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ABSTRACT 
The present study aims at investigating advanced subset 

simulation techniques, which are based on the theory of particle 
filter, for the assessment of the failure probability of a marine 
structure under extreme loading conditions. Three approaches 
are considered, namely the classical particle filter method, the 
subset simulation with a branching process and one using the 
minimum values of the samples as levels. They are, first, 
intensively applied on a simple example for which a known 
analytical solution is available, in order to investigate their 
parameter settings. Then, they are applied, with good 
performance, using their respective best parameter settings, to 
the assessment of failure probability of a FPSO subjected to 
extreme roll motion. 
 
 
INTRODUCTION 

The design of a marine structure requires to estimate the 
probability that the structure would fail under extreme load 
conditions. That issue is of great importance for the roll 
motion, which can significantly impacts the safety and the 
performance in operational conditions. It leads to the 
computation of the probability that the structural response, 
exceeds a given critical threshold for a given reference time 
(e.g. the timescale of a sea state, one year, …): 

 
  cF LXP  Prob    (1)

              
where (X) denotes the structural response and Lc the critical 
threshold. 

Under some restrictive assumptions, namely when the 
loading is a random Gaussian process and the structural 
response, , is linear or quadratic, closed-form solutions or 
good analytical approximation are available. But in general, the 
structural response results from complex non-linear dynamic 
equations involving time consuming time-domain computations 
and the representation of the dynamic loadings as random 
processes involves a high number of random variables. In that 
case, there is no simple analytical solution and, for an accurate 
assessment of the failure probability, simulation-based 
reliability methods are more appropriate, but become 
unpractical as the number of simulations increases dramatically 
when low failure probabilities are estimated. 
 

An appealing way to reduce the number of simulations, 
required for small probabilities, is to use the subset simulation 
method. That method expresses the small failure probability, in 
virtue of the Bayes theorem, as the product of conditional 
probabilities, which are not so small and can be estimated with 
a reasonable number of simulations. 
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where the Lk’s are intermediate levels such that 

cM LLLL  21 . Yet, the efficiency of this method 

is not systematic but depends on the choice of the intermediate 
levels and on the techniques used to simulate samples 
conditional to the intermediate failure events. The first 
approaches of that method use a Markov-Chain Monte-Carlo 



 2 Copyright © 2012 by ASME 

(MCMC), such as the Metropolis-Hastings algorithm or the 
Gibbs sampling, to sample the conditional distributions with a 
reversible Markov chain which has the conditional distribution 
under consideration as its stationary distribution (Robert & 
Castella, 2004). However, they need sometimes large Markov 
chain sizes to ensure convergence to the stationary distribution 
leading to long computation times. The introduction of particle 
filtering techniques in the subset simulations strategy yields 
some improvements as it allows almost independent and 
identically distributed samples and is therefore suitable for a 
parallel computation architecture. Moreover, it leads to a 
rigorous mathematical convergence analysis of the subset 
method (Del Moral, 2004). The particle filter based subset 
simulation is often applied in a wide range of areas including 
stochastic model for economy and insurance, DNA sequencing, 
electrical engineering,… (Dembo & Zeitouni, 2010), but are 
much less used in offshore structural reliability problems.  
 

In the present study, two new approaches, namely one 
using a branching process (Del Moral & Lezaud, 2006) and one 
using the minimum values of the samples as levels (Guyader, 
et. al., 2011), are considered and compared to the classical 
technique. They are investigate for solving structural reliability 
problems encountered in offshore engineering. Various 
algorithms, corresponding to different sampling strategies, are 
considered. The effects in terms of accuracy of the parameter 
settings of those algorithms is also analysed. 
 

The algorithms are first intensively applied on a simple 
example for which a closed-form solution for the failure 
probability can be derived. The performances of those 
algorithms are then compared in order to identify the best 
sampling strategies and the proper parameter settings. Finally, 
the method is illustrated on the assessment of the failure 
probability of an FPSO (Floating Production Storage and 
Offloading Platform) subjected to roll motion. 

 
 

PARTICLE FILTER BASED SUBSET SIMULATION 
 
Global framework 

The objective is to compute the small probability of the 
failure event given by {(X) > Lc}, where X is a random 
element on IRd, for d, a positive integer that represents the 
dimension of the random space, and  a response function of X 
that yields real numbers. The subset method introduces a 
sequence of intermediate levels cM LLLL  21  

and gives a convenient way to sample the distribution of X 
restricted to the set of the elements, the response of which are 
larger than a given intermediate level.  
 

