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Abstract. Let P(E) be the space of probability measures on a measurable space (E, E). In

this paper we introduce a class of non-linear Markov Chain Monte Carlo (MCMC) methods

for simulating from a probability measure π ∈ P(E). Non-linear Markov kernels (e.g. Del

Moral (2004); Del Moral & Doucet (2003)) K : P(E) × E → P(E) can be constructed to

admit π as an invariant distribution and have superior mixing properties to ordinary (linear)

MCMC kernels. However, such non-linear kernels cannot be simulated exactly, so, in the

spirit of particle approximations of Feynman-Kac formulae (Del Moral 2004), we construct

approximations of the non-linear kernels via Self-Interacting Markov Chains (Del Moral &

Miclo 2004) (SIMC). We present several non-linear kernels and demonstrate that, under some

conditions, the associated self-interacting approximations exhibit a strong law of large numbers;

our proof technique is via the Poisson equation and Foster-Lyapunov conditions. We investigate

the performance of our approximations with some simulations, combining the methodology

with population-based Markov chain Monte Carlo (e.g. Jasra et al. (2007)). We also provide

a comparison of our methods with sequential Monte Carlo samplers (Del Moral et al. 2006)

when applied to a continuous-time stochastic volatility model.
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1. Introduction

Monte Carlo simulation is one of the most important elements of computational statistics and

statistical physics. This is because of its relative simplicity and computational convenience in

constructing estimates of high-dimensional integrals. That is, for a π−integrable f : E → R, we

approximate:

π(f) :=

∫

E

f(x)π(dx)(1.1)

by

SXn (f) =
1

n+ 1

n∑

i=0

f(Xi)

where SXn (du) :=
1
n+1

∑n
i=0 δXi(du) is the empirical measure based upon random variables

{Xk}0≤k≤n drawn from π. As an example, such integrals appear routinely in Bayesian statistics,

in terms of posterior expectations; see for example Robert & Casella (2004) and the references

therein. In such contexts, E is often of very high dimension, and indirect simulation methods

such as Markov chain Monte Carlo (Robert & Casella, 2004) and sequential Monte Carlo (SMC)

(Doucet et al., 2001; Del Moral 2004) need to be used.

It has long been known by Monte Carlo specialists that standard MCMC algorithms, such

as the Metropolis-Hastings method, often have difficulties in simulating from complicated dis-

tributions. For example, when they exhibit multiple modes and/or possess strong dependencies

between sub-elements of x (when it is vector-valued). In the former case, and despite its theoret-

ical validity, the Markov chain can take an unreasonable amount of time to jump between these

modes and the estimates of (1.1) are very inaccurate.

As a result, there have been a large number of alternative, generic, methods proposed in

the literature; we detail some of them here. Many of these approaches have relied upon MCMC

techniques such as adaptive MCMC (Andrieu & Atchadé 2005; Andrieu & Moulines 2006; Haario

et al. 2001), which, in some instances, attempts to improve the mixing properties of the transition

kernel by using the information learnt in the past. In addition, there are methods which rely

upon the simulation of parallel Markov chains (Geyer, 1991) and genetic algorithm type moves;

see Jasra et al. (2007) for a review. These latter methods use the idea of running some of the

parallel chains with invariant distribution η ∈ P(E), where η is easier to explore and related

to π; hence the samples of the parallel chains can provide valuable information for traversing

the support of π. Extensions to MCMC-based simulation methods have combined MCMC with

SMC ideas, see for example Del Moral et al. (2006). Such approaches are often more flexible

than MCMC as they do not rely, heavily, upon the ergodicity properties of any Markov kernel.
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In this paper, we consider another alternative: non-linear MCMC via self-interacting approx-

imations. Such methods rely primarily upon the ideas of MCMC. However, it is demonstrated

below that the self-interacting approximation idea is similar to that of approximating a Feynman-

Kac formulae (Del Moral 2004) and as such is linked to SMC methodology. It should be noted

that related self-interacting ideas have appeared, directly in Brockwell (2005) and indirectly in

Kou et al. (2006). An algorithm closely related to the work presented here is the resampling

from the past algorithm of Atchadé (2006). However, the framework presented here is far more

general both methodologically and theoretically. Methodologically, non-linear MCMC allows us

to create a large class of new stochastic simulation algorithms; some which are presented here. In

addition, the proofs presented in (Atchadé, 2006) are technically correct but do not correspond

to the algorithm implemented; see Andrieu et al. (2007) for further details.

1.1. Non-Linear Markov Kernels via Self Interacting Approximations. Standard MCMC

algorithms rely on Markov kernels of the form K : E →P(E). These Markov kernels are linear

operators on P(E); that is μ(dy) =
∫
E
ξ(dx)K(x, dy) where μ, ξ ∈P(E). A non-linear Markov

kernel K : P(E) × E → P(E) is defined as a non-linear operator on the space of probability

measures. Non-linear Markov kernels, Kμ, can often be constructed to exhibit superior mixing

properties to ordinary MCMC versions. For example, let

Kμ(x, dy) = (1− ε)K(x, dy) + εΦ(μ)(dy) ,(1.2)

where K is a Markov kernel of invariant distribution π, ε ∈ (0, 1), Φ : P(E) → P(E) is a

selection/mutation operator (Del Moral 2004), with Φ(μ)(dy) := μ(gK)/μ(g)(dy) and g is a

potential function. The potential function is taken so that it is bounded and measurable with

Φ(π) = π (In this simple case, g ≡ 1 to ensure that π is an invariant distribution. In the following

Sections, we discuss more elaborate algorithms where the function g is not constant). Simulating

from Kπ is clearly desirable as we allow regenerations from π, with Kπ strongly uniformly ergodic

(e.g. Roberts & Rosenthal (1998)). However, in most cases, we will be unable to simulate from

Kπ and instead we propose a self-interacting approximation.

A self-interacting Markov chain generates a stochastic process {Xn}n≥0 which is allowed to

interact with values realized in the past. That is, we might approximate (at time n + 1 of the

process) the selection/mutation operator by:

Φ(SXn )(dy) =

∑n
i=0 g(Xi)K(Xi, dy)∑n

i=0 g(Xi)
.
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This process corresponds to a backward in time selection step (that is, generating a value from

the history of the process, based upon the fitness (potential) g) and then a mutation step, via

the kernel K. Selection allows previous values with high potential to return.

1.2. Motivation and Structure of the Article. In the context of stochastic simulation,

SIMCs can be thought of as storing modes and then allowing the algorithm to return to them in

a relatively simple way. Such a property, with the exception of Atchadé (2006), Brockwell (2005)

and Kou et al. (2006), is not explicitly present in any of the above mentioned methodologies.

Adaptive MCMC can be thought of as an indirect application of this idea, where parameters

of the kernel are optimized via the Robbins-Monro algorithm. This approach does not retain

all of the features of previously visited states. In other words, SIMCs can be considered as a

nonparameteric, or infinite dimensional, generalization of parametric adaptive MCMC. It is thus

the attractive idea of being able to fully exploit the information provided by the previous samples

that has motivated us to investigate such algorithms.

This paper is structured as follows. We begin by giving our notation in Section 2. In Section 3

our simulation methods are described and several non-linear Markov kernels and self-interacting

approximations are introduced; we demonstrate that an algorithm closely related to the equi-

energy sampler of Kou et al. (2006) is a special case of non-linear MCMC. In Section 4 we

introduce the assumptions and discuss some preliminary results. In Sections 5 and 6, convergence

results associated to the the marginals. and strong law of large numbers (SLLN) are presented.

This analysis is of interest from a theoretical point of view: it brings together the literature of

measure-valued processes and interacting particle systems (Del Moral 2004) used in SMC and the

relatively recent literature on general state space Markov chains (Meyn & Tweedie 1993) used

in MCMC. In Sections 7 and 8 some SIMCs algorithms are presented, based upon population

Monte Carlo and demonstrated on toy and complex examples. In Section 9 some extensions to

our ideas are discussed. The proofs are all given in the appendices; it should be noted that the

various proofs for the respective algorithms are divided up in the appendix.

2. Notation and Definitions

2.1. Notation.

2.1.1. Probability and Measure. Define a measurable space (H,H). Throughout, H will be as-

sumed countably generated. B(Rk), k ∈ N is used to represent the Borel sets with Lebesgue

measure denoted by dx.
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For a stochastic process {Xn}n≥0 on (HN,H⊗N), GXn = σ(X0, . . . , Xn) denotes the natural

filtration. Pμ is taken as a probability law of a stochastic process with initial distribution μ and

Eμ the associated expectation. If μ = δx (with δ the Dirac measure) we use Px (resp. Ex) instead

of Pδx (resp. Eδx).

If a (σ−finite) measure is dominated by another (denoted π � η), we sometimes abuse the

notation and denote the Radon-Nikodym derivative with the same notation (e.g. if π � η then

π(x)/η(x) = dπ/dη(x)). For σ−finite measures π and η we use π ∼ η to denote mutual absolute

continuity. For μ ∈P(H), the notations μ(1) ∈P(H×H) (resp. μ(2) ∈P(H×H)) μ(1)(A×B) =

μ(A) (resp. μ(2)(A×B) = μ(B)) are adopted.

2.1.2. Markov and Self-Interacting Markov chains. Let (F,F) be a measurable space. Through-

out for a Markov transition kernel Π : F → P(F ) the following standard notation is used: for

measurable f : F → R, Π(f)(x) :=
∫
F
f(y)Π(x, dy) and for μ ∈P(F ) μΠ(f) :=

∫
F
Π(f)(x)μ(dx).

Let Π : F → P(F ) be a transition kernel, Ψ : P(F ) × F → P(F ) be a non-linear Markov

kernel and ε ∈ (0, 1). The definition of our non-linear Markov process is based upon the following

family of Markov transition kernels, given for any μ ∈P(F ), x ∈ F and A ∈ F by

(2.3) Πμ(x,A) = (1− ε)Π(x,A) + εΨ(μ)(x,A) .

Given its existence, we will denote by ω(μ) (ω : P(F ) → P(F )) the invariant distribution of

this Markov kernel.

Recall that the empirical measure of an arbitrary stochastic process (FN,FN, {Xn}n≥0,P) is

defined, at time n, as:

(2.4) SXn (du) :=
1

n+ 1

n∑

i=0

δXi(du) .

The class of self-interacting Markov chains (note that the term Markov chain is used as

{Xn, SXn }n≥0 forms a Markov chain) we study in this paper are defined as follows

Definition 2.1. Let Π : F →P(F ) be a Markov kernel, Ψ :P(F )×F →P(F ) be a non-linear

Markov kernel and ε ∈ (0, 1). A self-interacting Markov chain (FN,F⊗N, {Xn}n≥0, {GXn }n≥0,Px)

is a stochastic process characterised by X0 = x and the conditional probability measures {Px(∙|GXn−1)} ∈

P(F ), such that Px(Xn ∈ A|GXn−1) := ΠSXn−1(Xn−1, A) which, for any A ∈ F , is F
⊗n−measurable

(where SXn−1 is as Eq. (2.4) and ΠSXn−1 is as Eq. (2.3) with μ = S
X
n−1).

In this paper we explore various choices of spaces F , Markov transition Π and operator Ψ

associated to self-interacting approximations of kernels Πμ in (2.3).
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2.1.3. Norms. For any k ∈ N the Euclidian norm of x ∈ Rk is denoted |x|. For f : H → Rn,

n ∈ N, we define |f |∞ := supx∈H |f(x)|. For a measurable function f1 : E → Rn the Lp-norm

is defined, assuming it exists, as
( ∫
H
|f1(x)|pdμ

)1/p
for μ ∈ P(H). For η, μ ∈ P(H) the total

variation distance between them is ‖η−μ‖TV := supA∈H |η(A)−μ(A)|. For U : H → [1,∞) and

f : H → Rn

|f |U := sup
x∈H

|f(x)|
U(x)

.

LU is the class of functions f : H → Rn such that |f |U < ∞. We also use the notions of the

U−total variation for a signed measure

‖λ‖U := sup
|f |≤U

|λ(f)| ,

and the U−norm operator between two kernels K1,K2 : H →P(H):

|||K1 −K2|||U := sup
x∈H

‖K1(x, ∙)−K2(x, ∙)‖U
U(x)

.

2.1.4. Miscellaneous. The notation a∨ b := max{a, b} (resp. a∧ b := min{a, b}) is adopted. The

indicator function of A ⊂ E is written IA(x). Note also that N0 = N∪{0}, Tm = {1, . . . ,m} and

Iμ = {f ∈ m(E) : μ(gK(|f |)) < ∞}, with m(E) the class of real-valued measurable functions

on E.Throughout the paper we denote a generic finite constant as M , that is, the value of M

may change from line to line in the proofs and is local to each proof.

3. Non-Linear MCMC

3.1. Non-Linear Markov kernels. Non-linear MCMC can be characterised by the following

procedure:

• Identify a non-linear kernel, Πμ, that admits π as an invariant distribution and

can be expected to mix faster than an ordinary MCMC kernel e.g. (1.2).

• Construct a stochastic process that approximates the kernel, which can be

simulated in practice.

Based upon the representation (2.3), the following non-linear kernels are studied in this paper;

the motivation for such kernels will be explained in the following Sections.

(NL1): Self Interacting Approximation. Let K be a Markov kernel of invariant distribution

π, and Φ :P(E)→P(E) a selection/mutation operator, with:

(3.5) Φ(μ)(f) :=
μ(gK(f))

μ(g)
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for g : E → (0,∞) such that |g|∞ < ∞ and f : E → R ∈ Iμ. In this case, at time n + 1, (2.3)

becomes

(3.6) KSXn (xn, dxn+1) := (1− ε)K(xn, dxn+1) + εΦ(S
X
n )(dxn+1).

