Mean field simulation for Monte Carlo integration

Part II : Feynman-Kac models

P. Del Moral

INRIA Bordeaux & Inst. Maths. Bordeaux & CMAP Polytechnique

Lectures, INLN CNRS & Nice Sophia Antipolis Univ. 2012

Some hyper-refs

- Mean field simulation for Monte Carlo integration. Chapman & Hall Maths & Stats [600p.] (May 2013).
- Feynman-Kac formulae, Genealogical & Interacting Particle Systems with appl., Springer [573p.] (2004)
- Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM-P&S (2003) (joint work with L. Miclo).
- Coalescent tree based functional representations for some Feynman-Kac particle models. Annals of Applied Probability (2009) (joint work with F. Patras, S. Rubenthaler).
- On the concentration of interacting processes. Foundations & Trends in Machine Learning [170p.] (2012). (joint work with P. Hu & L.M. Wu)
- More references on the websitehttp://www.math.u-bordeaux1.fr/~delmoral/index.html [+ Links]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contents

Introduction

Mean field simulation Interacting jumps models

Feynman-Kac models

Path integration models The 3 keys formulae Stability properties

Some illustrations (\subset Part III)

Markov restrictions Multilevel splitting Absorbing Markov chains Quasi-invariant measures Gradient of Markov semigroups

Some bad tempting ideas

Interacting particle interpretations

Nonlinear evolution equation Mean field particle models Graphical illustration Island particle models

Concentration inequalities Current population models Particle free energy/Genealogical tree models

Backward particle models

Introduction Mean field simulation Interacting jumps models

Feynman-Kac models

Some illustrations (\subset Part III)

Some bad tempting ideas

Interacting particle interpretations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Concentration inequalities

Introduction

Mean field simulation

Universal adaptive & interacting sampling technique

Part I \rightsquigarrow 2 types of stochastic interacting particle models:

- Diffusive particle models with mean field drifts [McKean-Vlasov style]
- Interacting jump particle models
 [Boltzmann & Feynman-Kac style]

Part II \subset Interacting jumps models

- Interacting jumps = Recycling transitions =
- ► Discrete generation models (⇔ geometric jump times)

Equivalent particle algorithms

Sequential Monte Carlo	Sampling	Resampling
Particle Filters	Prediction	Updating
Genetic Algorithms	Mutation	Selection
Evolutionary Population	Exploration	Branching-selection
Diffusion Monte Carlo	Free evolutions	Absorption
Quantum Monte Carlo	Walkers motions	Reconfiguration
Sampling Algorithms	Transition proposals	Accept-reject-recycle

<□ > < @ > < E > < E > E のQ @

Equivalent particle algorithms

Sequential Monte Carlo	Sampling	Resampling
Particle Filters	Prediction	Updating
Genetic Algorithms	Mutation	Selection
Evolutionary Population	Exploration	Branching-selection
Diffusion Monte Carlo	Free evolutions	Absorption
Quantum Monte Carlo	Walkers motions	Reconfiguration
Sampling Algorithms	Transition proposals	Accept-reject-recycle

More lively buzzwords:

Bootstrapping, spawning, cloning, pruning, replenish, cloning, splitting, condensation, resampled Monte Carlo, enrichment, go with the winner, subset simulation, rejection and weighting, look-a-head sampling, pilot exploration,...

A single stochastic model

Particle interpretation of Feynman-Kac path integrals

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Introduction

Feynman-Kac models

Path integration models The 3 keys formulae Stability properties

Some illustrations (\subset Part III)

Some bad tempting ideas

Interacting particle interpretations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Concentration inequalities

Feynman-Kac models

FK models = Markov chain $X_n \in E_n \oplus$ functions $G_n : E_n \rightarrow [0, \infty[$

$$d\mathbb{Q}_n := rac{1}{\mathcal{Z}_n} \left\{ \prod_{0 \le p < n} G_p(X_p) \right\} d\mathbb{P}_n \quad \text{with} \quad \mathbb{P}_n = \mathrm{Law}(X_0, \ldots, X_n)$$

Flow of *n*-marginals

$$\eta_n(f) = \gamma_n(f)/\gamma_n(1) \quad \text{with} \quad \gamma_n(f) := \mathbb{E}\left(f(X_n)\prod_{0 \le p < n} G_p(X_p)\right)$$