It is quite difficult to find the proper intermediate levels a 
priori, since it requires a good knowledge of the structural 
response behavior in order to avoid that the samples of the 
conditional distributions die (i.e. Prob((X)>Lk+1|(X)>Lk)=0). 

It is easier to adaptively chose them with respect to a prescribed 
value p0 of the conditional probabilities. In that case, a level is 
given by the (1-p0) empirical quantile of the conditional 
distribution corresponding to the previous level. The number M 
of levels is reached when one finally obtains an empirical 
quantile larger than the critical threshold, which stops the 
sequence of levels. Thus, the number of levels is random. 
However, when the size of samples at each step is large enough 
that number is almost fixed and converges to the ratio of 
logarithms (i.e. the ratio of the power of ten of PF and p0): 

 
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  (3)

 

 
Fig.1: Global framework of the sampling of an intermediate condition 
distribution by particle filter-based subset method. 
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The general framework to generate simulations with respect to 
a distribution of X conditional to a given level is schematically 
explained on Fig.1. In the first step, one assumes that one has N 
iid samples (Xi,i=1..N) of the conditional distribution for the 
level Lk. Those samples appear as a cloud of particles, and the 
objective is to randomly propagate those particles with respect 
to the conditional distribution for the next level. 
 
In the second step, the next level Lk+1 is set to the (1-p0) 
empirical quantile (i.e. the minimum of the N0 particles with the 
higher response function values, where N0/N=p0). Then, N 
particles are selected according to the empirical distribution of 
the N0 particles that have already reached the next level Lk+1. 
That distribution reads: 
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  (4)

       
where Ind{(x)>Lk+1} stands for the indicator function and 
Xi is the kroeneker operator. It means that the selected 
particles are copies of those which have already reached the 
next level. To select those copies with respect to the empirical 
distribution, one can pick them uniformly in the set of the N0 
particles. Another kind of selection, quite similar to the uniform 
one, is that based on accept-reject concept, which ensures that 
all the element of the set of the N0 particles are selected at least 
once. 
 
In the third step, N new particles are generated with a 
transformation of the selected ones in such a way that the new 
particles keep the distribution of those from which they are 
obtained, namely the conditional distribution for the next level 
Lk+1. This can be done by Markov chain Monte-Carlo (MCMC) 
simulation using a Metropolis-Hastings algorithm (Brooks, et. 
al., 2010). That algorithm applies a random perturbation that 
preserves the distribution to a selected sample. Then, it assigns 
the obtained result to the new sample if this one has reached the 
next level, otherwise the new sample is set to the selected one. 
That is written as follows: 
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where F is a function and W is a random element on IRd. In 
offshore applications, the random input is generally a random 
vector of iid standard Gaussian variables (i.e. Gaussian with 
zero mean value and unit standard deviation). An interesting 
random perturbation function is given by: 
 

WXWXF   1),(    (6)

 

where  is a scatter parameter. As one can see, that random 
perturbation preserves the standard Gaussian distribution. One 
can notice that, when  is small the resulting transformation 
stays close to the sample from which it is obtained and 
therefore has more chances to reach the next level, however it 
does not explore properly the local random space. On the 
contrary, when is larger, the local random space exploration 
is better but the risk is even higher that the transformation does 
not reach the next level and is not accepted. So, the scatter 
parameter has to be chosen in order to make a balance between 
the quality of the local random space exploration and the 
acceptance rate of the random perturbation. A study has shown 
that for Gaussian perturbation in Metropolis-Hasting algorithm 
an optimal scatter parameter exists and is of the order of 

31 d (Roberts & Rosenthal, 2001). 

 
One can also notice that the new samples are not as iid as the 
samples from which they are obtained, since each new sample 
depends by the random perturbation on the one from which it is 
obtained. A way to improve the iid property of the new samples 
is to apply many times the random transformation so as to 
make the resulting sample forget the sample it is generated 
from and to increase the mixing property of the transformation. 
 
In summary, the global framework of the subset method based 
on particle filter involves at each step two operations, namely a 
selection of samples from which new samples of the same 
conditional distribution has to be generated, and a mutation 
process consisting in propagating or randomly transforming the 
selected samples keeping the distribution unchanged. 
 
