = (X_n, X'_{n+1})$$

Genetic Evolution Model on Path Spaces=Genealogical tree model

$$X_n = (X'_0, \dots, X'_n)$$
 Markov transitions M_n and $G_n(X_n) = G'_n(X'_n)$
 \downarrow

Genetic path-valued particle Model

$$\begin{cases} \xi_n^i = (\xi_{0,n}^i, \xi_{1,n}^i, \dots, \xi_{n,n}^i) \\ \widehat{\xi}_n^i = (\widehat{\xi}_{0,n}^i, \widehat{\xi}_{1,n}^i, \dots, \widehat{\xi}_{n,n}^i) \in E_n = (E'_0 \times \dots \times E'_n) \end{cases}$$

- Path acceptance/(rejection+selection).
- Path mutation = path elementary extensions.

Occupation/Empirical measures ($\forall f_n$ test function on E_n)

$$\eta_n^N(f_n) = \frac{1}{N} \sum_{i=1}^N f_n(\xi_n^i) = \frac{1}{N} \sum_{i=1}^N f_n \underbrace{(\xi_{0,n}^i, \xi_{1,n}^i, \dots, \xi_{n,n}^i)}_{i-\text{th ancestral lines}}$$

 \downarrow Unbias-particle measures & Unnormalized Feynman-Kac measures :

$$\gamma_n^N(f_n) = \eta_n^N(f_n) \times \prod_{0 \le p < n} \eta_p^N(G_p) \longrightarrow_{N \to \infty} \gamma_n(f_n) = \mathbb{E}(f_n(X_n) \prod_{0 \le p < n} G_p(X_p))$$

Notes:

•
$$f_n = 1 \Rightarrow \gamma_n^N(1) = \prod_{0 \le p < n} \eta_p^N(G_p) \longrightarrow_{N \to \infty} \gamma_n(1) = \mathbb{E}(\prod_{0 \le p < n} G_p(X_p))$$

• Path-space models

$$[X_n = (X'_0, \dots, X'_n) \text{ and } G_n(X_n) = G'_n(X'_n)] \Rightarrow \gamma_n(f_n) = \mathbb{E}(f_n(X'_0, \dots, X'_n) \prod_{0 \le p < n} G'_p(X'_p))$$

 \implies Occupation measure & Normalized Feynman-Kac measures:

$$\eta_n^N(f_n) \hspace{0.1 in} = \hspace{0.1 in} rac{1}{N} \sum_{i=1}^N f_n(\xi_n^i) = \gamma_n^N(f_n)/\gamma_n^N(1) \longrightarrow_{N o \infty} \eta_n(f_n) = \gamma_n(f_n)/\gamma_n(1)$$

Path-space models

$$[X_n = (X'_0, \dots, X'_n) \text{ and } G_n(X_n) = G'_n(X'_n)]$$

$$\downarrow$$

$$\eta_n(f_n) = \frac{\mathbb{E}(f_n(X'_0, \dots, X'_n) \prod_{0 \le p < n} G'_p(X'_p))}{\mathbb{E}(\prod_{0 \le p < n} G'_p(X'_p))}$$

Note:

$$\gamma_n(f_n) = \eta_n(f_n) \times \prod_{0 \le p < n} \eta_p(G_p) \quad (\longleftarrow \gamma_n^N(f_n) = \eta_n^N(f_n) \times \prod_{0 \le p < n} \eta_p^N(G_p))$$

Motivating example \rightarrow filtering/hidden Markov chains/Bayesian Stat.Signal process $X_n =$ Markov chain $\in E_n$ Observation/Sensor eq. $Y_n = H_n(X_n, V_n) \in F_n$ with $\mathbb{P}(H_n(x_n, V_n) \in dy_n) = g_n(x_n, y_n) \lambda_n(dy_n)$

