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Synthesis C joint works, hyperef. (2016-2017):
»> AoAP-17 (Unif. EnKBF)+ J. Tugaut.
SIAM C.& Opt. (Unif. En-EKBF)+ A. Kurtzmann, J. Tugaut.
Arxiv 1 (Stability KBF)+ A.N. Bishop
Arxiv 2 (Stability EKBF)+ A. Kurtzmann, J. Tugaut.
Arxiv 3 (Perturbation KB)+ A.N. Bishop, S. Pathiraja.
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(Working paper CLT/Bias/Taylor)+ A.N. Bishop + A. Niclas
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Kalman-Bucy filter

Linear+Gaussian filtering problem

dX; = A X dt + RY? dw,
dY; = C X, dt + £/2dV, ~ Fri=0(Ys, s < t).
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Kalman-Bucy filter

Linear+Gaussian filtering problem

dX; = AX.dt + RY? dW,
dY; = C X, dt + £/2dV, ~ Fri=0(Ys, s < t).

Optimal L,-filter = Kalman-Bucy filter

Xe =E(X; | Ft) and P :=E((Xe — E(X; | 7)) (Xe — E(X; | F))')
U
dX, = A X, dt + P, C'T (dYt ~CX, dt)
with the Riccati equation

8tPt = RiCC(Pt) = APt + PtAI - PtSPt + R with S := CIZC
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A McKean-Vlasov interpretation
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Nonlinear Kalman-Bucy diffusion

Reformulation

LaW(Xt ‘ ]:t) = N |:)?t7 Pt:| = LaW(Yt | ]:t) =Nt

in terms of the McKean-Vlasov type diffusion
dX: = AX.dt + RV dW+P, C'T ™ [dY; — (CXodt + T2 dV )|
with the covariance matrices

P = ne[(e — ne(e))(e — me(e))]  with  e(x) := x.
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Nonlinear Kalman-Bucy diffusion

Reformulation

LaW(Xt ‘ ]:t) = N |:)?t7 Pt:| = LaW(Yt | ]:t) =Nt

in terms of the McKean-Vlasov type diffusion
dX: = AX.dt + RV dW+P, C'T ™ [dY; — (CXodt + T2 dV )|
with the covariance matrices

P = ne[(e — ne(e))(e — me(e))]  with  e(x) := x.

I
E(Yt|ft):)?t and Pf,’:Pt.

t
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Mean field/Ensemble Kalman-Bucy filter
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The Ensemble Kalman-Bucy filter
Mean field interpretation ~» N + 1 interacting diffusions

dei = A €idt + RV2dW. + p,C'E [dYt - (Cg;’dt + 312 dV’;)]

with the rescaled particle covariance matrices

1 .
Pt <1+ )P"N_N Z ft—mt ;—mt)/

1<i<N+1
and the empirical measures
V.= Lt Z ds and the sample mean m; := 1 &l
ETON41, - & TN v
1<i<N+1 1<i<N+1
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The Ensemble Kalman-Bucy filter
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Mean field interpretation ~» N + 1 interacting diffusions

dei = A gidt + RV2dW, + p,C'x [dYt - (Cg;’dt + 312 dV’;)]

with the rescaled particle covariance matrices

1 i
Pt <1+ )P"N_N Z ft—mt t—mt)/

1<i<N+1
and the empirical measures
N 1 1 i
Ny 1= ——— E d¢i  and the sample mean my = —— &
N+1_ - t N+1_ -
1<i<N+1 1<i<N+1

where is the Riccati equation?



Thl: The EnKF equations

The EnKF equation

1 _
dmy = A mdt + p. C'S71 (dY; — Cm, dt) + dM
myg me Pt ( t me ) \/m t
with an r;-dimensional martingale M, = (Wt(k))l<k<r1 with

angle-brackets o o
0(M| @ [ M)t = R+ p:Sp:.
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The particle/ensemble Riccati equation

. 1
dpt = RlCC(pt) dt + ﬁ th

Symmetric matrix-valued martingale M, = (M:(k,/1));<; <,

Angle brackets given by the Wick-type formula

O <M| ® | M>§ = Pt Qsym (R + pt5pt)
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The particle/ensemble Riccati equation

. 1
dpt = RlCC(pt) dt + ﬁ th

Symmetric matrix-valued martingale M, = (M:(k,/1));<; <,
Angle brackets given by the Wick-type formula

9 (M| @ | M>§ = pt Qsym (R + peSpr)

~~» CUBIC = Explosive Euler-discrete scheme

Orthogonality property

VI<k Il <n  (M(kI),M()),=0.



