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Abstract

We introduce a Monte Carlo method for global optimization of a certain class of (possibly non-convex
and possibly non-differentiable) cost functions with respect to a high dimensional signal of interest.
The proposed approach involves the transformation of the optimization problem into one of inference
in a discrete-time dynamical system in state-space form. In particular, we describe a methodology for
constructing an associated state-space model which has the signal of interest as its unobserved dynamic
state. The model is matched to the cost function in the sense that the maximum a posteriori (MAP)
estimate of the system state is also a global minimizer of the cost. The advantage of recasting the
optimization problem in an estimation framework is that we can apply the family of sequential Monte
Carlo algorithms as an efficient aid for the numerical search of solutions. This kind of techniques produce,
in a natural way, a random grid that is dense in the regions where the a posteriori probability mass is
high (hence, the cost is low) and sparse elsewhere. Simple search techniques can then be applied to locate
the best point in the grid with limited extra computations. In the paper, we describe two candidate
algorithms, prove that they converge almost surely to a global minimizer of the cost and provide two
application examples, including some illustrative numerical results1.
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1 Introduction

Many scientific and engineering problems involve the optimization of general high-dimensional objective

functions, not necessarily smooth and possibly with many local extrema. Algorithms designed to be

used in such problems are commonly referred to as “global optimization” methods and their application

often encounters difficulties related to convergence, numerical stability and computational complexity.

We can classify the techniques in the field as either deterministic or stochastic [26]. Deterministic

approaches exploit analytical properties of the objective function, typically convexity [18], monotonicity

[33] or smoothness [35]. Such techniques can be difficult to apply with general functions, or they can

simply be inconvenient to use in the initial stages of the treatment of a real-world problem, when the

objective function is being defined and is subject to change. For this reason, many state-of-the-art global

optimization algorithms are stochastic, meaning that they involve Monte Carlo simulations and, as a

consequence, their output is random even for a fixed input. Examples of stochastic procedures include

multistart [27], random search [2], simmulated annealing [17] or evolutionary [32] methods.

On the other hand, a body of knowledge on Monte Carlo techniques for inference in broad classes of

statistical models has evolved over the past three decades, including Markov-chain Monte Carlo (MCMC)

[13] and sequential Monte Carlo [8] methods. The study of the connections between inference and

optimization may provide new insights and may possibly lead to the development of some techniques.

A well-known example is the interpretation of the simulated annealing method as an MCMC algorithm

[29]. More recently, it has been proposed to tackle deterministic optimal control problems by way of

Monte Carlo nonlinear filtering methods [23]. The latter approach can be interpreted as an application

of the Maslov optimization theory [21].

In this paper, we investigate the transformation of a certain class of optimization problems

into equivalent maximum a posteriori (MAP) estimation problems in dynamic state-space systems.

Specifically, we consider the minimization of a cost function CT (x0:T ), where x0:T = {x0, ..., xT } is a

high-dimensional set of unknowns and where the function can be recursively decomposed into a sequence

of costs CT−1(x0:T−1), CT−2(x0:T−2), ..., C0(x0), with lower-dimensional supports (i.e., the dimension of

x0:t is lower than the dimension of x0:t+1). We prove that for costs of this type it is possible to design an

associated state-space system such that any MAP estimate of the state of the system at time T coincides

with a global minimum of the cost. The advantage of this reformulation of the problem is that we can

draw from a pool of sequential Monte Carlo methods for inference in state-space models. These techniques
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produce, in a natural way, a random grid in the space of the unknowns that is dense in the regions where

the a posteriori probability mass is high (and, equivalently, the cost is low) and sparse elsewhere. A

subsequent (simple) search over this grid yields an estimate of the global minimizer. In this work, we

start from the standard sequential Monte Carlo technique termed sequential importance resampling [16]

(see also [7]) and study its combination with two search procedures. The first one is a direct search over

the sample paths in the space of x0:T generated by the SIR algorithm and has a complexity that grows

linearly with the number of samples. The second one performs a trellis search over an extended grid using

the Viterbi algorithm [11], as originally suggested in [14], and its complexity grows with the square of

the number of samples. Both search procedures can be implemented sequentially and together with the

SIR method. Our main contribution is to prove that the two resulting optimization algorithms converge

almost surely to a global minimum of the cost (such analysis was not addressed in [14]) and to obtain a

lower bound on the the number of samples needed to attain a certain accuracy. These results are new

to our best knowledge and start from the derivation of Lp-bounds for the error of the bootstrap filter in

the path space of x0:T . Such bounds were not explicitly available in the previous literature (see [5] for

L2-bounds in the path space of x0:T and [22] for Lp-bounds on the space of xt). We also provide two

application examples, including a typical global optimization problem (the Neumaier 3 problem [1]) and

the design of cross-talk cancellation acoustic filters [28]. We further use these two problems to illustrate

the numerical performance of the proposed algorithms.

Our approach bears similarities to the work in [23]. However, we do not restrict ourselves to optimal

control applications and consider a broader class of minimization problems instead. Indeed, the objective

functions studied in [23] are instances of the family of additive costs in Section 5 of this paper. A

comparison of our analysis of the asymptotic convergence of the resulting optimization algorithms and

that presented in [23] is presented in Remark 3.

The remaining of this paper is organized as follows. After a brief introduction to the notations in

the paper, Section 3 describes the class of optimization problems of interest. Their reformulation as

inference problems in state-space systems is introduced in Section 4. Two examples, including additive

cost functions and minimax problems, are investigated in more detail in Section 5. The sequential Monte

Carlo algorithms for global MAP estimation based on state-space models are described and analyzed in

Section 6. Section 7 shows some numerical results and, finally, Section 8 is devoted to the conclusions.
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2 Notation

Random variates and their realizations are represented by the same upper- and lower-case letter, e.g., the

random variate X and its realization X = x. Random sequences are denoted as {Xt}t∈N.

Probability density functions (pdf’s) are indicated by the letter π. This is an argument-wise notation,

hence for the random variates X and Y , π(x) signifies the density of X , possibly different from π(y),

which represents the pdf of Y . The integral of a function f(x) with respect to a measure with density

π(x) is denoted by the shorthand (f, π) ,
∫

f(x)π(x)dx.

The letter C is used throughout the paper to denote costs. It may be an overall cost for a sequence

(and we use upper-case letters, Ct and Ct) or a partial cost for a subsequence (and we write lower-case

letters, ct and ct).

3 Problem statement

We address the problem of finding the global minima of a certain class of cost functions with recursive

structures. Specifically, let {xt}t∈N∪{0} and {yt}t∈N be discrete-time sequences in R
dx and R

dy ,

respectively, where dx and dy are the (integer) dimensions of the vectors of each sequence. For some

arbitrarily large but finite horizon T , we aim at computing

X
c
T = arg min

x0:T

CT (x0:T ; y1:T ), (1)

where CT (·; y1:T ) :
(

R
dx
)T+1 → R

+ is the real non-negative cost function of interest, the subsequence

x0:T = {x0, x1, . . . , xT } denotes the unknowns to be optimized and the subsequence y1:T = {y1, y2, . . . , yT }

is known and provides the fixed parameters that determine the specific form of CT . The set Xc
T contains

all the subsequences x0:T ∈
(

R
dx
)T+1

for which CT (·; y1:T ) attains its minimum value.

The methods to be introduced in this paper are applicable when the cost function can be constructed

recursively, i.e., when there exists a sequence of functions Ct(·; y1:t) :
(

R
dx
)t+1 → R

+, t = 0, 1, . . . , T , such

that Ct(x0:t; y1:t) can be computed from Ct−1(x1:t−1; y1:t−1) by some known update rule. In particular,

we assume that Ct can be decomposed as

Ct(x0:t; y1:t) = H (Ct−1(x0:t−1; y1:t−1), ct(x0:t; yt)) , t = 1, 2, . . . , T, (2)

where H : R
+ × R

+ → R
+ is the update function and ct(·; yt) :

(

R
dx
)t+1 → R

+ is termed the partial

cost function at time t. The recursion is initialized with some function C0 : R
dx → R

+ which does not

formally depend on any element of the sequence y1:T .
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Example 1 A toy problem.

Consider the Becker and Lago problem adapted from [1], which we write as

min
x1:T

J(x1:T ) =

T
∑

t=1

(|xt| − 5)
2
, (3)

subject to xt ∈ [−10, +10] for all t ∈ {1, 2, . . . , T} (the problem is originally stated for T = 2 in [1]).

There are 2T obvious solutions at xo
1:T ∈ {±5, . . . ,±5}. For all global minima J(xo

1:T ) = 0.

We represent problem (3) using the notation described at the beginning of this section by defining

the partial cost ct(x0:t; yt) , (|xt| − yt)
2

and taking an additive update function, i.e., Ct(x0:t; y1:t) =

Ct−1(x0:t−1; y1:t−1) + ct(x0:t; yt). Since the problem does not depend on x0, we set C0(x0) = 0, ∀x0 ∈ R,

to initialize the recursion. The cost function parameters are all equal in this case, namely yt = 5 for every

t = 1, 2, ..., T . The solution set is Xc
T = {±5, . . . ,±5}.