As mentioned above, some asymptotic convergence results are 
derived for the subset methods that involve particle filter 
techniques. It has been demonstrated that under the assumption 
of continuity of the cumulative distribution of the response 
function, the probability estimated by the adaptive subset based 
on particle filter has the following convergence properties 
(Cérou, et. al., 2011): 
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In the variance expression, r0 denotes the proportion of samples 
that have reached the last level which is the critical threshold. 
Those convergence results allows to give confidence intervals 
of the estimate of the probability. Note that the estimate of the 



 4 Copyright © 2012 by ASME 

probability is biased, nevertheless the bias is of order 1/N and is 
therefore negligible compared to the standard deviation. 
 
Tables 1~2 shows respectively the coefficient of variation of 
the relative error on the estimate of the probability and the 
relative bias for various values of p0 the prescribed value of the 
conditional probabilities and various sample sizes. Table 3 
shows the corresponding expected total number of simulations 
to get those accuracies. All those results are obtained for a 
reference probability of 10-5. One can see that the bias are 
relatively small. Yet it seems difficult to get very accurate 
results for the probability since the coefficient of variation of 
the error can hardly get lower than 10%, but this is not a 
problem, since the error on probability are usually drastically 
reduced on the corresponding extreme quantile. For instance, a 
50% coefficient of variation on the estimate of a probability of 
10-5 results in a coefficient of variation of the corresponding 
extreme quantile lower than 5%. Therefore one can still accept 
even a 50% error on the probability estimates. One can 
consequently choose a reasonably small sample size N of a few 
hundred. In the following applications, N is set to 300 and p0 is 
set to 0.75, which leads to a 43% coefficient of variation and a 
4% relative bias of the estimate of PF = 10-5 for an expected  
total number of simulations equal to 12000. That number of 
simulations is extremely low compared to what is needed by 
crude Monte-Carlo simulations (e.g. at least 106). 
 

Table 1. Coefficient of variation of PF = 10-5 estimates [%] 

 
 

Table 2. Relative bias of PF = 10-5 estimates [%] 

 

Table 3. Expected number of simulation for PF = 10-5 

 
 
Some other approaches of the subset simulation method based 
on the general framework presented above has also been 
developed. They include some tricks to control the exploration 
of the random space within the simulations at each step of the 
subset method. In this study one has investigated two of them. 
The first one involves branching process techniques in the 
selection and the mutation process of the samples at each step 
(Del Moral & Lezaud, 2006). The second one simplifies the 
choice of the subset levels taking them as the minimum value 
of the response on the samples at each step (Guyader, et. al., 
2011). 
 
 
Subset simulation with branching process 
 
In the general framework of the subset method presented in the 
previous section, the selection gives the same weight to all the 
samples. In the subset approach including a branching process 
the samples do not have the same weight: they are selected with 
respect to their chances to be propagated by mutation to the 
next level.  
 
Let us assume that one has N1 iid samples of the conditional 
distribution for the level Lk. From each of those samples, one 
generates N2 new samples using the mutation process. Thus one 
gets N = N1xN2 samples. At this stage, the next level Lk+1 can be 
set adaptively to the (1-p0) empirical quantile of the N=N1xN2 
samples. Then, the probability for the N1 current samples to 
reach the next level after mutation can be empirically 
computed. Let us denote G(X) that probability. The branching 
process-based subset proposes to select N1 samples with respect 
to the following empirical distribution: 
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which is based on the chances they have to be propagated to the 
next level. Once the selection is done, one does not have to 
carry out another mutation of the selected sample. One has just, 
for each selected sample, to pick one element of its 
corresponding N2 mutations that have reached the next level. 
So, in this approach the mutation precedes the selection 
operation or they are both carried out at the same time. 
Nevertheless, it as been shown that this approach is in theory 
equivalent to the global framework (Del Moral & Lezaud, 
2006). 
 
No asymptotic convergence property appears to have been 
explicitly derived for that approach in the literature. However, 
one can reasonably guess that its probability estimates have 
coefficients of variation of almost the same order as that of the 
global framework, in virtue of the equivalence of the two 
approaches. 
 
 
Subset simulation with minimum sampled responses as 
levels 
 
This approach is a refinement of the adaptive subset method. 
Let us first assume that an iid samples of size N is generated 
with respect to the distribution of X. The first level L1 is set to 
the minimum value of the evaluated response function of that 
samples. Then, the particle that achieves that minimum is 
removed from the set of samples and replaced by a new particle 
obtained from a mutation with respect to the conditional 
distribution for L1. The next level L2 is set, the same way, to the 
minimum value of the evaluated response function of the 
samples just modified by the replacement one particle. That 
operation is iteratively repeated till the minimum value of the 
response of the samples reaches the critical threshold (Fig.2). 
 