In the framework above Πμ = Kμ, Π = K and Ψ = Φ.

Example 1. Selection/Mutation, Identity Potential. Let g(x) ≡ 1 and K be an MCMC

kernel of invariant distribution π. Then we may simulate (3.6) to estimate (1.1).

In (NL1) we have presented a ‘standard’ self-interacting approximation (that is, as presented

in Del Moral & Miclo (2004)). Our objective is to study how well such a method can perform,

given that no information about π is used in the selection step. As a result, this may lead to

very slow convergence and misleading results as illustrated by the following cautionary example.

A Cautionary Example

Suppose that we are to simulate from X ∼ 0.4N (0, 0.5) + 0.6N (17.5, 1), with N (μ, σ2) the

normal distribution of mean μ and variance σ2.

In this example we ran a normal Random Walk Metropolis (RWM) algorithm for 50000 it-

erations with proposal variance adjusted to yield an acceptance rate of 0.25; the algorithm was

initialized with a draw from a N (0, 0.5) distribution. We also ran two self-interacting algorithms

(NL1, example 1) with self-interaction allowed every 50th and 500th step (that is, the RWM ker-

nel K is iterated as K50 or K500 and the empirical measure is based upon the samples generated

after the (potential) selection step).

In Figure 1, we present the estimates of the autocorrelation function for the three algorithms.

Clearly the RWM chain mixes poorly with a slow decay of the autocorrelations (see Figure

1a). Conversely the self-interacting algorithms appear to mix very quickly (see Figures 1b and

1c). However, we have to be very cautious. In Figure 2, we display the Monte Carlo estimates

of the target distribution for the three algorithms. It appears that the RWM (see Figure 2a)

significantly outperforms the self-interacting algorithms (see Figures 2b and 2c). We attribute

the poor performance of the self-interacting algorithms to the fact that the process has started in

a minor mode and spent a significant amount of time there; both due to the slow mixing of K and

the selection which forces us back to the minor mode. If the number of self-interactions is reduced

then the estimate is improved but the resulting algorithm still does not provide satisfactory results

compared to a standard RWM.

This example makes two important points:
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Figure 1: Estimates of the autocorrelation function.
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Figure 2: Estimates of the target distribution.

• Self-interacting algorithms can appear to perform very well, with low autocorrelations of

sample paths, but can give very poor answers as the interactions slow down convergence

to the stationary regime; see Atchadé & Rosenthal (2005) for theoretical evidence in the

parametric adaptive case.

• Simple self-interacting mechanisms as described above are expected to be helpful only

in situations where the target is unimodal and the chain is initialized in regions of high

probability masses.

This cautionary example has motivated the development of non-linear kernels based upon aux-

iliary self-interactions.

(NL2): Auxiliary Self-Interaction. We introduce the following family of kernels {Πμ, μ ∈

P(F )} which is such that (F := E×E,F := E ×E). The intention is to improve the exploration
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ability of the simulated kernel and the selection mechanism,

Πμ(2)((x, y), d(x
′, y′)) := (1− ε)K(x, dx′)× P (y, dy′) + εΨ(μ(2))((x, y), d(x′, y′)) ,

Ψ(μ(2))((x, y), d(x′, y′)) := Φ(μ)(dx)× P (y, dy′) .

(3.7)

with P : E →P(E) a Markov kernel g and Φ as defined in (3.5).

Example 2. Selection/Mutation with Potential. Let P be an MCMC kernel of invariant

distribution η, and assume π � η. Let g(x) = π(x)
η(x) and set K to be an MCMC kernel of invariant

distribution π. If we were able to sample exactly from η then one could sample exactly from Ππ×η

which has invariant distribution π × η. However, as we shall see, for efficient algorithms, this

will not be the case and instead we suggest using the following approximation, here given at time

n+ 1:

Ππ×Syn((xn, yn), d(xn+1, yn+1)) =
[
(1− ε)K(xn, dxn+1) + εΦ(S

y
n)(dxn+1)

]
P (yn, dyn+1)

that is, we are ‘feeding’ the chain {Xn}n≥0 the empirical measure Syn.

In (NL2) we attempt to circumvent the problem of identity potential. We extend the space

to allow us to use information related to π in the selection.

(NL3): Auxiliary Self-Interaction with Genetic Moves. For any μ ∈ P(E) we define a

non-linear Markov kernel Qμ :P(E)×E →P(E) with potential g : E×E → (0,∞) (|g|∞ <∞)

as

Qμ(x, dx
′) :=

∫
E×E g(x, v)K̃((x, v), dx

′)μ(dv)
∫
E
g(x, v)μ(dv)

,

where

K̃((u, v), dx) := α(u, v)K(v, dx) + [1− α(u, v)]K(u, dx)

α(u, v) := 1 ∧
π(v)η(u)

π(u)η(v)

and π ∼ η. We now define the following non-linear kernel

Πμ(2)((x, y), d(x
′, y′)) = (1− ε)K(x, dx′)P (y, dy′) + εΨ(μ(2))((x, y), d(x′, y′))

Ψ(μ(2))((x, y), d(x′, y′)) := Qμ(x, dx
′)× P (y, dy′).

It should be noted that changing the input μ ∈P(E) does not change the function α.
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Example 3. Simplified Equi-Energy Sampling (Kou et al. 2006) with Identity Po-

tential. Let g(x, y) ≡ 1, η ∼ π, K (resp. P ) be an MCMC kernel of invariant distribution π

(resp. η). Then we have (π × η)(Π)π×η = π × η; that is, via Fubini:

πQη(dx
′) =

∫

E×E

[ ∫

E×E
π(dx)η(dy)KS((x, y), d(u, v))

]

K(u, dx′)

= πK(dx′).

We can then simulate the self-interacting Markov chain Ππ×SYn at time n, where S
Y
n is the

empirical measure that has been built by the chain with invariant distribution η.

(NL3) provides a way to control the information that is provided by the approximation SYn .

That is, the exchange step will allow us a criterion to check the consistency with the target of

the selected value. This may help improve estimation, if SYn converges slowly. We note that the

algorithm is less sophisticated than that of Kou et al. (2006) as we do not consider exchanges to

occur between states in equi-energy rings.

3.2. The Algorithms. To summarize our algorithm for (NL1) is:

0. (Initialization): Set n = 0 and X0 = x, S
X
0 = δx.

1. (Iteration): Set n = n+ 1, simulate Xn ∼ KSXn−1(Xn−1, ∙).

2. (Update). SXn = S
X
n−1 +

1
n+1 [δXn − S

X
n−1] and return to 1.

From herein, for (NL2) and (NL3), we abuse the notation and use Kμ = Ππ×μ, for μ ∈ P(E);

the algorithm is:

0. (Initialization): Set n = 0 and X0 = x, Y0 = y, S
Y
0 = δy.

1. (Iteration): Set n = n+1, simulate Yn ∼ P (Yn−1, ∙) and Xn ∼ KSYn−1(Xn−1, ∙).

2. (Update). SYn = S
Y
n−1 +

1
n+1 [δYn − S

Y
n−1] and return to 1.

4. Assumptions and preliminary results

Our objective is to now prove convergence of the marginals; i.e. convergence to zero of:

|E(x,y)
[
f(Xk)− π(f)

]
|

for some suitable f . In addition, we seek to prove a strong law of large numbers for the sample

path:

SXn (f) =
1

n+ 1

n∑

i=0

f(Xi).
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Before either result is considered, we give our assumptions and a series of technical results used

to prove the convergence results. We will prove our results for (NL1) with g ≡ 1 as in example

1 and for (NL3) with g as in example 3 (g(u, v) ≡ 1).

Remark. It was noted by É. Moulines (personal communication) that the SLLN and convergence

of the marginals for (NL2) can be proved by standard regeneration arguments from Markov chain

theory. As a result, we do not give the proofs or statements for this algorithm using our approach.

Recall that (NL1) simulated a process (FN = EN,F⊗N = E⊗N, {Xn}n≥0, {GXn }n≥0,Px), x ∈ E

with finite-dimensional law:

Px,n(d(x0, . . . , xn)) = δx(dx0)×ΠSx0 (x0, dx1)× ∙ ∙ ∙ × ΠSxn−1(xn−1, dxn) .

Similarly, (NL2) and (NL3) simulated a stochastic process on (FN = (E × E)N,F⊗N = (E ⊗

E)⊗N, {Xn, Yn}n≥0, {Gn}n≥0,P(x,y)), (x, y) ∈ F , (here we have denoted the natural filtration

GX,Yn = Gn for notational simplicity) with finite-dimensional law as above (with appropriate

notational changes). For (NL2-3), since {Yn} is generated independently of {Xn}, we denote the

probability law of the Markov chain {Yn} as Qy.

We recall that the proofs associated to (NL1) & (NL3) are given their respective appendices

at the end of the paper.

4.1. Assumptions. We now give our assumptions on K and g used to define our non-linear

Markov chains (NL1-3). The assumptions apply to all (NL1-3) except when preceded with

(NLZ) with Z ∈ T3, in which case the assumption is specific to the algorithm considered. Let

V : E → [1,∞), for any M1,M2 > 0 the notation PM1(E) := {μ ∈P(E) : μ(gV )/μ(g) ≤ M1},

PM2(E) := {μ ∈P(E) : μ(g) ≥M2} and P
M2
M1
(E) :=PM1(E)∩P

M2(E) is used. In an abuse

of notation: P∞(E) := {μ ∈P(E) : μ(V ) <∞}.

(A1) Stability of the algorithm.

(NL1) For V above, there exists a universal constant M∗
1 < ∞, such that for any

n ≥ 0 we have

SXn (V ) ≤ M∗
1 ,Px − a.s. .

(A2) Stability of K and P .

Transition K

(i) (Invariance). K : E →P(E) is a π−invariant Markov kernel.



NON-LINEAR MCMC 13

(ii) (One-step Drift Condition). There exists V : E → [1,∞), λ < 1, b < ∞ and

C ∈ E such that for any x ∈ E

KV (x) ≤ λV (x) + bIC(x) .

(iii) (One-step Minorization on level set C). There exists θ > 0 such that C in (ii)

is a (1, θ)-small set for K, i.e. there exists θ > 0 and a non-trivial probability

measure ν ∈P(E) satisfying ν(C) > 0 such that for all (x,A) ∈ E × E ,

K(x,A) ≥ θIC(x)ν(A) .

(iv) (Small set constraint.) The small set C in (ii)-(iii) is of the form Cd := {x ∈

E : V (x) ≤ d} for d ∈ (0,∞) satisfying the constraint

(NL1) d > ε(λM∗
1 + b)/(1− (1− ε)λ) ∨ 1

with λ and b defined in (ii), ε defined in (2.3) and M∗
1 defined in (A1).

The small set Cd is such that for any d ≥ 1, Cd is (1, θd)−small with minorizing

measure νd and two possibilities associated to the minorization condition:

(NL3) (a) For any d ≥ 1, θd > 0, νd(Cd) = 1. In addition, if for any

m ≥ 0, d ≡ d(SYm), then θd > ϕd > 0, ϕd ≥ Λ(SYm) Qy−a.s. and for any

r ∈ (0, 1/4), p ∈ [1, 1/4r) Ey[Λ(SYm)
p]1/p <∞.

(NL3) (b) As above, without the final condition.

(v) (Convergence rate constraint). (NL1) The assumptions (i), (ii) and (iii) above

imply the existence of M <∞ and ρ ∈ (0, 1) such that for any r ∈ (0, 1) and

f ∈ LV r , |Kn(f)−π(f)|V r ≤ M̃ |f |V rρn (see Theorem 2.3. in Meyn & Tweedie

(1994)). We further impose that

M̃ <
1− (1− ε)ρ

ερ
.

Transition P (W−Uniform Ergodicity). (NL3) P : E →P(E) is an η−invariant

Markov kernel. Furthermore, there exist W : E → [1,∞) such that P is a W -

uniformly ergodic Markov transition kernel with a one-step drift condition and one-

step minorization condition. In addition V ∈ LW (where V : E → [1,∞) is defined

in (ii)).

(A3) State-Space Constraint

(NL3) (E, E) is polish (separable complete metrisable topological space).

In some of our results below, it will sometimes be convenient to express the dependence of

some constants (M(∙) say), on some of the quantities above. For the parameters in the drift and
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minorization conditions as well as the non-linear kernel (λ, b, θ, ν(C), d, ε) we use the notation

M(λ, b, θ, ν(C), d, ε) = M(G). When a constant depends only on the parameters of the drift

condition, D and Dy (for the drift associated to P ) are adopted.

4.2. Discussion of the assumptions. Our proofs of the SLLN will rely upon a Martingale

approximation and the Poisson equation (e.g. Glynn & Meyn (1996)). (A1) in conjunction with

(A2) will allow us to establish a drift condition for the collection {Kμ} for any fixed μ ∈P(E).

This will allow us to verify the existence of the (resolvent) solution to the Poisson equation and

quantitative bounds.

For both (A1) and (A2), with respect to the kernel (NL1), the assumptions are quite strong.

The condition (v) in (A2) will be difficult to check and has the interpretation that we would like

to both take ε ≈ 0 and iterate K to improve M̃ and ρ. In effect, the assumption requires very

fast mixing of K and suggests to us that fully self-interacting algorithms are likely to converge

very slowly. The condition in (A1) for upper bounded V , will hold, but in more general cases, it

is unlikely to be true for every starting point.