Note that, very often, the partial cost ct(x0:t; yt) does not actually depend on the complete sequence

x0:t, but only on some shorter subsequence xt−k:t (k ≥ 0). In Example 1 we have the simplest case, in

which ct(x0:t; yt) is only a function of xt (with fixed parameters yt).

Despite the simplicity of the example above, we may realistically expect that problems of the form

of (1) be hard to solve in practical scenarios. Indeed, CT (x0:T ; y1:T ) may be analytically intractable and

present multiple minima. Also, due to the high dimension of the unknown, x0:T ∈
(

R
dx
)T+1

, it may be

hard to devise a stable and convergent numerical algorithm with acceptable computational complexity.

In this paper, we propose to recast the optimization problem (1) as one of tracking the state of a

dynamic state-space model. The advantage of this transformation is the availability of a pool of sequential

Monte Carlo techniques that can be applied to numerically compute dynamic-state estimates. In Section

6 we describe specific algorithms of this class and show how they can asymptotically approximate any

element in the solution set Xc
T with any desired accuracy. Before that, we consider the transformation of

(1) into an equivalent estimation problem.

4 State-space models

In order to transform problem (1), we consider a state-space model where the unknowns, x0:T , play the

role of the system state and the cost-function parameters, y1:T , are the associated observations.

To be specific, let {Xt}t≥0 and {Yt}t>0 be stochastic processes that take values in R
dx and R

dy ,

respectively. We refer to {Xt}t≥0 and {Yt}t≥0 as state and observation processes, respectively. For t = 0,
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the random variate X0 has a pdf with respect to the Lebesgue measure in R
dx , that we denote as π(x0),

and, for t > 0, the process evolves according to the conditional probability law

Pr {Xt ∈ A|X0:t−1 = x0:t−1} =

∫

A

π(xt|x0:t−1)dxt, (4)

where π(xt|x0:t−1) denotes the pdf, with respect to the Lebesgue measure, of Xt given X0:t−1 = x0:t−1

and A is any Borel subset of R
dx . In the sequel, we will use B(Rd) to denote the Borel σ-algebra in R

d.

The observation process, {Yt}t>0, follows the conditional probability law

Pr {Yt ∈ A′|X0:t = x0:t, Y1:t−1 = y1:t−1} =

∫

A′

π(yt|x0:t, y1:t−1)dyt, (5)

where π(yt|x0:t, y1:t−1) denotes the conditional pdf of Yt given X0:t = x0:t and Y1:t−1 = y1:t−1, again with

respect to the Lebesgue measure, and A′ ∈ B(Rdy).

We will refer to the densities π(x0) and π(xt|x0:t−1) as the prior pdf and the transition pdf of the state

process, respectively, while for fixed observations Y1:t = y1:t, the function gt(x0:t) , π(yt|x0:t, y1:t−1) is

referred to as the likelihood of the state path X0:t = x0:t at time t. Together, the densities

π(x0), π(xt|x0:t−1) and π(yt|x0:t, y1:t−1) (6)

determine a state-space model. Note that the a posteriori pdf of a path X0:t = x0:t given a sequence of

observations Y1:t = y1:t, denoted π(x0:t|y1:t), can be easily derived from the functions in Eq. (6) using

the Bayes’ theorem, namely

π(x0:t|y1:t) ∝ π(yt|x0:t, y1:t−1)π(xt|x0:t−1)π(x0:t−1|y1:t−1)

= π(x0)π(y1|x0:1)π(x1|x0)

t
∏

k=2

π(yk|x0:k, y1:k−1)π(xk|x0:k−1). (7)

Since our ultimate interest is to find the values of the subsequence x0:T that minimize CT (·; y1:T ), we

need to establish a connection between the state-space model (6) and the defined cost function. The

relationship is given by way of the posterior pdf in (7), according to the following definition.

Definition 1 Let y1:T be a fixed sequence of observations. A state-space model determined by Eq. (6) is

matched to the cost function CT (x0:T ; y1:T ) if, and only if,

arg max
x0:T ∈(Rdx )T+1

π(x0:T |y1:T ) = arg min
x0:T ∈(Rdx)T+1

CT (x0:T ; y1:T ). (8)

For conciseness, we let Xπ
t , argmaxx0:t∈(Rdx )t+1 π(x0:t|y1:t) and rewrite Eq. (8) as Xc

T = Xπ
T .

6



In many cases, Definition 1 turns out too generic for testing directly whether a state-space model and

a cost function are matched. It is more useful to have sufficient conditions in terms of the basic building

blocks of the model that allow for Xc
T = Xπ

T , where the building blocks are, on one side, the densities

π(x0), π(xt|x0:t−1) and π(yt|x0:t, y1:t−1) and, on the other side, the partial cost ct(x0:t, yt) and the update

function H(·, ·). Proposition 1 below provides such conditions. Note that, for conciseness of notation, in

the sequel we adopt the shorthand

π0:t(x0:t) , π(x0:t|y1:t), C0:t(x0:t) , Ct(x0:t; y1:t) and ct(x0:t) , ct(x0:t; yt). (9)

Proposition 1 Let y1:T be an arbitrary, but fixed, sequence of observations and let the pdf’s π(x0),

π0:t(x0:t), π(yt|x0:t, y1:t−1), π(xt|x0:t−1), for t = 1, ..., T , be proper. If we assume that:

(i) There exists a monotonically decreasing function F0 : R
+ → R such that C0(x0) = F0 (κ0π(x0)),

with a proportionality constant κ0 independent of x0.

(ii) There exists a monotonically decreasing function F : R
+ → R such that its inverse F−1 factorizes

the cost function as

F−1 (H (C0:t−1(x0:t−1), ct(x0:t))) = F−1 (C0:t−1(x0:t−1)) × f (C0:t−1(x0:t−1), ct(x0:t)) , (10)

where f : R
+ × R

+ → R
+ is a nonnegative function.

(iii) The function f is such that

f (Ct−1(x0:t−1), ct(x0:t)) ∝ πt(yt|x0:t, y1:t−1)πt(xt|x0:t−1), (11)

with a proportionality constant independent of x0:t.

Then, for all t ∈ {1, 2, . . . , T}, C0:t(x0:t) = F (κtπ0:t(x0:t)), for some constant κt independent of x0:t, and

Xc
t = Xπ

t .

Proof: The proof proceeds by induction in t. At time t = 0, by assumption (i) we have C0(x0) =

F0(κ0π(x0)), hence Xc
0 = Xπ

0 . At time t − 1, we assume that C0:t−1(x0:t−1) = F (κt−1π0:t−1(x0:t−1)) and,

as a consequence, π0:t−1(x0:t−1) ∝ F−1 (C0:t−1(x0:t−1)).

At time t, we apply assumption (ii) to obtain

F−1 (C0:t(x0:t)) = F−1 (H (C0:t−1(x0:t−1), ct(x0:t)))

= F−1 (C0:t−1(x0:t−1)) × f (C0:t−1(x0:t−1), ct(x0:t)) . (12)
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By the induction hypothesis,

F−1 (C0:t−1(x0:t−1)) ∝ π0:t−1(x0:t−1) (13)

and, from assumption (iii),

f (C0:t−1(x0:t−1), ct(x0:t)) ∝ πt(yt|x0:t, y1:t−1)πt(xt|x0:t−1), (14)

hence we can substitute (13) and (14) into Eq. (12) to yield

F−1 (C0:t(x0:t)) ∝ π0:t−1(x0:t−1)πt(yt|x0:t, y1:t−1)πt(xt|x0:t−1) ∝ π0:t(x0:t) (15)

and, as a consequence, C0:t(x0:t) = F (κtπ0:t(x0:t)) for some constant κt independent of x0:t (but possibly

dependent on y1:t), and Xπ
t = Xc

t . 2

Remark 1 Since F is monotonically decreasing, C0:t(x0:t) = F (κtπ0:t(x0:t)) trivially implies Xc
t =

Xπ
t . The function f intuitively represents the mechanism that relates the update of the cost function,

C0:t−1(x0:t−1), with the update of the posterior pdf, π0:t−1(x0:t−1), at time t, when a new observation, yt,

is used.

Most frequently, the functions F (·) and f(·, ·) in Proposition 1 are of the exponential class and they

lead to state-space models that consist of exponential densities as well. This is illustrated by the two

families of cost functions studied in Section 5. We conclude the present section by applying Proposition

1 in deriving a state-space model matched to the cost of Example 1.

Example 2 A toy problem (continued).