 

 
Fig. 2: Subset simulation with minimum sampled responses as levels 

 
 
The number of levels, M = max{k; Lk  Lc}  is a random 
variable shown to be distributed according to a Poisson law 
with parameter –N log(PF). Since N is assumed to be large and 
PF to be small, a natural estimate of the probability PF is: 
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It is also demonstrated that (9) is an unbiased estimator of PF 
with variance: 
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For this approach, confidence intervals for PF are also derived. 
The reader can refer to the paper of Guyader, et. al. (2011) for 
the complete expressions of those confidence intervals. 
 
Table 4 shows the values of the standard deviation and the 
coefficient of variation of the estimate of a reference 
probability of 10-5. One can see that, quite accurate results are 
expected from that approach for a relatively low number of 
simulations. However, since only one particle is propagated at 
each iteration, that algorithm does not allow parallel 
computing. 
 
 
Table 4. Standard deviation an total number of simulation for PF=10-5. 

Sample 
size 

Standard deviation 
Coef. of 
variation 

nb. of 
simulations 

100 3,49 10-06 35% 1145 

200 2,43 10-06 24% 2296 

300 1,98 10-06 19% 3448 

400 1,71 10-06 17% 4599 

500 1,53 10-06 15% 5750 

600 1,39 10-06 14% 6901 

700 1,29 10-06 13% 8053 

800 1,20 10-06 12% 9204 

900 1,13 10-06 11% 10355 

1000 1,08 10-06 10% 11507 

 
 
NUMERICAL APPLICATION 
 
Simple example 
 
Let us consider X = (u1,...,ud), a vector of independent standard 
Gaussian variables uj. The response function  is given by: 

2max jj ux  . It is clear that (X) is distributed as the 

maximum of independent random variables which follows a 
chi-square distribution with one degree of freedom. The 
cumulative distribution of (X) reads thus: 
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In this example, the three approaches of the subset method are 
intensively applied, namely, the general subset method with the 
uniform selection and the accept-reject selection kind, the 
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subset method with branching and the one with minimum 
sampled responses as levels, and their results are compared to 
the exact solution. N = 500 response samples are generated for 
each intermediate level, in particular, for the method with 
branching N1=50 and N2 = 10. Two parameter settings, e.g. the 
scatter parameter  of the mutation and the number Q of 
iterations of that mutation, are respectively given the various 

values  333 2;1;21 ddd  and {2,5,10,20}. Two sizes of the 

random space are considered, e.g. d = 128 and d = 1024. One 
set the target PF to 10-5. Inversing (11) one obtains the 
corresponding critical thresholds equal to 28.85 for d = 128 and 
32.89 for d = 1024. Now, for a given threshold, 50 runs of each 
subset algorithm are carried out to compute the failure 
probability. The mean values of the estimates are reported in 
Tables 5 & 6, while the coefficient of variation of the estimates 
are given in Tables 7 & 8. 
 
 

Table 5. Mean value of the estimations of PF = 10-5 for d = 128. 
 2 5 10 20 

321 d  

8.53 10-6 
8.72 10-6 

1.04 10-5 
1.06 10-5 

8.57 10-6 
8.72 10-6 

1.10 10-5 
9.21 10-5 

7.97 10-6 
8.2210-6 

1.12 10-5 
9.97 10-6 

8.89 10-6 
8.75 10-6 

1.18 10-5 
9.95 10-6 

31 d  

9.29 10-6 
9.34 10-6 

8.4610-6 
1.06 10-5 

9.01 10-6 
8.44 10-6 

9.2710-6 
1.04 10-5 

8.80 10-6 
8.71 10-6 

1.04 10-5 
1.03 10-5 

8.41 10-6 
8.12 10-6 

1.13 10-5 
9.84 10-6 

32 d  

3.97 10-5 
2.1210-5 

1.28 10-7 
7.75 10-6 

1.56 10-5 
1.11 10-5 

3.64 10-6 
9.03 10-6 

1.06 10-5 
9.94 10-6 

6.82 10-6 
1.00 10-5 

9.83 10-6 
9.07 10-6 

9.09 10-6 
1.00 10-5 

       Uniform ; accept-reject ; branching ; min as level. 
 