Stability of Kalman-Bucy diffusions
Stability of Riccati semigroup
Stability of stochastic flows
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(H) Observability + Controllability

Observe that

dX: = (A —PS) X,dt + RY? dW, + P,C'S " [dYt _ 12 th]
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Observe that

dX: = (A —PS) X,dt + RY? dW, + P,C'S " [dYt _ 12 th]

I
Steady state: 3!P > 0 such that Ricc(P) =0 and

(A —PS) := max{Re(\) : A€ Spec(A—-PS)} <0



(H) Observability + Controllability

Observe that

dX. = (A — P,S) X.dt + RY? dW,+ P,C's [dYt _ ¥l th]

I
Steady state: 3!P > 0 such that Ricc(P) =0 and

(A —PS) := max{Re(\) : A€ Spec(A—-PS)} <0

Steady state diffusion
dX: =~ (A - PS) X.dt + RY2 dW,+ PC'T™! [dyt — Y2 4V,

STABLE EVEN WHEN A is unstable.
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(H) Observability + Controllability

Controllability & Observability Gramians

t t
C: = / e R e ds Oy ::/ e 'S e Ads
0 0
t
0.0) = ¢t [ / elt=9A ¢, 5 ¢, el ds} ¢t
0
t
C(0) = o7t [ / e (=94 O.R O, e~ (=94 ds} o;1
0
U

= J v > 0 (a.k.a obs-control interval) Fwl, @ (0),wl(C) > 0s.t.

wt Id <C, <wf Id and so on, for the other Gramians.
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Bucy's theorems
Notation & ; = exp {f; Q. du} = state transition matrix

as‘c/‘s,t = _5s,t Qs and 6l’gs,t = ths,t
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Bucy's theorems
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Bucy's theorems
Notation & ; = exp {f: Q. du} = state transition matrix

as‘c/‘s,t = _5s,t Qs and 6l’gs,t = ths,t

Theo 1 [Bucy] V(t, Po)

(0u(C) +C;1) " < Py < 01 +C(0)

Theo 2 [Bucy]

Ja, 8 > 0 that depends on @$, @ (0), w3 (C) s.t. Vt > s> v

exp f (A— P,S)dul3 < aexp{—f(t - 5)}
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Bucy's theorems
Notation & ; = exp {f: Q. du} = state transition matrix

as‘c/‘s,t = _5s,t Qs and 6l’gs,t = ths,t

Theo 1 [Bucy] V(t, Po)

(0u(C) +C5) ' < Py < O;1 4 C,(0)
Theo 2 [Bucy]
Ja, 8 > 0 that depends on @$, @ (0), w3 (C) s.t. Vt > s> v
t
e § (A= PuS)aul} < acep (~A(t ~ 5))
S
Also true for any t > s > 0 with « depending on Py.
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Some consequences

Notation 1, (x, Q) = stochastic flow of the Kalman-Bucy filter
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Some consequences

Notation 1, (x, Q) = stochastic flow of the Kalman-Bucy filter

Theo dJv >0s.t. foranyt >s>0, x3,x € R?, Q1,@Q,>0,n>2

E (|[1hs,e(x1, Q1) — s e(x2, Q)15 | Xs)*/"

<canq e " [ — el + {Ie — X, + Vn} [|Q— Qlf2]
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Some consequences
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Notation 1, (x, Q) = stochastic flow of the Kalman-Bucy filter

Theo dJv >0s.t. foranyt >s>0, x3,x € R?, Q1,@Q,>0,n>2

E ([s.e(x1, Q1) — ts.e(x2, Q)13 | Xs)M"
<canq e " [ — el + {Ie — X, + Vn} [|Q— Qlf2]

@ same estimate for ¢, ,(x, Q) = stochastic flow Kalman-Bucy
(nonlinear) diffusion



Some consequences
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Notation 1, (x, Q) = stochastic flow of the Kalman-Bucy filter

Theo dJv >0s.t. foranyt >s>0, x3,x € R?, Q1,@Q,>0,n>2

E (|[ths,e(x1, Q1) — ¥s,e (32, Q)13 | Xs)'/"
<cgue € [IIx — x4+ {lIxe = Xsll, + vn} [|Q1 — Q2]

@ same estimate for ¢, ,(x, Q) = stochastic flow Kalman-Bucy
(nonlinear) diffusion

Any choice
ve{B, (1—¢€) s(A=PS), Amax((A— PS)sym)}

is fine but cq, g, maybe larger than you expect.



Propagation of chaos estimates
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Back to the EnKF - Some observations/numerical issues

» C=0= ¢ iid. copies of the signal.
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Back to the EnKF - Some observations/numerical issues

» C=0= & iid. copies of the signal.
> rank(p;) < N < r = (n — N) state dimensions not driven by Y;.