The cost function of the toy Example 1 has the form C0:T (x0:T ) =
∑T

t=1 (|xt| − 5)
2
. Let F (a) =

− log(a) and apply the inverse function F−1(a) = exp{−a} to C0:t(x0:t). We obtain

F−1 (C0:t(x0:t)) = exp
{

−C0:t−1(x0:t−1) − (|xt| − 5)
2
}

= exp {−C0:t−1(x0:t−1)} × exp
{

− (|xt| − 5)
2
}

, (16)

hence f (C0:t−1(x0:t−1), ct(x0:t)) ∝ exp
{

− (|xt| − 5)
2
}

and all that remains is to identify π(yt|x0:t, y1:t−1)

(for yt = 5) and π(xt|x0:t−1) such that π(yt = 5|x0:t, y1:t−1)π(xt|x0:t−1) ∝ exp
{

− (|xt| − 5)
2
}

. But this

is easily achieved by choosing a uniform transition pdf, π(xt|x0:t−1) = U(xt;−10, +10), and a Gaussian

conditional density π(yt|x0:t, y1:t−1) = π(yt|xt) = N
(

yt; |xt|, 1
2

)

. We complete the description of the

matched state-space model by taking a uniform prior, π(x0) = U(x0;−10, +10).
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5 Examples

In this Section we illustrate the construction of state-space models matched to cost functions by way of

two examples, each of them dealing with a class of update functions H(·, ·). The first one involves a

purely additive rule, H(a, b) = a + b. There is a large number of problems that can be reduced to this

form, including the so-called “discounted costs” [30] often applied in finance. Then we study a nonlinear

update rule of the form H(a, b) = max(a, b). In the two cases, we explicitly show the functions F (·) and

f(·, ·) that relate the cost C0:t(x0:t) to the posterior pdf, π0:t(x0:t), according to Proposition 1.

5.1 Additive cost

Additive costs appear frequently in scientific and engineering problems, e.g., positioning and navigation

[31], finance [34] or operational research [3]. Let us consider the generic additive form C0:t(x0:t) =

C0:t−1(x0:t−1) + ct(x0:t). This cost can be related to a posterior pdf easily by means of the monotonically

decreasing functions F0(a) = F (a) = − log(a) and f(a, b) = exp{−b}, which yield

F−1 (C0:t−1(x0:t−1) + ct(x0:t)) = F−1 (C0:t−1(x0:t−1)) × f (C0:t−1(x0:t−1), ct(x0:t))

= exp {−C0:t−1(x0:t−1)} × exp {−ct(x0:t)}

= exp

{

−C0(x0) −
t
∑

k=1

ck(x0:k)

}

∝ π0:t(x0:t). (17)

For this formal decomposition to be valid, we require integrability of the terms F−1 (C(x0)) and

f(ck(x0:k)), i.e.,
∫

exp{−C(x0)}dx0 < ∞ and
∫

exp{−ck(x0:k}dxk < ∞, for each k ∈ {1, . . . , t}.

Example 3 Neumaier 3 problem.

The Neumaier 3 problem is included in the collection of [1] and consists in the minimization of the

cost function

J(x1:T ) =

T
∑

t=1

(xt − 1)2 −
T
∑

t=2

xtxt−1, subject to − T 2 ≤ xt ≤ T 2, t ∈ {1, ..., T < ∞}. (18)

The number of local minima of J(x1:T ) is not known, but the global minimum can be expressed as

J(xo
1:T ) = −T (T + 4)(T − 1)

6
, where xo

t = t(T + 1 − t), t = 1, ..., T. (19)

The cost J(x1:T ) has a linear additive form. Specifically, we adapt it to the notation in this paper by

defining

C0:T (x0:T ) =
1

σ2

[

T
∑

t=1

(xt − yt)
2 −

T
∑

t=2

xtxt−1

]

, (20)
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where yt = 1 for all t ≥ 1 and σ2 > 0 is an arbitrary scale parameter. Note that, subject to −T 2 ≤ xt ≤ T 2,

arg min
x1:T

J(x1:T ) = argmin
x1:T

C0:T (x0:T ), (21)

and x0 is a dummy unknown included only for notational compatibility. The functions C0:t, t = 2, ..., T ,

admit the recursive decomposition

C0:t(x0:t) = C0:t−1(x0:t−1) +
1

σ2

[

(xt − yt)
2 − xtxt−1

]

. (22)

Therefore the posterior pdf at time t ≥ 2 for the matched state-space model has the form

π0:t(x0:t) ∝ exp{−C0:t(x0:t)}

= exp{−C0:t−1(x0:t−1)} exp{− 1

σ2
(xt − yt)

2} exp{ 1

σ2
xtxt−1}, (23)

while π(x0:1|y1) ∝ exp{− 1
σ2 (x1 − y1)

2} and π(x0) = U(x0;−T 2, +T 2) (the value of x0 does not affect the

cost or the pdf, hence the uniform distribution). The resulting likelihood and transition density at time t

are

π(yt|x0:t, y1:t−1) = π(yt|xt) ∝ exp{− 1

σ2
(xt − yt)

2}, t ≥ 1 (24)

π(xt|x0:t−1) = π(xt|xt−1) ∝ exp{ 1

σ2
xtxt−1}, t ≥ 2, (25)

respectively, while π(x1|x0) = U(x1;−T 2, T 2). Note that π(yt|xt) = N(yt; xt,
σ2

2 ) and the normalization

constant for π(xt|xt−1) (t > 1) is

κt =
xt−1

σ2

(

exp

{

T 2xt−1

σ2

}

− exp

{

−T 2xt−1

σ2

})−1

. (26)

5.2 Minimax problems

Optimization problems that consist in the minimization of the maximum value of a certain function abound

in engineering, finance and other disciplines (see, e.g., [10, 28, 25]). Let a ∨ b denote the maximum of a

and b. In this example, we study cost functions of the form Ct(x0:t) = Ct−1(x0:t−1)∨ ct(x0:t). It turns out

that this kind of cost can also be factorized by means of the usual update rule F0(a) = F (a) = − log(a).

Indeed,

F−1 (Ct−1(x0:t−1) ∨ ct(x0:t)) = exp {− (Ct−1(x0:t−1) ∨ ct(x0:t))}

=
exp {−Ct−1(x0:t−1)} × exp {−ct(x0:t)}
exp {−Ct−1(x0:t−1)} ∨ exp {−ct(x0:t)}

. (27)
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By inspection of (27) we quickly notice that

f (Ct−1(x0:t−1), ct(xt−1:t)) =
exp {−ct(x0:t)}

exp {−Ct−1(x0:t−1)} ∨ exp {−ct(x0:t)}
. (28)

Again, we assume that
∫

exp {−Ck−1(x0:k−1)} dx0:k−1 < ∞ and
∫

exp {−ck(x0:k} dxk < ∞ for all k.

Example 4 Cross-talk cancellation.

As shown in [28], the problem of designing an acoustic filter for cross-talk cancellation in a 3D audio

system can be stated as a minimax problem. Indeed, let ha(n), n ∈ Z, be a sequence that represents the

combined effect of the acoustic impulse responses between the sound sources (loudspeakers) and (say) the

listener’s left ear and let hf (n), n ∈ Z, be the cross-talk cancellation filter that should let the desired

source signal pass while mitigating all other signals coming from different sources (see [28] for details).

The impulse response ha(n) is causal with length 2M − 1, i.e., ha(n) = 0 for all n < 0 and n ≥ 2M − 1,

while the filter hf (n) is assumed causal with length K, i.e., hf (n) = 0 for all n < 0 and n ≥ K.

The goal is to find the response hf (n) such that the convolution c(n) = ha(n) ∗ hf (n) =

∑2M−2
k=0 ha(k)hf (n − k) is the closest to a desired response

d(n) =

{

1 if n = 0
0 otherwise

, (29)

i.e., the filter hf (n) is selected to invert the combined acoustic response ha(n). Perfect inversion is

not possible, since hf (n) has a finite length, hence we seek to solve the equations d(n) − c(n) = 0,

n = 0, ..., K + 2M − 3, approximately instead. Let us collect the complete set of filter coefficients into the

vector hf = [hf (0), . . . , hf (K − 1)]⊤ ∈ R
K . In [28] it is proposed to compute hf as the solution of the

minimax problem.

ĥf = arg min
hf∈RK

{

J(hf ) = max
n∈{0,...,K+2M−3}

∣

∣

∣

∣

∣

d(n) −
2M−2
∑

k=0

ha(k)hf (n − k)

∣

∣

∣

∣

∣

}

. (30)

We can easily rewrite problem (30) using our notation. For the unknowns, we let xt = hf(t − 1) ∈ R

for t = 0, 1, ..., K (hence x0 = 0 and xt>K = 0). The desired sequence d(n) plays the role of the

observations, hence yt = d(t − 1), t = 1, 2, ..., K + 2M − 2. We define the partial cost at time t ≥ 1 as

ct(x0:t) = |yt −
∑2M−2

k=0 ha(k)xt−k+1| while, trivially, C0(x0) = 0. The overall cost at time t then becomes

C0:t(x0:t) = C0:t−1(x0:t−1) ∨ ct(x0:t). The time horizon is T = K + 2M − 2 and C0:T (x0:T ) = J(hf ).

To construct the state-space model matched to C0:T (x0:T ) we use Eqs. (27) and (28). Specifically, we

11



have to choose π(yt|x0:t, y1:t−1) and π(xt|x0:t−1) such that

f (C0:t−1(x0:t−1), ct(x0:t)) =
exp {−ct(x0:t)}

exp {−C0:t−1(x0:t−1)} ∨ exp {−ct(x0:t)}
∝ π(yt|x0:t, y1:t−1)π(xt|x0:t−1).