(A2), for (NL3), appears quite strong, but can be verified in some important cases such as for

RWM kernels; see Andrieu et al. (2001) for example.

(A3) will be used for the SLLN for (NL3). In this case we have dealt with the perturba-

tion between the average of the invariant measures of the non-linear kernels (see the discussion

of the strategy of the proof in Section 6.1) and π using U−statistics (e.g. Hoeffding (1948)).

Essentially, for the algorithm to converge, it appears that we require that the iterated kernel

Kj
SYn
(x,A) converges (almost surely) to Kjη(x,A), which is a difficult task to establish. We adopt

a decomposition, via the Von-Mises statistic and then use the well-known relationship between

Von-Mises and U−statistics (e.g. Grams & Hoeffding (1973)). We then need to prove a SLLN for

U−statistics for Markov chains (established in Aaronson et al. (1996)), for which the assumption

(A3) is required.

In essence, the absence of a stability condition, in terms of the empirical measure, for (NL3)

(versus (NL1) (A1)) is due in part to the stability that is provided by the auxiliary Markov

chain. For the fully self-interacting algorithm, there is no apparent stability of the process;

thus it is imposed by the assumption in (A1). That is, for (NL3) we utilize the fact that

supm≥0 Ey[V (Ym)
r∗ ] <∞ with r∗ as in (A2) against, for (NL1), Sm(V ) < M∗

1 .

4.3. Invariant probability and geometric ergodicity. Using standard drift and minoriza-

tion conditions we establish the existence of an invariant probability measure for Kμ for any

μ ∈ PM2
M1
(E) for M1 ∈ (0,∞) and M2 > 0 (NL1) or μ ∈ P∞(E) (NL3) under (A2), and the
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V -geometric convergence of the Markov chain associated to Kμ, with uniform upper bound on

the rate of convergence for all μ ∈PM2
M1
(E) (NL1) or a rate dependent upon μ(V ) (NL3). This

latter property will provide a ‘stochastic drift condition’ which will require more intricate proof

techniques (than for (NL1)).

Proposition 4.1. For both (NL1) and (NL3) assume (A2-i-ii-iii) with C of the form Cd := {x ∈

E : V (x) ≤ d}

• (NL1) for some d > ε(λM1 + b)/(1− (1− ε)λ) ≥ 1 for some M1 ∈ (0,∞) ,

• (NL3) for all d of the form d(μ) = 1 + b̄(μ)α
1−λ for μ ∈ P∞(E) some α > 1 and b̄(μ) =

b+ ε[λμ(V ) + b]

where λ, b, V defined in (A2) and ε in (2.3). In addition we assume that (A2-iv) (a) or (b) holds

for (NL3). Then

(1) (NL1) there exist λ∗, θ∗ ∈ (0, 1) and b∗ ∈ (0,∞) such that for any μ ∈ PM1(E) and

(x,A) ∈ E × E

KμV (x) ≤ λ
∗V (x) + b∗ICd(x) ,(4.8)

Kμ(x,A) ≥ θ
∗ICd(x)ν(A) ,(4.9)

where ν ∈P(E) is defined in (A2),

(NL3) for any μ ∈ P∞(E) there exist (θ′d(μ), νd(μ)) ∈ (0, 1) ×P(E) such that for any

r ∈ (0, 1], and (x,A) ∈ E × E:

KμV
r(x) ≤ λ̃rV (x)r + b̃(μ)rICd(μ)(x)

Kμ(x,A) ≥ ICd(μ)(x)θ
′
d(μ)νd(μ)(A)

with

λ̃ = λ+
1− λ
α

b̃(μ) = λd(μ) + b̄(μ).

(2) there exists a function ω : PM1(E) → P(E) (NL1) (resp. ω : P∞(E) → P∞(E)

(NL3)), such that for any μ ∈PM1(E) (resp. μ ∈P∞(E))

ω(μ) = ω(μ)Kμ ,

(3) (NL1) there exist constants, ρ ∈ (0, 1), M(∙) <∞ depending upon ε, λ, b, θ, νd(C) (as

defined in Eq. (2.3) and (A2)), M1 and d such that for any μ ∈PM1(E), r ∈ (0, 1] and
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f ∈ LV r

|Knμ (f)− ω(μ)(f)|V r ≤ M(M1,G)|f |V rρ
n .

(NL3) for any μ ∈ P∞(E) there exist constants, ρ(∙) ∈ (0, 1), M(∙) < ∞ depending

upon ε, λ, b, V , θ, ν(C) (as defined in Eq. (2.3) and (A2)), such that for any r ∈ (0, 1]

and f ∈ LV r

|Knμ (f)− ω(μ)(f)|V r ≤ M(r, μ, V,G)|f |V rρ(μ, V )
n .

For (NL1) by arguments along the lines of those of the proof of Theorem 2 of Breyer & Roberts

(2001) (see also Corollary 1 of Hobert & Robert (2004)) one can easily establish the following

expression for ω(μ)(A) for any μ ∈PM1(E) and A ∈ E

ω(μ)(A) =
∑

n∈N

ε(1− ε)n−1Φ(μ)Kn−1(A) .(4.10)

This property will be useful in proving some of our results for (NL1) (for (NL3) the expression

is too complicated to be useful). We note that we expect that it is possible to prove our results

without using (4.10), but that it does allow for simple arguments in our proofs. Some continuity

properties associated to the invariant measures are as follows.

Proposition 4.2. For both (NL1) and (NL3) assume (A2-i-ii-iii) with C of the form Cd := {x ∈

E : V (x) ≤ d}

• (NL1) for some d > ε(λM1 + b)/(1− (1− ε)λ) ≥ 1 for some M1 ∈ (0,∞) ,

• (NL3) for all d of the form d(μ, ξ) = 1 + (b̄(μ)∨b̄(ξ))α1−λ with μ, ξ ∈P∞(E), α > 1

In addition we assume that (A2-iv) (a) or (b) holds for (NL3).

(NL1) Then there exists M(∙) <∞ (depending on M1 and the constants in (A2)) such that for

any ξ, μ ∈PM1(E) we have for any r ∈ (0, 1]

‖ω(ξ)− ω(μ)‖V r ≤ M(M1,G)|||Kξ −Kμ|||V r .

(NL3) Then for any μ, ξ ∈P∞(E) there exists M(∙) <∞ depending on μ, ξ ∈P∞(E), V and

the constants in (A2)) such that for any r ∈ (0, 1]

‖ω(ξ)− ω(μ)‖V r ≤ M(r, μ, ξ, V,G)|||Kξ −Kμ|||V r .

The proof is in Appendix A.1. This result motivates the work of the following section, where

we show that (A1) and (A2) imply the Lipschitz continuity of μ 7→ Kμ.
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4.4. Lipschitz Continuity. Noting that for any μ, ξ ∈P(E) and r ∈ [0, 1], |||Kξ −Kμ|||V r =

ε‖Φ(ξ)−Φ(μ)‖V r for (NL1) and |||Kξ−Kμ|||V r = ε|||Qξ−Qμ|||V r for (NL3) we establish hereafter

local Lipschitz continuity results for μ 7→ Φ(μ) and μ 7→ Qμ that will imply the local Lipschitz

continuity of μ→ Kμ which will be used in the proofs of many of the subsequent results.

4.4.1. Case (NL1). We do not present any continuity results, but state without proof that the

invariant measure satisfies a Lipschitz contraction condition with respect to V r−total variation.

We will see in the proof of Theorem 6.4 that a result similar to a contraction (as opposed to

continuity) will be instrumental in proving a strong law of large numbers. This will be used in

a similar manner to Hypothesis 4.1 of Del Moral & Miclo (2004) where the fact that M < 1

(the contraction coefficient) allowed them to obtain optimal rates. We remark that we cannot

claim that it is necessary to have contraction (i.e. M < 1 for the Lipschitz continuity and to

ensure a SLLN), but that it does appear to be the case, under our proof technique. If we were

able to establish that the contraction is a necessary condition, then this would imply that fully

self-interacting algorithms are not of substantial use in the stochastic simulation tasks we are

concerned with.

4.4.2. Case (NL3). We now consider an analogous result for the kernel Qμ that appears in the

definition of (NL3).

Proposition 4.3. Assume (A2-ii). Let μ, ξ ∈P∞(E), then for any r ∈ (0, 1]:

|||Qμ −Qξ|||V r ≤ 2(λ+ b)
r‖μ− ξ‖V r

where λ ∈ (0, 1) and b <∞ as in (A2-ii).

5. Convergence of the marginals

We now present the convergence of the marginals. The difficulties for providing explicit bounds

are essentially the dependence structure of (NL1) and the non-linearity of the kernel in (NL3).

Below, we introduce a constantM? < 1 which will be defined in Theorem 6.4. In addition (A2-b)

is used to note the fact that option (b) is assumed in (A2) for (NL3).

Lemma 5.1. Assume (A1, 2-b, 3). Let k ∈ N and that f : E → R:

• (NL1) r ∈ (0, 14 ∧ (1−M
?)) and |f | ≤ V r

• (NL3) r ∈ (0, 1/3r) and f ∈ LV r .

Then we have, for (NL1) and (NL3):

lim
k→∞

|E∙[f(Xk)− π(f)]| = 0.
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The result establishes the convergence of the marginals, however, the proof in Appendix A.4

for (NL1) and (NL3) relies upon the convergence results established for the SLLN.

6. Law of large numbers

6.1. Strategy of the Proof. The strategy of the proof is now outlined, in the context of (NL1),

the case (NL3) being similar. We aim, where possible, to establish vanishing bounds (as n→∞)

for quantities of the type

Ex

[

|SXn (f)− π(f)|
p

]1/p

for f ∈ LV r for some r ∈ (0, 1] and p’s that depend on both r and the algorithm considered. Let

us introduce the following sequence of probability distributions {Sωn := 1/(n+1)
∑n
i=0 ω(S

Y
i )}n≥0

where ω(μ) is the invariant probability distribution of Kμ. This distribution can be used as a

recentering term in the following decomposition,

SXn (f)− π(f) = SXn (f)− S
ω
n (f) + S

ω
n (f)− π(f) .(6.11)

The analysis of the first term on the RHS of (6.11) relies upon a classical Martingale argument

which exploits the existence in our setup (and for specified μ ∈P(E) which will include {SYi })

of a solution f̂μ to Poisson’s equation, i.e. such that for any x ∈ E

f(x)− ω(μ)(f) = f̂μ(x)−Kμ(f̂μ)(x) .

Indeed, the first term on the RHS of (6.11) can be rewritten

(6.12) (n+ 1)[SXn − S
ω
n ](f) =Mn+1

+

n∑

m=0

[f̂SXm+1(Xm+1)− f̂SXm (Xm+1)] + f̂SX0 (X0)− f̂SXn+1(Xn+1) ,

where

Mn =

n−1∑

m=0

[f̂SXm (Xm+1)−KSXm (f̂SXm )(Xm)] ,

is such that {Mn,Gn} is a martingale. In our case, provided that Kμ is geometrically ergodic for

example,

(6.13) f̂μ(x) =
∑

n∈N0

[Knμ (f)(x)− ω(μ)(f)] ,

can be show to be a solution to Poisson’s equation. This will hold Px or Qy−a.s. for μ = SYi

or μ = SXi under our assumptions; see Proposition 4.1. For (NL3), due to the stochastic drift

condition in Proposition 4.1, a slightly different approach is adopted. A quantitative bound on
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the solution of the Poisson equation in Glynn & Meyn (1996) is derived in the appendix and

used in an Lp−bound on this function.

We will seek to bound the Martingale, Mn, in Lp via the Burkholder-Gundy-Davis inequality

(e.g. Burkholder (1973)) and the fluctuations of the solution to Poisson’s equation via Lipschitz

continuity of either Φ (NL1-2) or the nonlinear kernel Qμ (NL3) (see Del Moral (2004) for an

account of Lipschitz continuity of semi-groups and Markov kernels).

6.2. {Mm} is Lp-bounded. We first establish uniform in time Lp-bounds of the solution to

Poisson’s equation, and then similarly establish bounds on the sequence {Mn}.

Proposition 6.1. (NL1) Assume (A1) and (A2-i-ii-iii-iv), let r ∈ [0, 1) and p ∈ [1, 1/r) . Then

there exists M(∙) <∞ such that for any f ∈ LV r and any m ∈ N0,

Ex
[
|f̂SXm (Xm+1)|

p
]1/p
≤M(r,M∗

1 ,G)|f |V rV (x)
r .

(NL3) Assume (A2-a-i-ii-iii-iv), let r ∈ (0, 1/3) and p ∈ [1, 1/3r). Then there exists M(∙) <∞

such that for any f ∈ LV r and any m ∈ N0,

E(x,y)[|f̂SYm(Xm+1)|
p]1/p ≤M(ε, α, r,D,Dy)V (x)W (y).

Proposition 6.2. (NL1) Assume (A1-2), let r ∈ (0, 1) and p ∈ [1, 1/r). Then there exists

M(∙) <∞ such that for any f ∈ LV r and any m ∈ N,

(NL1)

Ex
[
|Mm|

p
]1/p
≤ m

1
2M(p, r,M∗

1 ,G)|f |V rV (x)
r .

(NL3) Assume (A2-a-i-ii-iii-iv), let r ∈ (0, 1/2) and p ∈ [1, 1/2r). Then there exists

M(∙) <∞ such that for any f ∈ LV r and any m ∈ N0,

E(x,y)
[
|Mm|

p
]1/p

≤ m
1
2M(p, r, ε, α,D,Dy)V (x)W (y).