Feynman-Kac models

FK models = Markov chain $X_n \in E_n \oplus$ functions $G_n : E_n \rightarrow [0, \infty[$

$$d\mathbb{Q}_n := rac{1}{\mathcal{Z}_n} \left\{ \prod_{0 \le p < n} G_p(X_p) \right\} d\mathbb{P}_n \quad \text{with} \quad \mathbb{P}_n = \mathrm{Law}(X_0, \ldots, X_n)$$

Flow of *n*-marginals

$$\eta_n(f) = \gamma_n(f)/\gamma_n(1) \quad \text{with} \quad \gamma_n(f) := \mathbb{E}\left(f(X_n)\prod_{0 \le p < n} G_p(X_p)\right)$$

Evolution equations : with M_n Markov trans. of X_n and $Q_{n+1}(x, dy) = G_n(x)M_{n+1}(x, dy)$

$$\gamma_{n+1} = \gamma_n Q_{n+1}$$
 and $\eta_{n+1} = \Psi_{G_n}(\eta_n) M_{n+1}$

Time marginal measures = Path space measures:

$$\gamma_n(f_n) = \mathbb{E}\left(f_n(\mathbf{X}_n) \prod_{0 \le p < n} \mathbf{G}_p(\mathbf{X}_p)\right)$$

$$[\mathbf{X}_{\mathbf{n}} := (X_0, \dots, X_n) \& \mathbf{G}_{\mathbf{n}}(\mathbf{X}_{\mathbf{n}}) = G_n(X_n)] \implies \eta_n = \mathbb{Q}_n$$

Normalizing constants (= Free energy models):

$$\mathcal{Z}_n = \mathbb{E}\left(\prod_{0 \le p < n} G_p(X_p)\right) = \prod_{0 \le p < n} \eta_p(G_p)$$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

The last key

with

Backward Markov models

$$\mathbb{Q}_n(d(x_0,\ldots,x_n)) \propto \eta_0(dx_0)Q_1(x_0,dx_1)\ldots Q_n(x_{n-1},dx_n)$$

$$Q_{n}(x_{n-1}, dx_{n}) := G_{n-1}(x_{n-1})M_{n}(x_{n-1}, dx_{n})$$

$$\stackrel{hyp}{=} H_{n}(x_{n-1}, x_{n}) \nu_{n}(dx_{n})$$

$$\Rightarrow \eta_{n+1}(dx) = \frac{1}{\eta_{n}(G_{n})} \eta_{n}(H_{n+1}(., x)) \nu_{n+1}(dx)$$

If we set

$$\mathbb{M}_{n+1,\eta_n}(x_{n+1}, dx_n) = \frac{\eta_n(dx_n) \ H_{n+1}(x_n, x_{n+1})}{\eta_n(H_{n+1}(., x_{n+1}))}$$

then we find the backward equation

$$\eta_{n+1}(dx_{n+1}) \mathbb{M}_{n+1,\eta_n}(x_{n+1}, dx_n) = \frac{1}{\eta_n(G_n)} \eta_n(dx_n) Q_{n+1}(x_n, dx_{n+1})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The last key (continued)

 \oplus

$$\mathbb{Q}_n(d(x_0,\ldots,x_n)) \propto \eta_0(dx_0)Q_1(x_0,dx_1)\ldots Q_n(x_{n-1},dx_n)$$
$$\eta_{n+1}(dx_{n+1}) \mathbb{M}_{n+1,\eta_n}(x_{n+1},dx_n) \propto \eta_n(dx_n) Q_{n+1}(x_n,dx_{n+1})$$
$$\Downarrow$$

Backward Markov chain model :

$$\mathbb{Q}_n(d(x_0,\ldots,x_n)) = \eta_n(dx_n) \mathbb{M}_{n,\eta_{n-1}}(x_n,dx_{n-1})\ldots\mathbb{M}_{1,\eta_0}(x_1,dx_0)$$

with the dual/backward Markov transitions

$$\mathbb{M}_{n+1,\eta_n}(x_{n+1},dx_n) \propto \eta_n(dx_n) H_{n+1}(x_n,x_{n+1})$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Stability properties

Transition/Excursions/Path spaces

$$X_n = (X'_n, X'_{n+1})$$
 $X_n = X'_{[T_n, T_{n+1}]}$ $X_n = (X'_0, \dots, X'_n)$

► ⊃ Continuous time models ⊃ Langevin diffusions

$$X_n = X'_{[t_n, t_{n+1}]}$$
 & $G_n(X_n) = \exp \int_{t_n}^{t_{n+1}} V_t(X'_t) dt$

