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Citation of the day

As far as the laws of mathematics refer to reality, they are not certain,

and as far as they are certain, they do not refer to reality.

– Albert Einstein (1879-1955)

personal question

X random variable ⇔ Law(X ) = certain ??

Mathematics is a game played according to certain simple rules with
meaningless marks on paper.

– Hilbert, David (1862-1943)
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Some basic notation

∀1 ≤ i ≤ d P(Y = j)︸ ︷︷ ︸
=pY (j)

=
∑

1≤i≤d

P(X = i)︸ ︷︷ ︸
=pX (i)

P(Y = j | X = i)︸ ︷︷ ︸
=M(i,j)

m
Matrix notation:

pY = [P(Y = 1), . . . ,P(Y = d)]

= [P(X = 1), . . . ,P(X = d)]︸ ︷︷ ︸
=pX

×


P(Y = 1 | X = 1) P(Y = 2 | X = 1)) . . . P(Y = d | X = 1)

P(Y = 1 | X = 2) P(Y = 2 | X = 2)) . . . P(Y = d | X = 2)
...

...
...

...

P(Y = 1 | X = d) P(Y = 2 | X = d)) . . . P(Y = d | X = d)


︸ ︷︷ ︸

M=(M(i,j))i,j

m

Matrix synthetic notation:

pY = pXM
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Some basic notation

E(f (Y ) | X = i) =
∑

1≤j≤d

P(Y = j | X = i)︸ ︷︷ ︸
=M(i,j)

f (j)

m
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Some basic notation

Markov chain = ”sequence of r.v.”

X0  X1  . . . Xn−1  Xn

m

P(Xn = j)︸ ︷︷ ︸
=pXn (j)

=
∑

1≤i≤d

P(Xn−1 = i)︸ ︷︷ ︸
=pXn−1

(i)

P(Xn = j | Xn−1 = i)︸ ︷︷ ︸
=Mn(i,j)

m

Matrix synthetic notation:

pXn = pXn−1Mn = . . . = pX0M1M2 . . .Mn
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Some basic notation

E (f (Xn) | X0 = i) = E

 Mn(f )(Xn−1)︷ ︸︸ ︷
E (f (Xn) | Xn−1) | X0 = i


= E (Mn(f )(Xn−1) | X0 = i)

= E (Mn−1 (Mn(f )) (Xn−2) | X0 = i)

= . . .

= E ((M1 . . . (Mn(f ))) (X0) | X0 = i)

= (M1M2 . . .Mn)(f )(i)
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Stabilizing populations - Migration processes

I 193 countries (UN report 2013) ci , i = 1, . . . , 193.

I qn(i) = average-population of country ci at some time n
(years/months/...).

I Mn(i , j) = proportions of migrants from ci to cj at time n.

Some questions:

I Stabilization ∃? q∞(i) invariant w.r.t. migration process

I Chance for two migrants to meet in some country?
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Migration - Stochastic process

{

individuals︷ ︸︸ ︷
I 1
i,n, I

2
i,n, I

3
i,n, . . . , I

mn(i)
i,n } = Country ci at time n with pop. mn(i)

During the migration process

Each I ki,n chooses the index Î ki,n = j of a country cj ∼ Mn(i, j)

Simulation?

m(n+1)(i, j) =
∑

1≤k≤mn(i)

1j

(
Î ki,n

)
= Migrants i j

⇓

m(n+1)(j) =
∑

1≤i≤193

m(n+1)(i, j) If no birth & death!

Mean-average?
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Migration - Stochastic process

E(mn(j)) = qn(j) =⇒ qn(j) =
∑

1≤i≤193

qn−1(i) Mn(i , j)

⇐⇒ qn = qn−1Mn = q0M1M2 . . .Mn

If World pop. size Nn = N fixed:

qn(i)

N
:= pn(i) = Proba on {1, . . . , 193} := P (Xn = i)

Stochastic model for a migrant Xn between countries

P (Xn = j)︸ ︷︷ ︸
=pn(j)

=
∑

1≤i≤193

P (Xn−1 = i)︸ ︷︷ ︸
=pn−1(i)

P (Xn = j | Xn−1 = i)︸ ︷︷ ︸
=Mn(i,j)

m

pn = pn−1Mn
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Migration - Stabilization Mn = M

pn = pn−1M −→n↑∞ p∞ = p∞M = left eigenvector of M

m

Stationary population q∞ = N × p∞

If no birth & death!