Table 6. Mean value of the estimations of PF = 10-5 for d = 1024. 
 2 5 10 20 
321 d  8.56 10-6 

8.67 10-6 

1.90 10-5 
1.07 10-5 

8.34 10-6 
8.75 10-6 

1.24 10-5 
1.08 10-5 

9.21 10-6 
8.62 10-6 

1.18 10-5 
1.00 10-5 

8.50 10-6 
8.58 10-6 

1.17 10-5 
1.06 10-5 

31 d  8.88 10-6 
9.14 10-6 

1.23 10-5 
1.03 10-5 

8.55 10-6 
8.90 10-6 

1.07 10-5 
1.00 10-5 

8.57 10-6 
9.07 10-6 

1.07 10-5 
9.92 10-6 

8.17 10-6 
8.65 10-6 

1.13 10-5 
9.84 10-6 

32 d  9.91 10-6 
8.58 10-6 

9.16 10-6 
1.04 10-5 

8.79 10-6 
9.06 10-6 

1.01 10-5 
9.98 10-6 

8.61 10-6 
9.30 10-6 

1.10 10-5 
9.93 10-6 

8.50 10-6 
9.03 10-6 

1.18 10-5 
9.84 10-6 

 
 
 
The unbiased estimates of the “min as level” algorithm is 
verified on those results. One observes that the “branching” 
algorithm seems also unbiased. “Uniform” and “accept-reject” 
algorithms are always biased and they tends to give slightly 
lower estimates of the probability.   

The results shows that the accuracy of the algorithms depends 
mostly on the parameter settings. This is more visible for 
d=128. Larger value of  makes the estimate strongly deviate 
from the exact solution. This is certainly due to a too low 
acceptance rate during the mutation. In that case, large numbers 
of mutation iterations reduce that deviation and bring the 
estimate close to the exact solution. In fact, both parameters  
and Q play the same role. Each of them increases the mixing 
property of the mutation process as they get larger. So, when 
the acceptance rate is very sensitive to the scatter of the 
mutation then the number of iteration have to be increased. 
 

Table 7. Coef. of var. of the estimations of PF = 10-5 for d = 128. 
 2 5 10 20 

321 d  

25% 
30% 

31% 
40% 

25% 
20% 

22% 
24% 

21% 
18% 

26% 
18% 

24% 
26% 

21% 
23% 

31 d  

27% 
32% 

50% 
43% 

26% 
23% 

31% 
27% 

21% 
26% 

25% 
23% 

21% 
28% 

20% 
19% 

32 d  

47% 
55% 

370% 
127% 

44% 
28% 

149% 
66% 

32% 
34% 

59% 
37% 

26% 
21% 

31% 
33% 

 
Table 8. Coef. of var. of the estimations of PF = 10-5 for d = 1024. 

 2 5 10 20 

321 d  

32% 
28% 

40% 
67% 

20% 
25% 

29% 
33% 

26% 
23% 

25% 
20% 

26% 
23% 

25% 
20% 

31 d  

29% 
21% 

35% 
35% 

20% 
25% 

23% 
24% 

22% 
22% 

23% 
18% 

21% 
25% 

23% 
18% 

32 d  

35% 
32% 

43% 
27% 

25% 
21% 

30% 
21% 

22% 
20% 

21% 
20% 

21% 
24% 

24% 
18% 

 

From those results, one can conclude that   = 31 d
 
 and Q = 5 

is a good combination of the parameter settings. Therefore, one 
retained those value for the following offshore design 
application. 
 
 
Offshore design application 
 
This application deals with the risk of excessive roll motion of 
a FPSO. It is one of the key aspect in a FPSO design analysis. 
In fact, large roll motion amplitudes impact the comfort on 
board leading to bad crew performance, but it is also critical for 
some equipments or components of the structure, for instance 
the risers connectors could be subjected to high motion leading 
to extreme loads.  
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Let us consider roll motion with single degree of freedom 
described as: 
 