(31)

The transition pdf π(xt|x0:t−1) is selected to be uniform over the set where Xt is allowed to take values,

i.e., π(xt|x0:t−1) = π(xt) = U(xt;−a, +a) for some prescribed bound a > 0. The system definition is

completed with π(yt|x0:t, y1:t−1) ∝ f (C0:t−1(x0:t−1), ct(x0:t)), while π0(x0) = 0 with probability 1.

6 Algorithms

We have recast the minimization of C0:T (x0:T ) into a problem of MAP estimation for a matched state-

space model. However, this is also intractable for most models of practical interest (linear Gaussian

systems being the exception) and we need to resort to numerical techniques in order to find the solutions.

We propose the use of sequential Monte Carlo (SMC) methods to build a particle approximation of the

a posteriori smoothing probability measure, from which MAP estimates can be computed. Specifically,

we can employ the standard SIR algorithm [16, 9] to obtain a discretization of the path space
(

R
dx
)T+1

consisting of a set of N paths
{

x
(n)
0:T

}

n=1,...,N
, and then choose the realization with the highest posterior

density. This method can be inefficient in some problems, though, as will be shown in Section 7.1. A more

efficient MAP estimation technique can be obtained by combining the SIR and Viterbi [11] algorithms, as

suggested in [14]. We prove that both methods guarantee almost sure asymptotic convergence and obtain

a lower bound for the necessary number of particles in the discretization of the state-space as a function

of the desired accuracy of the approximation, the dimension dx and the time horizon T .

6.1 Discretization of the state-space: sequential importance resampling

algorithm

We aim at numerically computing solutions of the MAP estimation problem

X
π
T = arg max

x0:T∈(Rdx )T+1
π0:T (x0:T ). (32)

Even if the posterior pdf π0:T (x0:T ) can be evaluated up to a proportionality constant (using the

factorization of Eq. (7)) this is, in general, a difficult optimization problem in a high dimensional space,

possibly with multiple global and/or local extrema. In this paper we propose to tackle these difficulties

by using a SMC method in order to obtain a suitable discretization of the path space
(

R
dx
)T+1

. Different
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search methods can subsequently be applied to find the point of the discretized space with the highest

density.

SMC algorithms [19, 8] are aimed at recursively computing approximations of the sequence of posterior

probability laws

Pr {A|Y1:t = y1:t} =

∫

A

π0:T (x0:T )dx0:T , t = 1, 2, . . . , T, (33)

where A ∈ B
(

(

R
dx
)T+1

)

is a Borel set. Specifically, at each time t, a SMC algorithm generates a random

sample ΩN
0:t =

{

x
(n)
0:t

}

n=1,...,N
such that integrals with respect to the pdf π0:t(x0:t) can be approximated

by summations [5], i.e.,
∫

f(x0:t)π0:t(x0:t)dx0:t ≈ 1
N

∑N
n=1 f(x

(n)
0:t ), where f :

(

R
dx
)t+1 → R is a Borel

measurable function defined in the path space and integrable with respect to the posterior probability

law.

Although various possibilities exist [8], in this paper we consider the standard sequential importance

sampling algorithm with resampling at every time step [9], also known as bootstrap filter [16]. We refer

to this algorithm as SIR through the the paper. The algorithm is based on the recursive decomposition

of π0:T (x0:T ) given by Eq. (7) and the computational procedure is simple.

• Initialization. At time t = 0 we draw N independent and identically distributed (i.i.d.) samples

from the prior probability distribution with density π0(x0). Let us denote this initial sample as

ΩN
0 = {x(n)

0 }n=1,...,N .

• Recursive step. Assume that a random sample ΩN
0:t−1 = {x(n)

0:t−1}n=1,...,N has been generated up to

time t − 1. Then, at time t, we take the following steps.

i. Draw N new samples in the state space R
dx from the probability distributions with densities

π(xt|x(n)
0:t−1), n = 1, ..., N , and denote them as {x̄(n)

t }n=1,...,N . Set x̄
(n)
0:t = {x(n)

0:t−1, x̄
(n)
t }.

ii. Weight each sample according to its likelihood, i.e., compute importance weights w̃
(n)
t =

π(yt|x̄(n)
0:t , y1:t−1) and normalize them to obtain w

(n)
t = w̃

(n)
t /

∑N
k=1 w̃

(k)
t .

iii. Resampling: for n = 1, . . . , N , set x
(n)
0:t = x̄

(k)
0:t with probability w

(k)
t , k ∈ {1, . . . , N}. Reset the

weights, w
(n)
t = 1/N for n = 1, ..., N .

The multinomial resampling procedure in step iii. can be substituted by other techniques [4, 6]. We

shall use the random grid ΩN
0:T = {x(n)

0:T }n=1,...,N as a discrete approximation of the path space
(

R
dx
)T+1

where the random sequence X0:T takes its values. Note that the SIR algorithm also yields “marginal

grids” for each time t, denoted ΩN
t = {x(n)

t }n=1,...,N , t = 0, 1, ..., T .

13



The points of the grid ΩN
0:T (often also the points of every ΩN

t = {x(n)
t }n=1,...,N) are called particles

and the SMC methods that generate them are referred to as particle filters [9] or particle smoothers [15]

depending on whether one is interested in the filtering pdf’s π(xt|y1:t), t = 1, 2, ..., or the smoothing pdf’s

π0:t(x0:t) = π(x0:t|y1:t), t = 1, 2, ..., respectively. Using the particles in ΩN
0:T , it is straightforward to build

a random measure πN
0:t(dx0:t) = 1

N

∑N
n=1 δn(dx0:t), where δn is the unit delta measure centered at x

(n)
0:T ,

and use it to approximate integrals of the form

(f, π0:t) ,

∫

f(x0:t)π0:t(x0:t)dx0:t, (34)

where f :
(

R
dx
)t+1 → R is a real function in the space of the paths up to time t. In this paper, however, we

are interested in the densities π0:t(x0:t), rather than the probability measures from which they are derived,

hence we find it more convenient to interpret πN
0:t(x0:t) as a point-mass approximation of π0:t(x0:t). Thus,

we slightly abuse the notation in (34) to write

(f, πN
0:t) =

∫

f(x0:t)π
N
0:t(dx0:t) =

1

N

N
∑

n=1

ft(x
(n)
0:t ). (35)

If the function f is, for example, bounded, then (f, πN
0:t) is a good approximation of (f, π0:t) for N

sufficiently large [5]. We will take advantage of this result in Section 6.3.

6.2 MAP estimation algorithms

We propose to use the random grids generated by the SIR algorithm to search for approximate maximizers

of the pdf π0:T (x0:T ). In particular, we investigate two algorithms. The first one is a straightforward

extension of the SIR procedure, while the second one combines it with the Viterbi algorithm as suggested

in [14]. We will subsequently refer to them as Algorithm 1 and Algorithm 2, respectively.

6.2.1 Algorithm 1

The idea is as simple as to search the element of ΩN
0:T with the highest posterior density. For this purpose,

note that we can easily extend the SIR algorithm described in Section 6.1 to recursively compute the

posterior density of each particle up to a proportionality constant. To be specific, we need to perform the

following additional computations.

• At the initialization step, let a
(n)
0 = log

(

π(x
(n)
0

)

for n = 1, ..., N .

• At the recursive step, modify steps ii. and iii. as follows.
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ii. Weight each sample according to its likelihood, i.e., compute importance weights w̃
(n)
t =

π(yt|x̄(n)
0:t , y1:t−1) and normalize them to obtain w

(n)
t = w̃

(n)
t /

∑N
k=1 w̃

(k)
t . Compute ā

(n)
t =

a
(n)
t−1 + log

(

π(yt|x̄(n)
0:t , y1:t−1)

)

+ log
(

π(x̄
(n)
t |x(n)

0:t−1)
)

.

iii. Resampling: for n = 1, . . . , N , set x
(n)
0:t = x̄

(k)
0:t and a

(n)
t = ā

(k)
t with probability w

(k)
t ,

k ∈ {1, . . . , N}. Reset the weights, w
(n)
t = 1/N for n = 1, ..., N .

Then we select x̂N
0:T = x

(no)
0:T , where no = argmaxn∈{1,...,N} a

(n)
T , as the approximate maximizer of

π0:T (x0:T ).

6.2.2 Algorithm 2

In this Section we briefly describe the MAP estimation algorithm of [14]. Instead of ΩN
0:T , we consider

now a finer discretization of
(

R
dx
)T+1

, namely the product space Ω̄N
0:T = ΩN

0 × Ω̄N
1 × · · · × Ω̄N

T , where

ΩN
0 = {x(n)

0 }n=1,...,N and Ω̄N
t = {x̄(n)

t }n=1,...,N for t = 1, 2, ..., T . Specifically note that Ω̄N
t is constructed

from the particles available at step ii. of the SIR algorithm, i.e., before resampling, to avoid duplicate

samples.