Example: $Y_n = h_n(X_n) + V_n \in F_n = \mathbb{R}$, with Gaussian noise $V_n = \mathcal{N}(0, 1)$

$$\mathbb{P}(h_n(x_n) + V_n \in dy_n) = (2\pi)^{-1/2} e^{-\frac{1}{2}(y_n - h_n(x_n))^2} \quad dy_n = \underbrace{\exp\left[h_n(x_n)y_n - h_n^2(x_n)/2\right]}_{g_n(x_n, y_n)} \quad \underbrace{\mathcal{N}(0, 1)(dy_n)}_{\lambda_n(dy_n)}$$

₩

Prediction/filtering/smoothing \rightarrow **Feynman-Kac representation** $G_n(x_n) = g_n(x_n, y_n)$

$$\eta_n = \text{Law}(X_n \mid Y_0 = y_0, \dots, Y_{n-1} = y_{n-1}) = \text{Law}(X'_0, \dots, X'_n \mid Y_0 = y_0, \dots, Y_{n-1} = y_{n-1})$$

10

Rather complete asymptotic theory $(n, N) \rightarrow \infty$ (usual LLN, CLT, LDP,...) \hookrightarrow *F-K Formulae, Genealogical and IPS, Springer (2004)*+<u>References therein</u> Some examples:

• Weak convergence $[p \ge 1 + \mathcal{F}_n \text{ not too large } + \text{ regular mutations}]$ (JTP 2000, joint work with M. Ledoux)

$$\sup_{n \ge 0} \mathbb{E}(\sup_{f_n \in \mathcal{F}_n} |\eta_n^N(f_n) - \eta_n(f_n)|^p)^{1/p} \le c(p)/\sqrt{N}$$

Ex : $E_n = \mathbb{R}, \quad \mathcal{F}_n = \{1_{]-\infty,x]} ; \ x \in \mathbb{R}\} \Rightarrow \sup_{n \ge 0} \mathbb{E}(\sup_{x \in \mathbb{R}} |\eta_n^N(1_{]-\infty,x]}) - \eta_n(1_{]-\infty,x]})|^p)^{1/p} \le c(p)/\sqrt{N}$

• Propagation-of-chaos estimates $[q \le N \text{ finite block size}]$ (TVP+SIAM PTA 2006, joint work with A. Doucet)

$$\mathbb{P}^N_{n,q} := \mathsf{Law}(\xi^1_n, \dots, \xi^q_n) \simeq \eta^{\otimes q}_n + \frac{1}{N} \ \partial^1 \mathbb{P}_{n,q} \quad \text{with} \quad \partial^1 \mathbb{P}_{n,q} \quad \text{signed meas. s.t. } \sup_{n \ge 0} \|\partial^1 \mathbb{P}_{n,q}\|_{\mathsf{tv}} \le c \ q^2$$

Problem :

$$\begin{split} \mathbf{Pb}: \text{Find a functional representation at any order?} \\ \mathbb{P}_{n,q}^{N} \simeq \eta_{n}^{\otimes q} + \frac{1}{N} \; \partial^{1} \mathbb{P}_{n,q} + \ldots + \frac{1}{N^{k}} \; \partial^{k} \mathbb{P}_{n,q} + \frac{1}{N^{k+1}} \; \partial^{k} \mathbb{P}_{n,q}^{N} \\ \text{with a bounded remainder measure } \sup_{N \geq 1} \|\partial^{k+1} \mathbb{P}_{n,q}^{N}\|_{\mathsf{tv}} < \infty \end{split}$$

Consequences :

- Sharp + strong propagations of chaos estimates at any order.
- Wick product formulae on forests.
- Sharp \mathbb{L}_p -mean error bounds.
- Law of large numbers for *U*-statistics for interacting processes.

• . . .