» r =1 == p, has an heavy tailed invariant distribution oc x~(V+3)
— Ve>0 E(e“*)=o00 and Ym>N4+2  E(¢")=o0

~» Moment explosions
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Back to the EnKF

We really need a stable signal (for uniform estimates)

I
(s(A) ) p(A) :=inf{a : Vt >0 | exp(At)]2 <exp(at)} <0
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Back to the EnKF

We really need a stable signal (for uniform estimates)

I
(s(A) ) p(A) :=inf{a : Vt >0 | exp(At)]2 <exp(at)} <0

Spectral abscissa ~ constants (conditioning numbers) depending on
diagonalisation basis. Complicated analysis when A ~ A — p;S.
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" Technical” problems even when p(A) < 0
A := A — PS stable matrices A a = A — pS stable matrices

p=P+N 12y — aF=A+NY2%S
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BUT:
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" Technical” problems even when p(A) < 0
A := A — PS stable matrices A a = A — pS stable matrices
p=P+N Y = F=A+N'2%S
BUT:
H(AS) S=sld and wu(A)<O0
= Vp u(A—pS) < u(A)+s p(—p) < pu(A) <0
= p; never hits the divergence set {¥ : ¢(A+XS) > 0}

Same conclusion when S > 0 up to a change of signal-drift matrix
A ~o 51/2A571/2
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" Technical” problems even when p(A) < 0
A := A — PS stable matrices A a = A — pS stable matrices
p=P+N Y = F=A+N'2%S
BUT:
H(AS) S=sld and wu(A)<O0
= Vp u(A—pS) < u(A)+s p(—p) < pu(A) <0
= p; never hits the divergence set {¥ : ¢(A+XS) > 0}

Same conclusion when S > 0 up to a change of signal-drift matrix
A ~o 51/2A571/2

More generally (A — pS) may be locally ill-conditioned in the sense that

3Q : (A — QS) = Amax((A— QS)sym) > 0> Amin((A — QS)sym)
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Under H(AS)

TheoVn>13dN,>1

sup sup VN E[llp: — Pel|F] V sup supVN E [||§§ —YtH"] < 00
N>N, >0 N>N, >0

U
CorVn>14dN,>1

sup supm W, (Law(f}),nt)\/ sup supm E (|77£V(f) - nt(f)’n) < 00
N>N, t>0 N>N, t>0
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Nonlinear models
Extended Kalman-Bucy-filters
Extended Ensemble Kalman-Bucy-filters
A stability theorem
Uniform propagation of chaos estimates
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Nonlinear models

Extended Kalman-Bucy-filters
dX, = A(X;) dt + P,C' £ [dyt — CX, dt
with the "stochastic” Riccati equation:

9Py = OAX;)P: + P; OA(X,) + R — P,SP,
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Nonlinear models

Extended Kalman-Bucy-filters

dX. = A(X;) dt + P.C' £ [dyt ~ CX, dt
with the "stochastic” Riccati equation:

8:P: = OA(X:)P: + Py OA(X:)' + R — PSP
McKean-Vlasov interpretation

dX; = AXoE[X:|G) dt+RY? dW,
P C'RY [dYe = (CX, e+ T2 dV, )|

with the drift function

A(x, m) := Alm] 4+ 0A[m] (x — m).
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Extended Ensemble Kalman-Bucy-filters

En-EKF = Mean field particle model
del = A(me) dt + RY2dW,
4pClE [dYt - (cg;; dt + ¥/ dVi)}
with the sample means m; and covariance matrices p; and the drift

A&l me) == Almy] + OA[m,] (& — me)

Repulsion /Attraction w.r.t. m;

23/27



Some illustrations

Langevin type signal processes
R=0%Id and (A, JA)=(-0V,—0?V)

Non quadratic potential (g € R", 91, Q> > 0)

1 1
V(x) = 5 (Qux,x) +(q,%) + 3 (o, x)3/?

Interacting diffusion gradient flows

V()= Y )+ D Uh(x,x)

1<i<r 1<i#j<r

for some convex confining potential U; : R’ + [0, oo
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Regularity conditions

Full observation S = s Id and

—Xoa = SUPcpn Amax(0A(X) + 0A(x)') <0

10A(x) — dA(Y) ||

IN

roa [Ix =y

Examples: Langevin signal-diffusion
(oas o) = B (27 Amn(Q1), 203/2(Q2)) .

more generally 9V > v Id @ Lipschitz condition
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Stability theorem

(Xt, Z+) := McKean-Vlasov starting at  (Xo, Zo)
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Stability theorem

(Xt, Z+) := McKean-Vlasov starting at  (Xo, Zo)

4

Theo [+Kurtzmann-Tugaut]

When Ay, is sufficiently large we have

W, (Law(X¢), Law(Z:)) < ¢ exp[—~t A] for some X > 0.

3 more explicit description in terms of (R, S, kaa).
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Propagation of chaos

PN .= Law(m, p;) P, := Law(?t, P:)

and
QN := Law(¢l) Q; := Law(X)
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Propagation of chaos

IP’?’ := Law(mq, pt) P, := Law(?t, P:)

and
QN := Law(¢l) Q; := Law(X)

Theo [+Kurtzmann-Tugaut]
When Apa is sufficiently large, 38 €]0,1/2] s.t.

sup W, (P, P,) Vsup W, (QF, Q:) < ¢ N7
t>0 t>0

as soon as tr(Py) is not too large and N large enough...
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