OR Euler schemes (Langevin diff. \rightsquigarrow Metropolis-Hasting moves) OR Fully continuous time particle models \rightsquigarrow Schrödinger operators

$$\frac{d}{dt}\gamma_t(f) = \gamma_t(L_t^V(f)) \quad \text{with} \quad L_t^V = L_t' + V_t$$

Important observation:

$$\gamma_t(1) = \mathbb{E}\left(\exp\int_0^t V_s(X'_s)ds\right) = \exp\int_0^t \eta_s(V_s)ds \quad \text{with} \quad \eta_t = \gamma_t/\gamma_t(1)$$

Stability properties

Change of probability measures-Importance sampling (IS) -Sequential Monte Carlo methods (SMC) :

For any target probability measures of the form

and any Markov transition M_{n+1}' s.t. $Q_{n+1}(x_n, .) \ll M_{n+1}'(x_n, .)$

$$G_n(x_n, x_{n+1}) = \frac{\text{Target at time } (n+1)}{\text{Target at time } (n) \times \text{Twisted transition}}$$
$$= \frac{dQ_{n+1}(x_n, .)}{dM'_{n+1}(x_n, .)}(x_{n+1})$$

Stability properties

Change of probability measures-Importance sampling (IS) -Sequential Monte Carlo methods (SMC) :

For any target probability measures of the form

$$egin{aligned} \mathbb{Q}_{n+1}(d(x_0,\ldots,x_{n+1})) &\propto & \mathbb{Q}_n(d(x_0,\ldots,x_n)) imes Q_{n+1}(x_n,dx_{n+1}) \ &\propto & \eta_0(dx_0)Q_1(x_0,dx_1)\ldots Q_{n+1}(x_n,dx_{n+1}) \end{aligned}$$

and any Markov transition M_{n+1}' s.t. $Q_{n+1}(x_n, .) \ll M_{n+1}'(x_n, .)$

$$G_n(x_n, x_{n+1}) = \frac{\text{Target at time } (n+1)}{\text{Target at time } (n) \times \text{Twisted transition}}$$
$$= \frac{dQ_{n+1}(x_n, .)}{dM'_{n+1}(x_n, .)}(x_{n+1})$$

Feynman-Kac model with $X_n = (X'_n, X'_{n+1})$

$$\mathbb{Q}_n = \frac{1}{\mathcal{Z}_n} \left\{ \prod_{0 \le p < n} G_p(X_p) \right\} d\mathbb{P}_n \quad \text{with} \quad \mathbb{P}_n = \operatorname{Law}(X_0, \dots, X_n)$$

Introduction

Feynman-Kac models

Some illustrations (\subset Part III)

Markov restrictions Multilevel splitting Absorbing Markov chains Quasi-invariant measures Gradient of Markov semigroups

Some bad tempting ideas

Interacting particle interpretations

Concentration inequalities

Markov restrictions

▶ **Confinements:** X_n random walk $\in \mathbb{Z}^d \supset A$ & $G_n := 1_A$

$$\mathbb{Q}_n = \operatorname{Law}\left((X_0, \ldots, X_n) \mid X_p \in A, \ \forall 0 \le p < n\right)$$

$$\mathcal{Z}_n = \operatorname{Proba}\left(X_p \in A, \ \forall 0 \le p < n\right)$$

► SAW :
$$X_n = (X'_p)_{0 \le p \le n}$$
 & $G_n(X_n) = 1_{X'_n \notin \{X'_0, ..., X'_{n-1}\}}$

$$\mathbb{Q}_n = \operatorname{Law}\left((X'_0, \ldots, X'_n) \mid X'_p \neq X'_q, \ \forall 0 \le p < q < n\right)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\mathcal{Z}_n = \operatorname{Proba} \left(X'_p \neq X'_q, \ \forall 0 \leq p < q < n
ight)$$

Multilevel splitting

Decreasing level sets $A_n \downarrow$, with B non critical recurrent subset.

$$T_n := \inf \{ t \ge T_{n-1} : X'_t \in (A_n \cup B) \}$$

Excursion valued Feynman-Kac model:

$$X_n = (X'_t)_{t \in [T_n, T_{n+1}]} & \& G_n(X_n) = 1_{A_{n+1}}(X'_{T_{n+1}})$$

$$\Downarrow$$

$$\mathbb{Q}_n = \operatorname{Law} \left(X'_{[T_0, T_n]} \mid X' \text{ hits } A_{n-1} \text{ before } B \right)$$

$$\mathcal{Z}_n = \mathbb{P}(X' \text{ hits } A_{n-1} \text{ before } B)$$

Absorbing Markov chains

-1

$$X_n^c \in E_n^c \xrightarrow{absorption \sim (1-G_n)} \widehat{X}_n^c \xrightarrow{exploration \sim M_{n+1}} X_{n+1}^c$$

$$\mathbb{Q}_n = \operatorname{Law}((X_0^c, \dots, X_n^c) \mid T^{abs.} \ge n) \quad \& \quad \mathcal{Z}_n = \operatorname{Proba}\left(T^{abs.} \ge n\right)$$