Next, assume that π(xt|x0:t−1) = π(xt|xt−1) (i.e., the state-space system is Markovian) and

π(yt|x0:t, y1:t−1) = π(yt|xt). Given the random grids ΩN
0 , Ω̄N

t , t = 1, ..., T , the Viterbi algorithm outputs

a sequence (x
(n0)
0 , x̄

(n1)
1 , ..., x̄

(nT )
T ) ∈ Ω̄N

0:T , where ni ∈ {1, ..., N} ∀i, with the highest posterior density, i.e.,

it solves the problem of finding

x̄N
0:T ∈ arg max

x̄0:T∈Ω̄N
0:T

π0:T (x̄0:T ) (36)

exactly. The procedure is described below.

• Initialization. For n = 1, ..., N , let a
(n)
0 = log(π(x

(n)
0 )).

• Recursive step. At time t > 0, the random grids Ω̄N
t−1 and Ω̄N

t , as well as {a(n)
t−1}n=1,...,N , are

available. Then, for n = 1, ..., N , compute

i. a
(n)
t = log(π(yt|x̄(n)

t )) + maxk∈{1,...,N}

[

a
(k)
t−1 + log(π(x̄

(n)
t |x̄(k)

t−1))
]

,

ii. ℓ
(n)
t = arg maxk∈{1,...,N}

[

a
(k)
t−1 + log(π(x̄

(n)
t |x̄(k)

t−1))
]

.

• Backtracking. Computation of an optimal sequence.

i. At time T , let jT = argmaxk∈{1,...,N} a
(k)
T and assign x̄N

T = x̄
(jT )
T .

iii. For t = T − 1, T − 2, ..., 0, let jt = ℓ
(jt+1)
t+1 and assign x̄N

t = x̄
(jt)
t .
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The computational complexity of the method is O(N2). Note that the Viterbi recursion can be

run sequentially, together with the SIR algorithm described in Section 6.1. Specifically, we can take a

complete recursive step of the Viterbi algorithm right after step ii. of the SIR method (i.e., once the

random marginal grid Ω̄N
t is obtained). The combination of the SIR and Viterbi methods to compute

x̄N
0:T will be termed Algorithm 2 in the sequel.

6.3 Convergence analysis

We now establish the almost sure convergence of the two MAP estimation algorithms described in Section

6.2. In the results that follow, we assume that:

• The sequence Y1:T = y1:T is fixed (not random).

• The likelihoods gt(x0:t) = π(yt|x0:t, y1:t−1) are bounded functions of x0:t for every t = 1, 2, ..., T .

• The posterior pdf π0:T (x0:T ) is uniformly continuous at every point x̂0:T ∈ X
π
t .

The first two assumptions are applied to show that the SIR algorithm converges in an adequate way while

the third one is used directly in the proof of Theorem 1 below.

Obviously, the convergence of the MAP estimation Algorithms 1 and 2 relies on the convergence of the

SIR algorithm. To be precise, given a bounded function f : (Rdx)T+1 our analysis requires the convergence

of (f, πN
0:T ) toward the actual integral (f, π0:T ) in the L4-norm. Similar, but not directly applicable, results

exist in the literature, e.g., L2 bounds for the rate of convergence of (f, πN
0:T ) to (f, π0:T ) can be found in

[5], while Lp bounds for the rate of convergence of the corresponding marginals (f, πN
T ) to (f, πT ) in the

state space of Xt, were established in [22] under additional constraints.

In the following Lemma 1, we establish the Lp bounds for the rate of convergence of (f, πN
0:T ) to

(f, π0:T ). This is required for the subsequent analysis. In Theorem 1, we use the result to prove

that Algorithm 1 converges almost surely. More precisely we prove that π0:T (x̂N
0:T ) → π0:T (x̂0:T ), with

x̂0:T ∈ Xπ
T . The convergence of Algorithm 2 follows immediately (see Corollary 1). Finally we establish a

lower bound on the number of particles N needed to achieve a certain accuracy.

In the sequel, ‖ξ‖p denotes the Lp norm of the random variable ξ defined as ‖ξ‖p = E[ξp]1/p, E[·]

denotes the mathematical expectation over all possible realizations of the random measure πN
0:T and

‖f‖∞ = supx0:T∈(Rdx )T+1 |f(x0:T )| denotes the supremum norm of the function f .

Lemma 1 Let f : (Rdx)T+1 → R be a bounded function defined on the path space. Then there exists a
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constant c = c(p, T, y1:T ) independent of N such that

‖(f, πN
0:T ) − (f, π0:T )‖p ≤ c||f ||∞√

N
,

for all N ≥ 1.

See the Appendix for a proof.

Remark 2 Lemma 1 holds true for unbounded functions f too. In this case, we need to assume

that |f |p is integrable with respect to the prior distribution2 and the rate of convergence has the form

‖(f, πN
0:T ) − (f, π0:T )‖p ≤ c/

√
N , where the constant c = c(p, T, y1:T , f) is independent of N .

Theorem 1 Let x̂N
0:T be the output sequence of Algorithm 1. Then, almost surely,

lim
N→∞

π0:T (x̂N
0:T ) = max

x0:T∈(Rdx )T+1
π0:T (x0:T )

Moreover any convergent subsequence of x̂N
0:T has a limit x̂0:T that belongs to the critical set Xπ

T .

Proof: Let f :
(

R
dx
)T+1 → R be a bounded real function of the path x0:T . From Lemma 1, we obtain

‖(f, πN
0:T ) − (f, π0:T )‖p ≤ c‖f‖∞√

N
, (37)

The bound (37) for p = 4 implies, using a standard argument, that there exists a positive random variable

cǫ
T such that, for all N > 0, we have, almost surely,

(

(f, πN
0:T ) − (f, π0:T )

)4 ≤ cǫ
T

N1−ǫ
(38)

for any arbitrarily small ǫ > 0. As a consequence, the integral (f, πN
0:T ) converges almost surely, i.e.,

lim
N→∞

∣

∣(f, πN
0:T ) − (f, π0:T )

∣

∣ = 0. (39)

Now, choose any MAP estimate x̂0:T ∈ Xπ
T and consider the open ball

Bk(x̂0:T ) =

{

z ∈
(

R
dx
)T+1

: ‖z − x̂0:T ‖ <
1

k

}

(40)

where k is a positive integer and ‖ · ‖ denotes the norm of the Euclidean space
(

R
dx
)T+1

. The indicator

function

IBk(x̂0:T )(x0:T ) =

{

1 if x0:T ∈ Bk(x̂0:T )
0 otherwise

(41)

2Implicitly, |f |p is also integrable with respect to the posterior distribution since the likelihood function is bounded.
Otherwise, the integrability with respect to the posterior distribution has to be assumed.
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is real and bounded, hence

lim
N→∞

∣

∣

(

IBk(x̂0:T ), π
N
0:T

)

−
(

IBk(x̂0:T ), π0:T

)
∣

∣ = 0 (42)

almost surely. Since the posterior pdf π0:T (x0:T ) is uniformly continuous at x̂0:T ∈ X
π
t and π0:T (x̂0:T ) > 0

it follows that π0:T (x0:T ) is positive on an open ball around x̂0:T . In particular, the value Ak =
(

IBk(x̂0:T ), π0:T

)

is strictly positive. Also

(

IBk(x̂0:T ), π
N
0:T

)

=
m(N, k)

N
, (43)

where m(N, k) denotes the number of elements of the discretized path space ΩN
0:T that belong to the ball

Bk(x̂0:T ) (equivalently, m(N, k) =
∣

∣ΩN
0:T ∩ Bk(x̂0:T )

∣

∣ is the number of points in the discrete intersection

set ΩN
0:T ∩ Bk(x̂0:T )). Since limN→∞

∣

∣

∣

m(N,k)
N − Ak

∣

∣

∣
= 0 for any k, it follows that m(N, k) > 0 almost

surely whenever N is sufficiently large.

Since, for any integer k > 0, the intersection ΩN
0:T ∩ Bk(x̂0:T ) is nonempty for N sufficiently large

(almost surely), we can choose a point xN,k
0:T ∈ ΩN

0:T ∩ Bk(x̂0:T ). Then π0:T (xN,k
0:T ) ≤ π0:T (x̂0:T ) but,

by construction of Algorithm 1, we also have that π0:T (xN,k
0:T ) ≤ π0:T (x̂N

0:T ). Therefore, π0:T (xN,k
0:T ) ≤

π0:T (x̂N
0:T ) ≤ π0:T (x̂0:T ). Since π0:T is continuous at x̂0:T and limk→∞ x̂N,k

0:T = x̂0:T (as ‖x̂0:T − x̂N,k
0:T ‖ <

1/k), we deduce that limk→∞ π0:T (xN,k
0:T ) = π0:T (x̂0:T ). Hence, also limk→∞ π0:T (x̂N

0:T ) = π0:T (x̂0:T ).