Tensor product measures

$$\rightsquigarrow \quad (\eta_n^N)^{\otimes q} = \frac{1}{N^q} \sum_{a \in [N]^{[q]}} \delta_{\xi_n^a} \quad \text{and} \quad (\eta_n^N)^{\odot q} = \frac{1}{(N)_q} \sum_{a \in \langle q, N \rangle} \delta_{\xi_n^a}$$

with

$$\begin{cases} \xi_n^a &:= (\xi_n^{a(1)}, \dots, \xi_n^{a(q)}) \\ [N]^{[q]} &:= N^q \text{ mappings } [q] := \{1, \dots, q\} \rightsquigarrow [N] := \{1, \dots, N\}; \\ \langle q, N \rangle &:= (N)_q := N!/(N-q)! \text{ one-to-one mappings} \end{cases}$$

Note:
$$\mathbb{E}((\eta_n^N)^{\odot q}(F)) = \mathbb{P}_{n,q}^N(F)$$
 and $(\eta_n^N)^{\otimes q} = (\eta_n^N)^{\odot q} \left(\frac{1}{N^q} \sum_{b \in [q]^{[q]}} \frac{(N)_{|b|}}{(q)_{|b|}} D_b \right)$

with |b| = Card(b([q])) and the coalescent-selection transitions

$$D_b(F)(x^1, \dots, x^q) := F(x^{b(1)}, \dots, x^{b(q)}) = F(x^b)$$

$$\Downarrow$$

$$\delta_{x^a} D_b(F) = D_a D_b(F)(x^a) = D_{ab}(F)(x) \iff D_a D_b = D_{ab}$$

Proof:

• $\forall c \in [N]^{[q]}$ $\exists (N - |c|)_{q-|c|} \times (q)_{|c|} \neq \text{ways to write } c = ab \in \langle q, N \rangle \circ [q]^{[q]}$

•
$$a \in \langle q, N \rangle \Longrightarrow |b| = |c| \text{ and } \frac{(N)_{|c|}}{(q)_{|c|}} \times \frac{(N-|c|)_{q-|c|} \times (q)_{|c|}}{(N)_q} = 1$$

14

Unnormalized (tensor product) measures

$$\gamma_n^N(f) := \gamma_n^N(1) \times \eta_n^N(f) \quad \text{with} \quad \gamma_n^N(1) = \prod_{0 \le p < n} \eta_p^N(G_p) \Longrightarrow \eta_n^N(f) = \gamma_n^N(f) / \gamma_n^N(1)$$

 $\gamma_n^N \sim Martingale end point :$ $\mathbb{E}(\gamma_n^N(f)) = \gamma_n(f)$ but $\mathbb{E}(\eta_n^N(f)) = \mathbb{P}_{n,1}^N(f) \neq \eta_n(f) \Rightarrow$ bias

Proof:

$$\mathbb{E}(\gamma_n^N(f) \mid \xi_{n-1}) = \gamma_{n-1}^N Q_n(f) \quad \text{and} \quad \eta_n^N(f) - \eta_n(f) = \underbrace{\frac{\gamma_n^N(1)}{\gamma_n(1)}}_{\neq 1} \times \gamma_n^N \left(\frac{1}{\gamma_n(1)}(f - \eta_n(f))\right)$$

with the positive FKS operator $Q_n(x, dy) = G_{n-1}(x)M_n(x, dy) \quad (\rightarrow \gamma_n = \gamma_{n-1}Q_n)$

Unnormalized tensor product measures

$$\rightsquigarrow$$
 $(\gamma_n^N)^{\otimes q} := \gamma_n^N(1)^q \times (\eta_n^N)^{\otimes q}$ and $(\gamma_n^N)^{\odot q} := \gamma_n^N(1)^q \times (\eta_n^N)^{\odot q}$

Lemma

$$\mathbb{Q}_{n,q}^{N}(F) := \mathbb{E}((\gamma_{n}^{N})^{\otimes q}(F)) \\
= \frac{1}{N^{q}} \sum_{a \in [q]^{[q]}} \frac{(N)_{|a|}}{(q)_{|a|}} \mathbb{Q}_{n-1,q}^{N}(Q_{n}^{\otimes q}D_{a}F) = \dots = \frac{1}{N^{q(n+1)}} \sum_{\mathbf{a} \in \mathcal{A}_{n,q}} \frac{(\mathbf{N})_{|\mathbf{a}|}}{(\mathbf{q})_{|\mathbf{a}|}} \Delta_{n,q}^{\mathbf{a}}(F)$$

with the measure-valued functional

$$\Delta_{n,q} : \mathbf{a} = (a_0, \dots, a_n) \in \mathcal{A}_{n,q} \mapsto \Delta_{n,q}^{\mathbf{a}} = \left(\eta_0^{\otimes q} D_{a_0} Q_1^{\otimes q} D_{a_1} \dots Q_n^{\otimes q} D_{a_n}\right) \in \mathcal{M}(E_n^q)$$