Quasi-invariant measures : $(G_n, M_n) = (G, M)$ & $M \mu$ -reversible

$$\frac{1}{n}\log\mathbb{P}\left(T^{abs.}\geq n\right)\simeq_{n\uparrow\infty}\lambda = \text{top spect. of } Q(x,dy)=G(x)M(x,dy)$$

[Frobenius theo] $Q(h) = \lambda h = \lambda \times$ eigenfunction (ground state)

$$\mathbb{P}(X_n^c \in dx \mid T^{abs.} > n) \simeq_{n\uparrow\infty} \frac{1}{\mu(h)} h(x) \mu(dx)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Doob *h*-processes X^h

$$\mathbb{Q}_n(d(x_0,\ldots,x_n)) \propto \mathbb{P}((X_0^h,\ldots,X_n^h) \in d(x_0,\ldots,x_n)) \ h^{-1}(x_n)$$

with

$$M^h(x,dy)=rac{1}{\lambda}h^{-1}(x)Q(x,dy)h(y)=rac{M(x,dy)h(y)}{M(h)(x)}$$

▶ Invariant measure $\mu_h = \mu_h M^h$ & Additive functionals

$$\overline{F}_n(x_0,\ldots,x_n)=\frac{1}{n+1}\sum_{0\leq p\leq n}f(x_p)\Longrightarrow \mathbb{Q}_n(\overline{F}_n)\simeq_n\mu_h(f)$$

• If $G = G^{\theta}$ depends on some $\theta \in \mathbb{R} \rightsquigarrow f := \frac{\partial}{\partial \theta} \log G^{\theta}$

$$rac{\partial}{\partial heta} \log \lambda^{ heta} \simeq_n rac{1}{n+1} rac{\partial}{\partial heta} \log \mathcal{Z}^{ heta}_{n+1} = \mathbb{Q}_n(\overline{F}_n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Gradient of Markov semigroups

$$X_{n+1}(x) = \mathcal{F}_n(X_n(x), W_n) \quad (X_0(x) = x \in \mathbb{R}^d) \quad \rightsquigarrow \quad P_n(f)(x) := \mathbb{E}\left(f(X_n(x))\right)$$

First variational equation

$$\frac{\partial X_{n+1}}{\partial x}(x) = A_n(x, W_n) \frac{\partial X_n}{\partial x}(x) \quad \text{with} \quad A_n^{(i,j)}(x, w) = \frac{\partial \mathcal{F}_n^i(., w)}{\partial x^j}(x)$$

Random process on the sphere $U_0 = u_0 \in \mathbb{S}^{d-1}$

$$U_{n+1} = A_n(X_n, W_n)U_n/\|A_n(X_n, W_n)U_n\| = \frac{\frac{\partial X_n}{\partial x}(x) u_0}{\left\|\frac{\partial X_n}{\partial x}(x) u_0\right\|}$$

Feynman-Kac model $\mathcal{X}_n = (X_n, U_n, W_n)$ & $\mathcal{G}_n(x, u, w) = \|\mathcal{A}_n(x, w) \ u\|$

$$\nabla P_{n+1}(f)(x) \ u_0 = \mathbb{E}\left(\underbrace{\mathcal{F}(\mathcal{X}_{n+1})}_{\nabla f(\mathcal{X}_{n+1}) \ U_{n+1}} \ \underbrace{\prod_{0 \le p \le n}}_{\|\frac{\partial \mathcal{X}_n}{\partial x}(x) \ u_0\|}\right)$$

Introduction

Feynman-Kac models

Some illustrations (\subset Part III)

Some bad tempting ideas

Interacting particle interpretations

Concentration inequalities

Bad tempting ideas

I.i.d. weighted samples X_n^i

$$\mathcal{Z}_n := \mathbb{E}\left(\prod_{0 \le p < n} G_p(X_p)\right) \simeq \mathcal{Z}_n^N := \frac{1}{N} \sum_{i=1}^N \prod_{0 \le p < n} G_p(X_p^i)$$

or in terms of killing-absorption models

$$\mathcal{Z}_n = \mathbb{P}(T \ge n) \simeq \mathcal{Z}_n^N := \frac{1}{N} \sum_{1 \le i \le N} \mathbf{1}_{T^i \ge n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bad tempting ideas