I Power method Mn(i, j)→n↑∞ p∞(j)

pn = pn−1M = pn−2M
2 = . . . = p0M

n

⇓
pn(j) =

∑
i

p0(i) Mn(i, j)︸ ︷︷ ︸
→n↑∞p∞(j)

→n↑∞ p∞(j)

I Law of large numbers = Ergodic theorem (admitted today)

= by simulation

proportions of visits to cj =
1

n

∑
1≤k≤n

1cj (Xk)→n↑∞ p∞(j)
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→n↑∞ p∞(j)

I Law of large numbers = Ergodic theorem (admitted today)

= by simulation

proportions of visits to cj =
1

n

∑
1≤k≤n

1cj (Xk)→n↑∞ p∞(j)

11/34



The evolution of 2 migrants

Walker Xn starting at X0 = i & Walker X ′n starting at X ′0 = i′

pn(j) = P (Xn = j) = p0M
n(j) with p0(j) = 1i(j)

p′n(j) = P (X ′n = j) = p′0M
n(j) with p′0(j) = 1i′(j)

Natural questions:

I Do they forget their initial state?

I Can we define/couple their random evolution in the same
probability space?

I What is their meeting time probabilities?

12/34



Forgetting their original country

pn = pn−1M ⊕ Hypothesis M(i , j) ≥ ε λ(i)︸︷︷︸
=1/193

KEY ε-transition

Mε(i , j) =
M(i , j)− ελ(j)

1− ε

⇔ M(i , j) = (1− ε) Mε(i , j) + ε λ(j)

=⇒ pM = (1− ε) pMε + ελ

=⇒ [p − p′]M = (1− ε) [p − p′]Mε

⇓

pn+1 − p′n+1 = [pn − p′n]M = (1− ε) [pn − p′n]Mε

= (1− ε)2 [pn−1 − p′n−1]M2
ε

= (1− ε)n+1 [p0 − p′0]Mn+1
ε ↓n↑∞ 0
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Coupling the 2 migrations

I Coupling 2 r.v.

⇔ Defined using the ”same” randomness.

I How to couple two individuals?

Why?  An illustration:

P (X ∈ A)− P (Y ∈ A) = P (X = Y ∈ A, X = Y ) + P (X ∈ A, X 6= Y )

−P (Y = X ∈ A, Y = X )− P (Y ∈ A, X 6= Y )

= P (X ∈ A, X 6= Y )− P (Y ∈ A, X 6= Y )

= [P (X ∈ A | X 6= Y )− P (Y ∈ A | X 6= Y )]× P (X 6= Y )

=⇒ ‖Law(X )− Law(Y )‖tv := sup
A
|P (X ∈ A)− P (Y ∈ A)| ≤ P (X 6= Y )
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Coupling 2 migrations

(Xn,X
′
n) = (i, i′)  (Xn+1,X

′
n+1) = (j, j′)

recalling that

M(i, j) = (1− ε) Mε(i, j) + ε λ(j)

M(i′, j′) = (1− ε) Mε(i′, j′) + ε λ(j′)

KEY ε-coupling transition

M((i, i′), (j, j′)) := (1− ε) Mε(i, j)Mε(i′, j′) + ε λ(j) 1j=j′

⇔ God flips ε-Head coin to define their joint evolution!

Proof: Integration the evolution of X ′n we have∑
j′

M((i, i′), (j, j′)) = M(i, j) and vice-versa

P (Xn 6= X ′n) ≤ P (Never Head in n trials) = (1− ε)n
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Birth and Death processes

population at time n after migration

branching

−−−−−−−−−−−→ population at time n after birth and death

(n + 1)-th migration

−−−−−−−−−−−→ population at time (n + 1) after migration

{

individuals︷ ︸︸ ︷
I 1
i,n, I

2
i,n, I

3
i,n, . . . , I

mn(i)
i,n } = Country ci at time n with pop. mn(i)

I ki,n  Nk
i,n offsprings

(
I k,1i,n , I

k,2
i,n , . . . , I

k,Nk
i,n

i,n

)
with branching rates depending on country ci attraction at time n

E(Nk
i,n) = Gn(i) Simulation?
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Birth and Death processes Nn =
∑

1≤i≤193 mn(i) random !

m(n+1)(j) =
∑

1≤i≤193

∑
1≤k≤mn(i)

∑
1≤l≤Nk

i,n

1j

(
I k,l
i,n

)
= Sum of all l-children of k-migrants i j

⇓ E(.)

q(n+1)(j) =
∑

1≤i≤193

qn(i) Gn(i) Mn+1(i , j)

E(Nn) =
∑

j

qn(j)

= E(Nn−1) ×
∑
i

qn(i)∑
j qn(j)

Gn(i)

World pop. size evolution?