Traditional multi-index notation :

$$|\mathbf{a}| = (|a_0|, \dots, |a_n|)$$
 and $(\mathbf{N})_{|\mathbf{a}|} = (N)_{|a_0|} \dots (N)_{|a_n|}$ and $|\mathbf{a}|! = |a_0|! \dots |a_n|!$ and so on.

$$\mathbf{a} = (a_0, a_1) \Rightarrow \Delta_{n,q}^{\mathbf{a}}(F) = \int \eta_0(dx^1)\eta_0(dx^2)\eta_0(dx^3)$$
$$Q_1(x^1, dy^1)Q_1(x^1, dy^2)Q_1(x^3, dy^3)$$

 $Q_2(y^1, dz^2)Q_2(y^1, dz^3)Q_2(y^2, dz^1)F(z^1, z^2, z^3)$

Stirling Formula

$$(N)_p = \sum_{l \le p} s(p, l) N^l \Longrightarrow \forall \mathbf{p} = (p_0, \dots, p_{n+1}) \quad (\mathbf{N})_{\mathbf{p}} = \sum_{l \le \mathbf{p}} s(\mathbf{p}, l) N^{|\mathbf{l}|}$$

Consequence :

(with
$$|\mathbf{p}| =: \sum_{0 \le k \le n} p_k$$
 and $\mathbf{q} = (q)_{0 \le k \le n}$)

$$\mathbb{Q}_{n,q}^N(F) = \sum_{\mathbf{r} < \mathbf{q}} \sum_{\mathbf{q} - \mathbf{r} \leq \mathbf{p} \leq \mathbf{q}} s(\mathbf{p}, \mathbf{q} - \mathbf{r}) \; rac{1}{N^{|\mathbf{r}|}} rac{1}{(\mathbf{q})_\mathbf{p}} \; \sum_{\mathbf{a} \in \mathcal{A}_{n,q}: |\mathbf{a}| = \mathbf{p}} \Delta_{n,q}^\mathbf{a}(F)$$

Def :

 $\mathcal{A}_{n,q}(\mathbf{r}) := \{\mathbf{a} \in \mathcal{A}_{n,q} : |\mathbf{a}| \ge \mathbf{q} - \mathbf{r}\}$ (less than \mathbf{r} coalescences) \Downarrow

Th: $\mathbb{Q}_{n,q}^{N} = \gamma_{n}^{\otimes q} + \sum_{1 \leq k \leq (q-1)(n+1)} \frac{1}{N^{k}} \partial^{k} \mathbb{Q}_{n,q}$ with the measure valued partial derivatives $\partial^{k} \mathbb{Q}_{n,q} = \sum_{\mathbf{r} < \mathbf{q} : |\mathbf{r}| = \mathbf{k}} \sum_{\mathbf{a} \in \mathcal{A}_{n,q}(\mathbf{r})} s(|\mathbf{a}|, \mathbf{q} - \mathbf{r}) \frac{1}{(\mathbf{q})_{|\mathbf{a}|}} \Delta_{n,q}^{\mathbf{a}}$

with $\#(\mathbf{f}) :=$ nb of elts in the equivalence class ($\mathcal{A}_{n,q} \simeq$ entangled graphs:=jungles)

Figure 1: The entangled graph representation of a jungle with the same underlying graph as the planar forest in Fig. 2.

Figure 2: a graphical representation of a planar forest $f = t_1 t_3 t_2 t_3 t_3 t_1$ in terms of planar trees (corresponding forest $t_1^2 t_2 t_3^3$ =normal form).