I.i.d. weighted samples X_n^i

$$\mathcal{Z}_n := \mathbb{E}\left(\prod_{0 \le p < n} G_p(X_p)\right) \simeq \mathcal{Z}_n^N := \frac{1}{N} \sum_{i=1}^N \prod_{0 \le p < n} G_p(X_p^i)$$

or in terms of killing-absorption models

$$\mathcal{Z}_n = \mathbb{P}(T \ge n) \simeq \mathcal{Z}_n^N := \frac{1}{N} \sum_{1 \le i \le N} \mathbf{1}_{T^i \ge n}$$

Example : X_n simple $\mathsf{RW} \in \mathbb{Z}^d$, $G_n = \mathbb{1}_{[-10,10]}$ (killed at the boundary) \Downarrow

$$\exists n = n(\omega) : \mathcal{Z}_n^N = 0$$

Bad tempting ideas

I.i.d. weighted samples X_n^i

$$\mathcal{Z}_n := \mathbb{E}\left(\prod_{0 \le p < n} G_p(X_p)\right) \simeq \mathcal{Z}_n^N := \frac{1}{N} \sum_{i=1}^N \prod_{0 \le p < n} G_p(X_p^i)$$

or in terms of killing-absorption models

$$\mathcal{Z}_n = \mathbb{P}(T \ge n) \simeq \mathcal{Z}_n^N := \frac{1}{N} \sum_{1 \le i \le N} \mathbf{1}_{T^i \ge n}$$

Example : X_n simple $\mathsf{RW} \in \mathbb{Z}^d$, $G_n = \mathbb{1}_{[-10,10]}$ (killed at the boundary) \Downarrow

$$\exists n = n(\omega) : \mathcal{Z}_n^N = 0$$

and

$$N \mathbb{E}\left(\left[\frac{\mathcal{Z}_{n}^{N}}{\mathcal{Z}_{n}}-1\right]^{2}\right) = \frac{1-\mathcal{Z}_{n}}{\mathcal{Z}_{n}}$$
$$\simeq \operatorname{Proba}(X_{p} \in A, \ \forall 0 \leq p < n)^{-1} = \mathbb{P}\left(T \geq n\right)^{-1}$$

Our objective

Find an unbiased estimate \mathcal{Z}_n^N s.t.

$$N \mathbb{E}\left(\left[\frac{\mathcal{Z}_n^N}{\mathcal{Z}_n} - 1\right]^2\right) \le c \times n$$

using the multiplicative formula

$$\mathbb{E}\left(\prod_{0\leq p< n} G_p(X_p)\right) = \prod_{0\leq p< n} \eta_p(G_p)$$

And estimating/Learning each (larger) terms in the product

$$\eta_{p}(G_{p}) \simeq \eta_{p}^{N}(G_{p}) \quad \text{with} \quad \eta_{p}^{N} = \frac{1}{N} \sum_{1 \leq i \leq N} \delta_{\xi_{n}^{i}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

Feynman-Kac models

Some illustrations (\subset Part III)

Some bad tempting ideas

Interacting particle interpretations

Nonlinear evolution equation Mean field particle models Graphical illustration Island particle models

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Concentration inequalities

Flow of *n*-marginals $[X_n \text{ Markov with transitions } M_n]$

$$\eta_n(f) = \gamma_n(f)/\gamma_n(1) \quad \text{with} \quad \gamma_n(f) := \mathbb{E}\left(f(X_n)\prod_{0 \le p < n} G_p(X_p)\right)$$

$$(\gamma_n(1) = \mathcal{Z}_n)$$

Nonlinear evolution equation :

$$\begin{aligned} \eta_{n+1} &= \Psi_{G_n}(\eta_n) \mathcal{M}_{n+1} \\ \mathcal{Z}_{n+1} &= \eta_n(G_n) \times \mathcal{Z}_n \end{aligned}$$

 \downarrow

Nonlinear m.v.p. = Law of a Markov \overline{X}_n (perfect sampler)

$$\eta_{n+1} = \Phi_{n+1}(\eta_n)$$

= $\eta_n (S_{n,\eta_n} M_{n+1}) = \eta_n \mathbf{K}_{n+1,\eta_n} = \operatorname{Law}(\overline{X}_{n+1})$

Examples related to product models

$$\eta_n(dx) := rac{1}{\mathcal{Z}_n} \left\{ \prod_{
ho=0}^n h_
ho(x)
ight\} \lambda(dx) \quad ext{with} \quad h_
ho \geq 0$$