 Super and Sub Critical!! Worldometer check

 Worlfram - Mathworld

17/34
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The traps of reinforcement

I Reinforcement  make more frequent ”positive” events.

I ⊂ Learning process, natural behavior, reward-based algo, . . .

I All events are related to the past, the experience,. . .

↓

A (real) story:

I French tourist visit ever night one of the 2100 hotel pubs,

taverns and bars in Sydney

I He is attracted by pubs visited in the past.

18/34

http://publocation.com.au/facts
http://publocation.com.au/facts
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The traps of reinforcement

I What is the stochastic model?

I How to simulate it?

I Is there some math. formulae?

19/34



The traps of reinforcement - Stochastic model

Ingredients:

I Uniform r.v. Un on {1, . . . , d}, with d = 2100 pubs.

I A ”coin” with Head probability ε = Reinforcement rate.

I Xn = Pub visited the n-th evening

⇓

Self-reinforced model:

Given the pubs X0,X2, . . . ,Xn−1 visited at time (n − 1)

Xn ∼ ε
1

n

∑
0≤p<n

δXp + (1− ε) Un

Simulation & Analysis?

20/34



The traps of reinforcement - Stochastic model

Ingredients:

I Uniform r.v. Un on {1, . . . , d}, with d = 2100 pubs.

I A ”coin” with Head probability ε = Reinforcement rate.

I Xn = Pub visited the n-th evening

⇓

Self-reinforced model:

Given the pubs X0,X2, . . . ,Xn−1 visited at time (n − 1)

Xn ∼ ε
1

n

∑
0≤p<n

δXp + (1− ε) Un

Simulation & Analysis?

20/34



The traps of reinforcement - Stochastic model

Ingredients:

I Uniform r.v. Un on {1, . . . , d}, with d = 2100 pubs.

I A ”coin” with Head probability ε = Reinforcement rate.

I Xn = Pub visited the n-th evening

⇓

Self-reinforced model:

Given the pubs X0,X2, . . . ,Xn−1 visited at time (n − 1)

Xn ∼ ε
1

n

∑
0≤p<n

δXp + (1− ε) Un

Simulation & Analysis?

20/34



The traps of reinforcement - Stochastic model

Ingredients:

I Uniform r.v. Un on {1, . . . , d}, with d = 2100 pubs.

I A ”coin” with Head probability ε = Reinforcement rate.

I Xn = Pub visited the n-th evening

⇓

Self-reinforced model:

Given the pubs X0,X2, . . . ,Xn−1 visited at time (n − 1)

Xn ∼ ε
1

n

∑
0≤p<n

δXp + (1− ε) Un

Simulation & Analysis?

20/34



The traps of reinforcement - Stochastic model

Ingredients:

I Uniform r.v. Un on {1, . . . , d}, with d = 2100 pubs.

I A ”coin” with Head probability ε = Reinforcement rate.

I Xn = Pub visited the n-th evening

⇓

Self-reinforced model:

Given the pubs X0,X2, . . . ,Xn−1 visited at time (n − 1)

Xn ∼ ε
1

n

∑
0≤p<n

δXp + (1− ε) Un

Simulation & Analysis?

20/34



The traps of reinforcement - ε = 10%
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The traps of reinforcement - ε = 50%
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The traps of reinforcement - ε = 90%
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Conclusion of the day by Henry David Thoreau (1817-1862)

Never look back unless you are planning to go that way.

23/34
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Casino roulette - Double or Nothing

I Asheyl Revell (after "some" beers in a London pub)

 Double or Nothing in Vegas.

I Chances to win on the red color (18 + 18 = 36)?

⇓

US = 18/(36 + 2) = 0.474 < CEE = 18/(36 + 1) = 0.486 < 0.5

24/34

http://en.wikipedia.org/wiki/Ashley_Revell
http://www.telegraph.co.uk/men/the-filter/10245963/What-its-like-to-bet-everything-you-own-on-red.html
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Casino roulette - Predictions?

I Starting with $1 ≤ x < $100:

Chance to win $100 before ruin?

I How long it takes?