Moreover, if {x̂Ni

0:T }i∈N is a convergent subsequence of {x̂N
0:T }N∈N with limit, say, x̌0:T if follows that

π0:T (x̌0:T ) = limi→∞ π0:T (x̂Ni

0:T ) = π0:T (x̂0:T ). Therefore x̌0:T ∈ Xπ
T which concludes the proof. 2

Remark 3 In [23] a different approach is used to prove a similar result to Theorem 1 based on the

propagation of chaos property of genealogical tree simulations models (see [20] for details). The basic

idea is that a sub-sample from {x(i)
0:T }i=1,...,N behaves asymptotically as a perfect sample from π0:T . More

precisely, using Theorem 8.3.3 in [20] one can show that if π⊗q
0:T is the tensor product of q copies of the

measure π0:T , then

‖Law(x
(1)
0:T , x

(2)
0:T , . . . , x

(q)
0:T ) − π⊗q

0:T ‖tv ≤ q2

N
c(T ), (44)

where ‖ · ‖tv is the total variation norm between two probability measures and c(T ) is a constant with

respect to N . By choosing q=q(N) to be of order o(N) one can show that, for any δ > 0,

Pr

(

max
i=1,...q(N)

π0:T (x
(i)
0:T ) < max

x0:T∈(Rdx )T+1
π0:T (x0:T ) − δ

)

≤ c(T )
q(N)2

N
+ π0:T (A(δ))q(N), (45)

where A(δ) is defined to be the set

A(δ) =

{

x0:T ∈ (Rdx)T+1 : π0:T (x0:T ) < max
x0:T ∈(Rdx )T+1

π0:T (x0:T ) − δ

}

. (46)
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This, in turn, leads to the convergence in probability (and not almost surely) of the estimator to

maxx0:T ∈(Rdx)T+1 π0:T (x0:T ).

Corollary 1 Let x̄N
0:T be the output sequence of Algorithm 2. Then, almost surely,

lim
N→∞

π0:T (x̄N
0:T ) = max

x0:T∈(Rdx )T+1
π0:T (x0:T )

Moreover any convergent subsequence of x̄N
0:T has a limit x̂0:T that belongs to the critical set Xπ

T .

Proof: Simply note that ΩN
0:T ⊂ Ω̄N

0:T and, as a consequence, π0:T (x̂N
0:T ) ≤ π0:T (x̄N

0:T ) ≤ π0:T (x̂0:T ). 2

Remark 4 We emphasize that the sequences x̂N
0:T and x̄N

0:T may not necessarily be convergent themselves

as they may contain subsequences that converge to different elements of the critical set Xπ
T (we have not

assumed uniqueness of the global minimizer). Moreover, if

lim sup
‖x0:T ‖→∞

π0:T (x0:T ) = max
x0:T∈(Rdx )T+1

π0:T (x0:T ) (47)

then the sequence may contain subsequences that diverge to infinity or the entire sequence can diverge to

infinity. If that is the case we need to restrict the search for a global minimizer to a (sufficiently large)

compact set. However, in general, lim‖x0:T ‖→∞ π0:T (x0:T ) = 0 and, therefore, ending up with a sequence

divergent to infinity does not occur.

Equation (38) states that the fourth-order approximation error for a real bounded function of

x0:T converges “almost linearly” with the number of particles N that determines the accuracy of the

discretization of the state-space ΩN
0:T . This enables us to find how large should the number of particles N

be such that the (random) grids ΩN
0:T (respectively, Ω̄N

0:T ) contain points at a distance from a true MAP

estimate smaller than 1
k , for k arbitrary but sufficiently large.

Theorem 2 For sufficiently large k, the (random) grids ΩN
0:T and Ω̄N

0:T contain points at a distance from

a true MAP estimate smaller than 1
k provided that N > ck

4dx(T+1)
1−ǫ , where c is a positive random variable

that depends on the sequence y0:T and the maximum value of the posterior density π0:T (x̂0:T ), x̂0:T ∈ Xπ
T .

Proof: Eq. (38) implies that there exists a positive random variable cǫ
T such that, for all N > 0, we have

∣

∣

∣

∣

m(N, k)

N
− Ak

∣

∣

∣

∣

≤ (cǫ
T )

1
4

N
1−ǫ
4

(48)

almost surely for any arbitrarily small ǫ > 0. Recall that Ak =
∫

Bk(x̂0:T )
π0:T (x0:T )dx0:T , for some

x̂0:T ∈ Xπ
T . When k is sufficiently large, π0:T (x0:T ) is very close to π0:T (x̂0:T ) for any x0:T ∈ Bk(x̂0:T ). In
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particular, we can assume that 1
2π0:T (x̂0:T ) ≤ π0:T (x0:T ) ≤ π0:T (x̂0:T ) for any x0:T ∈ Bk(x̂0:T ). Therefore

we can deduce that Ak ≥ qT+1

2 π0:T (x̂0:T )
(

1
k

)dx(T+1)
, where qT+1 is the volume of the unit ball in (Rdx)T+1,

and from (48) we arrive at

qT+1

2
π0:T (x̂0:T )

(

1

k

)dx(T+1)

− (cǫ
T )

1
4

N
1−ǫ
4

≤ m(N, k)

N
. (49)

By inspection of (49), we realize that m(N, k) can be guaranteed to be strictly positive if we take N large

enough for the inequality

qT+1

2
π0:T (x̂0:T )

(

1

k

)dx(T+1)

− (cǫ
T )

1
4

N
1−ǫ
4

> 0 (50)

to hold true. Solving for N , we obtain N > ck
4dx(T+1)

1−ǫ for c =

(

2(cǫ
T )

1
4

qT+1π0:T (x̂0:T )

)

4dx(T +1)
1−ǫ

. 2

Remark 5 Under additional assumptions (for example if the state space is compact), one can deduce3 a

smaller lower bound for the size N of the sample required to obtain a point at a distance less than, say,

1
k . The basis of this is the following exponential bound (see [22] for details and the required assumptions).

One can show that there exist constants c1 = c1(T, f, δ) and c2 = c2(T, f, δ) such that

Pr(|(f, πN
0:T ) − (f, π0:T )| ≥ δ) ≤ c1e

−c2Nδ2

(51)

for an arbitrarily small δ > 0. Using a standard argument, one can deduce from Eq. (51) that there exist

two positive random variables c1
T and c2

T such that, for all N > 0, we have

∣

∣

∣

∣

m(N, k)

N
− Ak

∣

∣

∣

∣

≤ c1
T e−c2

T N (52)

which implies that if N > c log k for a suitably chosen positive random variable c, then m(N, k) is strictly

positive and, hence, the (random) grids ΩN
0:T and Ω̄N

0:T contain points at a distance smaller than 1
k .

7 Numerical results

In this section we apply the proposed algorithms to the Examples 3 and 4. In particular, we first address

the Neumaier 3 problem and show some numerical simulation results for Algorithms 1 and 2, as well as for

the accelerated random search method of [2] for comparison. Then, we tackle the cross-talk cancellation

problem of Example 4 using Algorithm 1.

3This approach was suggested to us by Pierre Del Moral.
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7.1 Neumaier 3 problem

It is straightforward to apply Algorithm 1 to the Neumaier 3 problem described in Example 3. Specifically

note that the likelihood is Gaussian, π(yt|xt) ∝ exp
{

− 1
σ2 (yt − xt)

2
}

, while the transition density has an

exponential form over a finite support, π(xt|x1−1) ∝ exp
{

1
σ2 xtxt−1

}

, for xt ∈ [−T 2, +T 2]. Therefore, the

evaluation of π(yt|xt) is straightforward and the generation of random samples from π(xt|xt−1) is easily

carried out using the inversion method [12]. It can be easily shown that if U is a uniform random variable

in the interval [0, 1] and Xt−1 = xt−1 is given, then

Xt =
σ2

xt−1
log
[

exp{−n2xt−1/σ2} + U
(

exp{n2xt−1/σ2} − exp{−n2xt−1/σ2}
)]

(53)

is a random variable with pdf π(xt|x1−1), xt ∈ [−T 2, +T 2]. The ability to evaluate π(yt|xt) and sample

from π(xt|xt−1) is sufficient to apply Algorithms 1 and 2.

In the first experiment, we check the influence of the scale factor σ2 on the solutions generated by the

proposed optimization algorithms. Note that, even if the choice of σ2 > 0 is irrelevant from the perspective

of the critical set Xπ
T (i.e., the solutions of the optimization problem4 argminx1:T ∈[−T 2,+T 2]T π(x0:T |y1:T )

do not depend on σ2) the convergence rate of the numerical algorithms used to approximate the solutions

in Xπ
T may indeed be affected by this parameter.

Therefore, we have applied Algorithm 1 to the Neumaier 3 problem with a low dimension, T = 5,

using N = 105 particles and values of σ2 ranging from σ2 = T 2 to σ2 = 500T 2. Figure 1 (left) shows the

average cost of the solutions generated by Algorithm 1 for the various values of σ2. Each point in the

plot has been obtained by averaging the cost of the solution, C0:T (x̂N
0:T ), over 100 independent simulation

runs. The figure also depicts the true minimum cost for reference. It is observed that a small scale factor

yields poorer solutions, while for σ2 ≥ 50T 2 the generated solutions are close to optimum and any further

increase of the scale parameter does not have an apparent effect on performance. In the sequel, we fix

σ2 = 150T 2 for the rest of simulations of this example.