6.3. Bounding the variations of the solution to Poisson’s equation. Finally we estab-

lish uniform in time Lp-bounds on the fluctuations of the solution of the Poisson equation

{f̂SYm+1(Xm+1) − f̂SYm(Xm+1)} (resp. {f̂SXm+1(Xm+1) − f̂SXm (Xm+1)}) which are the result of

the evolution of the empirical measures {SYm} (resp. {S
X
m}). For notational simplicity we will use

the notation

(6.14) f̂(Sm:m+1, Xm+1) := f̂Sm+1(Xm+1)− f̂Sm(Xm+1) ,

for a sequence of generic empirical measures {Sm}.

Proposition 6.3. Assume (A1-2-i-ii-iii) and
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(NL1) let r ∈ (0, 1) and p ∈ (1, 1/r). Then there exists M(∙) < ∞ such that for any

x ∈ E, f ∈ LV r and m ∈ N0,

Ex
[
|f̂(SXm:m+1, Xm+1)|

p
]1/p

≤
M(r,M∗

1 ,G)|f |V rV (x)
r

m+ 2
.

with W as in (A2).

(NL3) let r ∈ [0, 1/2) then for any x, y ∈ E, f ∈ LV r , m ∈ N0,

lim
m→∞

|f̂SYm+1(Xm+1)− f̂SYm(Xm+1)| = 0

P(x,y)−a.s.

6.4. Main Results. We now combine the above results to prove the SLLN for (NL1). In this

case we give an Lp-bound for [SXn − S
ω
n ](f) and use it to establish a SLLN.

6.4.1. Case (NL1).

Theorem 6.4. Assume (A1-2). Then there exists M? < 1 such that for any r ∈ (0, 1/4∧ r̃) with

r̃ = 1
2 ∧ (1−M

?) and p ∈ [1, 1/r− 1) such that there exists M(∙) <∞ so that for any f : E → R

satisfying |f | ≤ V r,

Ex
[
|[SXn − S

ω
n ](f)|

p
]1/p

≤
M(r, p,M∗

1 ,G)V (x)
r

(n+ 1)
1
2

.

In addition we have

SXn (f)
a.s
−→Px π(f) .

6.4.2. Case (NL3). For (NL3) we have the following convergence result.

Theorem 6.5. Assume (A2-a-3). Let r ∈ [0, 1/4). Then for any f ∈ LV r ,

SXn (f)
a.s
−→P(x,y) π(f) .

7. A Practical Self-Interacting Algorithm

We now introduce an algorithm where the empirical measure driving the self-interactions is

constructed using population-based MCMC algorithms. Our intention is to run a population of

chains (for NL2-3) that admit η as a marginal and use the samples corresponding to η to construct

the empirical measure. This is selected to minimise the storage of the algorithm compared to

equi-energy samplers and the coding effort required by the potential users. Note that we have

found that the convergence proofs for such algorithms are similar to those in the previous Sections

and have thus omitted them.
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7.1. Population MCMC. We are interested in simulating from a probability measure ψ1 ∈

P(E). The first step is often to use an MCMC kernel K. However, as noted in the introduction,

this may not always work well. A simple way (from a coding point of view) to improve the

exploration of the state-space is to use population MCMC.

Consider (Em̃, E⊗m̃) and a sequence of related probability measures {ψi}i∈{2,...,m̃} easier to

simulate than ψ1. The idea of population MCMC is to build a time-homogeneous Markov kernel

Q : Em̃ →P(Em̃) of invariant measure:

ψm̃(d(x1, . . . , xm̃)) =

m̃∏

i=1

ψi(dxi).

The intuition is that the easier to simulate ψ2, . . . , ψm̃ can provide information on ψ1 and that we

can use this information to produce a faster mixing Markov kernel Q with quicker convergence

to ψm̃ than K for ψ1.

The population kernel adopted in this paper is:

P (y
(m̃)
n−1, dy

(m̃)
n ) =

m̃∑

i=1

βi

{

φiδy(−i)n−1
(dy(−i)n )Pi(y

i
n−1, dy

i
n) + (1− φi)×(7.15)

PSi (y
(m̃)
n−1, dy

(m̃)
n )

}

where Pi is an MCMC kernel of invariant measure ψi, βi, φi ∈ (0, 1), Y (m̃) = (Y 1, . . . , Y m̃),
∑m̃
i=1 βi = 1, Y

(−i) = (Y 1, . . . , Y i−1, Y i+1, . . . , Y m̃) and PSi is an exchange kernel that proposes

to swap, with equal probability, the ith population member with any other.

7.2. Algorithms. To use this idea for the self-interacting approximation (NL1) we introduce a

non-linear kernel (with m̃ = m+ 1):

KSn−1((xn−1, y
(m)
n−1), d(xn, y

(m)
n )) = (1− ε)P ((xn−1, y

(m)
n−1), d(xn, y

(m)
n )) + εΦ(Sn−1)(d(xn, y

(m)
n ))

with P : E×Em →P(E×Em) is a Markov kernel of invariant distribution ψ1 = π, ψi = ηi−1 ∈

P(E), i = 2, . . . , m̃, Sn ∈P(Em̃) is the empirical measure, Φ :P(Em̃)→P(Em̃) (that is, the

selection/mutation operator on an extended space) and g ≡ 1.

Our algorithm for (NL1) is:

0. (Initialization): Set n = 0 and X0 = x, Y
(m)
0 = y(m), S0 = δ(x,y(m)).

1. (Iteration): Set n = n+ 1, simulate (Xn, Y
(m)
n ) ∼ KSn−1((Xn−1, Y

(m)
n−1), ∙).

2. (Update). Sn = Sn−1 +
1
n+1 [δ(Xn,Y (m)n )

− Sn−1] and return to 1.

For (NL2-3), our objective is to use the population kernel to construct the empirical measure

SYn (here m̃ = m). In this way, our algorithm can retain information (from the past) generated

by the population kernel. We will see that this will be particularly effective when the population
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kernel is slowly mixing. Below, P : Em → P(Em) is a Markov kernel of invariant distribution

ηm = η1 × ∙ ∙ ∙ × ηm, i.e. ψi = ηi for all i.

For (NL2) and (NL3) we use the algorithm (with the particular Kμ described in examples

2-3):

0. (Initialization): Set n = 0 and X0 = x, Y
(m)
0 = y(m), SY0 = δy1 .

1. (Iteration): Set n = n+1, simulate Y
(m)
n ∼ P (Y (m)n−1 , ∙) andXn ∼ KSYn−1(Xn−1, ∙).

2. (Update). SYn = S
Y
n−1 +

1
n+1 [δY 1n − S

Y
n−1] and return to 1.

7.3. Simulations. We now present some simulations; we begin by describing the target, then

the population kernels, simulation parameters and then the results.

7.3.1. Target Measure. We consider a sequence of probability measures on (R2,B(R2)):

π(dx) =
1

Z
exp

{

− h(x)

}

dx

ηi(dx) =
1

Zi
exp

{

− γih(x)

}

dx

h(x) = − log(f(x))

f(x) =

20∑

l=1

wlφ2(x;μl,Σl)

where i ∈ T4, 1 > γ1 > ∙ ∙ ∙ > γm > 0, Zi is the normalizing constant, wl = 1/20 ∀l, φ2(∙;μ,Σ)

is the bivariate Gaussian density of mean μ and covariance Σ, which is assumed diagonal. We

adopt the {μl} and {Σl} used by Kou et al. (2006).

7.3.2. Population Kernel. For (NL2-3) our population kernel, P , is taken as:

P (y
(m)
n−1, dy

(m)
n ) =

1

m

m∑

i=1

{
3

4
δ
y
(−i)
n−1
(dy(−i)n )Pi(y

i
n−1, dy

i
n) +

1

4
PSi (y

(m)
n−1, dy

(m)
n )

}

with m = 4. For (NL1) we adopt a similar kernel with m = 5; see Section 7.2 for further details.

7.3.3. Simulation Parameters. Our objective is to demonstrate that our algorithms can improve

the performance of a slowly mixing Markov kernel, for similar computational cost.

We take {γm} to be equally spaced on (0, 1) and the proposal variance in the RWM steps

to yield acceptance rates around 0.3. The MCMC step in the non-linear kernels was taken as

200 iterates of the random walk/population kernel. It should be noted that the results for lower

number of iterates of the Markov kernels are still quite reasonable on average. However, a few of

the runs perform poorly emphasizing the fact that, as expected, combining slowly mixing kernel

with self-interactions can be inefficient if the initial exploration of the target is quite poor.
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7.3.4. Results. We ran the algorithms five times for 2 million iterations after burn-in (50000

iterations, that is, we did not use the selection step until this time), storing only 10000 samples

(all results averaged over the chains). The chains were run for a similar CPU time, as reported

in Table 1.

We estimated E[X] using the approximation S9999 for each non-linear MCMC method (using

5 different settings of ε); the results are in Table 1.

In Table 1 we can observe that the fully self-interacting approximation (NL1) has performed

quite poorly for all ε; the estimates of the means become even more inaccurate as ε goes to 1.

This is consistent with our assumption (A2) (v) which implies that we would want ε to be small.

In addition, we can intuitively explain this poor performance as follows. Despite the fact that

an approximation of π seems optimal, no property of π is used in the selection step and hence

the algorithm suffers from very slow convergence properties.

Conversely, (NL2-3) both perform reasonably well, with quite similar parameter estimates for

all values of ε. The algorithms (NL2-3) are able to avoid most of the difficulties of (NL1) because

they rely on more sophisticated selection schemes (NL2-3) and an exchange step (NL3). This

allows them to exploit the information of the empirical measure more efficiently.

A final point is that when we ran the population MCMC kernel to sample from the target for

a similar CPU time (110sec), the results were significantly poorer than for the self-interacting

algorithms with estimates of 4.00 for E[X1] and 3.73 for E[X2]. This emphasizes the importance

of self-interacting mechanisms.

7.3.5. Discussion. We have demonstrated that our algorithms improve the performance of slowly

mixing population algorithms. This is of interest when population algorithms cannot be cali-

brated to perform satisfactorily (e.g. in the trans-dimensional case (Jasra et al. 2005)).

In experiments not reported here for fast mixing population algorithms, we have found that for

(NL1-2) convergence speed was slowed down whereas for (NL3) convergence speed was similar.

We attribute this to the fact that (NL3) is allowed (most efficiently) to exploit the information

from the empirical measure through the exchange step. Note that these experimental results

are consistent with the parametric (adaptive) case, as raised by Atchadé & Rosenthal (2005). It

would be of interest to verify this theoretically; see Lemma 5.1 for some evidence for (NL2).

An important remark is that the selection step should only be used infrequently: In our exper-

iments the MCMC kernel is iterated 200 times and a limited number of iterations significantly

degrades performance. The reason is to ensure that we do not bias the algorithm too often, that

is the empirical measure may be quite far from convergence. The selection step is ultimately (as
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(NL1), example 1 True ε = 0.05 ε = 0.25 ε = 0.5 ε = 0.75 ε = 1.0

E[X1] 4.478 4.703 4.900 4.890 4.949 4.763

E[X2] 4.905 5.113 5.503 5.324 5.606 5.470

CPU (sec) 107 107 109 107 107

(NL2), example 2 4.318 4.391 4.332 4.327 4.399

4.754 4.734 4.801 4.734 4.691

108 110 109 114 118

(NL3), example 3 4.423 4.731 4.515 4.418 4.277

4.628 5.124 4.933 4.936 4.554

108 107 108 108 108

Table 1: Estimates from mixture comparison for Non-Linear MCMC. We ran each algorithm

5 times for 2 million iterations after a 50000 iteration burn-in and allowed the possibility of

self-interaction every 200th iteration.

n → ∞) a draw from π, but we may not have such good performance for n finite. In addition,

too many selection steps can make it difficult to diagnose poor performance of the algorithm;

e.g. see our cautionary example in Section 3.1. Thus our recommendation would be to allow a

relatively low number of selection steps, as demonstrated above. Due to the above discussion,

we would recommend that (NL3) be used in complex scenarios.

8. Application

We end the paper with an application of our approach to a complicated statistical model

in finance. We apply (NL3) (the population version) to the Bayesian analysis of continuous-

time stochastic volatility models (Roberts et al. 2004). We compare our approach to a recently

proposed technique in stochastic simulation; SMC samplers (Del Moral et al. 2006).

8.1. Model. The model is that of Roberts et al. (2004), which we briefly review. The data are

the log-returns of an asset Xt at time t ∈ [0, T ] modelled via the stochastic differential equation

(SDE):

dXt = v
1/2
t dWt



NON-LINEAR MCMC 25

where {Wt}t∈[0,T ] is standard Brownian motion The volatility vt is modelled via the following

SDE:

dvt = −μ vtdt+ dZt(8.16)

where {Zt}t∈[0,T ] is a pure jumps Lévy process; see Applebaum (2004) for example.

It is well known (e.g. Applebaum 2004) that for any self-decomposable random variable, there

exists a unique Lévy process that satisfies (8.16); we assume that vt has a Gamma marginal,

Ga(ν, θ), where Ga(a, b) is the Gamma distribution of mean a/b. In this case Zt is a compound

Poisson process:

Zt =

Kt∑

j=1

εj

where {Kt}t∈[0,T ] is a Poisson process of rate νμ and the {εj} are i.i.d. random variables of

distribution Ex(θ) (where Ex is the exponential distribution). Denote the jump times of the

compound Poisson process as 0 < c1 < ∙ ∙ ∙ < ckt < t.

