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Stochastic processes

I Random dynamical system.

I Sequential simulation of random variables.

I Randomness: occurring with undefinite aim/pattern/regularity, odd
and unpredictable, unknown, unidentified, out of place,. . .

I Simulation: imitation, mimicking, feigning, pretending,
duplicate/replica/clone, counterfeit, fake,. . .

⇓

The generation of random numbers is too important
to be left to chance.

Robert Coveyou [Studies in Applied Mathematics, III (1970), 70-111.]
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Lost in the Great Sloan Wall

The Tau Zero Foundation  interstellar travels in any dimension.

Tony Gonzales random travelling plans in the universe lattices at
superluminal speeds

I dimension 1 and 2 from Reykjavik:

Main drawbacks: infinite returns back home....

4/25
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Lost in the Great Sloan Wall

I Free trip travel voucher to the 3d- Great Sloan Wall:

Main advantage: finite mean returns back home.

Main drawbacks:

Wanders off in the infinite universe and never returns back home!
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Lost in the Great Sloan Wall - Why??

I Was it predictable?

I What is the stochastic model?

I How to simulate it?

I Is there some math. formulae?
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Lost in the Great Sloan Wall - The stochastic model

Stoch. model =

Simple random walks on Zd :

d = 1 ⇒ Xn = Xn−1 + Un with Un = +1 or − 1 proba 1/2

I dimension 2, 3, and any d ?  blackboard.

I simulation ?  flip coins!

I Math analysis ?  intuition/blackboard.

⊕ More rigorous analysis for d = 2, 3 = Project No 1
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Meeting Alice in Wonderland

Alice + White rabbit ∈ Polygonal labyrinth (no communicating edges!):

1 2
3

4

5

6

7

8
910

11

12

13

14

15

16
17

I Chances to meet after 5 moves : > 25%

I Chances to meet after 12 moves : > 51%

I Chances to meet after 40 moves : > 99%
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Meeting Alice in Wonderland - Why??

I Was it predictable?

I What is the stochastic model?

I How to simulate it?

I Is there some math. formulae?
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Meeting Alice in Wonderland- The stochastic model

Stoch. model =

Random walk on (finite & complete) graphs

G := (V, E) = (Vertices,Edges)

Neighborhood systems:

On the set of vertices x ∼ y =⇒ (x , y) ∈ E = set of edges

⇓
Set of neighbors of x ∈ V := N (x) = {y ∈ V : y ∼ x}

Stochastic model:

Xn uniform r.v. on the set of neighbors N (Xn−1)

m

P (Xn = y | Xn−1 = x) =
1

#N (Xn−1)
1N (Xn−1)(y)
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Meeting Alice in Wonderland - Simulation ⊕ Analysis

I Simulation ?  

flip coins!

I Math analysis ?  blackboard.

Other application domains?

Ex.: web-graph analysis (ranking ⇒ recommendations)

11/25



Meeting Alice in Wonderland - Simulation ⊕ Analysis

I Simulation ?  flip coins!

I Math analysis ?  blackboard.

Other application domains?

Ex.: web-graph analysis (ranking ⇒ recommendations)

11/25



Meeting Alice in Wonderland - Simulation ⊕ Analysis

I Simulation ?  flip coins!

I Math analysis ?  

blackboard.

Other application domains?

Ex.: web-graph analysis (ranking ⇒ recommendations)

11/25



Meeting Alice in Wonderland - Simulation ⊕ Analysis

I Simulation ?  flip coins!

I Math analysis ?  blackboard.

Other application domains?

Ex.: web-graph analysis (ranking ⇒ recommendations)

11/25



Meeting Alice in Wonderland - Simulation ⊕ Analysis

I Simulation ?  flip coins!

I Math analysis ?  blackboard.

Other application domains?

Ex.: web-graph analysis (ranking ⇒ recommendations)

11/25



Meeting Alice in Wonderland - Simulation ⊕ Analysis

I Simulation ?  flip coins!

I Math analysis ?  blackboard.

Other application domains?

Ex.: web-graph analysis (ranking ⇒ recommendations)

11/25



The MIT Blackjack team
Mr M. card shuffle tracking and P. Diaconis magic number

≤ 5 shuffles =⇒ possible predictions ≥ 90%,

6 shuffles =⇒ possible predictions ≥ 40% !

Some questions?

I Perfect shuffling ? ⇔ fully unpredictable cards.

I A shuffle ? ⇔ A permutation of 52 or 78 cards.

I Unpredictable decks ? ⇔ Uniform distribution on Gd (d = 52, 78).

I How to sample the uniform distribution P (σ) = 1/d! ?

I How many shuffles?

52! ' 8.053 1067

78! ' 1.13 10115 >> number 1080of particles in the universe
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Why shuffling cards?

Application domains?

I Software security-design:

Online gambling, iPod songs shuffles.

I Cryptography:

Encrypted codes, (pseudo)-random key
generators,

I Random search algo:

Simulated annealing (traveling salesman).

I Computer sciences:

Reallocations/balancing techniques.
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Shuffling cards - The stochastic model?

Random walks on the symmetric group Gd with d = 52, 78, . . .