Figure 1 (right) shows the convergence of Algorithm 1 as the number of particles, N , is increased.

For a fixed scale factor σ2 = 150T 2 and T = 5 variables, we have carried out 100 independent simulation

trials and averaged the cost of the approximate solution, C0:T (x̂N
1:T ), for several values of N . The error

reduction as N grows is apparent, but N = 107 particles are needed to achieve a cost that is practically

indistinguishable from the true minimum.

4Recall that the cost does not depend on the variable x0 for the Neumaier 3 problem.
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Figure 1: Performance of Algorithm 1 for the Neumaier 3 problem with dimension T = 5.
Left: Average cost of the solution x̂N

0:T
, with N = 105 particles, for several values of the scale

parameter σ2. Right: For fixed σ2 = 150T 2, average cost of x̂N

0:T
for several values of N .

In Figure 2 (left) we show that the convergence of Algorithm 2 can be much faster in terms of the

number of required particles. For the same T = 5-dimensional problem, we show the average of the costs

C0:T (x̂N
1:T ) (for Algorithm 1) and C0:T (x̄N

1:T ) (for Algorithm 2) over 100 independent simulation runs. This

time, the number of particles is increased from N = 20 up to N = 500. Algorithm 1 attains very poor

solutions with this small number of samples, while Algorithm 2 practically achieves the true minimum

cost for N ≥ 50.
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Figure 2: Performance of Algorithm 2 for the Neumaier 3 problem. Left: Comparison of
Algorithms 1 and 3 in terms of the cost as a function of the number of particles, N . Right:
Comparison of Algorithm 2 with the ARS method for T = 5 and T = 10.

Figure 2 (right) shows a comparison of Algorithm 2 with the accelerated random search (ARS) method

[2] when the dimension of the Neumaier 3 problem is T = 5 and T = 10. The ARS procedure is an iterative
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algorithm that seeks solutions within a “contracting-and-expanding” ball centered at the best candidate

solution found so far. For the simulations, we set the number of ARS iterations to be equal to the

number of particles in Algorithm 2. In this way, both algorithms generate N complete paths in the

space [−T 2, +T 2]T . The ARS procedure was run with maximum and minimum radii of T 2 and 10−6,

respectively, and a contraction factor of 3 (see [2] for details). Both for T = 5 and T = 10, Algorithm 2

attains a clearly superior performance. It is worth mentioning that the ARS technique requires sampling

uniformly within balls of varying radii. This is done by rejection sampling, but as the dimension of the

space increases, the procedure becomes less and less efficient. For T = 10, an average of 2 × 105 actual

samples in [−T 2, +T 2]T are needed in order to obtain N = 500 effective paths (as a large proportion of

them are rejected).
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Algorithm 2

Minimum cost: -171,600

Algorithm 1:  -167,920 (avg.)

Figure 3: Performance of Algorithm 2 for the Neumaier 3 problem with high dimension,
T = 100, and N = 3000 particles. The figure shows the true minimizers, x̂1:T (circles), and the
approximate values, x̄N

1:T
(stars).

The proposed Algorithm 2 can be used with much higher dimensions. Figure 3 shows the approximate

solution x̄N
1:T , together with the true global minimizer x̂1:T , for a problem of dimension T = 100 using

N = 3000 particles. It can be seen that a close approximation is achieved. The cost of the solution is

−167, 920, while the true minimum cost is −171, 600.

7.2 Cross-talk cancellation

We turn attention now to the cross-talk cancellation problem of Example 4. Recall that the goal

of this problem is to compute an (approximately) inverse filter for a given acoustic response ha(n),

n = 0, ..., 2M − 2. In this section, we illustrate the performance of Algorithm 1 in this task. Algorithm
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2 can also be applied to this example, although it requires a straightforward adaptation of the procedure

presented in Section 6.2.2 motivated by the fact that π(yt|x0:t, y1:t−1) = π(yt|xt−2M+2:t) 6= π(yt|xt) in

the corresponding state-space model.

For the causal impulse response ha(n) to be actually invertible, we must ensure that all the roots

of the z-transform polynomial Ha(z−1) =
∑2M−2

n=0 ha(n)z−n lie inside the unit circle. Formally, let z−1
l ,

l = 1, ..., 2M − 2, be the solutions of the equation Ha(z−1) = 0. If |z−1
l | < 1 for l = 1, ..., 2M − 2,

then the poles of the inverse system H−1
a (z−1) = 1/Ha(z

−1) also lie inside the unit circle and, as a

consequence, H−1
a (z−1) is stable. A stable system with stable inverse is termed a “minimum phase”

system [24]. A mimimum phase acoustic response can be approximately inverted by solving problem (30),

if we take sufficiently large K and allow the cancellation filter coefficients to be, also, large enough, while

non-minimum phase systems cannot be inverted because the inverse z-transform of H−1
a (z−1) diverges.

In the subsequent experiments, the dimension of the problem is given in terms of the time horizon T .

Let us recall that this horizon depends on the length of the acoustic response, 2M − 1, and the length

of the cancellation filter, K. For our simulations, we select the latter as K = 7(2M − 1), which yields

T = K + 2M − 2 = 16M − 9. We have set M = 7, hence K = 91 and T = 103. Notice, nevertheless, that

the number of coefficients to be selected in the sequence x̂N
0:T is K, since xt≤0 = xt>K = 0. The desired

output of the cross-talk cancellation filter is d(t) = yt = δκ(t − 1) [according to (29)], where δκ denotes

the Kronecker delta function. Given a MAP estimate x̂N
0:T , the actual output of the filter is denoted as

ŷN
t =

∑2M−2
k=0 ha(k)x̂N

t+1−k. Note that C0:T (x̂N
0:T ) = maxt∈{1,...,T}

∣

∣yt − ŷN
t

∣

∣.

Figure 4 shows the results obtained by applying Algorithm 1 to three sample acoustic responses. The

figure is arranged in columns and each column corresponds to a different realization of ha(n). For each

acoustic response, we show the locations of the zeros of the system Ha(z−1) (in the upper plot), the

obtained MAP estimate x̂N
0:T (center plot) and the resulting output ŷN

1:T , together with the desired signal

yt = δκ(t−1) (lower plot). In the three simulations, Algorithm 1 was implemented with N = 104 particles

and state-transition pdf π(xt|x0:t−1) = π(xt) = U(xt;−5, +5).

The first column of Figure 4 depicts the results obtained for an “easy” system Ha(z−1) with all its

roots inside the unit circle and close to 0. We see that the impulse response of the cancellation filter is

relatively short, i.e., the sequence x̂N
t takes residual values for (approximately) t > 15 (hence, we could

have inverted ha(n) with a much shorter filter). Correspondingly, the difference between the actual output

ŷN
1:T and the desired signal y1:T is very small.
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The second column of Figure 4 shows the results for an acoustic response with larger roots, but still

bounded away from the unit circle. We observe that the effective length of the cancellation filter is larger,

i.e., the coefficients x̂N
t take non-negligible values almost for the whole length, K, of the filter. Still, the

output ŷN
1:T matches the desired y1:T closely.

Finally, the third column of Figure 4 illustrates the result of attempting the inversion of an acoustic

response with its zeros very close to the unit circle. With the selected filter length, K = 91, and pdf

π(xt) = U(xt;−5, +5), accurate inversion cannot be carried out. As shown in the center plot, the sequence

x̂N
t does not converge toward 0, as it does in the previous examples, and the output ŷN

t departs significantly

form yt. The accurate inversion of this response would require a longer filter (i.e., greater K) and a pdf

π(xt) = U(xt;−a, +a) with sufficiently large a.

8 Summary

We have shown how a class of optimization problems consisting in the minimization of a cost function with

a recursive structure can be transformed into equivalent estimation problems by constructing a suitable

state-space dynamic model. The unknowns of the cost function determine the state-space of the dynamic

model and both of them are defined to be “matched” when the set of minimizers of the cost coincide with

the set of MAP estimates for the dynamic model.

Once recast as an estimation problem, we can take advantage of the SMC methodology for the

approximation of probability measures in state-space models in order to numerically find solutions of

the original optimization problem. Specifically, the SMC method yields a discretization of the state-space

(equivalently, of the space of the unknowns) that is dense where the posterior probability mass is high

(equivalently, where the cost is low) and sparse elsewhere. Then, it is possible to approximate the MAP

estimates of the model (equivalently, the minimizers of the cost) by searching over this discretized space.

We have described two algorithms for this purpose. The first one simply selects the sample path with

the highest posterior probability density (equivalently, with the lowest cost) out of those generated by

the SMC method. The second one constructs a refined random grid approximation of the state-space by

allowing the combination of different sample paths and then searches the best point of this refined grid by

means of the Viterbi algorithm. We have shown this scheme to work properly even with the simplest SMC

method (the standard SIR algorithm) and have illustrated its performance with two examples borrowed

from the fields of global optimization and signal processing. From one of these examples it is clearly seen
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that the use of the refined grid can be very advantageous in terms of the accuracy of the solutions.