Definitions :

 $B(\mathbf{t}) =$ the forest deduced from cutting the root of tree \mathbf{t} $B^{-1}(\mathbf{f}) =$ the tree deduced from the forest \mathbf{f} by adding a root.

Symmetry multisets :

$$\mathbf{t} = B^{-1}(\mathbf{t}_1^{m_1} \dots \mathbf{t}_k^{m_k}) \Rightarrow \mathbf{S}(\mathbf{t}) \quad := \quad (m_1, \dots, m_k)$$
$$\mathbf{S}(\mathbf{t}_1^{m_1} \dots \mathbf{t}_k^{m_k}) \quad := \quad \left(\underbrace{\mathbf{S}(\mathbf{t}_1), \dots, \mathbf{S}(\mathbf{t}_1)}_{m_1 - \text{terms}}, \dots, \underbrace{\mathbf{S}(\mathbf{t}_k), \dots, \mathbf{S}(\mathbf{t}_k)}_{m_k - \text{terms}}\right)$$

 \Downarrow (class formula + recursive multiplication principles)

Th. [closed formula]: $\forall \mathbf{f} \in \mathcal{F}_{q,n} \qquad \#(\mathbf{f}) = (q!)^{n+2} / \prod_{i=-1}^{n} \mathbf{S}(B^{i}(\mathbf{f}))!$ $\oplus \text{ (Hilbert series tech.} \iff \# \text{ forests with a given type)}$

Definitions :

$$\begin{array}{rcl} \mathcal{B}_0^{sym}(E_n^q) &=& F \text{ on } E_n^q \text{ such that } \int F(x_1,\ldots,x_{q-1},x_q) \ \gamma_n(dx_q) = 0. \\ \mathbf{t}_k &=& \text{the tree with a single coal. at level } k \text{ (its two leaves at level } (n+1)) \\ \mathbf{u}_k &=& \text{the trivial tree of height } k. \end{array}$$

 \Downarrow

$$\begin{aligned} \text{Cor.: } \forall q \text{ even} &\leq N, \ F \in \mathcal{B}_0^{sym}(E_n^q) \\ \forall k < q/2 \quad \partial^k \mathbb{Q}_{n,q}(F) = 0, \quad \partial^{q/2} \mathbb{Q}_{n,q}(F) = \sum_{\mathbf{r} < \mathbf{q}, |\mathbf{r}| = \frac{q}{2}} \ \frac{q!}{2^{q/2} \mathbf{r}!} \ \Delta_{n,q}^{\mathbf{f_r}} F \\ \text{with} \\ \mathbf{r} &= (r_k)_{0 \leq k \leq n} < \mathbf{q} = (q)_{0 \leq k \leq n} \rightsquigarrow \mathbf{f_r} := \mathbf{t}_0^{r_0} \mathbf{u}_0^{r_0} \dots \mathbf{t}_n^{r_n} \mathbf{u}_n^{r_n} \end{aligned}$$

 $(\forall q \text{ odd} \leq N, \text{ the partial derivatives are the null measure on } \mathcal{B}_0^{sym}(E_n^q), \text{ up to any order } k \leq \lfloor q/2 \rfloor) \oplus (\exists \text{ Gaussian field interpretation})$

Extension $\mathbb{Q}_{n,q}^N \rightsquigarrow \mathbb{P}_{n,q}^N$:

Same type of results + a remainder unif. bounded measure

$\longrightarrow \sim$ techniques \oplus 3 main ingredients

- $\mathbb{E}((\gamma_n^N)^{\otimes q}(F)) \rightsquigarrow \mathbb{E}([(\gamma_0^N)^{\otimes q_0} \otimes \ldots \otimes (\gamma_n^N)^{\otimes q_n}](F))$
- Forests \rightsquigarrow colored forests
- $\gamma_n^N \rightsquigarrow \eta_n^N \Longrightarrow$ renormalisation techniques.