Since Xt ∼ N (0, v∗t ), where v
∗
t =

∫ t
0
vsds is the integrated volatility, it is easily seen that

Yti ∼ N (0, v
∗
i ) with Yti = Xti −Xti−1 , 0 < t1 < ∙ ∙ ∙ < tu = T are regularly spaced observation

times and v∗i = v
∗
ti
− v∗ti−1 . Additionally, the integrated volatility is:

v∗t =
1

μ

( Kt∑

j=1

[1− exp{−μ(t− cj)}]εj − v0[exp{−μt} − 1]
)

To summarize the likelihood is:

f(yt1:tu |{v
∗
t }) =

u∏

i=1

φ(yti ; v
∗
i )

with φ(∙; a) the density of normal distribution of mean zero and variance a and the notation

x1:n := (x1, . . . , xn) is adopted. The priors are exactly as Roberts et al. (2004):

v0|θ, ν ∼ Ga(ν, θ)

ν ∼ Ga(αν , βν)

μ ∼ Ga(αμ, βμ)

θ ∼ Ga(αθ, βθ)

The density of the compound Poisson process is:

pT (c1:kT , ε1:kT , kT ) =
kT !

T kT
I{0<c1<∙∙∙<ckT<T}(c1:kT )θ

kT exp{−θ
kT∑

j=1

εj} ×

(Tμν)kT

kT !
exp{−Tμν}.
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8.2. Simulation Parameters. The MCMC kernel we used in our simulations is the CA (cen-

tered algorithm) of Roberts et al. (2004). It is demonstrated in that paper that such an algorithm

does not always perform well. We will see that we are able to use this kernel and still obtain

reasonable results in our simulations.

We ran (NL3) for 1.25 million iterations after a 2000 iteration burn-in. We ran a population

MCMC kernel with 5 chains (with targets ηi ∝ fγipT ) for the auxiliary process with temperatures

starting at 0.99 and falling by 1/6. Selection was allowed to occur with ε = 0.5 and the Markov

kernel K is the CA algorithm iterated 250 times. For illustration we only use 5000 samples in

our empirical measure.

For SMC samplers, we used the foward and backward kernels adopted in Section 4 of Del Moral

et al. (2006) (with the difference of using the CA as the MCMC kernel). We ran the algorithm

with the same coincidental proposal variances (in MH steps) to the non-linear MCMC algorithm.

The sequence of targets was of the same functional form as for the population MCMC except we

had 300 densities with a uniform cooling schedule (we found that the resampling schedule was

quite reasonable in this case). We simulated 5000 particles.

8.3. Illustration. Our data is part of the S&P 500 data found in Gander & Stephens (2007)

(and kindly provided by Dr. M. Gander) which we standardized for analysis. The data consists

of the daily share index returns at the opening of trading of the S&P 500. We reduced the data

to only 500 observations, however, we found that for longer series, the algorithms still performed

quite well. The prior parameters were as for Roberts et al. (2004) Section 4.

We ran both algorithms for approximately the same amount of CPU time and the estimates

of the posterior of λ = μν (as considered by Roberts el al. (2004)) can be seen in Figure 3. In

Figures 3a and 3b, we can observe that both the non-linear MCMC scheme and SMC samplers

yield rather similar results.

8.4. Summary. In this complex example we have seen that our non-linear MCMC method pro-

vides comparable results to SMC samplers. One advantage, however, of the non-linear approach

against SMC samplers is the iterative nature of the procedure. In the above example, if we

wanted to improve the estimates of quantities of interest we could simply run the sampler for

longer. However, for SMC samplers we would not be able to do this.

9. Summary

We have investigated a new approach in stochastic simulation: Non-Linear MCMC via self-

interacting approximations. We established convergence results for several algorithms. Further,
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Figure 3: Estimates of the posterior of λ = νμ for our stochastic volatility example.

we demonstrated the algorithms on a multimodal example, showing that the approach can drasti-

cally improve slowly mixing algorithms, but noting that it may not help in cases when an MCMC

algorithm mixes quickly. As extensions to our ideas, we may consider the following.

Firstly, to relax conditions required to ensure the convergence of the algorithms. For example,

Glynn & Meyn (1996) establish weaker than geometric ergodicity assumptions for the solution

to the Poisson equation and functional central limit theorem (for Markov processes), in addition

Jarner & Roberts (2002) establish drift conditions for polynomial ergodicity. It would be of

interest to see whether such conditions would be sufficient for the convergence of our algorithms

(see Roberts & Rosenthal (2006) for proofs for parametric adaptive MCMC).

Secondly, to design more elaborate methods to control the evolution of the empirical mea-

sure. In our current algorithms, the empirical measure is only updated through the addition of

simulated points. It may enhance the algorithm to introduce some mechanisms allowing the im-

provement of this quantity; for example we could introduce a death process with rate associated

to the unnormalized target distribution.

Thirdly, one aspect of our theoretical analysis that may seem unrealistic is the assumption

(A1) for NL1. As noted in Andrieu & Robert (2001), adaptive MCMC algorithms (and hence NL1
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in our case) have a direct link to stochastic approximation (SA) algorithms. (A1) can be thought

of as an analogue to a boundedness assumption on the space of probability measures which can

be compared to bounded parameter spaces in SA: the techniques required, in this case, to prove

convergence are much simpler for SA algorithms (see Kushner & Yin (1997)). One way to deal

with this difficulty (as used in Andrieu et al. (2005) (see also the references therein) and Andrieu

& Moulines (2006) in the context of adaptive MCMC) is the approach of reprojections. Here,

when the parameter escapes some compact set, the parameter is reinitialized to some compact

set, and the compact set is enlarged. This idea may be pursued, in the non-linear MCMC case,

to weaken the assumption (A1).

Acknowledgement. We would like to thank Éric Moulines for his comment pointing out that

the convergence proofs for NL2 could be obtained via standard regeneration arguments from

Markov chain theory. The second author would like to thank Matthew Gander for providing the

data in Section 8. We also thank Adam Johansen for some useful comments on previous versions.

Appendix A. Main proofs

A.1. Common properties of Kμ.

Proof of Proposition 4.2. This is a direct application of Proposition 4.1 and Lemma B.1. �

A.2. Case NL1.

Proof of Proposition 4.1. The second and third statement of the proposition are a direct conse-

quence of the first point from Meyn & Tweedie (1994), Theorem 2.3. The minorization property

is direct from the expression for Kμ = Πμ in Eq. (2.3) and (A2-iii), with θ
∗ = (1 − ε) × θ. We

hence focus on the drift condition.

Let μ ∈ PM1(E) and x ∈ Cd. Then from (A2-ii) and the expression for Kμ in Eq. (2.3) we

have,

KμV (x) ≤ λ(1− ε)V (x) + b+ ελM1

≤ λ(1− ε)d+ b+ ελM1 .

Now if x ∈ Ccd we have again from (A2)

KμV (x) ≤

[

λ(1− ε) +
ε(λM1 + b)

V (x)

]

V (x)

≤ λ∗V (x)
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with λ∗ < 1 by the condition d > ε[λM1 + b]/(1− λ(1− ε)) in (A2). To summarise,

KμV (x) ≤ λ
∗V (x) + b∗ICd(x) ,

with b∗ = λ(1− ε)d+ b+ ελM1, which completes the proof. �

Proof of Proposition 6.1. Let r ∈ [0, 1), p ∈ [1, 1/r), f ∈ LV r and m ∈ N0. There exists M(∙) as

in Proposition 4.1 such that

Ex
[
|f̂SXm (Xm+1)|

p
]1/p

≤
∑

n∈N0

Ex
[
|KnSXm (f)(Xm+1)− ω(S

X
m)(f)|

p
]1/p

=
∑

n∈N0

Ex

[

Ex

(

V (Xm+1)
pr
|KnSXm (f)(Xm+1)− ω(S

X
m)(f)|

p

V (Xm+1)pr

∣
∣
∣
∣Gm

)]1/p

≤ M(M∗
1 ,G)|f |V r

( ∑

n∈N0

ρn
)

Ex
[
V (Xm+1)

pr
]1/p

where we have applied Minkowski’s inequality and noted that, conditional upon Gm, KnSXm is a

Markov kernel that is geometrically ergodic (via Proposition 4.1 which follows from (A1) and

(A2)). Jensen’s inequality and the condition on p yield

Ex
[
|f̂SXm |

p
]1/p

≤ M(M∗
1 ,G)|f |V r

( ∑

n∈N0

ρn
)

Ex
[
V (Xm+1)

]r
.

Repeated application of the drift condition proved in Proposition 4.1 gives:

Ex
[
V (Xm+1)

]
≤

(

1 +
b

1− λ

)

V (x)

with λ and b as in (A2-ii). This completes the proof. �

Proof of Proposition 6.2. We follow a similar argument to that of Andrieu & Moulines (2006),

Proposition 6. Throughout, we denote by Bp a generic constant dependent upon p only. We

begin by applying the Burkholder-Gundy-Davis inequality (e.g. Burkholder (1973)) which yields:

Ex
[
|Mn|

p
]1/p

≤ BpEx
[
(

n−1∑

m=0

[f̂SXm (Xm+1)−KSXm (f̂SXm )(Xm)]
2)p/2

]1/p
.

Let p ∈ [2, 1/r); application of Minkowski’s inequality leads to:

Ex
[
|Mn|

p
]1/p

≤ Bp

( n−1∑

m=0

Ex
[
|f̂SXm (Xm+1)−KSXm (f̂SXm )(Xm)|

p
]2/p

)1/2
.

Resorting to Minkowski’s inequality again we obtain

Ex
[
|f̂SXm (Xm+1)−KSXm (f̂SXm )(Xm)|

p
]

≤

(

Ex
[
|f̂SXm (Xm+1)|

p
]1/p
+ Ex

[
|KSXm (f̂SXm )(Xm)|

p
]1/p

)p
.
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From Proposition 6.1

Ex
[
|f̂SXm (Xm+1)|

p
]1/p

≤ M(r,M∗
1 ,G)|f |V rV (x)

r

and via conditional Jensen, we have that

Ex
[
|Mn|

p
]1/p

≤ M(p, r,M∗
1 ,G)

( n−1∑

m=0

|f |2V rMV (x)2r
)1/2

≤ n1/2M(p, r,M∗
1 ,G)|f |V rV (x)

r

If p ∈ [1, 2) we have:

Ex
[
|Mn|

p
]1/p

≤ Bp

(

Ex

[

|2
n−1∑

m=0

[
f̂SXm (Xm+1)

2 +KSXm (f̂SXm )(Xm)
2
]
|p/2
])1/p

≤ Bp

(

Ex

[

|2
n−1∑

m=0

[
f̂SXm (Xm+1)

2 +KSXm (f̂SXm )(Xm)
2
]
|

])1/2

≤ Bpn
1/2M(r,M∗

1 ,G)|f |V rV (x)
r

where we have applied (a− b)2 ≤ 2[a2 + b2], Jensen twice, Proposition 6.1 as well as conditional

Jensen. The result thus follows. �

Proof of Proposition 6.3. Since:

Ex
[
|f̂(SXm:m+1, Xm+1)|

p
]1/p
=

Ex
[
|
∞∑

n=0

{
KnSXm+1

(f)(Xm+1)−K
n
SXm
(f)(Xm+1)− ω(S

X
m+1)(f) + ω(S

X
m)(f)

}
|p
]1/p

we may apply Proposition B.4 (in Appendix B), Minkowski and use the representation of the

invariant measure (4.10) to yield:

Ex
[
|f̂(SXm:m+1, Xm+1)|

p
]1/p

≤
∞∑

n=0

∞∑

l=n+1

ε(1− ε)l−1Ex
[
|[Φ(SXm+1)− Φ(S

X
m)](K

l−1(f)|p
]1/p

.

Application of (A1) yields:

Ex
[
|f̂(SXm:m+1, Xm+1)|

p
]1/p

≤ M(M∗
1 ,G)

∞∑

n=0

∞∑

l=n+1

ε(1− ε)l−1|Kl(f)|V r ×

Ex
[
|[SXm+1 − S

X
m ]

(
Kl(f)

|Kl(f)|V r

)

|p
]1/p

≤ M

∞∑

n=0

∞∑

l=n+1

ε(1− ε)l−1|Kl(f)|V rEx
[
||SXm+1 − S

X
m ||
p
V r

]1/p

≤ M |f |V rEx
[
||SXm+1 − S

X
m ||
p
V r

]1/p

where the fact that |Kl(f)|V r ≤ |f |V rM and that the double sum is equal to a finite constant

has been used.
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Noting that for any f we have:

Ex
[
|SXm+1(f)− S

X
m(f)|

]
=

1

m+ 2
Ey
[
|f(xm+1)− S

X
m(f)|

]

and thus

Ex
[
||SXm+1 − S

X
m ||V r

]
≤

1

m+ 2
Ex
[
(V (Xm+1)

r + SXm(V
r))
]

(A.17)

|f | ≤ V r has been used. The proof may be completed by using the drift condition established in

Proposition 4.1. �

Proof of Theorem 6.4. We begin by noting, for the M̃ in (A2) (v) we have:

M? = M̃
∑

l∈N

ε(1− ε)l−1ρl(A.18)

=
M̃ρε

1− ρ(1− ε)
< 1

by (A2) (v).