)()()()()()( tCtKtBttTtI   
 

(12)

 
where  is the roll angle, I is the mass moment of inertia in roll, 

)()( ttT   is the nonlinear damping moment, )(tB is the 

linear damping moment, )(tK is the restoring moment (which 

is assumed linear) and C(t) is the exciting moment by waves. 
We want to compute the probability that the roll angle exceeds 
a given threshold when the FPSO is subjected to a random sea 
state. Thus, C(t) is generated by a transfer filter with a random 
process of the sea state condition: C(t)=AC(t), where (t), the 
sea surface elevation, is a Gaussian process, the spectral density 
of which follows a JONSWAP model with a peak period Tp and 
a significant wave height HS. Tp and HS are assumed to be 
random dependent variables. HS follows a Gumbel distribution 
while Tp is a log-normal variable, the parameter of which are 
given in terms of HS. Thus, the sea state condition is 
represented by a random process, which spectral parameters are 
also random. Note that no model uncertainty (e.g. related to the 
damping term in eq (12))  is introduced. 
The motion differential equation (12) is solved in the time 
domain from time series of the sea surface elevation by a 
fourth-order Runge-Kutta method. The sea surface elevation is 
simulated in the time domain from its spectral representation 
given an instance of the random Tp and HS. That simulation 
involves 1024 independent standard gaussian variables for a 
sea state duration of 1h30min. Note that samples of Tp and HS 
can be obtained by transformation of standard Gaussian 
variables. Therefore the input random variables of the system is 
made of 1026 independent standard Gaussian variables. To 
compute the maximum roll motion from those random inputs, 
the two first variables are used to generate samples of HS then 
Tp, and to obtain the power spectral density of the wave 
condition, from which time series are derived using the 
remaining 1024 inputs, finally the maximum of that signal is 
return as the response of the system. 
 
A failure probability PF = 1.39 10-5, which is the probability 
that the roll angle for a sea state duration exceeds a critical roll 
angle c = 11° is obtained by a Monte-Carlo simulation method 
with 107 samples. That value of c was chosen in order to have 
a failure probability of about 10-5. Then, one run of the three 
algorithms of the subset method is carried out to estimate the 
same PF as the probability that the maximum roll motion 

exceeds Lc. The parameter settings are  = 31 d   and Q = 5. 

The results are given in table 9 and are plotted with their 
respective 95% confidence intervals (except for “branching”) 
in Fig.3. 
All the algorithms give reasonably accurate results for the 
failure probability PF. The estimate with uniform and 
accept/reject selection are accurate for a total number of call of 

the system fifty times lower than that of the Monte-Carlo 
simulation. The result obtained  with branching is however not 
very close to the reference solution. It could be due to the 
choice of the combination (N1,N2). One has, therefore, to 
further analyze the effect of that combination on the accuracy 
of that method.  The “min as level” algorithm gives accurate 
estimate for a very low number of simulations. That method 
appears as the best in terms of number of simulations. 
However, that method can not use parallel architecture 
compared to the other ones. It is interesting to point out that the 
real value of PF is within all the 95% confidence intervals. 

 
 

Table 9. Estimate of PF=1.39 10-5 by the subset simulation algorithms. 
algorithm estimate nb. of call of the 

system 
Uniform with N=300 1.34 10-5 58500 x 5 = 292500 

accept-reject with N=300 1.79 10-5 57000 x 5 = 285000 

Branching N=300 5.65 10-5 52500 x 5 = 262500  

min as level with N=300 1.88 10-5 3559 x 5 = 17795 

nin as level with N=500 1.31 10-5 6115 x 5 = 30575 

 
 

 
Fig.3. Confidence intervals of the estimates of PF. 

 
 
 
CONCLUSION  
 
In this study, the subset method based on particle filter, which 
is an advance simulation-based reliability method has been 
investigated. That method is interesting as it allows almost 
accurate estimate for a relatively low number of simulations. 
This way, it makes affordable the cost, in term of CPU time, of 
the reliability assessment of an even time-consuming strongly 
nonlinear mechanical systems as those encountered in the 
offshore engineering. Many subset simulation strategies have 
been investigated on a simple application. The quality of the 
estimator of the probability appear to be slightly sensitive to the 
kind of algorithm. It shows that, given a sample size, the 
efficiency of the method depends on the good choice of the 
parameter settings, namely the scatter of the propagation of 
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particles within the random local space and on the number of 
iterations of that propagation. A good balance between those 
two parameters which play almost the same role is the key for 
an accurate estimate. However, the appropriate choice of those 
parameter settings may change from one application to another. 
Nevertheless, that method is an appealing mean to carry out 
reliability analysis. This is well illustrated by the reasonably 
accurate assessment of the probability of an extreme roll 
motion of a FPSO. 
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