Xn(i) = Value of the i-th card at time n

Yn(i) = X−1n (i) = Position of the card with label i at time n

Change of order σn+1 or change of values

i  Yn(i) = position  σn+1 (Yn(i)) = Yn+1(i) = new position

i  Xn(i) = value  Xn

(
σ−1n+1(i)

)
= Xn+1(i) = new value

⇓

Xn = Xn−1 ◦ σ−1n or Yn = σn ◦ Yn−1

with some i.i.d. r.v. σn in some class : transpositions, top-in, riffles,. . .
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Shuffling cards – Simulation+Analysis

I Simulation ?  

flip coins! ∼ permutations/riffles/top-in
(blackboard).

I Math analysis ?  convergence to stationarity.

Xn and Yn −→n→∞ limiting r.v. X∞ and Y∞

with for any uniform r.v. σ on Gd

X∞
in law
= X∞ ◦ σ−1 and Y∞

in law
= σ ◦ Y∞

⊕ Top-in & Transpositions = Project No 2
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Kruskal count (with the classroom!)
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Kruskal count - Stochastic model ⊕ Simulation ⊕ Analysis

Martin David Kruskal (1925-2006)

I Stochastic model ?

 

Deterministic walker on a random environment.

I Simulation ?  Permutation sampling!

I Math analysis ?  Simplified model on blackboard.
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The magic fern from Daisetsuzan

I What is the stochastic model?

I How to simulate it?

I Is there some math. formulae?
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The magic fern - The stochastic model

Stoch. model = Iterated random functions (IRF):

I Some functions x ∈ R2 7→ fi (x) = Ai x + bi ∈ R2, with
i ∈ I = {1, . . . , d}.

I Some i.i.d. r.v. εn with some law µ on {1, . . . , d}

⇓

Xn = fεn (Xn−1) =
(
fεn ◦ fεn−1 ◦ . . . ◦ fε1

)
(x0)

Do you believe this?

⊕ Fractal & IRF = Project No 3
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The magic fern from Daisetsuzan - An illustration

Scilab program: fractal.tree.sce

A1 =

(
0 0
0 c

)
b1 =

(
1/2

0

)
A2 =

(
r cos(ϕ) −r sin(ϕ)
r sin(ϕ) r cos(ϕ)

)
b2 =

(
1
2 −

r
2 cos(ϕ)

c − r
2 sin(ϕ)

)
et

A3 =

(
q cos(ψ) −r sin(ψ)
q sin(ψ) r cos(ψ)

)
b3 =

(
1
2 −

q
2 cos(ψ)

3c
5 −

q
2 sin(ψ)

)
with εn i.i.d. uniform on {1, 2, 3}, and with the parameters

c = 0.255, r = 0.75, q = 0.625

ϕ = −π
8
, ψ =

π

5
, |X0| ≤ 1.
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The Kepler-22b Eve

Migration in 2457 of selected 1000 humans:

Reproduction rate (20 years)

I 5.5 thousands years ⇒ 25% population ∈ same family.

I 6.5 thousands years ⇒ 68% population ∈ same family.

I 10 thousands years ⇒ more than 99% population ∈ same family.

The Seven Daughters of Eve of Bryan Sykes: Mitochondrial Eve
' 140− 200 thousands years (missprint in manuscript)
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The Kepler-22b Eve - Stochastic model

Random walks on functions a : i ∈ {1, . . . , d} 7→ {1, . . . , d}

Birth and death = selection of the parents/ancestors/types

A0oo A1oo A2oo A3oo

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6
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The Kepler-22b Eve - Simulation ⊕ Analysis

I Simulation?

Neutral genetic model  Each A(i) uniform on {1, . . . , d}

I Analysis?  Iterated random mappings.

The label of the ”surviving” ancestors of the population at time n:

Xn = Xn−1 ◦ An = A0 ◦ . . . ◦ An : i ∈ {1, . . . , d} 7→ {1, . . . , d}

Intuitively:

Xn −→n→∞ X∞ = Constant random function

⊕ More rigorous analysis = Project No 4
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Poisson typos (reminder of stats course)

I Arrival times Tn of events :

misprints in a text, trades counts, bus arrivals, machine failures,
catastrophies, number of tries in rugby games, . . .

I Stat. model on the time axis = i.i.d. exponential inter-arrivals

P ((Tn+1 − Tn) ∈ dt | Tn) = e− t 1[0,∞[(t) dt
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I Consequences (admitted, cf. pb.1 p. 71)

∀n ≥ 0 P (#{Ti ∈ [0, λ]} = n) = e−λ
λn

n!
= Poisson r.v.

and(
T1

Tn+1
,

T2

Tn+1
, . . . ,

Tn

Tn+1

)
= ordered unif. stats on [0, 1] ⊥ Tn+1

I Extension to any state space (⊃ the book of D. Poisson)?

 Counting processes with intensity x ∈ S 7→ f (x) ∈ [0,∞[

X =
∑

1≤i≤N

δX i

with

I N Poisson r.v. with λ =
∫

f (x) dx .
I Given N = n, X 1, . . . ,X n i.i.d. with density g(x) = f (x)/λ.
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