Applications :

- Particle physics (absorbing medium, ground states)
- Biology (polymers, macromolecules)
- Statistics (particle simulation, restricted Markov, target distributions)
- Rare event analysis (importance sampling, multilevel branching)
- Signal processing, filtering

Particle physics: Markov $X_n \in$ Absorbing medium $G(x) = e^{-V(x)} \in [0, 1]$

$$X_n^c \in E^c = E \cup \{c\} \xrightarrow{absorption} \widehat{X}_n^c \xrightarrow{exploration} X_{n+1}^c$$

Absorption/killing: $\longrightarrow \widehat{X}_n^c = X_n^c$, with proba $G(X_n^c)$; otherwise the particle is killed and $\widehat{X}_n^c = c$.

\Downarrow

$$A = \{x : G(x) = 0\} \longrightarrow \text{Hard obstacles}$$

$$T = \inf\{n \ge 0; \widehat{X}_n^c = c\} \longrightarrow \text{Absorption time } X_{T+n}^c = \widehat{X}_{T+n}^c = c$$

 \implies **Feynman-Kac models** (G, X_n) : $\gamma_n = Law(X_n^c; T \ge n)$ and $\gamma_n(1) = Proba(T \ge n)$

$$\Downarrow$$
$$\eta_n = \mathsf{Law}(X_n^c \mid T \ge n) = \mathsf{Law}((X_0'^c, \dots, X_n'^c) \mid T \ge n)$$

26

Biology: Macromolecules and Directed Polymers

• Self avoiding walks $X'_n \in \mathbb{Z}^d$

$$X_n = (X'_0, \dots, X'_n)$$
 and $G_n(X_n) = 1_{\notin \{X'_0, \dots, X'_{n-1}\}}(X'_n)$

 $\gamma_n(1) = \operatorname{Proba}(\forall 0 \le p \ne q \le n, \ X'_p \ne X'_q) \quad \text{and} \quad \eta_n = \operatorname{Law}(X'_0, \dots, X'_n \mid \forall 0 \le p \ne q \le n, \ X'_p \ne X'_q)$

• Edwards' model

$$X_n = (X'_0, \dots, X'_n)$$
 and $G_n(X_n) = \exp\{-\beta \sum_{0 \le p < n} \mathbf{1}_{X'_p}(X'_n)\}$

Statistics: Sequential MCMC and Feynman-Kac-Metropolis models

Metropolis potential [π target measure]+[(K, L) pair Markov transitions]

$$G(y_1, y_2) = \frac{\pi(dy_2)L(y_2, dy_1)}{\pi(dy_1)K(y_1, dy_2)}$$

Ex. π Gibbs measure:

$$\pi(dy) \propto e^{-V(y)} \ \lambda(dy) \Rightarrow G(y_1, y_2) = e^{(V(y_1) - V(y_2))} \ \frac{\lambda(dy_2) L(y_2, dy_1)}{\lambda(dy_1) K(y_1, dy_2)}$$

Note:
$$(K = L \ \lambda - \text{reversible})$$
 or $(\lambda K = \lambda \text{ and } L(y_2, dy_1) = \lambda(dy_1) \frac{dK(y_1, \bullet)}{d\lambda}(y_2))$
 \Downarrow
 $G(y_1, y_2) = \exp(V(y_1) - V(y_2))$

Notation $\mathbb{E}_{\nu}^{M}(\cdot)$ =Expectation w.r.t. Markov [transition M, initial condition ν] <u>Theorem:</u> (Time reversal formula), [A. Doucet, P.DM; (Séminaire Probab. 2003)]

$$\mathbb{E}_{\pi}^{L}(f_{n}(Y_{n}, Y_{n-1}..., Y_{0})|Y_{n} = y) = \frac{\mathbb{E}_{y}^{K}(f_{n}(Y_{0}, Y_{1}, ..., Y_{n}) \{\prod_{0 \le p < n} G(Y_{p}, Y_{p+1})\})}{\mathbb{E}_{y}^{K}(\{\prod_{0 \le p < n} G(Y_{p}, Y_{p+1})\})}$$

In addition :

- \oplus *FK-Metropolis n*-marginal: $\lim_{n\to\infty}\eta_n = \pi$ (cv. decays $\perp \pi$)
- \oplus Nonhomogeneous models: (π_n, L_n, K_n)