2 illustrations:

$$h_{p}(x) = e^{-(\beta_{p+1} - \beta_{p})V(x)} \quad \beta_{p} \uparrow \implies \eta_{n}(dx) = \frac{1}{\mathcal{Z}_{n}} e^{-\beta_{n}V(x)} \lambda(dx)$$
$$h_{p}(x) = 1_{\mathcal{A}_{p+1}}(x) \quad \mathcal{A}_{p} \downarrow \implies \eta_{n}(dx) = \frac{1}{\mathcal{Z}_{n}} 1_{\mathcal{A}_{n}}(x) \lambda(dx)$$

For any MCMC transitions M_n with target η_n , we have

 $\eta_{n+1} = \eta_{n+1}M_{n+1} = \Psi_{h_{n+1}}(\eta_n)M_{n+1} \subset$ Feynman-Kac model

McKean Markov chain model

$$\eta_{n+1} = \eta_n K_{n+1,\eta_n} = \operatorname{Law}(\overline{X}_n)$$

∜

Markov chain $\xi_n = (\xi_n^i)_{1 \le i \le N} \in E_n^N$

$$\xi_n^i \quad \rightsquigarrow \quad \xi_{n+1}^i \quad \sim \quad \mathcal{K}_{n+1,\eta_n^N}(\xi_n^i, dx) \quad \text{with} \quad \eta_n^N = \frac{1}{N} \sum_{1 \le i \le N} \delta_{\xi_n^i}$$

and the (unbiased) particle normalizing constants

$$\mathcal{Z}_{n+1}^{\mathsf{N}} = \eta_n^{\mathsf{N}}(G_n) \times \mathcal{Z}_n^{\mathsf{N}} = \prod_{0 \le p \le n} \eta_p^{\mathsf{N}}(G_p)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 G_n -acceptance-rejection with recycling $\oplus M_{n+1}$ -propositions

 G_n -acceptance-rejection with recycling \oplus M_{n+1} -propositions

 \rightsquigarrow Genetic type branching particle algorithm (GA)

$$\xi_n \xrightarrow{G_n - \text{selection}} \widehat{\xi}_n \xrightarrow{M_n - \text{mutation}} \xi_{n+1}$$

Mean field FK simulation $\xi_n^i \rightsquigarrow \xi_{n+1}^i \sim K_{n+1,\eta_n^N} = S_{n,\eta_n^N} M_{n+1}$ \uparrow \rightsquigarrow Sequential particle simulation technique (SMC)

 G_n -acceptance-rejection with recycling \oplus M_{n+1} -propositions

 \rightsquigarrow Genetic type branching particle algorithm (GA)

 $\xi_n \xrightarrow{G_n - \text{selection}} \widehat{\xi}_n \xrightarrow{M_n - \text{mutation}} \xi_{n+1}$

→ Reconfiguration Monte Carlo (particles → walkers) (QMC)

(Selection, Mutation) = (Reconfiguration, exploration)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Continuous time Feynman-Kac particle models

Master equation

$$\eta_t(\bullet) = \frac{\gamma_t(\bullet)}{\gamma_t(1)} = \operatorname{Law}(\overline{X}_t) \quad \Rightarrow \quad \frac{d}{dt}\eta_t(f) = \eta_t(L_{t,\eta_t}(f))$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Continuous time Feynman-Kac particle models

Master equation

$$\eta_t(\bullet) = rac{\gamma_t(\bullet)}{\gamma_t(1)} = \operatorname{Law}(\overline{X}_t) \quad \Rightarrow \quad rac{d}{dt}\eta_t(f) = \eta_t(L_{t,\eta_t}(f))$$

$$(ex. : V_t = -U_t \le 0)$$

$$L_{t,\eta_t}(f)(x) = \underbrace{L'_t(f)(x)}_{\text{free exploration}} + \underbrace{U_t(x)}_{\text{acceptance rate}} \int (f(y) - f(x)) \underbrace{\eta_t(dy)}_{\text{interacting jump law}}$$

$$\bigoplus L_{t,\eta_t}(f) = \underbrace{L'_t(f) - U_t}_{\text{Schrödinger's op.}} + \underbrace{U_t \eta_t(f)}_{\text{normalizing-stabilizing term}}$$

Particle model: Survival-acceptance rates Recycling jumps

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How to use the full ancestral tree model ?