 Worlfram - Mathworld

⊕ Martingales betting systems = Project No 5

I St.Petersburg martingales

I The Grand Martingale

I The d’Alembert Martingale

I The Whittacker Martingale
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Casino roulette - some predictions
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Casino roulette - some predictions
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Proofs ⊂ Martingale theory

A gambling model = Random walk!

Yn = Y0 + X1 + . . .+ Xn ⇔ ∆Yn = Yn − Yn−1 = Xn

with some initial fortune Y0 = y0 & ⊥ bettor’s profits per unit of time

P(Xn = +1) = p and P(Xn = −1) = q = 1− p ∈]0, 1[

Information at time n encoded in Fn = σ (X1, . . . ,Xn)

E (∆Yn | Fn−1)
= E(Xn)
= p − q = ρ

 =

 0 when p = 1/2 = q ⇔ martingale
> 0 when p > q ⇔ sub-martingale
< 0 when p < q ⇔ super-martingale
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Some martingale properties

∀r.v. Mn = M0 + ∆M1 + . . .+ ∆Mn with ∆Mn = Mn −Mn−1

Martingale w.r.t. some filtration of the information

Fn = σ(X0, . . . ,Xn) with Mn = ϕn(X0, . . . ,Xn)

m
E(∆Mn | Fn−1) = 0 ⇒ E(Mn | Fn−1) = Mn−1 + E(∆Mn | Fn−1) = Mn−1

⇒ E(Mn | Fn−2) = E

E(Mn | Fn−1)︸ ︷︷ ︸
=Mn−1

| Fn−2

 = Mn−2

⇒ . . .

⇒ E(Mn | Fp)
p<n
= Mp ⇒ E(Mn) = E(M0)

⇓ Theo (Doob’s optional stopping)

E(MT ) = E(M0) For regular ”stopping times” T
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Fair game martingales (1/2)

I Martingale Yn

∆Yn = Xn with P(Xn = +1) = P(Xn = −1) = 1/2

I Martingale Zn = Y 2
n − n

H [Y2
n − n] = (Yn−1 + ∆Yn)2 − n

= [Y2
n−1 − (n− 1)] + 2Yn−1∆Yn + (∆Yn)2 − 1

⇒ ∆Zn = 2Yn−1 ∆Yn + X 2
n − 1⇒ E(∆Zn | Fn−1) = 0 N

I Stopping time

Ta,b = first time Yn hits the boundaries [a, b]
ex.
= [0, 100] 3 Y0
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Fair game martingales (2/2)

I Martingale Yn

y0 = E(YTa,b
) = b P(YTa,b

= b) + a
(
1− P(YTa,b

= b)
)

⇓

P(YTa,b
= b) = (y0 − a)/(b − a)

I Martingale Zn = Y 2
n − n

y2
0 − 0 = E

(
Y 2
Ta,b

)
− E(Ta,b)

= b2 P(YTa,b
= b) + a2

(
1− P(YTa,b

= b)
)
− E(Ta,b)

⇓

E(Ta,b) = b2 y0 − a

b − a
+ a2 b − y0

b − a
− y2

0

= . . .

= (b − y0)(y0 − a)
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Unfair game martingales (1/2)

I Martingale Ỹn = Yn − (p − q) n

H ∆Ỹn = Xn − E(Xn) = Xn − (p − q) N

I Martingale Zn = (q/p)Yn

H (q/p)Yn = (q/p)Yn−1+∆Yn

= (q/p)Yn−1 (q/p)Xn

⇒ ∆Zn = (q/p)Yn−1
(
(q/p)Xn − 1

)
⇒ E(∆Zn | Fn−1) = 0 N
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Unfair game martingales (2/2)

I Martingale Zn = (q/p)Yn

(q/p)y0 = E
(

(q/p)YTa,b

)
= (q/p)b P(YTa,b

= b) + (q/p)a
(
1− P(YTa,b

= b)
)

P(YTa,b
= b) =

(q/p)y0 − (q/p)a

(q/p)b − (q/p)a

I Martingale Ỹn = Yn − (p − q) n

y0 − (p − q)× 0 = E
(
YTa,b

)
− (p − q) E (Ta,b)

= b P(YTa,b
= b) + a

(
1− P(YTa,b

= b)
)

−(p − q) E (Ta,b)

⇓

(p−q) E (Ta,b) = (b−y0) P(YTa,b
= b)+(a−y0)

(
1− P(YTa,b

= b)
)

34/34