It is straightforward to establish that for f ∈ LV r :

Ex
[
|SXn (f)− S

ω
n (f)|

p
]1/p

≤
|f |V rBpV (x)r

(n+ 1)
1
2

Noting (6.12); in Proposition 6.2 we bounded Mn in Lp and in Proposition 6.3 the fluctuations

due to the evolution of the empirical measure. Also, we note that our assumptions ensure

the existence of the solution to the Poisson equation, so we need not worry about f̂SY0 (X0) −

f̂SYn+1(Xn+1). Consider:

Ex
[
|
n∑

m=0

[f̂SXm+1(Xm+1)− f̂SXm (Xm+1)]|
p
]1/p

≤
n∑

m=0

M(r,M∗
1 ,G)|f |V r

m+ 2
V (x)r

≤ M(r,M∗
1 ,G)|f |V r log(n+ 2)V (x)

r

where we have used Minkowski and bounded the sum with an integral. Straightforward manip-

ulations give:

Ex
[
|SXn (f)− S

ω
n (f)|

p
]1/p

≤
M(r, p,M∗

1 ,G)|f |V rV (x)
r

(n+ 1)
1
2

.

To establish an Lp-bound on SXn (f)−π(f) we follow the proof of Proposition 4.2 of Del Moral

& Miclo (2004). To fix some conventions, a sequence (an) is said to be of rate r̃ if:

r̃ = lim sup
n→∞

log(an)

log(n)
.

Also define:

I(p)n = sup
|f |≤V r

(n+ 1)pEx
[
|[Sωn − π](f)|

p
]
.
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As in Del Moral & Miclo (2004), we seek to establish that I
(p+1)
n is of rate (1 − r̃)(p + 1) with

r̃ = 1
2 ∧(1−M

?), then Ex
[
|SXn −S

ω
n |
p
]1/p
is of rate −1/2; we may follow the proofs of Proposition

4.2 and Theorem 4.3 of Del Moral & Miclo (2004).

Let p ∈ [2, 1/r − 1) and assume the hypothesis I(p)n is of rate (1 − r̃)p (the initialization is

discussed below) then as in the proof of Proposition 4.2 of Del Moral & Miclo (2004) we can

reach equation (4.1) of that paper and we need only deal with, for |f | ≤ V r:

(p+ 1)Ex

[

(n+ 1)p|[Sωn − π](f)|
p|[ω(SXn+1)− π](f)|

]

.

Then we have that:

(p+ 1)Ex

[

(n+ 1)p|[Sωn − π](f)|
p|[ω(SXn+1)− π](f)|

]

≤

(p+ 1)Ex

[

(n+ 1)p|[Sωn − π](f)|
p
(
|[ω(SXn+1)− ω(S

ω
n+1)](f)|+(A.19)

|[ω(Sωn+1)− ω(S
ω
n )](f)|+ |[ω(S

ω
n )− ω(π)](f)|

)
]

.(A.20)

We deal with each of the three terms separately. The latter term is dealt with via Hölder:

(p+ 1)Ex

[

(n+ 1)p|[Sωn − π](f)|
p|[ω(Sωn )− ω(π)](f)|

]

≤

p+ 1

n+ 1

∑

l∈N

ε(1− ε)l−1Ex

[

(n+ 1)p|[Sωn − π](f)|
p(n+ 1)|[Sωn − π](K

l(f))|

]

≤

p+ 1

n+ 1
(I(p+1)n )p/p+1

∑

l∈N

ε(1−ε)l−1|[Kl−π](f)|V rEx

[

(n+1)p+1
∣
∣[Sωn−π]

(
[Kl − π](f)
|[Kl − π](f)|V r

)∣
∣p+1

]1/p+1
≤

p+ 1

n+ 1
I(p+1)n M?

with M? < 1 from equation (A.18). The first two terms can be bounded via using the inequality,

for any φ > 0:

∀x, y ≥ 0 xpy ≤ φxp+1 +A(φ, p)yp+1

with A(φ, p) a constant dependent upon p, φ.

Now consider (A.19); denoting K(V r, π, l) = [Kl−π](f)
|[Kl−π](f)|V r

we obtain in a similar manner to

the above manipulations (recall that M? is defined in (A.18)):

(p+ 1)Ex

[

(n+ 1)p|[Sωn − π](f)|
p|[ω(SXn+1)− ω(S

ω
n+1)](f)|

]

≤

(p+ 1)
∑

l∈N

ε(1− ε)l−1M̃ρlEx

[

(n+ 1)p|[Sωn − π](f)|
p|[SXn+1 − S

ω
n+1](K(V

r, π, l))|

]

≤

(p+ 1)
∑

l∈N

ε(1− ε)l−1M̃ρl
[

φ

n+ 1
I(p+1)n +A1(φ, p)BpV (x)

r(p+1)(n+ 1)
1
2 (p−1)

]

≤
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(p+ 1)M?

{
φ

n+ 1
I(p+1)n +A1(φ, p)BpV (x)

r(p+1)(n+ 1)
1
2 (p−1)

}

where we have used the Lp bound on SXn (f) − S
ω
n (f) and noted that |K(V

r, π, l)|V r ≤ 1 and

p ≥ 1 (this latter point is needed in the initialization).

Consider the first part of (A.20), using the above manipulations we have:

(p+ 1)Ex

[

(n+ 1)p|[Sωn − π](f)|
p|[ω(Sωn+1)− ω(S

ω
n )](f)|

]

≤

(p+ 1)
∑

l∈N

ε(1− ε)l−1M̃ρl
[

φ

n+ 1
I(p+1)n +

A2(φ, p)

n+ 1
Ex
[
(n+ 1)p+1|[Sωn+1 − S

ω
n ](K(V

r, π, l))|p+1
]
]

.

Since |[Sωn+1−S
ω
n ](f)| =

1
n+1 |ω(Sn+1)(f)−S

ω
n (f)|, we derive the following property, for |f | ≤ V

r:

Ex
[
ω(Sn+1)(|f |)

p+1
]
≤ MEx

[
Sn+1(V

r)p+1
]

as Sn+1(K
l(|f |)) ≤ MSn+1(V

r) (drift condition) and we have used the representation of the

invariant measure (4.10). Now applying Minkowski’s inequality, we have for any |f | ≤ V r:

Ex
[
Sωn+1(|f |)

p+1
]
≤

M

(n+ 2)p+1
( n+1∑

i=0

Ex[V (Xi)
r(p+1)]

1
p+1
)p+1

≤ MV (x)r(p+1)

via Jensen. Due to the above arguments:

(p+ 1)Ex

[

(n+ 1)p|[Sωn − π](f)|
p|[ω(Sωn+1)− ω(S

ω
n )](f)|

]

≤ (p+ 1)M?

{
φ

n+ 1
I(p+1)n +

A2(φ, p)MV (x)r(p+1)

n+ 1

}

and note that the latter expression on the RHS is of rate −1. Thus by the proof of Del Moral &

Miclo (2004) we have the desired rate for I
(p+1)
n . The initialization, for p = 1, 2 can be performed

by the above manipulations. The proof is then completed in a similar manner to Propositions

4.2 and Theorem 4.3 of Del Moral & Miclo (2004) and is thus omitted. �

A.3. Case NL3.

Proof of Proposition 4.1. The second and third statement of the proposition are a direct conse-

quence of the first point from Meyn & Tweedie (1994), Theorem 2.3. The minorization property

is direct from the expression for Kμ in Eq. (2.3) and (A2-iii) with θ
′
d(μ) = (1− ε)× θd(μ). Let us

focus on the drift condition.

It is straightforward to prove, for any x ∈ E:

KμV (x) ≤ λV (x) + b̄(μ).
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Now, let x ∈ Ccd(μ), then clearly, via conditional Jensen:

KμV
r(x) ≤

(

λ+
b̄(μ)

d(μ)

)r
V (x)r

and since d(μ) ≥ b̄(μ)α/(1− λ):

KμV
r(x) ≤ λ̃rV (x)r.

Suppose further that x ∈ Cd(μ), then:

KμV
r(x) ≤ (λd(μ) + b̄(μ))r.

As a result:

KμV
r(x) ≤ λ̃rV (x)r + b̃(μ)rICd(μ)(x).

as required.

�

Proof of Proposition 4.3. The proof is given for r = 1 only. Let |f | ≤ V :

|[Qμ −Qξ](f)(x)| =
∣
∣
∫

E

[μ− ξ](du)[α(x, u){K(f)(u)−K(f)(x)}]
∣
∣.

Now it is clear that, for any fixed x ∈ E:

α(x, u){K(f)(u)−K(f)(x)} ≤ (λ+ b)][V (u) + V (x)]

i.e.

α(x, u){K(f)(u)−K(f)(x)} ≤ 2(λ+ b)]V (u)V (x).

As a result:

|[Qμ −Qξ](f)(x)| ≤ 2(λ+ b)]V (x)‖μ− ξ‖V

and then the result easily follows.

�

Proof of Proposition 6.1. The proof begins by conditioning upon the filtration GY generated by

the auxiliary process {Yn} then, via Proposition 4.1 (where λ̃ is defined and a V r drift condition

is proved), applying Lemma B.3 followed by Minkowski’s inequality to yield

E(x,y)[|f̂SYm(Xm+1)|
p]1/p ≤

{

(1 + λ̃r)Ex[|f̄SYm |
p
V rV (Xm+1)

rp]1/p(A.21)

+Ey[|f̄SYm |
p
V r

(
(1− θ̄d(SYm))b

′(SYm)

θd(SYm) − θ̄d(SYm)

)p
]1/p
}

(A.22)

where f̄SYm := f − ω(S
Y
m)(f). Note that

b′(SYm) = νd(SYm)(V
r) ∨ b̌(SYm)
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with ε̄ (as in Lemma B.3) equal to θ̄d(SYm) for any θ̄d(SYm) ∈ (0, θd(SYm))

b̌(SYm) =
λ̃rd(SYm)

r + b̃r(SYm)− θ̄d(SYm)νd(SYm)(V
r)

1− θ̄d(SYm)
.

We first establish some intermediate results that are used later in the proof. Using the drift

condition, it can be seen that almost surely

|f̄SYm |V r ≤ |f |V r [1 +
b̃(SYm)

r

1− λ̃r
]

where b̃(SYm) is defined in Proposition 4.1. In order to bound the expectation of this term we

seek an upper bound of Ey[b̄(SYm)] which in turn, since b̃(S
Y
m) is a linear function of b̄(S

Y
m) =

b+ ε[λSYm(V ) + b], requires one to bound

Ey[b̄(S
Y
m)] = b+ ε[λEy[S

Y
m(V )] + b] .

Using that V ∈ LW and applying the drift for P :

Ey[b̄(S
Y
m)] ≤ b+ ε[M(Dy)W (y) + b]

that is, there exists a finite M(ε,D,Dy) such that

(A.23) Ey[b̄(S
Y
m)] ≤M(ε,D,Dy)W (y) .

Applying the Cauchy-Schwarz inequality to the first term in the upper bound in (A.21) applying

Jensen’s inequality since by assumption 2pr < 1 and using (A.23) we just require an upper-bound

on the term

E(x,y)[V (Xm+1)
2pr]1/2p.

We again use Jensen’s inequality followed by the drift inequality (for Kμ associated to V , with

parameters λ̃ and b̃) and obtain



λ̃m+1V (x) +
m+1∑

j=1

(λ̃)m+1−jEy[b̃(S
Y
j )]





r

.

We therefore focus on

Ey[b̃(S
Y
m)] ≤ λEy[d(S

y
m)] +M(D,Dy)W (y)

which is obtained through the definition of b̃(∙) and (A.23). Using (A.23) and the definition of

d(μ) in Proposition 4.1 it is clear that

Ey[b̃(S
Y
m)] ≤ λ[1 +

α

1− λ
M(ε,D,Dy)W (y)] +M(ε,D,Dy)W (y)

≤ M(ε, α, r,D,Dy)W (y) .
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Consequently for all m ≥ 0,

E(x,y)[V (Xm+1)
2pr]1/2p ≤M(ε, α,D,Dy)V (x)W (y) .

We now consider the second term in the RHS term of (A.21). Again from the application of

the Cauchy-Schwarz inequality and (A.23) we focus on

Ey

[(
(1− θ̄d(SYm))b

′(SYm)

θd(SYm) − θ̄d(SYm)

)3p/2]2/3p
.

Since we can set θ̄d(SYm) = θd(SYm) − ϕd(SYm), and apply (A2-iv), we need only concentrate upon

b′(SYm):

Ey
[
b′(SYm)

3p
]1/3p

.

Clearly:

Ey
[
b′(SYm)

4p
]1/3p

≤ Ey[νd(SYm)(V
r)3p]1/3p + Ey[b̌(S

Y
m)
3p]1/3p

For the first expectation, we have, for some constant M <∞:

Ey[νd(SYm)(V
r)3p]1/3p ≤ Ey[d(S

Y
m)
3pr]1/3p

(note that, from (A2-iv) νd(Cd) = 1 ⇒ νd(V ) ≤ d) by the above argument (for bounding d) we

have:

Ey[νd(SYm)(V
r)3p]1/3p ≤ M(ε, α,D,Dy)W (y).

In addition, these arguments can be adopted for Ey[b̌(SYm)
p]1/p and thus:

Ey
[
b′(SYm)

3p
]1/3p

≤M(ε, α,D,Dy)W (y).

�

Proof of Proposition 6.2. The proof is as for case (NL1) with only notational changes. �

Proof of Proposition 6.3. Our proof is based upon the decomposition of Proposition B.5 (in Ap-

pendix B) and then using the Lipschitz continuity properties proved in Propositions 4.2 and

4.3.

|f̂SYm+1(Xm+1)− f̂SYm(Xm+1)| = |
∑

n∈N0

n−1∑

i=0

[KiSYm+1
− ω(SYm+1)](KSYm+1 −KSYm)

[Kn−i−1
SYm

− ω(SYm)(f)(Xm+1)]−

∑

n∈N0

[ω(SYm+1)− ω(S
Y
m)](K

n
SYm
− ω(SYm))(f))|.(A.24)

Now, consider the first term. Since, for any m ≥ 0, the kernel KSYm satisfies, Qy a.s.:

‖[KnSYm − ω(S
Y
m)](f)‖V r ≤M(r, S

Y
m, V,G)ρ(S

Y
m, V,G)

n
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for some finite M(SYm, V,G) and ρ(S
Y
m, V,G) ∈ (0, 1), it follows that (a.s.):

|[KiSYm+1 − ω(S
Y
m+1)](KSYm+1 −KSYm)[K

n−i−1
SYm

− ω(SYm)(f)(Xm+1)]| ≤

M(r, SYm, V,G)ρ(S
Y
m, V,G)

iV (Xm+1)
r|(KSYm+1 −KSYm)[K

n−i−1
SYm

− ω(SYm)(f)]|V r .

Then, adopting the continuity result for KSm :

‖|Kμ −Kλ|‖V r ≤ 2(1− ε)(λ+ b)
r‖μ− λ‖V r

for any μ, λ ∈P∞(E), it follows that:

|(KSYm+1 −KSYm)[K
n−i−1
SYm

− ω(SYm)(f)]|V r ≤M(r, S
Y
m, V,G)ρ(S

Y
m, V,G)

n−i−1‖SYm+1 − S
Y
m‖V r .

Since ‖SYm+1 − S
Y
m‖V r ≤ [V (Ym+1)

r + SYm(V
r)]/(m+ 2):

∑

n,i

|[KiSYm+1 − ω(S
Y
m+1)](KSYm+1 −KSYm)[K

n−i−1
SYm

− ω(SYm)(f)(Xm+1)]| ≤

M(r, SYm+1, V,G)M(r, S
Y
m, V,G)

V (Xm+1)
r

m+ 2
[V (Ym+1)

r + SYm(V
r)].

As supmM(r, S
Y
m+1, V,G)M(r, S

Y
m, V,G) is a.s. finite, the geometric rate of convergence of the

Markov chain and the bounds in Meyn & Tweedie (1994), M(r, SYm+1, V,G)M(r, S
Y
m, V,G) con-

verges to a finite constant. In addition, by establishing an Lp−bound for
V (Xm+1)

r

m+2 [V (Ym+1)
r +

SYm(V
r)], (using the techniques in the proof of Proposition 6.1) it follows by the first Borel-Cantelli

lemma that the first term of the RHS of (A.24) goes to zero as m→∞ (a.s.).

Turning to the second expression of (A.24), the continuity of the invariant measure:

‖ω(μ)− ω(λ)‖V r ≤M(r, λ, μ, V,G)|||Kμ −Kλ|||V r

and the kernel Kμ yields (a.s.):

∑

n

|ω(SYm+1)−ω(S
Y
m)(K

n
SYm
−ω(SYm))(f))| ≤M(r, S

Y
m+1, S

Y
m, V,G)ρ(S

Y
m, V,G)

n [V (Ym+1)
r + SYm(V

r)]

m+ 2

application of the above arguments and the SLLN for Markov chains yields the desired result. �

Proof of Theorem 6.5. The Martingale is dealt with as in Theorem 6.4 and a Cesàro average

argument for the fluctuations of the solution to the Poisson equation can also be used.

The difficulty is when considering the bias term S̄ωn (f),

|Sωn (f)− π(f)| =
1

n+ 1
|
n∑

i=0

[ω(SYi )− ω(η)](f)| ,

as ω(η) = π in our setup. In order to prove that this term vanishes, we establish pointwise

or Qy−a.s. convergence to zero of [ω(SYi ) − ω(η)](f) as i → ∞ and invoke a Cesàro average

argument to conclude.
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Let i, j ∈ N and introduce the following upper bound

(A.25) |[ω(SYi )− ω(η)](f)| ≤ |ω(S
Y
i )(f)−K

j

SYi
(f)(x)|

+ |Kj
SYi
(f)(x)−Kjη(f)(x)|+ |K

j
η(f)(x)− ω(η)(f)|.

We now consider the three terms. The first and third terms are easily dealt with (Proposition

4.1) and the fact that the geometric bounds are uniform (a.s.) in i. That is, for any fixed i, both

terms go to zero Qy−a.s.. The proof is completed via Lemma B.2, the proof of Theorem 9 of

Roberts et al. (1998) and using Cesàro averages.

�

A.4. Convergence of the Marginals.

Proof. Consider (NL3) (the proof of (NL1) is much the same except it uses the SLLN proof and

is simpler) and introduce the following simple decomposition:

∣
∣
∣
∣E(x,y)

[
f(Xk)− π(f)

]
∣
∣
∣
∣ ≤

∣
∣
∣
∣E(x,y)

[
f(Xk)−K

n(k)

SY
k−n(k)

(f)(Xk−n(k))
]
∣
∣
∣
∣+

∣
∣
∣
∣E(x,y)

[
K
n(k)

SY
k−n(k)

(f)(Xk−n(k))− ω(S
Y
k−n(k))(f)

]
∣
∣
∣
∣+

∣
∣
∣
∣E(x,y)

[
ω(SYk−n(k))(f)− π(f)

]
∣
∣
∣
∣.(A.26)

We will let n(k) = kφ, φ ∈ (0, 1/2). The proof is to adopt a dominated convergence argument.

From Lemma B.2 the third expression goes to zero as k →∞ (by the SLLN for U−statistics

(as applied in Theorem 6.5) and some arguments below, for (NL1) by SLLN proof).

Consider:

E[ω(SYn )(V )]

In order to apply the dominated convergence theorem for the third term, we note for μ(V r) <∞

we have that:

ω(μ)(V r) = ω(μ)Kμ(V
r)

≤ λ̃rω(μ)(V r) + b̃(μ)r

that is:

ω(μ)(V r) ≤
b̃(μ)r

1− λ̃r
.

That is, it is integrable (by the arguments of Proposition 6.1). A similar argument may be made

for K
n(k)

SY
k−n(k)

(f) and we may apply the result of Proposition 4.1 to ensure that the second term

goes to zero, via dominated convergence.
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We now consider the first expression in the decomposition (A.26). To simplify the notation in

the subsequent arguments, we adopt the following convention, for k ≤ j:

KSYk:j (x, dy) :=

∫

Ej−k
KSYk (x, dx1) . . .KSYj (xj−k, dy).

As in Haario et al.(2001) we adopt the following argument, for k − n(k) ≥ 1:
∣
∣
∣
∣E(x,y)

[
f(Xk)−K

n(k)

SY
k−n(k)

(f)(Xk−n(k))
]
∣
∣
∣
∣ =

∣
∣
∣
∣E(x,y)

{
E(x,y)

[
f(Xk)−K

n(k)

SY
k−n(k)

(f)(Xk−n(k))
∣
∣Gk−n(k)

]}
∣
∣
∣
∣ =

∣
∣
∣
∣E(x,y)

{ n(k)−1∑

j=0

[KSY
k−n(k):k−(j+1)

Kj
SY
k−n(k)

(f)(Xk−n(k))−KSY
k−n(k):k−(j+2)

Kj+1
SY
k−n(k)

(f)(Xk−n(k))]
}
∣
∣
∣
∣.

We refer to the decomposition |
∑n(k)−1
j=0 [KSY

k−n(k):k−(j+1)
Kj
SY
k−n(k)

(f)(Xk−n(k)) −KSY
k−n(k):k−(j+2)

Kj+1
SY
k−n(k)

(f)(Xk−n(k))]| as (∗). We can adopt the following manipulations for (∗):

|
n(k)−1∑

j=0

[KSY
k−n(k):k−(j+1)

Kj
SY
k−n(k)

(f)(Xk−n(k))−KSY
k−n(k):k−(j+2)

Kj+1
SY
k−n(k)

(f)(Xk−n(k))]| ≤

n(k)−1∑

j=0

|Kj
SY
k−n(k)

(f)|V rKSY
k−n(k):k−(j+2)

[
V r

V r
|(KSY

k−(j+1)
−KSY

k−n(k)
)|

( Kj
SY
k−n(k)

(f)

|Kj
SY
k−n(k)

(f)|V r

)]

where we remark, conditional upon GY (the natural filtration of the auxiliary chain) all elements

are finite a.s. The expression in the sum is bounded by:

|Kj
SY
k−n(k)

|V rKSY
k−n(k):k−(j+2)

(V r)(Xk−n(k))‖|KSY
k−(j+1)

−KSY
k−n(k)

‖|V r .

By the drift condition:

|Kj+1
SY
k−n(k)

|V r ≤
b̃(SYk−n(k))

r

1− λ̃r

and

KSY1:l(V
r)(x) ≤ λ̃rlV (x)r +

l∑

j=1

(λ̃)l−j b̃(SYj )
r.

In addition, by Proposition 4.3:

‖|KSY
k−(j+1)

−KSY
k−n(k)

‖|V r ≤ 2(λ+ b)
rε‖SYk−(j+1) − S

Y
k−n(k)‖V r .

As a result, (*) is bounded by (a.s., call this (**)):

M(ε, α,D)b̃(SYk−n(k))
r

n(k)−1∑

j=0

‖SYk−(j+1) − S
Y
k−n(k)‖V r×

{

λ̃rlV (Xk−n(k))
r +

n(k)−j−1∑

s=1

(λ̃)n(k)−j−1−sb̃(SYs+k−n(k)−1)
r

}



40 ANDRIEU, JASRA, DOUCET & DEL MORAL

Now consider the expectation:

E(x,y)[b̃(S
Y
k−n(k))

rV (Xk−n(k))
r‖SYk−(j+1) − S

Y
k−n(k)‖V r ].

Applying the Hölder inequality twice yields the bound:

Ey[b̃(S
Y
k−n(k))

3r]1/3E(x,y)[V (Xk−n(k))
3r]1/3Ey[‖S

Y
k−(j+1) − S

Y
k−n(k)‖

3
V r ]
1/3

by the arguments in the proof of Proposition 6.1 we know how to bound the first two terms. The

third term can be dealt with as follows.

E[‖Sn(k)+k − Sn(k)‖
3
V r ]
1/3

≤
k−1∑

j=0

E[‖SYn(k)+j+1 − S
Y
n(k)+j‖

3
V r ]
1/3

≤
k−1∑

j=0

|V |W
n(k) + j + 1

{

E[W (Yn(k)+j+2)]
1/3 + Ey[S

Y
n(k)+j(W )]

1/3

}

≤
kM(Dy)W (y)
n(k) + j + 1

.

Thus

E(x,y)[b̃(S
Y
k−n(k))

rV (Xk−n(k))
r‖SYk−(j+1) − S

Y
k−n(k)‖V r ].

≤M(ε, α,D,Dy)

{
n(k)− j − 1
k − n(k) + 2

}

V (x)W (y)2+r.

A similar argument may be applied to the second part of (**) thus we may conclude that:

∣
∣
∣
∣E(x,y)

[
f(Xk)−K

n(k)

SY
k−n(k)

(f)(Xk−n(k))
]
∣
∣
∣
∣ ≤M(ε, α,D,Dy)

{ n(k)−1∑

j=0

n(k)− j − 1
k − n(k) + 2

}

V (x)W (y)2+2r.

The proof is completed by recalling that n(k) = kφ. �

Appendix B. Standard Technical Results on Markov chains

Lemma B.1. Let (E, E) be a measurable space, b̄ < ∞, λ̄ ∈ (0, 1) and C̄ ∈ E. Then for any

Markov transition probabilities P1, P2 : E →P(E) satisfying for (x,A) ∈ E × E and i = 1, 2,

PiV (x) ≤ λ̄V (x) + IC̄(x)b̄ ,(B.27)

Pi(x,A) ≥ IC̄(x)ε̄ν̄(A)(B.28)

there exist M̄(∙) <∞, ρ̄ ∈ [0, 1], invariant probability measures π1, π2 ∈P(E) (corresponding to

P1 and P2 respectively), such that for any n ≥ 1, r ∈ (0, 1] and any |f | ≤ V r

|[Pn1 − π1](f)|V r ∨ |[P
n
2 − π2](f)|V r ≤ M̄(r)ρ̄

n ,

for any n ≥ 1,

|||Pn1 − P
n
2 |||V r ≤ M̄(r)|||P1 − P2|||V r ,
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and

||π1 − π2||V r ≤ M̄(r)|||P1 − P2|||V r .

Proof. Let r ∈ [0, 1] and f ∈ LV r . It is straightforward to determine the following decomposition

(e.g. the proof of Proposition 3 of Andrieu & Moulines (2006)):

|[Pn1 − P
n
2 ](f)| =

∣
∣
∣
∣

n−1∑

i=0

P i1([P1 − P2]{[P
n−i−1
2 − π2](f)})

∣
∣
∣
∣

Consider, for any |f | ≤ V r:

∣
∣
∣
∣

n−1∑

i=0

P i1([P1 − P2]{[P
n−i−1
2 − π2](f)})

∣
∣
∣
∣ ≤

n−1∑

i=0

|[Pn−i−12 − π2](f)|V r × P
i
1

(∣∣
∣
∣[P1 − P2]

(
[Pn−i−12 − π2](f)

|[Pn−i−12 − π2](f)|V r

)∣∣
∣
∣

)

thus we have:

|[Pn1 − P
n
2 ](f)| ≤ M̄(r)

n−1∑

i=0

ρ̄n−i−1P i1

(

||P1 − P2||V r
)

= M̄

n−1∑

i=0

ρ̄n−i−1P i1

(
||P1 − P2||V r

V r
V r
)

≤ M̄(r)|||P1 − P2|||V r
n−1∑

i=0

ρ̄n−i−1P i1
(
V r
)

From the drift condition (A2) and conditional Jensen one can bound P i1V
r by [λ̄+b̄/(1−λ̄)]rV (x)r

for r ∈ [0, 1] and hence conclude that:

||[Pn1 − P
n
2 ](f)|| ≤ M̄(r)|||P1 − P2|||

r
V .

Since the RHS is independent of n, the inequality holds in the limit and hence by V−uniform

ergodicity the result. �

Lemma B.2. Consider (NL3) and Assume (A2-ii). Let f ∈ LV , x ∈ E then:

(B.29) lim
i→∞

|Kj
SYi
(f)(x)−Kjη(f)(x)| = 0 , Qη − a.s. .

Proof. First, consider the case ε = 1; the general case is considered below. Our strategy is

to express the iterates of QSYi in terms of a product empirical measure (Von-Mises statistic)

of the feeding Markov chain and then to use the well-known link between Von-Mises statistics

and U−statistics (e.g. Hoeffding (1948)) and then finally the strong law of large numbers for

U−statistics for ergodic stochastic processes (Aaronson et al. 1996; Borovkova et al. 1999).
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Let μ ∈P(E), then we will prove that:

(B.30) Qjμ(f)(x) = μ
⊗j(K̃j(f))(x)

where K̃((x, y), ∙) = α(x, y)K(y, ∙) + [1− α(x, y)]K(x, ∙) and

K̃j(f)(x, x1:j) =

∫

Ej+1
K̃((x, x1), dy1)K̃((y1, x2), dy2) . . . K̃((yj−1, xj), dyj)f(yj).

Since, for j = 1, the result holds, assume for j − 1, then:

Qjμ(f)(x) = Qj−1μ (Qμ(f))(x)

= μ⊗(j−1)(K̃j−1(μ(K̃(f))))(x)

= μ⊗j(K̃j(f))(x)

where we have applied Fubini’s Theorem. As a result of (B.30), we have:

|Kj
SYn
(f)(x)−Kjη(f)(x)| = |[S

⊗j
n − η

⊗j ](K̃j(f))(x)|

where K̃j(f)(x, x1:j) ∈ LV for any fixed x.

Now, introduce the U− statistic (dropping the superscript Y ):

S�jn (f) :=
1

(n+ 1)j

∑

α∈<j,n+1>

f(Yα(1), . . . , Yα(j))

where < j, n+ 1 > is the set of one-to-one mappings of Tj into Tn+1 and (n+ 1)j =
(n+1)!
(n+1−j)! .

Now application of Theorem 5.1 of Grams & Serfling (1973) (note the assumptions of the

Theorem are satisfied here, and the Markov structure does not invalidate the result) yields:

lim
n→∞

|S⊗jn (f)− S
�j
n (f)| = 0 , Qη − a.s. .

Thus we require that:

lim
n→∞

|S�jn (f)− η
⊗j(f)| = 0 , Qη − a.s. .

but this is a direct consequence of Theorem U of Aaronson et al. (1996) (as noted in Borovkova

(1999) the result holds for polish spaces). An important remark is that we are able to apply the

result as geometrically ergodic Markov chains are β−mixing with coefficient O(ρn) and P j(f) is

bounded by V (j) where:

V (j) := V ⊗ ∙ ∙ ∙ ⊗ V︸ ︷︷ ︸
j times

.

In addition, by Proposition C.1 in Appendix C, that we do not require the auxiliary chain to be

in initialized in stationarity.



NON-LINEAR MCMC 43

To complete the proof for ε ∈ (0, 1), we note the following decomposition for iterates of

mixtures of Markov kernels K and P :

((1− ε)K + εP )n(x, dy) =
n∑

l=0

εl(1− ε)n−l
∑

(α1,...,αn)∈Sl

K1−α1Pα1 . . .K1−αnPαn(x, dy).

where Sl = {(α1, . . . , αn) :
∑n
j=1 αj = l}; there is no difficulty to extend the result, using the

dominated convergence theorem where required. �

Some simple results for the solution to the Poisson equation in Glynn & Meyn (1996) are now

proved. Define, for any A ∈ E , σA = inf{n ≥ 0 : Xn ∈ A}. Then for any Markov chain with an

atom α ∈ E the solution to the Poisson equation can be written:

Ex

[ σα∑

i=0

[f(Xk)− π(f)]

]

when this exists; write f̄ = f − π(f) from herein. Our objective is to use the split-chain con-

struction for a geometrically ergodic Markov chain to obtain explicit quantitative bounds on

the solution of the Poisson equation (in terms of the parameters in the drift and minorization

conditions). We have the following result.

Lemma B.3. Let (E, E) be a measurable space, V : E → [1,∞), b <∞, λ, ε ∈ (0, 1), 1 < d <∞

and Cd ∈ E, with Cd = {x : V (x) ≤ d}. Then for any Markov transition probability K : E →

P(E) satisfying for (x,A) ∈ E × E,

KV (x) ≤ λV (x) + ICd(x)b ,

K(x,A) ≥ ICd(x)εν(A)

, with ν(Cd) > 0, then for any f ∈ LV :

(B.31)

∣
∣
∣
∣Ēz

[ σα∑

i=0

[f(Xk)− π(f)]

]∣∣
∣
∣ ≤ |f̄ |V

[
(
1 + λ

)
V (x) +

b̄(1− ε̄)
(ε− ε̄)ν(Cd)

]

with Ē, α defined in the proof and

b̄ = ν(V ) ∨
λd+ b− ε̄ν(V )
(1− ε̄)

for any ε > ε̄ > 0.

Proof. The strategy of the proof is as follows: In Glynn & Meyn (1996), there are bounds on the

solution to Poisson’s equation, in the strongly aperiodic case, the bounds are obtained assuming

only a drift toward a petite set. We seek to adapt the proofs in the Foster-Lyapunov case. The

proof is constructed by using the split chain to introduce an atom, and the underlying drift

condition (on K) to yield such a result for the split chain.
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We begin by noting that (iii) of Theorem 2.2 of Glynn & Meyn (1996), in the case of Cd

small and the kernel admitting a drift condition, yields for any set A ∈ E with positive invariant

measure (of K)

(B.32) Ex[
τA−1∑

k=0

V (Xk)] ≤ (1 + λ)V (x) +
b

εν(A)
.

To complete the proof, we simply seek to establish that under the assumption of geometric

ergodicity of K, we can show that the split chain kernel has its own drift and minorization condi-

tions; this property and the bound above will allow us to conclude. Our split chain construction

follows that in Nummelin (184): Let Zn = (Xn, Yn), with Yn ∈ {0, 1}, be the Markov chain with

transition probability (and associated expectation denoted Ē) defined as follows:

P̄ ((xn, yn), d(xn+1, yn+1)) =
P(yn+1|xn+1)P(xn, dxn+1, yn)

P(yn|xn)

where

P(y = 0|x) =






1 x ∈ Ccd

1− ε̄ x ∈ Cd

P(y = 1|x) =






0 x ∈ Ccd

ε̄ x ∈ Cd

and

P(x, x′ ∈ A, y′ = 0) =






K(x,A) x ∈ Ccd

K(x,A)− ε̄ν(A) x ∈ Cd

P(x, x′ ∈ A, y′ = 1) =






0 x ∈ Ccd

ε̄ν(A) x ∈ Cd

We will first establish that C = Cd × {0, 1} is a small set. Let z ∈ Cd × {0}, then we have

that:

P̄ ((x, 0), A×B) =
∫

A×B

P(yn+1|xn+1)
1− ε̄

K(x, dxn+1)− ε̄ν(dxn+1)

≥
∫

A×B

P(yn+1|xn+1)
1− ε̄

(ε− ε̄)ν(dxn+1)

with A ∈ E and B ∈ σ({0, 1}). Since Cd × {1} is an atom we can conclude that, for z ∈ C:

P̄ (z, ∙) ≥ ε̃ν̄(∙)

where the definition of ν̄ clear.

For the Foster-Lyapunov condition, we have the following formulation. Let z ∈ Ccd × {0} and

assume that the new Lyapunov function is such that V̄ (z) = V (x), then we have:

P̄ (V̄ )(z) ≤ λV̄ (z).
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If z ∈ Cd × {0} then

P̄ (V̄ )(z) ≤
[λV̄ (z) + b− ε̄ν(V )]

1− ε̄

≤
[λd+ b− ε̄ν(V )]

1− ε̄
.

Finally, let z ∈ Cd × {1}, then:

P̄ (V̄ )(z) ≤ ν(V ).

Putting this together yields:

P̄ (V̄ )(z) ≤ λV̄ (z) + b̄IC̄(z)

with b̄ as above.

To conclude, we will relate the bound (B.32) that we have proved, to the Poisson equation

itself. Let α = Cd × {1}, then, since we are in the strongly aperiodic case:

f̂(x) = Ēx[
τα−1∑

k=1

f̄(Xk)]

≤ |f̄ |V

[
(
1 + λ

)
V (x) +

b̄(1− ε̄)
(ε− ε̄)ν(Cd)

]

where we have applied (B.32) and used the small set and drift conditions for the split chain.

�

Proposition B.4. Let Kμ, μ ∈P(E) be as in (NL1), then ∀n ≥ 0, x ∈ E measurable f : E → R

such that Kn(|f |)(x) <∞ we have:

Knμ (f)(x) = (1− ε)nKn(f)(x) + ε
n∑

l=1

(1− ε)l−1Φ(μ)Kl−1(f).

Proof. The result is clearly true for n = 1, so assume for n and consider Kn+1μ (f)(x):

Kn+1μ (f)(x) = Kμ

[

(1− ε)nKn(f)(x) + ε
n∑

l=1

(1− ε)l−1Φ(μ)Kl−1(f)

]

(x)

= (1− ε)n+1Kn+1(f)(x) + ε(1− ε)nΦ(μ)Kn(f) + ε
n∑

l=1

(1− ε)l−1Φ(μ)Kl−1(f)

from which the proof clearly follows. �

Proposition B.5. Consider (NL3). Assume (A2-i-ii-iii-iv (a or b)). Then, for ξ, μ ∈ P∞(E)

we have the following decomposition for the differences in the solution to the Poisson equation:

f̂ξ(x)− f̂μ(x) =
∑

n∈N0

{ n−1∑

i=0

(
[Kiξ − ω(ξ)](Kξ −Kμ){[K

n−i−1
μ − ω(μ)](f)}(x)

)
−

[ω(ξ)− ω(μ)]([Knμ − ω(μ)](f))

}

.



46 ANDRIEU, JASRA, DOUCET & DEL MORAL

Proof. Adopting the resolvent solution to the Poisson equation (which exists under our assump-

tions), we have:

f̂ξ(x)− f̂μ(x) =
∑

n∈N0

[

([Knξ − ω(ξ)](f)(x))− ([K
n
μ − ω(μ)](f)(x))

]

=
∑

n∈N0

[ n−1∑

i=0

Kiξ([Kξ −Kμ]{[K
n−i−1
μ − ω(μ)](f)})(x) + ω(μ)(f)− ω(ξ)(f)

]

=
∑

n∈N0

{ n−1∑

i=0

(
[Kiξ − ω(ξ)](Kξ −Kμ){[K

n−i−1
μ − ω(μ)](f)}(x)

)
−

[ω(ξ)− ω(μ)]([Knμ − ω(μ)](f))

}

since

−
n−1∑

i=0

ω(ξ)[Kξ −Kμ](K
n−i−1
μ (f)) = −ω(ξ)(f −Knμ (f)).

�

Appendix C. A Coupling Argument for U−statistics of Markov chains

Define a probability space (Ω×Ω,F⊗F , P̃) and a polish space (E, E), such that Ω = EN, F =

E⊗N. Define Markov chains (Ω,F , {Xn}n≥0,Px) (Ω,F , {Yn}n≥0,Pπ), such that P̃(Ω× ∙) = Px(∙),

P̃(∙ ×Ω) = Pπ(∙). That is, that {Xn}n≥0 and {Yn}n≥0 are Markov chains of the same transition

and different initial distributions and P̃ admits Px and Pπ as marginals. Denote the U−statistic

of X (resp. Y ) as S�qn,X(f) (resp. S
�q
n,Y (f)). We then have the following result.

Proposition C.1. Consider the process {Xn, Yn}n≥0 on (Ω×Ω,F ⊗F , P̃) and assume that Px

is induced by a geometrically ergodic Markov kernel. Then:

lim
n→∞

|S�qn,X(f)− S
�q
n,Y (f)| = 0

P̃−a.s..

Proof. First, note that there exist a P̃−a.s finite coupling time τ . For example, by the following

argument. Letting P(n)x (resp. P(n)π ) denote the law of (Xn, Xn+1, . . . ) (resp. (Yn, Yn+1, . . . )):

lim
n→∞

‖P(n)x − P
(n)
π ‖TV = 0

then by Theorem 2.1 of Goldstein (1979), there exists a P̃−a.s finite coupling time.
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Second, consider the U−statistic:

S�qn,X(f) =
1

(n+ 1)q

∑

α∈<q,n+1>

f(Xα(1), . . . , Xα(q))

recalling that (n)q = n!/(n−q)!. Now, any statements about S
�q
n,Y (f) can be transferred to those

of S�qn,X(f) via our coupling construction. This is because the proportion of terms that contain

variables before coupling is, for n+ 1− τ ≥ q:

∑τ∧q
k=1(τ)k(n+ 1− τ)q−k

(n+ 1)q

which, if τ <∞, goes to zero as n→∞; since the former can occur P̃−a.s. we have the desired

result. �
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