 $\pi_n(dy) \propto e^{-\beta_n V(y)} \lambda(dy)$, cooling schedule $\beta_n \uparrow \infty$, mutation s.t. $\pi_n = \pi_n K_n$, and Law $(X_0) = \pi_0$

$$\Downarrow$$

$$G_n(y_1, y_2) = \exp\left[-(\beta_{n+1} - \beta_n)V(y_1)\right] \Longrightarrow \eta_n = \pi_n$$

Rare events analysis

• Importance sampling and Twisted Feynman-Kac measures

$$\mathbb{P}(V_n(X_n) \geq a) \quad = \quad \mathbb{E}(\mathbf{1}_{V_n(X_n) \geq a} \ e^{-eta_n V_n(X_n)} \ e^{+eta_n V_n(X_n)})$$

 \Downarrow

Importance potentials/measures:

$$G_n(X_n, X_{n+1}) = e^{\beta_n(V_{n+1}(X_{n+1}) - V_n(X_n))} \Longrightarrow \mathbb{P}(V_n(X_n) \ge a) = \gamma_n(\mathbf{1}_{V_n \ge a} e^{-\beta_n V_n})$$

In addition:

$$\mathbb{E}(f_n(X_n) \mid V_n(X_n) \geq a) = \eta_n(f_n \mid \mathbb{1}_{V_n \geq a} e^{-eta_n V_n}) / \eta_n(\mathbb{1}_{V_n \geq a} e^{-eta_n V_n})$$

 \oplus Path-space models \Rightarrow weighted genealogies

$$X_n = (X'_0, \dots, X'_n)$$
 and $V_n(X_n) = V'_n(X'_n)$

$$\Downarrow$$
 $\mathbb{E}(f_n(X'_0,\ldots,X'_n)\mid V'_n(X'_n)\geq a)=\eta_n(f_n\;\mathbf{1}_{V_n\geq a}e^{-eta_nV_n})/\eta_n(\mathbf{1}_{V_n\geq a}e^{-eta_nV_n})$

29

Multi-splitting Feynman-Kac models (≠ importance sampling)
 (E = A ∪ A^c), Y_n Markov, Y₀ ∈ A₀(⊂ A) → A^c = (B ∪ C), C = absorbing set/hard obstacle

Multi-level decomposition $B = B_m \subset \ldots \subset B_1 \subset B_0$ $(A_0 = B_1 - B_0, B_0 \cap C = \emptyset)$ \Downarrow

$$\mathbb{P}(Y_n \text{ hits } B \text{ before } C) = \mathbb{E}(\prod_{1 \le p \le m} G_p(X_p))$$

Inter-level excursions : $T_n = \inf \{ p \ge T_{n-1} : Y_p \in B_n \cup C \}$

$$X_n = (Y_p; T_{n-1} \le p \le T_n) \in \text{Excursion space} \quad G_n(X_n) = 1_{B_n}(Y_{T_n})$$

 \Downarrow

FK interpretation

$$\mathbb{E}(f(Y_0,\ldots,Y_{T_m}) \ \mathbf{1}_{B_m}(X_{T_m})) = \mathbb{E}(f(X_0,\ldots,X_m) \ \prod_{1 \le p \le m} G_p(X_p))$$

Advanced signal processing \rightarrow filtering/hidden Markov chains/Bayesian methodology <u>Signal process</u> $X_n =$ Markov chain $\in E_n$ <u>Observation/Sensor eq.</u> $Y_n = H_n(X_n, V_n) \in F_n$ with $\mathbb{P}(H_n(x_n, V_n) \in dy_n) = g_n(x_n, y_n) \lambda_n(dy_n)$ *Example:* $Y_n = h_n(X_n) + V_n \in F_n = \mathbb{R}$, with Gaussian noise $V_n = \mathcal{N}(0, 1)$ \Downarrow $\mathbb{P}(h_n(x_n) + V_n \in dy_n) = (2\pi)^{-1/2} e^{-\frac{1}{2}(y_n - h_n(x_n))^2} dy_n = \underbrace{\exp\left[h_n(x_n)y_n - h_n^2(x_n)/2\right]}_{g_n(x_n, y_n)} \underbrace{\mathcal{N}(0, 1)(dy_n)}_{\lambda_n(dy_n)}$