$$G_{n-1}(x_{n-1})M_n(x_{n-1},dx_n) \stackrel{hyp}{=} H_n(x_{n-1},x_n) \nu_n(dx_n)$$

$$\Rightarrow \mathbb{Q}_n(d(x_0,\ldots,x_n)) = \eta_n(dx_n) \underbrace{\mathbb{M}_{n,\eta_{n-1}}(x_n,dx_{n-1})}_{\propto \eta_{n-1}(dx_{n-1})} \ldots \mathbb{M}_{1,\eta_0}(x_1,dx_0)$$

How to use the full ancestral tree model ?

$$G_{n-1}(x_{n-1})M_n(x_{n-1},dx_n) \stackrel{hyp}{=} H_n(x_{n-1},x_n) \nu_n(dx_n)$$

$$\Rightarrow \mathbb{Q}_n(d(x_0,\ldots,x_n)) = \eta_n(dx_n) \underbrace{\mathbb{M}_{n,\eta_{n-1}}(x_n,dx_{n-1})}_{\propto \eta_{n-1}(dx_{n-1}) H_n(x_{n-1},x_n)} \dots \mathbb{M}_{1,\eta_0}(x_1,dx_0)$$

Particle approximation = Random stochastic matrices $\mathbb{Q}_{n}^{N}(d(x_{0},...,x_{n})) = \eta_{n}^{N}(dx_{n}) \mathbb{M}_{n,\eta_{n-1}^{N}}(x_{n},dx_{n-1})...\mathbb{M}_{1,\eta_{0}^{N}}(x_{1},dx_{0})$ How to use the full ancestral tree model ?

$$G_{n-1}(x_{n-1})M_n(x_{n-1},dx_n) \stackrel{hyp}{=} H_n(x_{n-1},x_n) \nu_n(dx_n)$$

$$\Rightarrow \mathbb{Q}_n(d(x_0,\ldots,x_n)) = \eta_n(dx_n) \underbrace{\mathbb{M}_{n,\eta_{n-1}}(x_n,dx_{n-1})}_{\propto \eta_{n-1}(dx_{n-1}) H_n(x_{n-1},x_n)} \ldots \mathbb{M}_{1,\eta_0}(x_1,dx_0)$$

Particle approximation = Random stochastic matrices $\mathbb{Q}_{n}^{N}(d(x_{0},...,x_{n})) = \eta_{n}^{N}(dx_{n}) \mathbb{M}_{n,\eta_{n-1}^{N}}(x_{n},dx_{n-1})...\mathbb{M}_{1,\eta_{0}^{N}}(x_{1},dx_{0})$

Ex.: Additive functionals $f_n(x_0, ..., x_n) = \frac{1}{n+1} \sum_{0 \le p \le n} f_p(x_p)$

$$\mathbb{Q}_{n}^{N}(\mathbf{f_{n}}) := \frac{1}{n+1} \sum_{0 \le p \le n} \eta_{n}^{N} \underbrace{\mathbb{M}_{n,\eta_{n-1}^{N}} \dots \mathbb{M}_{p+1,\eta_{p}^{N}}(f_{p})}_{\text{matrix operations}}$$

4 particle estimates

• Individuals ξ_n^i "almost" iid with law

$$\eta_n \simeq \eta_n^{\mathsf{N}} = \frac{1}{N} \sum_{1 \le i \le \mathsf{N}} \delta_{\xi_n^i}$$

▶ Path space models ~ Ancestral lines "almost" iid with law

$$\mathbb{Q}_n \simeq \eta_n^N := \frac{1}{N} \sum_{1 \le i \le N} \delta_{\operatorname{Ancestral line}_n(i)}$$

Backward particle model

$$\mathbb{Q}_{n}^{N}(d(x_{0},...,x_{n})) = \eta_{n}^{N}(dx_{n}) \mathbb{M}_{n,\eta_{n-1}^{N}}(x_{n},dx_{n-1})...\mathbb{M}_{1,\eta_{0}^{N}}(x_{1},dx_{0})$$

Normalizing constants

$$\mathcal{Z}_{n+1} = \prod_{0 \le p \le n} \eta_p(G_p) \simeq_{N\uparrow\infty} \mathcal{Z}_{n+1}^{N} = \prod_{0 \le p \le n} \eta_p^{N}(G_p) \quad \text{(Unbiased)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Island models