The approximate MAP estimates (equivalently, cost minimizers) generated by the proposed algorithms

depend on the number of samples, N , allowed to the SMC method in order to discretize the state space.

We have proved that, as N grows, the posterior probability density of the solutions output by Algorithms

1 and 2 converge almost surely to the true maximum a posteriori density (equivalently, the cost of the

solutions converges to the true minimum). Moreover, we have derived bounds, for the number of samples,

N , needed to attain a certain accuracy that hold almost surely. It is also worth noting that, as an

instrument to analyze the proposed optimization algorithms we have derived Lp bounds for the errors

in the integrals of bounded functions in the path space as approximated using the SIR algorithm. This

result was not explicitly available in the literature on SMC methods so far.

Acknowledgements

J. M. acknowledges the support of the Ministry of Science and Technology of Spain (program Consolider-

Ingenio 2010 CSD2008-00010 COMONSENS and project DEIPRO TEC2009-14504-C02-01).

Part of this work was done during D. C.’s visit to the Department of Signal Theory & Communications,

Universidad Carlos III (Spain), in April 2008. The hospitality of the Department is gratefully

acknowledged.

The work of P. M. D. has been supported by the National Science Foundation under Award CCF-

0515246 and the Office of Naval Research under Award N00014-06-1-0012. Part of this work was carried

out while P. M. D. held a Chair of Excellence of Universidad Carlos III de Madrid-Banco de Santander.

A Proof of Lemma 1

We proceed by induction in T . For T = 0, the random measure πN
0:0(dx) is constructed from an i.i.d.

sample of size N from the distribution with pdf π0:0. Hence, it is straightforward to check that

∥

∥(f, πN
0:0) − (f, π0:0)

∥

∥

p
≤ cp

0‖f‖∞√
N

, (54)

where cp
0 is a constant independent of N .

Now we assume that
∥

∥(f, πN
0:T ) − (f, π0:T )

∥

∥

p
≤ cp

T ‖f‖∞√
N

, (55)

for an integer T > 0 and aim at proving the corresponding inequality for T + 1.

26



The recursive step of the SIR algorithm, as presented in Section 6.1, consists of three sub-steps. Let

pN
0:T+1 be the empirical measure obtained after the first sub-step, i.e., pN

0:T+1(dx) = 1
N

∑N
n=1 δ

x̄
(n)
0:T+1

(dx),

where δ
x̄
(n)
0:T+1

denotes the unit delta measure centered at x̄
(n)
0:T+1. Also let GT,N denote the σ-algebra

generated by the random variates X
(n)
0:T , n = 1, ..., N . Then, for f : (Rdx)T+2 → R, we have

E
[

(f, pN
0:T+1)|GT,N

]

= (f̄ , πN
0:T ), (56)

where f̄ is obtained from f by integrating with respect to the measure π(xT+1|x0:T )dxT+1, i.e.,

f̄(x0, x1, ..., xT ) ,

∫

Rdx

f(x0, x1, ..., xT+1)π(xT+1|x0:T )dxT+1. (57)

Obviously, f̄ is bounded (since ‖f̄‖∞ ≤ ‖f‖∞) and, from the induction hypothesis (55), we deduce that

∥

∥(f̄ , πN
0:T ) − (f̄ , π0:T )

∥

∥

p
≤ cp

T ‖f‖∞√
N

. (58)

Moreover, since

E
[

(

(f, pN
0:T+1) − E

[

(f, pN
0:T+1)|GT,N

])p |GT,N
]

1
p ≤

c̃p
T+1‖f‖∞√

N
, (59)

where c̃p
T+1 is a positive random variable independent of N , it is straightforward to combine (56), (58)

and (59) using the triangle inequality to arrive at

∥

∥(f, pN
0:T+1) − (f̄ , π0:T )

∥

∥

p
≤

¯̃cp
T+1‖f‖∞√

N
, (60)

where ¯̃cp
T+1 = E[c̃p

T+1] + cp
T .

Consider next the measure π̄N
0:T+1 that is obtained after sub-step ii. of the algorithm. This measure

can be defined by

(f, π̄N
0:T+1) =

(fgT+1, p
N
0:T+1)

(gT+1, pN
0:T+1)

(61)

(recall that gT+1(x0:T+1) = π(yT+1|x0:T+1, y1:T ) is the bounded likelihood function). Also let

p0:T+1(x0:T+1)dx0:T+1 be the predictive measure that satisfies (f, p0:T+1) = (f̄ , π0:T ) and rewrite (60)

as
∥

∥(f, pN
0:T+1) − (f, p0:T+1)

∥

∥

p
≤

¯̃cp
T+1‖f‖∞√

N
. (62)

Since, from the Bayes’ rule,

(f, π0:T+1) =
(fgT+1, p0:T+1)

(gT+1, p0:T+1)
, (63)

we can take (61) and (63) together in order to obtain

(f, π̄N
0:T+1) − (f, π0:T+1) =

(fgT+1, p
N
0:T+1)

(gT+1, pN
0:T+1)

− (fgT+1, p0:T+1)

(gT+1, p0:T+1)
. (64)
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By adding and subtracting the term (fgT+1, p
N
0:T+1)/(gT+1, p0:T+1) in the equation above, we easily arrive

at

(f, π̄N
0:T+1) − (f, π0:T+1) =

(fgT+1, p
N
0:T+1)

(gT+1, pN
0:T+1)(gT+1, p0:T+1

[

(gT+1, p0:T+1) − (gT+1, p
N
0:T+1)

]

+
1

(gT+1, p0:T+1)

[

(fgT+1, p
N
0:T+1) − (fgT+1, p0:T+1)

]

(65)

and, since
∣

∣(fgT+1, p
N
0:T+1)

∣

∣ ≤ ‖f‖∞(gT+1, p
N
0:T+1), it readily follows that

∣

∣(f, π̄N
0:T+1) − (f, π0:T+1)

∣

∣ ≤ ‖f‖∞
(gT+1, p0:T+1)

∣

∣(gT+1, p0:T+1) − (gT+1, p
N
0:T+1)

∣

∣

+
1

(gT+1, p0:T+1)

∣

∣(fgT+1, p
N
0:T+1) − (fgT+1, p0:T+1)

∣

∣ . (66)

The latter inequality, together with (62) and the assumed boundedness of the likelihood gT+1, yields

‖(f, π̄N
0:T+1) − (f, π0:T+1)‖p ≤

c̆p
T+1‖f‖∞√

N
, (67)

where c̆p
T+1 = 2‖gT+1‖∞¯̃cp

T+1/(gT+1, p0:T+1) is a constant independent of N .

In order to analyze the last substep (the resampling), we introduce the σ-algebra generated by the

random variates X̄
(n)
0:T+1, n = 1, ..., N , and denote it as ḠT+1,N . It is straightforward to obtain that

E
[

(f, πN
0:T+1)|ḠT+1,N

]

= (f, π̄N
0:T+1), hence the conditional expectation of the error becomes

E
[

(

(f, πN
0:T+1) − (f, π̄N

0:T+1)
)p |ḠT+1,N

]
1
p ≤

ćp
T+1‖f‖∞√

N
, (68)

where ćp
T+1 is a positive random variable independent of N . As a consequence, taking the expectation on

X
(n)
0:T+1, n = 1, ..., N , yields

‖(f, πN
0:T+1) − (f, π̄N

0:T+1)‖p ≤
¯́cp
T+1‖f‖∞√

N
, (69)

where ¯́cp
T+1 is the expected value of ćp

T+1. Combining (67) and (69) by way of the triangle inequality

yields

‖(f, πN
0:T+1)−(f, π0:T+1)‖p ≤ ‖(f, πN

0:T+1)−(f, π̄N
0:T+1)‖p+‖(f, π̄N

0:T+1)−(f, π0:T+1)‖p ≤
cp
T+1‖f‖∞√

N
, (70)

where cp
T+1 = ¯́cp

T+1 + c̆p
T+1 is a constant independent of N . 2
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Figure 4: Performance of Algorithm 1 for the cross-talk cancellation problem with T = 103.
Left column: Results for a combined response ha(n) with all its roots close to 0. The upper
plot shows the location of the zeros of Ha(z

−1). The center plot depicts the cancellation filter
computed by Algorithm 1, x̂N

0:T
. The lower plot shows the filtered response ŷN

t together with
the desired response yt = δκ(t−1). Middle column: Performance of Algorithm 1 as the zeros
of Ha(z

−1) spread within the unit circle. The upper plot shows the location of the zeros. The
center plot shows the cancellation filter coefficients, x̂N

0:T
. The lower plot depicts the filtered

response ŷN
t together with the desired response yt. Right column: As the zeros of the acoustic

response ha(n) move onto the unit circle, the computation of an inverse filter becomes tougher.
The upper plot shows the location of the zeros. The center plot shows the cancellation filter
coefficients x̂N

0:T
. The lower plot shows the output ŷN

1:T
, which departs from yt.
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