Prediction/filtering/smoothing \rightarrow **Feynman-Kac representation** $G_n(x_n) = g_n(x_n, y_n)$

$$\eta_n = \text{Law}(X_n \mid Y_0 = y_0, \dots, Y_{n-1} = y_{n-1}) = \text{Law}(X'_0, \dots, X'_n \mid Y_0 = y_0, \dots, Y_{n-1} = y_{n-1})$$

30

Partially linear/Gaussian models

$$X_{n}^{1} = \text{Markov} \in E_{n} + \begin{cases} X_{n}^{2} = A_{n}(X_{n}^{1}) X_{n-1}^{2} + a_{n}(X_{n}^{1}) + B_{n}(X_{n}^{1}) W_{n} \in \mathbb{R}^{d} \\ Y_{n} = C_{n}(X_{n}^{1}) X_{n}^{2} + c_{n}(X_{n}^{1}) + D_{n}(X_{n}^{1}) V_{n} \in \mathbb{R}^{d'} \end{cases}$$

Given a realization $X^1 = x \rightarrow Kalman$ -Bucy optimal one step predictor

$$\widehat{X}_{x,n+1}^{2-} = \mathbb{E}(X_{n+1}^{2} \mid Y_{0}, \dots, Y_{n}, X^{1} = x) \text{ and } P_{x,n+1}^{-} = \mathbb{E}([X_{n+1}^{2} - \widehat{X}_{x,n+1}^{2-}][X_{n+1}^{2} - \widehat{X}_{x,n+1}^{2-}]')$$

$$\Downarrow$$

Quenched Kalman-Bucy recursion: $(\widehat{X}_{x,n+1}^{2}, P_{x,n+1}^{-}) = \mathcal{B}_{n+1}[(x_n, x_{n+1}), (\widehat{X}_{x,n}^{2}, P_{x,n}^{-})]$

Feynman-Kac representation: $\eta_n \sim (\mathbf{X}_n, \mathbf{G}_n)$ s.t.

$$\mathbf{X}_{n} = (X_{n}^{1}, (\widehat{X}_{X^{1}, n+1}^{2}, P_{X^{1}, n+1}^{-})) \text{ Markov chain} \in \mathbf{E}_{n} = (E_{n} \times \mathbb{R}^{d} \times \mathbb{R}^{d \times d})$$
$$\mathbf{G}_{n}(x, m, P) = \frac{d\mathcal{N}(C_{n}(x) \ m + c_{n}(x), C_{n}(x) \ P \ C_{n}(x)' + D_{n}(x)R_{n}^{v}D_{n}(x)')}{d\mathcal{N}(0, D_{n}(x)R_{n}^{v}D_{n}(x)')}(y_{n})$$

$$\Downarrow \quad [virtual \ sensor : \ Y_n = \{C_n(X_n^1) \ \widehat{X}_{X^1,n}^2 + c_n(X_n^1)\} + \widehat{V}_{X^1,n} \]$$

$$F_n(x,m,P) = f_n(x) \implies \eta_n(F_n) = \mathbb{E}(f_n(X_n^1) \mid Y_0, \dots, Y_{n-1})$$

$$F_n(x,m,P) = \mathcal{N}(m,P)(f_n) \implies \eta_n(F_n) = \mathbb{E}(f_n(X_n^2) \mid Y_0, \dots, Y_{n-1})$$

Note: \rightsquigarrow Interacting Kalman-Bucy filters and for path-space models we have

$$X_n^1 = (X_0^1 ', \dots, X_n^1 ') \rightsquigarrow \mathsf{Law}((X_0^1 ', \dots, X_n^1 ') \mid Y_0, \dots, Y_{n-1})$$