Fig 3.4 Schematic of a genetic algorithm using island migration

Reminder : the unbiased property

$$\mathbb{E}\left(\mathbf{f}_{n}(\mathbf{X}_{n}) \prod_{0 \leq p < n} \mathbf{G}_{p}(\mathbf{X}_{p})\right) = \mathbb{E}\left(\eta_{n}^{N}(\mathbf{f}_{n}) \prod_{0 \leq p < n} \eta_{p}^{N}(\mathbf{G}_{p})\right)$$
$$= \mathbb{E}\left(\mathbf{F}_{n}(\mathcal{X}_{n}) \prod_{0 \leq p < n} \mathcal{G}_{p}(\mathcal{X}_{p})\right)$$

with the Island evolution Markov chain model

$$\mathcal{X}_n := \eta_n^N$$
 and $\mathcal{G}_n(\mathcal{X}_n) = \eta_n^N(\mathbf{G}_n) = \mathcal{X}_n(\mathbf{G}_n)$

 \Rightarrow particle model with $(\mathcal{X}_n, \mathcal{G}_n(\mathcal{X}_n)) =$ Interacting Island particle model

Some key advantages

Mean field models=Stochastic linearization/perturbation technique

$$\eta_n^N = \eta_{n-1}^N K_{n,\eta_{n-1}^N} + rac{1}{\sqrt{N}} V_n^N$$

with $V_n^N \simeq V_n$ independent centered Gaussian fields .

► $\eta_n = \eta_{n-1} K_{n,\eta_{n-1}}$ stable \Rightarrow Non propagation of local sampling errors \implies Uniform control w.r.t. the time horizon

- "No burning, no need to study the stability of MCMC models".
- Stochastic adaptive grid approximation
- Nonlinear system ~> positive beneficial interactions.
- Simple and natural sampling algorithm.

Introduction

Feynman-Kac models

Some illustrations (\subset Part III)

Some bad tempting ideas

Interacting particle interpretations

Concentration inequalities Current population models Particle free energy/Genealogical tree models Backward particle models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Current population models

Constants (c₁, c₂) related to (bias, variance), *c* finite constant Test functions/observables $||f_n|| \le 1$, $\forall (x \ge 0, n \ge 0, N \ge 1)$.

When $E_n = \mathbb{R}^d$:

$$\mathcal{F}_n(y) := \eta_n \left(\mathbb{1}_{(-\infty,y]}
ight) \quad ext{and} \quad \mathcal{F}_n^N(y) := \eta_n^N \left(\mathbb{1}_{(-\infty,y]}
ight) \, ext{with} \, y \in \mathbb{R}^d$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The probability of any of the following events is greater than $1 - e^{-x}$.

$$\begin{aligned} \left| \eta_n^N - \eta_n \right| (f_n) &\leq \frac{c_1}{N} \left(1 + x + \sqrt{x} \right) + \frac{c_2}{\sqrt{N}} \sqrt{x} \\ \sup_{0 \leq p \leq n} \left| \left[\eta_p^N - \eta_p \right] (f_p) \right| &\leq c \sqrt{x \log(n+e)/N} \\ \left\| F_n^N - F_n \right\| &\leq c \sqrt{d (x+1)/N} \end{aligned}$$

Particle free energy/Genealogical tree models

Constants (c_1, c_2) related to (bias, variance), c finite constant $\forall (x \ge 0, n \ge 0, N \ge 1)$.

The probability of any of the following events is greater than $1 - e^{-x}$

$$\left|\frac{1}{n}\log \mathcal{Z}_n^N - \frac{1}{n}\log \mathcal{Z}_n\right| \leq \frac{c_1}{N} \left(1 + x + \sqrt{x}\right) + \frac{c_2}{\sqrt{N}} \sqrt{x}$$

$$\left|\left[\eta_n^{\mathsf{N}} - \mathbb{Q}_n\right](f_n)\right| \le c_1 \ \frac{(n+1)}{N} \ \left(1 + x + \sqrt{x}\right) + c_2 \ \sqrt{\frac{(n+1)}{N}} \ \sqrt{x}$$

with $\eta_n^N =$ Genealogical tree models := η_n^N (in path space)

Backward particle models

Constants (c_1, c_2) related to (bias,variance), c finite constant. For any normalized additive functional $\mathbf{f_n}$ with $||f_p|| \le 1$, $\forall (x \ge 0, n \ge 0, N \ge 1)$

The probability of the following event is greater than $1 - e^{-x}$

$$\left|\left[\mathbb{Q}_{n}^{N}-\mathbb{Q}_{n}
ight]\left(\mathbf{f}_{n}
ight)
ight|\leq c_{1} \; rac{1}{N} \; (1+(x+\sqrt{x}))+c_{2} \; \sqrt{rac{x}{N(n+1)}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <