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Introduction

Monte Carlo integration

These lectures are concerned with advanced Monte Carlo methods, including mean field type particle
integration theory.

In the last three decades, this topic has become one of the most active contact points between pure
and applied probability theory, Bayesian inference, statistical machine learning, information theory,
theoretical chemistry and quantum physics, financial mathematics, signal processing, risk analysis,
and several other domains in engineering and computer sciences.

The origins of Monte Carlo simulation certainly start with the seminal paper of N. Metropolis and
S. Ulam in the late 1940s [452]. Inspired by the interest of his colleague S.Ulam in the poker game
N. Metropolis, coined, the term “Monte Carlo Method” in reference to the “capital” of Monaco well
known as the European city for gambling.

The first systematic use of Monte Carlo integration was developed by these physicists in the Man-
hattan Project of Los Alamos National Laboratory, to compute ground state energies of Schödinger’s
operators arising in thermonuclear ignition models. It is also not surprising that the development of
these methods goes back to these early days of computers. For a more thorough discussion on the
beginnings of the Monte Carlo method, we refer to the article by N. Metropolis [453].

As its name indicates, Monte Carlo simulation is, in the first place, one of the largest, and most
important, numerical techniques for the computer simulation of mathematical models with random
ingredients. Nowadays, these simulation methods are of current use in computational physics, physical
chemistry, and computational biology for simulating the complex behavior of systems in high dimen-
sion. To name a few, there are turbulent fluid models, disordered physical systems, quantum models,
biological processes, population dynamics, and more recently financial stock market exchanges. In engi-
neering sciences, they are also used to simulate the complex behaviors of telecommunication networks,
queuing processes, speech, audio, or image signals, as well as radar and sonar sensors.

Note that in this context, the randomness reflects different sources of model uncertainties, including
unknown initial conditions, misspecified kinetic parameters, as well as the external random effects
on the system. The repeated random samples of the complex system are used for estimating some
averaging type property of some phenomenon.

Monte Carlo integration theory, including Markov chain Monte Carlo algorithms (abbreviated
MCMC), sequential Monte Carlo algorithms (abbreviated SMC), and mean field interacting parti-
cle methods (abbreviated IPS) are also used to sample complex probability distributions arising in
numerical probability, and in Bayesian statistics. In this context, the random samples are used for
computing deterministic multidimensional integrals.

In other situations, stochastic algorithms are also used for solving complex estimation problems,
including inverse type problems, global optimization models, posterior distributions calculations, non-
linear estimation problems, as well as statistical learning questions (see for instance [80, 99, 172, 288,
542]). We underline that in this situation, the randomness depends on the design of the stochastic
integration algorithm, or the random search algorithm.

In the last three decades, these extremely flexible Monte Carlo algorithms have been developed
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in various forms mainly in applied probability, Bayesian statistics, and in computational physics.
Without any doubt, the most famous MCMC algorithm is the Metropolis-Hastings model presented
in the mid-1960s by N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller in their
seminal article [454].

This rather elementary stochastic technique consists in designing a reversible Markov chain, with
a prescribed target invariant measure, based on sequential acceptance-rejection moves. Besides its
simplicity, this stochastic technique has been used with success in a variety of application domains.
The Metropolis-Hastings model is cited in Computing in Science and Engineering as being in the top 10
algorithms having the “greatest influence on the development and practice of science and engineering
in the 20th century.”

As explained by N. Metropolis and S. Ulam in the introduction of their pioneering article [452], the
Monte Carlo method is, “essentially, a statistical approach to the study of differential equations, or
more generally, of integro-differential equations that occur in various branches of the natural sciences.”

In this connection, we emphasize that any evolution model in the space of probability measures can
always be interpreted as the distributions of random states of Markov processes. This key observation
is rather well known for conventional Markov processes and related linear evolution models.

More interestingly, nonlinear evolution models in distribution spaces can also be seen as the laws of
Markov processes, but their evolution interacts in a nonlinear way with the distribution of the random
states. The random states of these Markov chains are governed by a flow of complex probability
distributions with often unknown analytic solutions, or sometimes too complicated to compute in a
reasonable time. In this context, Monte Carlo and mean field methods offer a catalog of rather simple
and cheap tools to simulate and to analyze the behavior of these complex systems.

These two observations are the stepping stones of the mean field particle theory developed in these
lectures.

Mean field simulation

The theory of mean field interacting particle models had certainly started by the mid-1960s, with the
work of H.P. McKean Jr. on Markov interpretations of a class of nonlinear parabolic partial differential
equations arising in fluid mechanics [445]. We quote an article by T.E. Harris and H. Kahn [338],
published in 1951, using mean field type and heuristic-like splitting techniques for estimating particle
transmission energies, and a declassified and pioneering article by Enrico Fermi and R.D. Richtmyer
in 1948 using mean field type but heuristic like Quantum Monte Carlo methodologies for studying
neutron diffusions [266]. For a detailed account of the applications of mean field particle methods in
computational physics we refer the reader to the series of articles of M. Caffarel and his co-authors [92,
93, 94, 526, 527].

Since this period until the mid-1990s, these pioneering studies have been further developed by
several mathematicians; to name a few, in alphabetical order, J. Gärtner [279], C. Graham [309, 310,
311, 312, 313, 314, 315, 316, 317, 318, 319, 320], B. Jourdain [365], K. Oelschläger [467, 468, 469], Ch.
Léonard [411], S. Méléard [446, 447, 448], M. Métivier [451], S. Roelly-Coppoletta [448], T. Shiga and
H. Tanaka [537], and A.S. Sznitman [559]. Most of these developments were centered around solving
Martingale problems related to the existence of nonlinear Markov chain models, and the description of
propagation of chaos type properties of continuous time IPS models, including McKean-Vlasov type
diffusion models, reaction diffusion equations, as well as generalized Boltzmann type interacting jump
processes. Their traditional applications were essentially restricted to fluid mechanics, chemistry, and
condensed matter theory. Some of these application domains are discussed in some detail in the series
of articles [119, 120, 134, 332, 419, 136, 440]. The book [377] provides a recent review on this class of
nonlinear kinetic models.

Since the mid-1990s, there has been a virtual explosion in the use of mean field IPS methods as a
powerful tool in real-word applications of Monte Carlo simulation in information theory, engineering
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sciences, numerical physics, and statistical machine learning problems. These sophisticated population
type IPS algorithms are also ideally suited to parallel and distributed environment computation [68,
283, 286, 420]. As a result, over the past few years the popularity of these computationally intensive
methods has dramatically increased thanks to the availability of cheap and powerful computers. These
advanced Monte Carlo integration theories offer nowadays a complementary tool, and a powerful
alternative to many standard deterministic function-based projections and deterministic grid-based
algorithms, often restricted to low dimensional spaces and linear evolution models.

In contrast to traditional MCMC techniques (including Gibbs sampling techniques [284], which
are a particular instance of Metropolis-Hasting models), another central advantage of these mean field
IPS models is the fact that their precision parameter is not related to some stationary target measure,
nor of some burning time period, but only to the size of the population. This precision parameter is
more directly related to the computational power of parallel computers on which we are running the
IPS algorithms.

Some application domains

In the last two decades, the numerical solving of concrete and complex nonlinear filtering problems,
the computation of complex posterior Bayesian distribution, as well as the numerical solving of opti-
mization problems in evolutionary computing, has been revolutionized by this new class of mean field
IPS samplers [99, 172, 170, 195, 234, 534, 568]. Nowadays, their range of application is extending from
the traditional fluid mechanics modeling towards a variety of nonlinear estimation problems arising in
several scientific disciplines; to name a few, with some reference pointers: Advanced signal processing
and nonlinear filtering [111, 160, 170, 163, 172, 237, 234, 235, 302, 383, 381], Bayesian analysis and
information theory [99, 141, 172, 174, 234, 264, 420], queueing networks [35, 310, 311, 313, 314, 315],
control theory [390, 354, 355, 597], combinatorial counting and evolutionary computing [7, 172, 195,
534, 568], image processing [8, 159, 263, 493], data mining [508], molecular and polymer simulation
[172, 195, 323], rare events analysis [133, 130, 172, 184, 185, 296], quantum Monte Carlo methods
[18, 97, 184, 185, 343, 450, 516], as well as evolutionary algorithms and interacting agent models
[85, 166, 300, 344, 534, 568].

Applications on nonlinear filtering problems arising in turbulent fluid mechanics and weather
forecasting predictions can also be found in the series of articles by Ch. Baehr and his co-authors [27,
28, 30, 31, 407, 505, 558]. More recent applications of mean field IPS models to spatial point processes,
and multiple object filtering theory can be found in the series of articles [108, 109, 110, 145, 233, 476,
477, 478, 530, 586, 587, 588, 589]. These spatial point processes, and related estimation problems
occur in a wide variety of scientific disciplines, such as environmental models, including forestry and
plant ecology modeling, as well as biology and epidemiology, seismology, materials science, astronomy,
queuing theory, and many others. For a detailed discussion on these applications areas we refer the
reader to the book of D. Stoyan, W. Kendall, and J. Mecke [553] and the more recent books of P.J.
Diggle [229] and A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan [26].

The use of mean field IPS models in mathematical finance is more recent. For instance, using
the rare event interpretation of particle methods, R. Carmona, J. P. Fouque, and D. Vestal proposed
in [104] an interacting particle algorithm for the computation of the probabilities of simultaneous
defaults in large credit portfolios. These developments for credit risk computation were then improved
in the recent developments by R. Carmona and S. Crépey [101] and by the author and F. Patras
in [196]. Following the particle filtering approach which is already widely used to estimate hidden
Markov models, V. Genon-Catalot, T. Jeantheau, and C. Laredo [285] introduced particle methods
for the estimation of stochastic volatility models.

More generally, this approach has been applied for filtering nonlinear and non-Gaussian Models
by R. Casarin [113], R. Casarin, and C. Trecroci [114]. More recently, M. S. Johannes, N. G. Polson,
and J.R. Stroud [362] used a similar approach for filtering latent variables such as the jump times and
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sizes in jump diffusion price models. Particle techniques can also be used in financial mathematics to
design stochastic optimization algorithms. This version of particle schemes was used by S. Ben Hamida
and R. Cont in [49] for providing a new calibration algorithm allowing for the existence of multiple
global minima. Finally, in [206, 207], interacting particle methods were used to estimate backward
conditional expectations for American option pricing.

For a more thorough discussion on the use of mean field methods in mathematical finance, we refer
the reader to the review article [102], in the book [103].

As their name indicates, branching and interacting particle systems are of course directly related
to individual based population dynamics models arising in biology and natural evolution theory. A
detailed discussion on these topics can be found in the articles [58, 116, 118, 329, 327, 328, 459, 462,
463, 472], and references therein.

In this connection, I also quote the more recent and rapidly developing mean field games theory
introduced in the mid-2000s by J.M. Lasry and P.L. Lions in the series of pioneering articles [398, 399,
400, 401]. In this context, fluid particles are replaced by agents or companies that interact mutually
in competitive social-economic environments so that to find optimal interacting strategies w.r.t. some
reward function.

Applications of game theory with multiple agents systems in biology, economics, and finance are
also discussed in the more recent studies by V. Kolokoltsov and his co-authors [378, 379, 380], in the
series of articles [10, 50, 86, 87, 393, 412, 466, 569], the ones by P.E. Caines, M. Huang, and R.P. Mal-
hamé [346, 347, 348, 349, 350, 351, 352], as well as in the pioneering article by R. J. Aumann [25]. Finite
difference computational methods for solving mean field games Hamilton-Jacobi nonlinear equations
can also be found in the recent article by Y. Achdou, F. Camilli, and I. Capuzzo Dolcetta [4].

For a more detailed account on this new branch of games theory, I refer to the seminal Bachelier
lecture notes given in 2007-2008 by P.L. Lions at the Collège de France [418], as well as the series of
articles [301, 346, 443] and references therein.

The illustrations I have chosen are very often at the crossroad of several seemingly disconnected
scientific disciplines, including biology, physics, engineering sciences, probability, and statistics.

In this connection, I emphasize that most of the mean field IPS algorithms I have discussed in
these lectures are mathematically identical, but their interpretations strongly depend on the different
application domains they are thought. Furthermore, different ways of interpreting a given mean field
particle technique often guide researchers’ and development engineers’ intuition to design and to ana-
lyze a variety of consistent mean field stochastic algorithms for solving concrete estimation problems.
This variety of interpretations is one of the threads that guide the development of this course, with
constant interplays between the theory and the applications.

In fluid mechanics, and computational physics, mean field particle models represent the physical
evolution of different kinds of macroscopic quantities interacting with the distribution of microscopic
variables. These stochastic models includes physical systems such as gases, macroscopic fluid models,
and other molecular chaotic systems. One central modeling idea is often to neglect second order
fluctuation terms in complex systems so that to reduce the model to a closed nonlinear evolution
equation in distribution spaces (see for instance [134, 547], and references therein). The mean field
limit of these particle models represents the evolution of these physical quantities. They are often
described by nonlinear integro-differential equations.

In computational biology and population dynamic theory, the mathematical description of mean
field genetic type adaptive populations, and related spatial branching processes, is expressed in terms of
birth and death and competitive selection type processes, as well as mutation transitions of individuals,
also termed particles. The state space of these evolution models depends on the application domain.
In genealogical evolution models, the ancestral line of individuals evolves in the space of random
trajectories. In genetic population models, individuals are encoded by strings in finite or Euclidian
product spaces. Traditionally, these strings represent the chromosomes or the genotypes of the genome.
The mutation transitions represent the biological random changes of individuals. The selection process



7

is associated with fitness functions that evaluate the adaptation level of individuals. In this context,
the mean field limit of the particle models is sometimes called the infinite population model. For finite
state space models, these evolutions are described by deterministic dynamical systems in some simplex.
In more general situations, the limiting evolution belongs to the class of measure valued equations.

In computer sciences, mean field genetic type IPS algorithms (abbreviated GA) are also used as
random search heuristics that mimic the process of evolution to generate useful solutions to complex
optimization problems. In this context, the individuals represent candidate solutions in a problem
dependent state space; and the mutation transition is analogous to the biological mutation so as
to increase the variability and the diversity of the population of solutions. The selection process is
associated with some fitness functions that evaluate the quality of a solution w.r.t. some criteria that
depend on the problem at hand. In this context, the limiting mean field model is often given by some
Boltzmann-Gibbs measures associated with some fitness potential functions.

In advanced signal processing as well as in statistical machine learning theory, mean field IPS
evolution models are also termed Sequential Monte Carlo samplers. As their name indicates, the aim
of these methodologies is to sample from a sequence of probability distributions with an increasing
complexity on general state spaces, including excursion spaces in rare event level splitting models,
transition state spaces in sequential importance sampling models, and path space models in filtering
and smoothing problems. In signal processing these evolution algorithms are also called particle filters.
In this context, the mutation-selection transitions are often expressed in terms of a prediction step,
and the updating of the particle population scheme. In this case, the limiting mean field model coin-
cides with the evolution of conditional distributions of some random process w.r.t. some conditioning
event. For linear-Gaussian models, the optimal filter is given by Gaussian conditional distributions,
with conditional means and error covariance matrices computed using the celebrated Kalman filter re-
cursions. In this context, these evolution equations can also be interpreted as McKean-Vlasov diffusion
type models. The resulting mean field model coincides with the Ensemble Kalman Filters (abbreviated
EKF) currently used in meteorological forecasting and data assimilation problems.

In physics and molecular chemistry, mean field IPS evolution models are used to simulate quan-
tum systems to estimate ground state energies of a many-body Schödinger evolution equation. In this
context, the individuals are termed walkers to avoid confusion with the physical particle based mod-
els. These walkers evolve in the set of electronic or macromolecular configurations. These evolution
stochastic models belong to the class of Quantum and Diffusion Monte Carlo methods (abbreviated
QMC and DMC). These Monte Carlo methods are designed to approximate the path space integrals
in many-dimensional state spaces. Here again these mean field genetic type techniques are based on a
mutation and a selection style transition. During the mutation transition, the walkers evolve randomly
and independently in a potential energy landscape on particle configurations. The selection process is
associated with a fitness function that reflects the particle absorption in an energy well. In this con-
text, the limiting mean field equation can be interpreted as a normalized Schrödinger type equation.
The long time behavior of these nonlinear semigroups is related to top eigenvalues and ground state
energies of Schrödinger’s operators. A pedagogical introduction to QMC methods can be found in the
review articles [93, 94]. For more recent advances including concrete applications in computational
physics we refer to the articles [92, 93, 526, 527].

In probability theory, mean field IPS models can be interpreted into two ways. Firstly, the particle
scheme can be seen as a step by step projection of the solution of an evolution equation in distribution
spaces, into the space of empirical measures. More precisely, the empirical measures associated with a
mean field IPS model evolve as a Markov chain in reduced finite dimensional state spaces. In contrast
to conventional MCMC models based on the long time behavior of a single stochastic process, the
mean field IPS Markov chain model is associated with a population of particles evolving in product
state spaces. In this sense, mean field particle methods can be seen as a stochastic linearization
of nonlinear equations. The second interpretation of these models relies on an original stochastic
perturbation theory of nonlinear evolution equations in distribution spaces. More precisely, the local
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sampling transitions of the population of individuals induce some local sampling error, mainly because
the transition of each individual depends on the occupation measure of the systems. In this context,
the occupation measures of the IPS model evolve as the limiting equation, up to these local sampling
errors.

Course outline

The lecture notes cover topics in the general area of Monte Carlo methods and their application do-
mains. The topics include Markov chain Monte Carlo and Sequential Monte Carlo methods, Quantum
and Diffusion Monte Carlo techniques, as well as branching and interacting particle methodologies. We
cover discrete and continuous time stochastic models, starting from traditional sampling techniques
(perfect simulation, Metropolis-Hasting, and Gibbs-Glauber models) to more refined methodologies
such as gradient flows diffusions on constraint state space and Riemannian manifolds, ending with
the more recent and rapidly developing Branching and mean field type Interacting Particle Systems
techniques.

The course offers a pedagogical introduction to the theoretical foundations of these advanced
stochastic models, combined with a series of concrete illustrations taken from different application
domains. The applications considered in these lectures will range from Bayesian statistical learning
(hidden Markov chain, statistical machine learning), risk analysis and rare event sampling (mathemat-
ical finance, and industrial risk assessment), operation research (global optimization, combinatorial
counting and ranking), advanced signal processing (stochastic nonlinear filtering and control, and data
association and multiple objects tracking), computational and statistical physics (molecular dynamics,
Schrödinger’s ground states, Boltzmann-Gibbs distributions, and free energy computation). Approx-
imately the first half of the course will be concerned with linear type Markov chain Monte Carlo
methods, and the second part to nonlinear particle type methodologies.

To illustrate the course, in the first part we present a brief overview of some Monte Carlo method-
ologies discussed in these lectures:

These stochastic models include standard Monte Carlo methods and conventional Markov chain
Monte Carlo techniques based on the law of large numbers and the ergodic theorem. We also present
nonlinear mean field type particle methodologies and Feynman-Kac type evolutionary particle tech-
niques, including genealogical tree based models and backward particle Markov chain sampling meth-
ods.

These particle methods are illustrated with some selected applications arising in signal processing,
information theory and computational physics. Most of the results presented in this introductory
chapter are presented without a single proof. We provide precise reference pointers to sections in the
lectures dedicated to the modeling and the analysis of these stochastic models.

All the Monte Carlo methodologies presented in this introductory part are sufficiently detailed so
that they can be encoded in a computer. We have tried to present in an informal way the mathematical
foundations of these techniques and their application domains.

Nevertheless, their rigorous analysis and their performance often depend on sophisticated stochastic
models. We encourage the reader to select one of these methodologies and follow the pointers given in
the text to answer to the following questions:

• Find the class of stochastic model:

linear or nonlinear Markov chains, stochastic flow, mean field particle models, . . .

• Find the range of applications:

signal processing, computational physics, operation research, statistical machine learning,. . . .

• Find the precision degree and develop the performance and the convergence of the scheme:
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long time behavior, large population sized, double asymptotic, . . .

To guide the reader, we use the series of chili logos , , , to underline the level of
complexity of the mathematical or physical foundations of the stochastic model.

The rest of the lecture notes is decomposed into two parts. The first one is concerned with linear
type Monte Carlo methods, the second one is dedicated with nonlinear Markov chain models and their
mean field particle interpretations.

Linear Monte Carlo methodologies refer to stochastic methods that can be described by Markov
processes. This class of models include discrete and continuous time models, importance sampling
methods, Markov and sub-Markov models, Markov chain Monte Carlo methodologies, as well as
stochastic processes evolving in constraint manifolds.

Nonlinear Monte Carlo methodologies refer a class of stochastic sampling techniques based on
particle interpretations of nonlinear Markov chain models.This class of models include McKean-Vlasov
type diffusions, interacting jump processes, and Feynman-Kac path-particle integration models. We
illustrate these models with a series of applications arising in computational physics, signal processing,
and Bayesian inference.

Pierre Del Moral, Rio de Janeiro 2018





Frequently used notation

Some state spaces

We present some basic notation and background on stochastic analysis and integral operator theory.
The lecture notes contain cross-references to this rather well known material; so the reader may wish
to skip this section.

We shall use the symbol a := b to define a mathematical object a in terms of b, or vice versa. In
these lecture notes, we often use the letters m,n, p, q, k, l to denote integers and r, s, t, u to denote real
numbers. We also use the capital letters U, V,WX, Y, Z to denote random variables, and the letters
u, v, w, x, y, z the denote their possible outcomes.

We often use the letters E or S to denote some general state space model. To avoid repetition
these general state spaces, and all the functions on these spaces are assumed to be measurable; that
is, they are equipped with some sigma-field so that the Lebesgue integral is well defined w.r.t. these
functions (for instance Rd equipped with the sigma field generated by the open sets, as well as Nd,
Zd or any other countable state space equipped with the discrete sigma-field). Given a Polish space
E (i.e., a separable and completely metrizable topological space), we denote by D([a, b], E) the set of
càdlàg paths from the interval [a, b] into E. The abbreviation càdlàg comes from the French description
“continue à droite, limitée à gauche,” and the English translation “right continuous with left limits.”

We also denote, respectively, by M(E), M+(E), M0(E), P(E), and B(E), the set of all finite
signed measures on some (measurable) space E, the subset of positive measures, the convex subset of
measures with null mass, the set of all probability measures, and the Banach space of all bounded and
measurable functions f equipped with the uniform norm ‖f‖ = Supx∈E |f(x)|.

We also denote by Osc(E), and by B1(E), the set of E-measurable functions f with oscillations
osc(f) = Supx,y|f(x)− f(y)| ≤ 1, and, respectively, with ‖f‖ ≤ 1.

We also often use the letters f, g, h or F,G,H to denote functions on some state space, and µ, ν, η
or µ(dx), ν(dx), η(dx) measures on some state space.

Given a pair of functions f1 and f2 on some state spaces E1 and E2. we denote by (f1 ⊗ f2) the
tensor product function on the product space (E1 × E2) defined for any (x1, x2) ∈ (E1 × E2) by

(f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2)

We also use the proportional sign f ∝ g between functions to mention that f = c g for some
constant c ∈ R.

We shall slightly abuse the notation, denoting by 0 and 1 the zero and the unit elements in the
semi-rings (R,+,×) and by 0 and 1 the zero and the unit elements in the set of functions on some
state space E.

The maximum and minimum operations are denoted respectively by

a ∨ b := max {a, b} a ∧ b := min {a, b} as well as a+ := a ∨ 0

We also denote by bac and {a} = a− bac the integer part, and resp. the fractional part, of some real
number a.

11
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We also use the Bachmann-Landau notation

f(ε) = g(ε) + O(ε)⇐⇒ lim sup
ε→0

1

ε
|f(ε)− g(ε)| <∞

and

f(ε) = g(ε) + o(ε)⇐⇒ lim sup
ε→0

1

ε
|f(ε)− g(ε)| = 0

When there are no confusions, sometimes we write o(1) a function that tends to 0 when the parameter
ε→ 0. We also denote by OP (ε) some possibly random function such that

E (|OP (ε)|) = O(ε)

We also use the traditional conventions∏
∅

= 1
∑
∅

= 0 inf
∅

=∞ and sup
∅

= −∞

Integration

Given a measure η on some (measurable) state space E and some (measurable) function f from E
into R we set

η(f) =

∫
η(dx)f(x)

as soon as the integral exists, that is if f is integrable w.r.t. η; more formally if η(|f |) < ∞. For
indicator functions f = 1A, sometimes we slightly abuse notation and we set η(A) instead of η(1A)

η(1A) =

∫
η(dx)1A(x) =

∫
A
η(dx) = η(A)

Sometimes, we simplify the presentation, denoting by dµ the measure dµ(x) = µ(dx), where dx stands
for an infinitesimal neighborhood of the state x ∈ E.

We also consider the partial order relation between functions f1, f2 and measures µ1, µ2 given by

f1 ≤ f2 ⇐⇒ ∀x ∈ S f1(x) ≤ f2(x)

and
µ1 ≤ µ2 ⇐⇒ ∀A ∈ S µ1(A) ≤ µ2(A)

We denote by (µ1 ⊗ µ2) ∈ M(E1 × E2) the tensor product measure defined for any f ∈ Bb(E1 × E2)
by

(µ1 ⊗ µ2)(f) =

∫
µ1(dx1)µ2(dx2)f(x1, x2)

The Dirac measure δa at some point a ∈ S is defined by

δa(f) =

∫
f(x)δa(dx) = f(a)

When η is the distribution of some r.v. X taking values in S, we have

η(dx) = P(X ∈ dx) and η(f) = E(f(X))

For instance the measure on R given by

η(dx) =
1

2

(
1√
2π

e−x
2/2 dx

)
+

1

2

(
1

2
δ0(dx) +

1

2
δ1(dx)

)
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represents the distribution of the random variable

X := ε Y + (1− ε)Z

where (ε, Y, Z) are independent r.v. with distribution

P(ε = 1) = 1− P(ε = 0) = 1/2

P(Z = 1) = 1− P(Z = 0) = 1/2 and P(Y ∈ dy) =
1√
2π

e−y
2/2 dy (1)

We use the notation dx(= dx1×. . .×dxk) to denote the Lebesgue measure on some Euclidian space Rk,
of some k ≥ 1. For finite or countable state spaces, measures are identified to function and sometimes
we write µ(x), ν(x), η(x) instead of µ(dx), ν(dx), η(dx). Notice that any countable state space E can
be embedded in R so that the measures on E can also be represented by a weighted Dirac measures
µ on R with support in E. In this case, µ({x}) = µ(x).

More precisely, for finite spaces of the form S = {e1, . . . , ed} ⊂ R, measures are defined by the
weighted Dirac measures

η =
∑

1≤i≤d
wi δei with wi = η({ei}) := η(ei)

so that

η(f) =

∫
η(dx)f(x) =

∑
1≤i≤d

η(ei)f(ei)

Thus, if we identify measures and functions by the line and column vectors

η = [η(e1), . . . , η(ed)] and f =

 f(e1)
...

f(ed)

 (2)

we have

ηf = [η(e1), . . . , η(ed)]

 f(e1)
...

f(ed)

 =
∑

1≤i≤d
η(ei)f(ei) = η(f) (3)

The Dirac measure δei is simply given by the line vector

δei =

0, . . . , 0, 1︸︷︷︸
i−th

, 0, . . . , 0


In this notation, probability measures on S can be interpreted as a point (η(ei))1≤i≤d in the (d− 1)-
dimensional simplex ∆d−1 ⊂ [0, 1]d defined by

∆d−1 =

(p1, . . . , pd) ∈ [0, 1]d :
∑

1≤i≤d
pi = 1

 (4)

Integral operators

Finite spaces and matrices

We consider a couple of r.v. (X1, X2) on a state space (E1 × E2), with marginal distributions

η1(dx1) = P(X1 ∈ dx1) and η2(dx2) = P(X2 ∈ dx2)
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and conditional distribution

M(x1, dx2) = P(X2 ∈ dx2 | X1 = x1)

For finite spaces of the form E1 = {a1, . . . , ad1} and E2 := {b1, . . . , bd2} ⊂ E = R, the above conditional
distribution can be represented by a matrix

M(a1, b1) M(a1, b2) . . . M(a1, bd2)
M(a2, b1) M(a2, b2) . . . M(a2, bd2)

...
...

...
...

M(ad1 , b1) M(a2, b2) . . . M(ad2 , bd2)


By construction, we have

P(X2 ∈ dx2)︸ ︷︷ ︸
=η2(dx2)

=

∫
E1

P(X1 ∈ dx1)︸ ︷︷ ︸
η1(dx1)

×P(X2 ∈ dx2 | X1 = x1)︸ ︷︷ ︸
M(x1,dx2)

In other words, we have

η2(dx2) =

∫
S1

η1(dx1) M(x1, dx2) := (η1M) (dx2)

or in a more synthetic form η2 = η1M . Notice that for the finite state space model discussed above
we have the matrix formulation

η2 = [η2(b1), . . . , η2(bd2)]

= [η1(a1), . . . , η1(ad1)]


M(a1, b1) M(a1, b2) . . . M(a1, bd2)
M(a2, b1) M(a2, b2) . . . M(a2, bd2)

...
...

...
...

M(ad1 , b1) M(a2, b2) . . . M(ad2 , bd2)

 = η1M

In this context, a matrix M with positive entries whose rows sum to 1 is also called a stochastic
matrix.

Given a function f on E2, we consider the function M(f) on E1 defined by

M(f)(x1) =

∫
E2

M(x1, dx2) f(x2) = E (f(X2) | X1 = x1)

Here again, for the finite state space model discussed above these definitions resume to matrix opera-
tions

M(f) =

 M(f)(a1)
...

M(f)(ad1)



=


M(a1, b1) M(a1, b2) . . . M(a1, bd2)
M(a2, b1) M(a2, b2) . . . M(a2, bd2)

...
...

...
...

M(ad1 , b1) M(a2, b2) . . . M(ad2 , bd2)


 f(b1)

...
f(bd2)


By construction, we also have that

η1(M(f)) = (η1M) (f) = η2(f)⇐⇒ E (E(f(X2)|X1)) = E(f(X2)) (5)

Given some matrices M , M1 and M2, we denote by M1M2 the composition of the matrices M1

and M2, and by Mn = Mn−1M = MMn−1 the n iterates of M . For n = 0, we use the convention
M0 = Id, the identity matrix on S.
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Abstract integral and differential operators

A bounded integral operator Q from a (measurable) space E1 into an auxiliary (measurable) space E2

is an operator f2 7→ f1 = Q(f2) from B(E2) into B(E1) such that the functions

x1 ∈ E1 7→ f1(x1) = Q(f2)(x1) :=

∫
E2

Q(x1, dx2)f2(x2)

are (measurable) bounded, for any f2 ∈ B(E2). Depending on its action, the operator Q is alternatively
called a bounded integral operator from E1 into E2, or from B(E2) into B(E1).

A positive operator is a bounded integral operator Q, such that Q(f) ≥ 0, for any f ≥ 0. A Markov
kernel, or a Markov transition, is a positive and bounded integral operator Q with Q(1) = 1.

A bounded integral operator Q from a measurable space E1 into an auxiliary measurable space E2

also generates a dual operator

µ1(dx1) 7→ µ2(dx2) = (µ1Q)(dx2) =

∫
µ1(dx1)Q(x1, dx2)

from M(E1) into M(E2) defined by (µ1Q)(f2) := µ1(Q(f2)), for any f2 ∈ B(E2). Sometimes, with
a slight abuse of notation, to the presentation we write Q(x1, A2) instead of Q(1A2)(x1) for some
(measurable) subset A2 ⊂ E2 and for any x1 ∈ E1.

For finite state spaces of the form E1 = {a1, . . . , ad1} and E2 := {b1, . . . , bd2} ⊂ E = R, using the
identification of functions and measures with column and row vectors (2) the operations f 7→ Q(f)
and η 7→ ηQ reduces to standard matrix vector operations with

Q(a1, b1) Q(a1, b2) . . . Q(a1, bd2)
Q(a2, b1) Q(a2, b2) . . . Q(a2, bd2)

...
...

...
...

Q(ad1 , b1) Q(a2, b2) . . . Q(ad2 , bd2)


Given some measure µ on E1, sometimes we write µ1 ⊗Q, the measure on (E1 × E2) defined by

[µ⊗Q](d(x1, x2)) = µ(dx1)Q(x1, dx2)

For Markov transitions Q = M , the function x1 7→ M(f2)(x1) represents the local averages of f2

around x1. More precisely, if X2(x1) stands for some random variable with law Q(x1, dx2) on E2 we
have

M(f2)(x1) = E (f(X2(x1)))

In the same way, the mapping µ1 ∈ P(E1) 7→ µ1M ∈ P(E2) represents the distributions of the
random states X2 associated with a given random transition X1  X2, starting with the distribu-
tion Law(X1) = µ1, and sampling a state X2 with distribution M(X1, dx2). More precisely, for any
(measurable) subset A2 ⊂ E2 we have

(µ1M)(A2) := P (X2 ∈ A2) =

∫
P(X1 ∈ dx1) P (X2 ∈ A2 |X1 = x1 ) =

∫
µ1(dx1) M(x1, A2)

In this context, µ1 ⊗M represents the distribution of the couple of random variables (X1, X2); that
is, we have that

(µ1 ⊗M)(d(x1, x2)) = P(X1 ∈ dx1) P (X2 ∈ dx2 |X1 = x1 ) = P ((X1, X2) ∈ d(x1, x2))

For instance the integral operator given by

M(x1, dx2) =
1

2

1√
2π

e−(x2−a(x1))2/2 dx2 +
1

2

(
1

2
δb0(x1) +

1

2
δb1(x1)

)
(dx2)
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represents the conditional distribution of the random variable

X2 := ε1 (a(X1) + Y ) + (1− ε1) bε2(X1)

given X1 = x1, where (ε1, ε2) stands for two copies of the Bernoulli r.v. ε and Y is the Gaussian r.v.
defined in (1). It is implicitly assumed that (ε1, ε2, Y,X1) are independent.

Given a pair of bounded integral operators (Q1, Q2), we let (Q1Q2) are the composition operator
defined by (Q1Q2)(f) = Q1(Q2(f)). For time homogeneous state spaces, we denote by Qm = Qm−1Q =
QQm−1 the m-th composition of a given bounded integral operator Q, with m ≥ 1.

Given some bounded integral operators Qn(xn−1, dxn), from some measurable state space En−1

into a possibly different measurable state space space En, we denote by Qp,n the semigroup defined
by

Qp,n = (Qp+1Qp+2 . . . Qn) = Qp+1Qp+1,n

with the convention Qn,n = Id, the identity matrix for p = n.
We also consider differential operators L on smooth functions f on Rk, for some k ≥ 1. For instance,

the operator f 7→ L(f), defined for any x ∈ Rd by

L(f)(x) =
∑

1≤i≤d
ai(x) (∂xif) (x) +

∑
1≤i,j≤d

bi,j(x)
(
∂xi,xjf

)
(x)

is defined for any twice differentiable function f , and some given functions x 7→ (ai(x), bi,j(x)), with
1 ≤ i, j ≤ d. Given some measure η on Rk, and whenever the function L(f) is integrable w.r.t. η(dx),
we also set

(ηL)(f) = η(L(f)) :=

∫
η(dx) L(f)(x)

For instance, these integrals are well defined as soon as η is a probability measure and L maps functions
f with compactly supported derivatives into bounded functions L(f). When η has a density g(x) w.r.t.
the Lebesgue measure dx, we notice that

(ηL)(f) =

∫
g(x) L(f)(x) dx := 〈g, L(f)〉 (6)

The r.h.s. bracket stands for the duality between Lp(Rk) and Lq(Rk) with 1
p+ 1

q = 1 with 1 < p, q <∞;

or the inner product of the Hilbert space L2(Rk), as soon as the functions g and L(f) belong to Lp(Rk)
and Lq(Rk).

Last but not least, many models that we consider in this book are defined in terms of collections of
Markov transitions Kη from some (measurable) state space E1 into another E2, or differential operators
Lη (when E1 = E2 = Rk) indexed by the set of probability measures η on E1. To avoid unnecessary
repetition of technical abstract conditions, we frame the standing assumption that the Markov transi-
tion K((x, η), dy) = Kη(x, dy) from (E1 × P(E1)) into E2 is well defined integral operators, and Lη(f)
is a measurable function on Rk for any sufficiently smooth function f on Rk.

The Dirac bras and kets formalism

In theoretical and computational quantum physics, the inner product and more generally dual oper-
ators on vector spaces are often represented using a bra-ket formalism introduced in the end of the
1930s by P. Dirac [230] to avoid too sophisticated matrix operations (not so developed and of current
use in the beginning of the 20th century).

For finite d-dimensional Euclidian vector spaces Rd the bras ≺ α | and the kets | β � are simply
given for any α = (αi)1≤i≤d ∈ Rd and β = (βi)1≤i≤d ∈ Rd row and column

≺ α | := [α1, . . . , αd] and | β �:=

 β1
...
βd

 ⇒≺ α || β �:=≺ α | β �:=
∑

1≤i≤d
αiβi
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In much the same way, the product of bra ≺ α | with a linear (matrix) operator Q corresponds to the
product of the row vector by the matrix

≺ α | Q := [α1, . . . , αd]


Q(1, 1) Q(1, 2) . . . Q(1, d)
Q(2, 1) Q(2, 2) . . . Q(2, d)

...
... . . .

...
Q(d, 1) Q(d, 2) . . . Q(d, d)


Likewise, the product of a linear (matrix) operator Q with a ket | β � corresponds to the product of
the matrix by the column vector

Q| β �:=


Q(1, 1) Q(1, 2) . . . Q(1, d)
Q(2, 1) Q(2, 2) . . . Q(2, d)

...
... . . .

...
Q(d, 1) Q(d, 2) . . . Q(d, d)



β1

β2
...
βd


Combining these operations, we find that

≺ α |Q| β �= [α1, . . . , αd]


Q(1, 1) Q(1, 2) . . . Q(1, d)
Q(2, 1) Q(2, 2) . . . Q(2, d)

...
... . . .

...
Q(d, 1) Q(d, 2) . . . Q(d, d)



β1

β2
...
βd


Using the vector representation (2) of functions f and measures η on finite states spaces S =

{e1, . . . , ed}, the duality formula between functions and measures (3) takes the following form

≺ η | f �= ηf =
∑

1≤i≤d
η(ei)f(ei) := η(f)

Likewise, for any Markov transition M from E1 = {a1, . . . , ad1} into E2 := {b1, . . . , bd2}, and function
f on E2 and any measure η1 on E1, the formula (5) takes the form

≺ η1 | M | f �=≺ η1 | Mf �= η1(Mf) = (η1M) f =≺ η1M | f �

The bra-ket formalism is extended to differential operations discussed in (6) by setting

≺ g | L | f �=

∫
g(x) L(f)(x) dx := 〈g, L(f)〉

Boltzmann-Gibbs transformations

Given a positive and bounded potential function G on E, we also denote by ΨG the Boltzmann-Gibbs
mapping from P(E) into itself defined for any µ ∈ P(E) by

ΨG(µ)(dx) =
1

µ(G)
G(x) µ(dx) (7)

We illustrate this abstract definition with a couple of examples. We let µ = Law(X) be the
distribution of some r.v. X and G = 1A the indicator function of some subset A ⊂ S. In this situation,
we have

ΨG(µ)(f) =
µ(Gf)

µ(G)
=

E(f(X)1A(X))

E(1A(X))
= E (f(X) | X ∈ A)
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In other words, we have
Ψ1A(µ) = Law(X | X ∈ A)

Let (X,Y ) be a couple of r.v. with probability density p(x, y) on Rd+d′ . With a slight abuse of notation,
we recall that the conditional density p(x|y) of X given Y is given by the Bayes’ formula

p(x|y) =
1

p(y)
p(y|x) p(x) p(y) =

∫
p(y|x) p(x) dx

In other words, we have that

µ(dx) = p(x)dx Gy(x) = p(y|x)⇒ ΨGy(µ) = p(x|y) dx

There is no loss of generality to assume that G is a ]0, 1]-valued function. For [0, 1]-valued potential
functions, the transformation is only defined on measures µ s.t. µ(G) > 0. Boltzmann-Gibbs mappings
can be interpreted as a nonlinear Markov transport model

ΨG(µ) = µSµ,G (8)

for some Markov transitions Sµ,G from E into itself. Next we provide three different types of models
of current use in the further development of these lecture notes.

Firstly, for [0, 1]-valued potential functions G s.t. µ(G) > 0, we can choose

Sµ,G(x, dy) := G(x) δx(dy) + (1−G(x)) ΨG(µ)(dy) (9)

For [1,∞[-valued potential functions G s.t. µ(G) > 1, we can also choose the Markov transitions

Sµ,G(x, dy) :=
1

µ (G)
δx(dy) +

(
1− 1

µ (G)

)
Ψ(G−1)(µ)(dy)

For any bounded positive functions G, the Equation (8) is also met for

Sµ,G(x, dy) := εµG(x) δx(dy) + (1− εµG(x)) ΨG(µ)(dy) (10)

for any εµ ≥ 0 s.t. εηG(x) ≤ 1 for µ-almost every state x. For instance, we can choose εµ = 0,
εµ = 1/‖G‖, or preferably εµ = 1/µ − ess supG, where µ − ess supG stands for the µ-essential
supremum of G.

Norms and ergodic constants

We say that a measure µ is absolutely continuous w.r.t. another measure ν on E, and we write µ� ν,
when we have ν(A) = 0 ⇒ µ(A) = 0, for any A ∈ E . When µ � ν, we denote by dµ/dν the
Radon-Nykodim derivative function.

The total variation distance ‖µ1−µ2‖tv between two probability measures µ1, µ2 ∈ P(E) is defined
by

‖µ1 − µ2‖tv = sup
A∈E
|µ1(A)− µ2(A)|

= 2−1 sup {|µ1(f)− µ2(f)| ; ‖f‖ ≤ 1} = sup {|µ1(f)− µ2(f)| ; osc(f) ≤ 1}

When the bounded integral operator Q(x1, dx2) from E1 into E2 has a constant mass, that is,
when Q(1) (x1) = Q(1) (y1) for any (x1, y1) ∈ E2

1 , the operator µ 7→ µQ maps M0(E1) into M0(E2).
In this situation, we let β(Q) be the Dobrushin coefficient of a bounded integral operator Q defined
by the formula

β(Q) := sup {osc(Q(f)) ; f ∈ Osc(E2)} (11)
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The Boltzmann relative entropy between a couple of measures µ � ν on E is the nonnegative
distance-like criteria defined by

Ent (µ|ν) := µ

(
log

dµ

dν

)
if µ� ν

If µ 6� ν then we set Ent (µ|ν) =∞.
The V -norm on the set of signed measureM(S) (on some state space S equipped with some σ-field

S) associated with some non negative function V is defined for any µ ∈M(S) by

‖µ‖V := ‖µ‖tv + |µ| (V ) (12)

In the above display, |µ| = µ+ + µ− stands for the total variation of the measure µ, defined in terms
of the Hahn-Jordan decomposition µ = µ+ − µ− of µ.

We define the V -norm and the V -oscillation of a given measurable function f on S by

‖f‖V :=

∥∥∥∥ f

V + 1/2

∥∥∥∥ = sup
x∈S

(
|f(x)|

V (x) + 1/2

)
and

oscV (f) := sup
x,y∈S

(
|f(x)− f(y)|

[V (x) + V (y) + 1]

)
(13)

We recall that

‖µ‖V = sup {|µ(f)| : f s.t. oscV (f) ≤ 1} = sup {|µ(f)| : f s.t. ‖f‖V ≤ 1} (14)

When V = 0 we have
osc0(f) = osc(f) and ‖f‖0 = 2 ‖f‖

Sometimes these V -norms type quantities are expressed in terms of the functions W = 1/2 + V (x)
with

‖f‖W := sup
x∈S

|f(x)|
W (x)

and oscW(f) := sup
x,y∈S

|f(x)− f(y)|
W (x) +W (y)
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Chapter 1

Finite state space models

1.1 Markov chains and Matrices

Suppose we are given a matrix (M(i, j))1≤i,j≤d with positive entries s.t.

∀1 ≤ i ≤ d
∑

1≤j≤d
M(i, j) = 1

These matrices are called stochastic matrices, or Markov chain (elementary) transitions.
For any index 1 ≤ i ≤ d and any integer n ≥ 0, we let Fn(i) be collection of independent and

identically distributed random variables with common distribution

∀1 ≤ j ≤ d P (Fn(i) = j) = M(i, j) (1.1)

We start with some initial state X0 = i and we define a sequence of random variables Xn taking values
on E = {1, . . . , d} by setting

Xn = Fn (Xn−1) (1.2)

This sequence is called a Markov chain taking values in E = {1, . . . , d} with transition probabilities
M . In this situation, we have

P (Xn = j | X0 = i) = Mn(i, j)

where Mn stands for the n-th iterate of the matrix M . We set

ηn(j) := P (Xn = j) and ηn = [ηn(1), . . . , ηn(d)]

Since any f ∈ RE = Rd can be represented by a column vector, by construction for any k ≤ n we find
that

ηn = ηkM
n−k and (Mn−kf)(i) = E (f(Xn) | Xk = i)

1.2 Monte Carlo and Markov chain methods

Sampling N independent copies (Xk
n)1≤k≤N of the chain Xn defined in (1.2) and starting at X0 = i,

we have

∀1 ≤ j ≤ d ηNn (j) :=
1

N

∑
1≤k≤N

1Xk
n=j 'N↑∞ Mn(i, j) = ηn(j)

More generally, for any function f we have

ηNn (f) :=
1

N

∑
1≤k≤N

f(Xk
n) 'N↑∞ ηn(f)

7
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In addition, we have the unbiased and variance formula

E
(
ηNn (f)

)
= ηn(f) and E

([
ηNn (f)− ηn(f)

]2)
=

1

N
ηn([f − ηn(f)]2)

We further assume that Mm(i, j) > 0 for some integer m ≥ 1. In this situation, there exists a
single line vector

π = [π(1), . . . , π(d)] s.t.
∑

1≤i≤d
π(i) = 1 and πM = π

We can also prove that for any function f s.t. osc(f) ≤ 1 we have∣∣E (ηNn (f)
)
− π(f)

∣∣ = |ηn(f)− π(f)| ≤ c2 e−αn

E
([
ηNn (f)− π(f)

]2)
=

1

N
ηn([f − ηn(f)]2)︸ ︷︷ ︸

fluctuation term

+ (ηn(f)− π(f))2︸ ︷︷ ︸
bias term

≤ 1

N
+ c2 e−2αn

for some finite positive constants c and α. The r.h.s. estimate are direct consequences of the law of large
numbers variance formulae combined with exponential stability properties of Markov chain discussed
in section 4.4. Assuming the initial state of the chain has distribution π these estimates reduce to

E
(
ηNn (f)

)
= π(f) and E

([
ηNn (f)− π(f)

]2)
=

1

N
π([f − π(f)]2)

Another way of estimating this vector amounts to count the proportion of times the chain Xn visits
each of the states

∀1 ≤ j ≤ d πn(j) :=
1

n

∑
0≤k<n

1Xk=j 'n↑∞ π(j) (1.3)

In this situation, assuming that the initial state of the chain has distribution π and using the ergodic
analysis developed in section 4.6, we can also prove that for any function f s.t. osc(f) ≤ 1 and π(f) = 0
we have

E (πn(f)) = π(f)

E
(

[πn(f)− π(f)]2
)

=
1

n

π([f − π(f)]2) + 2
∑
p≥1

π([f − π(f)]Mp[f − π(f)])


1.3 A couple of Markov chain Monte Carlo models

1.3.1 The Metropolis-Hasting algorithm

Suppose we are given some line vector π such that ∧i∈Eπ(i) > 0 and
∑

1≤i≤d π(i) = 1. Choose any
Markov transition M(i, j) s.t. M(i, j) > 0⇔M(j, i) > 0 and set

a(i, j) = 1 ∧ π(j)M(j, i)

π(i)M(i, j)
∈ [0, 1]

We let (Un)n≥0 be a sequence of independent and identically distributed (abbreviated i.i.d.) random
variables (abbreviated r.v.) on [0, 1]. We slightly change the Markov chain model (1.2) by introducing
an acceptance-rejection step.

Xn−1  Yn = Fn(Xn−1) Xn :=

{
Yn if Un ≤ a (Xn−1, Yn)

Xn−1 if Un > a (Xn−1, Yn)
(1.4)

In this situation, we also have the convergence property (1.3). In addition, if we start with a r.v. with
distribution π, all the random states of the chain have the same law π and the law of any random
sequence (X0, X1, . . . , Xn) is the same as the law of the reverse trajectory (Xn, Xn−1, . . . , X0)

This Markov chain is called the Metropolis-Hasting sampler and it is discussed in section 7.2.
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1.3.2 The Gibbs-Glauber sampler

We end this section with a Markov chain model for sampling a product measure. Suppose we are given
a couple of random variables X = (Y, Z) on the product space E2. We recall that

P ((Y,Z) = (i, j)) = P (Y = i | Z = j)︸ ︷︷ ︸
=M1(i,j)

P (Z = j) = P (Z = j | Y = i)︸ ︷︷ ︸
=M2(i,j)

P (Y = i)

For any index 1 ≤ i ≤ d and any integer n ≥ 0, we let F 1
n(i), resp. F 2

n(i) be collection of independent
and identically distributed random variables with common distribution

P
(
F 1
n(i) = j

)
= M1(i, j) and P

(
F 2
n(i) = j

)
= M2(i, j)

We consider the Markov chain sequence

Xn =

(
Yn
Zn

)
 Xn+ 1

2
=

(
Yn+ 1

2

Zn+ 1
2

)
=

(
F 1
n+1 (Zn)
Zn

)
 Xn+1 =

(
Yn+ 1

2

F 2
n+1

(
Yn+ 1

2

) )

starting as some state X0 =

(
i
j

)
. In this situation,

∀1 ≤ i, j ≤ d 1

n

∑
0≤k<n

1(Yk,Zk)=(i,j) 'n↑∞ P ((Y,Z) = (i, j))

This Markov chain model is called the Gibbs sampler or the Gibbs-Glauber dynamics. This model is
studied in some details in section 7.3.

1.4 Interacting Markov Chain Monte Carlo samplers

We further assume that M(i, j) = M(j, i). Suppose we are given some function V : E → R. We
let βn be some increasing sequence of real numbers, and we set

an(i, j) = 1 ∧
[
e−βn(V (j)−V (i))

]
∈ [0, 1] (1.5)

We let Xn be the Markov chain defined as in (1.4) by replacing a by an. In this situation, there exists
some judicious ways of increasing βn w.r.t. time so that

V (Xn) 'n↑∞ min
i∈E

V (i) := V ?

This Markov chain model is called the simulated annealing. Further details on this global optimization
algorithm can be found in section 7.5.1.

The following pictures illustrates the initial circuit, the best historical circuit, and the evolution of
the length of the circuits in the traveling salesman problem (TSP) with 30 cities.
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One natural way to bypass the slow convergence to equilibrium of the simulated annealing be-
tween inverse temperature βn variations is to consider a sequence of interacting simulated annealing
models (ξin)1≤i≤N on the product space EN . These models evolve as a genetic type mutation-selection
transition.

ξn := (ξin)1≤i≤N
selection

−−−−−−−−−→ ξ̂n := (ξ̂in)1≤i≤N
mutation

−−−−−−−−−→ ξn+1 (1.6)
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• During the selection stage, we select the particles ξin which are better adapted to the change of
temperature βn+1 = (βn+1−βn) +βn. More precisely, se sample a sequence of i.i.d. uniform r.v.
Ui on [0, 1], and for each i we set

ξ̂n =

{
ξin if Ui ≤ e−(βn+1−βn)V (ξin)

ξ̃in if Ui > e−(βn+1−βn)V (ξin)

where ξ̃in stands for a sequence of i.i.d. r.v. with distribution

∑
1≤k≤N

e−(βn+1−βn)V (ξkn)∑
1≤l≤N e

−(βn+1−βn)V (ξln)
δξin

• During the mutation stage, each particles ξ̂in  ξin+1 moves independently according to the
simulated annealing transition (1.4) with the acceptance rate (1.5) associated with the inverse
temperature βn+1

In this situation, there exists some δ > 0 s.t. for any n we have

1

N

∑
1≤j≤N

1
V (ξjn)=V ?

'N↑∞
1

Card({i : V (i) = V ?})
+ O

(
e−δβn

)
The interacting simulated annealing model presented above belongs to the class of Markov Chain
Monte Carlo methods with recycling discussed in section 9.1.5

1.5 Killing and sub-Markov chain models

1.5.1 Feynman-Kac formulae

We let Gn be some [0, 1]-valued function on a finite space E = {1, . . . , d}. We let (Un)n≥0 be a sequence
of i.i.d. r.v. on [0, 1], and Fn(i) the r.v. defined in (1.1). We let c be some cemetery state. We consider
the Markov chain on E ∪ {c}

Xc
n  X̂c

n =

{
Xc
n if Un ≤ Gn (Xc

n)
c if Un > Gn (Xc

n)
 Xc

n+1 =

{
Fn+1

(
X̂c
n

)
if X̂c

n 6= c

c if X̂c
n = c

We denote by T the first time n s.t. X̂c
n = c. In this notation, we have

P (Xc
0 = i0, . . . , X

c
n = in ; T ≥ n) =

 ∏
0≤k<n

Gk(ik)

 P (X0 = i0, . . . , Xn = in)

and

P (T > n) =
∑

(i0,...,in)∈En

 ∏
0≤k≤n

Gk(ik)

 P (X0 = i0, . . . , Xn = in)

The weighted product probability measures on the r.h.s. are called Feynman-Kac measures. These
models are studied in some details in section 4.2.

For time homogenous models Gn = G we notice that the matrix Q(i, j) = G(i)M(i, j) is sub-
Markovian, in the sense that ∑

j∈E
Q(i, j) = G(i) ≤ 1
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Inversely, any sub-Markovian matrix Q satisfying the above condition can be rewritten as

Q(i, j) = G(i)M(i, j) with G(i) =
∑
j∈E

Q(i, j) and M(i, j) = Q(i, j)/
∑
k∈E

Q(i, k)

Whenever Q(i, j) = Q(j, i), we have

1

n
logP (T > n) 'n↑∞ log λ and P (Xc

n = i | T ≥ n) 'n↑∞ h(i)/
∑
j∈E

h(j) (1.7)

where λ is the largest eigenvalue of the matrix Q and h the corresponding eigenvector. These sub-
Markov models are discussed in section 4.3.

For indicator type functions Gn = 1A we have

P (Xc
0 = i0, . . . , X

c
n = in | T > n) = P (X0 = i0, . . . , Xn = in | X0 ∈ A, . . . , Xn ∈ A)

and
P (T > n) = P (X0 ∈ A, . . . , Xn ∈ A)

These killing/absorption models can be extended without further work to more general state spaces.
For instance, we can replace Xn by the simple random walk on E = Z starting at the origin, and set
A = [−7, 7]. For n = 31.56 106 seconds, the above quantities can be interpreted as the conditional
probability of a random path of a simple random walk with elementary transitions per second staying
in the interval [−7, 7] in one year.

1.5.2 An acceptance-rejection technique with recycling

One natural way of sampling conditional distributions discussed in the end of section 1.5 is to use
a Markov chain ξn := (ξin)1≤i≤N evolving on the product spaces EN , starting at the origin with a
genetic type mutation-selection transition (1.6). In this context the elementary transitions are defined
as follows:

• During the selection stage, we quote pNn the proportion of particles ξin in [−7, 7]. When pNn 6= 0
each particle ξin outside the set [−7, 7] is killed and replaced by selecting randomly a successful
particle [−7, 7]. At the end of this procedure we have ξ̂n := (ξ̂in)1≤i≤N particles in [−7, 7] (When
all particles are outside the desired set, the algorithm need to be restarted).

• During the mutation stage, each particles ξ̂in moves independently according to the simple ran-
dom walk transition.

The Markov chain ξn belongs to the class of mean field type Feyman-Kac particle models discussed
in section 10. In computational physics, these particle models are also termed Resampled Monte Carlo
schemes, of reconfiguration walker evolution models. These Monte Carlo methodologies belongs to the
class of Quantum Monte Carlo methods.

In this situation, we have the unbiasedness property

E

 ∏
0≤k≤n

pNk

 = P (X0 ∈ A, . . . , Xn ∈ A)

as well as

1

n

∑
0≤k≤n

log pNk 'n↑∞ λ and
1

n

∑
0≤k≤n

1

N

∑
1≤j≤N

1
ξjk=i

'n↑∞ h(i)/
∑
j∈E

h(j)
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In addition, for any n ≥ 0, and i ∈ [−7, 7], we have

1

N

∑
1≤j≤N

1
ξjn=i

'N↑∞ P (Xn = i | Xk ∈ [−7, 7] k < n)

Running backwards in time we may trace the whole ancestral line of the j-th particle in [−7, 7]

ξj0,n ←− ξ
j
1,n ←− . . .←− ξ

j
n−1,n ←− ξ

j
n,n = ξjn

In this notation, for any n ≥ 0 and any (i0, . . . , in) ∈ [−7, 7]n+1 we have

1

N

∑
1≤j≤N

1
ξj0,n=i0,...,ξ

j
n,n=in

'N↑∞ P (X0 = i0, . . . , Xn = in | Xk ∈ [−7, 7] k < n)

In addition, we have the unbiasedness property

E

 ∏
0≤k≤n

pNk

 1

N

∑
1≤j≤N

1
ξj0,n=i0,...,ξ

j
n,n=in

 = P (X0 = i0, . . . , Xn = in ; Xk ∈ [−7, 7] k < n)

The next pictures illustrate the estimation of the log of the top eigenvalue and the corresponding
eigenvector (1.7) associated with the simple random walk in a tube [−7, 7] using the power method
(iterates of matrices), and the particle scheme described above.
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We fix the time horizon n, and we set

X0 =
(
ξ1

0,n, ξ
1
1,n, . . . , ξ

1
n−1,n, ξ

1
n,n

)
(1.8)

We sample a new genetic type model ζn =
(
ζin
)

1≤i≤N defined as above with a frozen trajectory (1.8),

in the sense that killed particles at some time k can also be replaced by selecting randomly ξ1
k,n (or

another successful particle [−7, 7]). Then, we choose randomly a genealogical line

X1 =
(
ξI0,n, ξ

I
1,n, . . . , ξ

I
0,n, ξ

I
n,n

)
(1.9)

where I stands for an uniform random variable on {1, . . . , N}. Iterating the procedure, we define a
Markov chain (Xk)k≥0 taking values in En+1.

In addition, for any n ≥ 0 and any (i0, . . . , in) ∈ [−7, 7]n+1 we have

1

m

∑
0≤k<m

1Xk=(i0,...,in) 'm↑∞ P ((X0, . . . , Xn) = (i0, . . . , in) | Xk ∈ [−7, 7] k < n) (1.10)

The Markov chain Xn belongs to the class of Particle Markov Chain Monte Carlo models discussed
in section 10.5.2.



Chapter 2

Feynman-Kac particle methods

2.1 Feynman-Kac formulae

The Feynman-Kac models on finite spaces discussed in section 1.5.1 can be extended with a little extra
work to more general state space En that may even depend on the time parameter n, so that to include
path-space Markov chains of given length n. For instance the Feynman-Kac model associated with a
collection of [0, 1]-valued potential functions Gn on some state space En, and some time inhomogeneous
Markov chain with elementary transitions

P (Xn ∈ dxn | Xn−1 = xn−1) = Mn(xn−1, dxn)

from En−1 into En, with Law(X0) = η0, is given by the formula

Qn(d(x0, . . . , xn)) :=
1

Zn

 ∏
0≤k<n

Gk(xk)

 P ((X0, . . . , Xn) ∈ d(x0, . . . , xn)) (2.1)

=
1

Zn
η0(dx0) Q1(x0, dx1)× . . .×Qn(xn−1, dxn)

with the integral operators

Qn(xn−1, dxn) = Gn−1(xn−1) Mn(xn−1, dxn)

We also denote by ηn the n-th time marginal of Qn, and γn = Zn×ηn. More formally, these distributions
are defined for any bounded function fn by

ηn(fn) = γn(fn)/γn(1) with γn(fn) = E

fn(Xn)
∏

0≤k<n
Gk(Xk)

 (2.2)

Notice that
(2.1) =⇒ γn = γn−1Qn and ηn = Φn(ηn−1) := ΨGn−1(ηn−1)Mn (2.3)

with the Boltzmann-Gibbs transformation ΨGn−1 defined in (7). In physics, the operators Qn are called
Feynman-Kac propagators to underline the fact that

∀0 ≤ p ≤ n γn = γpQp,n with the semigroup Qp,n = Qp+1Qp+1,n

For indicator functions Gn = 1A and time homogeneous Markov chains on a finite space this model
reduces to the one discussed in section 1.5.1. The normalizing constant Zn can be described in terms
of the measures ηn with the product formula

Zn = γn(1) = E

 ∏
0≤k<n

Gk(Xk)

 =
∏

0≤p<n
ηp(Gp) (2.4)

15
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We refer to section 4.2.3 for an elementary proof of this formula.

For absolutely continuous models of the form

Gn−1(xn−1)Mn(xn−1, dxn) = Hn(xn−1, xn) λn(dxn)

for some density function Hn w.r.t. some reference measure λn we also have the backward formula

Qn(d(x0, . . . , xn)) = ηn(dxn)
n∏
q=1

Mq,ηq−1(xq, dxq−1)

with the collection of backward Markov transitions

Mn+1,ηn(xn+1, dxn) =
ηn(dxn) Hn+1(xn, xn+1)

ηn (Hn+1(., xn+1))
(2.5)

A detailed proof is provided in section 4.2.4.

2.2 Kalman integration models

2.2.1 The Kalman filter

In some instances the path space measures presented in section 2.1 can be computed explicitly.
For instance, suppose that Xn is an Rp-valued Markov chain defined by the recursion

Xn = An Xn−1 + an +BnWn

or some Rdw -valued independent random sequences Wn, independent of X0, some matrices An and
Bn with appropriate dimensions and finally some p-dimensional vector an. We further assume that
Wn centered Gaussian random sequences with covariance matrices Rwn , and X0 is a Gaussian random
variable in Rp with a mean and covariance matrix denoted by

X̂−0 = E(X0) and P̂−0 = E((X0 − E(X0)) (X0 − E(X0))′)

We let yn, cn be a given sequence of Rq vectors, Cn an Rq×p-matrix and Rn ∈ Rq×q a symmetric
definite positive matrix.

Gn(xn) ∝ exp{
(
−1

2

(
yn − [Cnxn + cn]′R−1

n [Cnxn + cn]
))
}

In this situation, the n-th time marginals ηn of (2.1) are Gaussian and they coincide with the condi-
tional distributions

ηn := Law (Xn | Yk = yk, k < n) = N
(
X̂−n , P

−
n

)
and

η̂n := ΨGn(ηn) := Law (Xn | Yk = yk, k ≤ n) = N
(
X̂n, Pn

)
of a linear Gaussian filtering problem with the observations sequence

Yn = Cn Xn + cn + Vn , n ≥ 0

In the above display, Vn stands for a centered q-dimensional Gaussian random sequence (independent
of X) with covariance matrices Rn. The mean vectors X̂−n , X̂n and the covariance matrices P−n , Pn of



2.2. KALMAN INTEGRATION MODELS 17

the Gaussian distributions N
(
X̂−n , P

−
n

)
and N

(
X̂n, Pn

)
are computed using the Kalman recursions

provided in section 8.3.1. These prediction-updating equations are given by

X̂−n = An X̂n−1 + an P−n = AnPn−1A
′
n +BnR

w
nB
′
n

X̂n = X̂−n + P−n C
′
nΣn(P−n )−1

(
Yn −

(
CnX̂

−
n + cn

))
with

Pn = (I − P−n C ′nΣn(P−n )−1Cn)P−n and Σn(P−n ) := CnP
−
n C

′
n +Rn

For scalar models (p = 1) with

cn = an = 0 An = Bn = Cn = 1 Rn = τ2 and Rwn = σ2

the prediction formulae reduce to X̂−n = X̂n−1, P−n = Pn−1 + σ2, so that the updating equation takes
the simple form

X̂n =
τ2

τ2 + σ2 + Pn−1
X̂n−1 +

σ2 + Pn−1

τ2 + σ2 + Pn−1
Yn and Pn =

τ2
(
σ2 + Pn−1

)
τ2 + σ2 + Pn−1

Equivalently, we have

X̂−n+1 =
τ2

τ2 + P−n
X̂−n +

P−n
τ2 + P−n

Yn and P−n+1 = σ2 +
τ2P−n
τ2 + P−n

Notice that in this situation, the one step-optimal predictor takes the form

ηn(f) ∝ E

f(Xn) exp

−1

2

∑
0≤k<n

(yk −Xk)
2 τ−2

 with Xn −Xn−1 = σ Wn

∝
∫

f(xn) exp

(
−1

2
(xn − X̂−n )2(P−n )−1

)
dxn (2.6)

where Wn stands for a sequence of i.i.d. centered Gaussian r.v. with unit variance.
The next picture illustrates a realization of a 1d-Kalman filter associated with σ2 = 1 = τ2.

2.2.2 The Ensemble Kalman filter

For large dimensional signal processes, such as those arising in data assimilation problems, the covari-
ance matrix P−n of the Kalman filter is often too complex to compute. One strategy is to replace this
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matrix by an empirical matrix based on a particle interpretation of the Kalman recursions. The result-
ing stochastic model is defined in terms of an (Rp)N -valued Markov chain with an updating-prediction
transition

ξn :=
(
ξin
)

1≤i≤N

updating
−−−−−−−−−−→ ξ̃n :=

(
ξ̃in

)
1≤i≤N

prediction
−−−−−−−−−→ ξn+1 :=

(
ξin+1

)
1≤i≤N

defined for any 1 ≤ i ≤ N by the equations

ξ̃in = ξin + P−(ξn)C ′nΣn(P−(ξn))−1 (yn − Cnξin − cn − V i
n)

ξin+1 = An+1ξ̃
i
n + an +Bn+1W

i
n+1

with i.i.d. copies (V i
n,W

i
n)1≤i≤N of (Vn,Wn), and

P−(ξn) =
1

N

∑
1≤i≤N

ξin − 1

N

∑
1≤j≤N

ξjn

ξin − 1

N

∑
1≤k≤N

ξkn

′

As underlined in [405], in practice the (p × p)-matrix P−(ξn) is never computed or stored. To be
more precise, we consider the q−column vectors

∀1 ≤ i ≤ N ζin := Cn

ξin − 1

N

∑
1≤j≤N

ξjn


These vectors can be evaluated using q-scalar products in Rp induced by the q-row vectors of the
matrix Cn. In this notation, we have

P−(ξn)C ′n =
1

N

∑
1≤i≤N

ξin − 1

N

∑
1≤j≤N

ξjn

(ζin)′
Σn(P−(ξn)) = CnP

−(ξn)C ′n +Rn =
1

N

∑
1≤i≤N

ζin
(
ζin
)′

+Rn

Therefore, to evaluate P−(ξn)C ′n and Σn(P−(ξn)) only (N × q) scalar products in Rp need to be
computed.

We refer to section 11.2.3 for a more thorough discussion on these Ensemble Kalman filters. We
also refer the reader to section 8.3.2 for a description of the Feynman-Kac measures on path space
(2.1) in terms of a backward Gaussian Markov chain model.

2.2.3 Interacting Kalman filters

We consider a Markov chain Θn evolving in some state spaces Ξn, with Markov transitions
Kn(θn−1, dθn) and an initial condition µ0(dθ0). We let (Θn, Xn, Yn) be the filtering problem defined as
in section 2.2.1 by replacing (An, Bn, Cn, Rn) and (an, cn) by (An(Θn), Bn(Θn), Cn(Θn), Rn(Θn)) and
(an(Θn), cn(Θn)). Given a realization of the historical chain Θn = (Θ0, . . . ,Θn), the one step optimal
predictor is given by

ηΘn,n := Law (Xn | Θn, Yk, k < n) = N
(
X̂Θn,−
n , PΘn,−

n

)
with the mean-covariance parameters

(
X̂Θn,−
n , PΘn,−

n

)
computed using the Kalman recursions associ-

ated with the parameters (An(Θn), Bn(Θn), Cn(Θn), Rn(Θn)) and (an(Θn), cn(Θn)). By construction,
the triplet

X̃n :=
(

Θn, X̂
Θn,−
n , PΘn,−

n

)
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is a Markov chain. In addition, using Bayesian notation we have

P(Yn ∈ dyn | Θn, Yk, k < n) =

∫
p(Yn | xn, Θn) ηΘn,n(dxn)

so that

Law(Yn | Θn, Yk, k < n) = N
(
Cn(Θn)X̂Θn,−

n + cn(Θn), Cn(Θn)PΘn,−
n C ′n(Θn) +Rn(Θn)

)
(2.7)

We fix the observation sequence Yn = yn, with n ≥ 0, and we set

G̃n(X̃n) := g̃n(yn, X̃n)

where yn 7→ g̃n(yn, X̃n) stands for the density of the Gaussian distribution (2.7).
We sample N independent copies (ζi0)1≤i≤N of X̃0, and we compute the likelihood weights G̃0(ζi0),

with 1 ≤ i ≤ N . For each 1 ≤ i ≤ N , with a probability G̃0(ζi0)/max1≤j≤N G̃0(ζj0) we set ζ̂i0 := ζi0.

Otherwise, set ζ̂i0 := ζ̃i0, where ζ̃i0 stands for a random sample from the weighted distribution

∑
1≤j≤N

G̃0(ζj0)∑
1≤k≤N G̃0(ζk0 )

δ
ζj0

At the end of this updating step, move independently each ζ̂i0 to a new state ζi1 according to the

transition of the states X̃0  X̃1 starting at ζ̂i0, with 1 ≤ i ≤ N .

Compute the likelihood weights G̃1(ζi1), with 1 ≤ i ≤ N . For each 1 ≤ i ≤ N , with a probability

G̃1(ζi1)/max1≤j≤N G̃1(ζj1) we set ζ̂i1 := ζi1. Otherwise, set ζ̂i1 := ζ̃i1, where ζ̃i1 stands for a random
sample from the weighted distribution∑

1≤j≤N

G̃1(ζj1)∑
1≤k≤N G̃1(ζk1 )

δ
ζj1

At the end of this updating step, move independently each ζ̂i1 to a new state ζi2 according to the

transition of the states X̃1  X̃2 starting at ζ̂i1, with 1 ≤ i ≤ N ; and so on.
This branching type interacting particle system algorithm can be interpreted as a sequence of

N -interacting Kalman filters. Tracing back in time the ancestral lines(
Θi

0,n,Θ
i
1,n, . . . ,Θ

i
n,n

)
of the Θ-components of the particles ζin we obtain the genealogical tree based approximations

1

N

∑
1≤i≤N

δ(Θi0,n,Θ
i
1,n,...,Θ

i
n,n) 'N↑∞ Law((Θ0, . . . ,Θn) | Yk = yk, k < n)

In addition, if η
(N,i)
Θn,n

stands for the Gaussian distributions associated with the (X̂Θn,−
n , PΘn,−

n )-mean-

covariance components of the particles ζin, then we have

1

N

∑
1≤i≤N

η
(N,i)
Θn,n

'N↑∞ Law(Xn | Yk = yk, k < n)

For non Gaussian perturbations (Wn, Vn), the extended Kalman integration is performed by re-
placing these variables by Gaussian perturbations with the same variance. The next picture illustrates
a realization of the genealogical tree associated with N = 100 interacting Kalman filters associated
Bernoulli jump type random variables B(Θn) = Θn with rate 10%, and uniform jump amplitudes Wn

on [−20, 20], with unit sensor perturbation noise.
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These interacting Kalman filters belongs to the class of quenched and annealed Feynman-Kac
models discussed in section 10.6.2, and section 11.2.5.

An alternative particle approximation based on genetic type population models is provided in
section 2.3.2.

2.3 Evolutionary particle models

The may difficulty to design a Monte Carlo approximation of Feynman-Kac measures comes from the
degeneracy of the weight product in (2.1). For instance for indicator functions Gn = 1A most of the
importance sampling strategy will fail to remains in the set A for large time horizons.

2.3.1 Branching processes

The Feynman-Kac measures ηn can be interpreted as the first moment of the occupation measures

Xn =

pn∑
i=1

δζin

of a spatial branching process (ζin)1≤i≤pn ∈ S = ∪p≥0E
p. We let (gin(x))i≥1,x∈E,n≥0 be a collection of

integer number-valued random variables and we set

Gn(x) := E(gin(x))

The branching process is defined as follows. We start at some point x0 with a single particle, that is
p0 = 1 and ζ0 = ζ1

0 = x0 ∈ Ep0 = E.
At each time n ≥ 0, every individuals ζin, with 1 ≤ i ≤ pn, branches into gin(ζin) offsprings. At the

end of the branching transition, we have

p̂n =
∑

1≤i≤pn

gin(ζin) individuals ζ̂n = (ζ̂1
n, . . . , ζ̂

p̂n
n ) ∈ Ep̂n

Each of these individuals ζ̂in explores randomly the state space E, according to the transition Mn. At
the end of this mutation step, we have a population of pn = p̂n particles ζin ∈ E with distribution
Mn(ζ̂in, .), i = 1, . . . , pn. By construction, we have

E(Xn+1(f) | ζn) = Xn(GnMn+1(f))
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and therefore

E(Xn(f)) = Ex0

f(Xn)
∏

0≤k<n
Gk(Xk)

 := γn(f)

In the above display, Xn stands for the Markov chain on E with Markov transitions Mn. In this
interpretation, the mean number of individuals in the current population is given by E(Xn(1)) = γn(1).
For a more detailed discussion on spatial branching models and their applications in multiple-object
filtering problems, we refer the reader to section 12.1.1

2.3.2 A fixed population size branching process

The mutation-selection transitions of the particle interpretation of a general Feynman-Kac model
of the form (2.1) is defined as follows:

• During the selection stage, we quote pNn := 1
N

∑
1≤i≤N Gn(ξin) the empirical average of the

particles potential values Gn(ξin). When pNn 6= 0 each particle ξin is accepted with a probability
Gn(ξin) and we set ξ̂in = ξin. Rejected particles are resampled by choosing randomly a state
according to the weighted discrete distribution

∑
1≤i≤N

Gn(ξin)∑
1≤j≤N Gn(ξjn)

δξin (2.8)

When pNn = 0, the algorithm need to be restarted.

• During the mutation stage, each particles ξ̂in moves independently according to the Markov tran-

sitions Mn+1; that is, we sample N independent r.v. ξin+1 with distribution Mn+1

(
ξ̂in, dxn+1

)
.

In this situation, the distribution Qn can be approximated by the empirical measures of the ancestral
line of the individuals, that is

1

N

∑
1≤j≤N

δ(ξj0,n,...,ξ
j
n,n) 'N↑∞ Qn

We also have the unbiasedness particle estimates

ZNn :=
∏

0≤k<n

1

N

∑
1≤i≤N

Gk(ξ
i
k) 'N↑∞ Zn

These genetic type interacting particle systems have been used with success in a variety of ap-
plication domains as heuristic like Monte Carlo schemes since the end of the 1940s. We quote the
pioneering articles by T.E. Harris and H. Kahn [338], published in 1951, and the one by Enrico Fermi
and R.D. Richtmyer in 1948 on Resampled type Quantum Monte Carlo methodologies. To the best
of our knowledge, the first rigorous mathematical foundations of these models have been published in
1996 in [160] (seel also [161]).

Depending on their application domains the genetic type selection-mutation transitions discussed
above are also known under different guises, with a variety of different names and terminologies.
For instance the r.v. ξin are called samples, particles, individuals, or replica. To guide the reader in
these interdisciplinary literature, in the following table we have tried to summarize some more or less
equivalent formulations of the two step transitions of the algorithm discussed above.
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Sequential Monte Carlo Sampling Resampling

Particle Filters Prediction Updating

Data assimilation Forecasting Analysis

Genetic Algorithms Mutation Selection

Evolutionary Population Exploration Branching-selection

Diffusion Monte Carlo Free evolutions Absorption

Quantum Monte Carlo Walkers motions Reconfiguration

Sampling Algorithms Transition proposals Accept-reject-recycle

The selection transition in the r.h.s. column is also termed: bootstrapping, spawning, cloning,
pruning, replenish, multi-level splitting, enrichment, go with the winner, quantum teleportation,. . .

For a more detailed discussion on particle Feynman-Kac we refer to section 3.3.1, section 9.1.4, as
well as to chapter 10.

2.3.3 Island particle models

We consider the particle model discussed in section 2.3.2. In section 10.1, for any bounded function
fn on En we prove that

E

ηNn (fn)
∏

0≤k<n
ηNk (Gk)

 = E

fn(Xn)
∏

0≤k<n
Gk(Xk)

 (2.9)

with

ηNn :=
1

N

∑
1≤i≤N

δξin =⇒ ηNn (fn) =

∫
f(xn) ηNn (dxn) =

1

N

∑
1≤i≤N

fn(ξin)

If we set
χn:= ξn Fn(χn) := ηNn (fn) and Gn(χn) := ηNn (Gn)

then (2.9) takes the form

E

Fn(χn)
∏

0≤k<n
Gk(χk)

 = E

fn(Xn)
∏

0≤k<n
Gk(Xk)


The l.h.s. is a Feynman-Kac formula with reference Markov chain χn and potential functions Gn.
The particle approximation of these models are in terms of an interacting island particle model.
During the mutation stage, the islands evolve independently according the Markov transitions of the
particle model χn= ξn. During the selection stage, the island are accepted or rejected depending on
the empirical averages Gk(χk) of the individuals within each island. These many-body Feynman-Kac
models are discussed in section 10.5.

2.3.4 Backward particle models

We further assume that the Markov transitions Mn are absolutely continuous with respect to
some measures λn on En, and for any (xn−1, xn) ∈ (En−1 × En) we have

Gn−1(xn−1) Mn(xn−1, dxn) = Hn(xn−1, xn) λn(dxn) (2.10)

for some density function Hn. In this situation, we also have that

QN
n (d(x0, . . . , xn)) =

1

N

∑
1≤i≤N

δξin(dxn)

n∏
q=1

M
N
q (xq, dxq−1) 'N↑∞ Qn(d(x0, . . . , xn)) (2.11)
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with the random Markov transitions

M
N
q (xq, dxq−1) =

∑
1≤i≤N

Hq(ξ
i
q−1, xq)∑

1≤j≤N Hq(ξ
j
q−1, xq)

δξiq−1
(dxq−1)

By construction, QN
n can be interpreted as the distribution of a Markov chain on {1, . . . , N} evolving

backward in time, starting with an uniform distribution at time n, with elementary transitions from
time q to time q − 1 given by the (random) stochastic matrix

Hq(ξ1
q−1,ξ

1
q )∑

1≤j≤N Hq(ξ
j
q−1,ξ

1
q )
· · · Hq(ξNq−1,ξ

1
q )∑

1≤j≤N Hq(ξ
j
q−1,ξ

1
q )

...
...

...
Hq(ξ1

q−1,ξ
N
q )∑

1≤j≤N Hq(ξ
j
q−1,ξ

N
q )
· · · Hq(ξNq−1,ξ

N
q )∑

1≤j≤N Hq(ξ
j
q−1,ξ

1
q )


In section 10.5.3 (see corollary 10.5.6) we also prove that

P
((
ξj0,n, . . . , ξ

j
n,n

)
∈ d(x0, . . . , xn) | ξ0, . . . , ξn−1

)
= Φn(ηNn−1)(dxn)

n∏
q=1

M
N
q (xq, dxq−1)

for any 1 ≤ j ≤ N with

Φn(ηNn−1)(dxn) =
∑

1≤i≤N

Gn−1(ξin−1,n−1)∑
1≤j≤N Gn−1(ξjn−1,n−1)

Mn(ξin−1,n−1, dxn)

These backward Feynman-Kac integration models are developed in section 10.5.4, section 4.2.4 and
section 10.3 (see also section 8.3.2 for a derivation of these models in the context of linear-Gaussian
filtering problems). A more detailed discussion on these Feynman-Kac particle models is provided in
chapter 10.

2.3.5 Particle Markov chain Monte Carlo models

A couple of Markov chain Monte Carlo samplers with target measure Qn can be underlined:

• As in (1.9), starting from a given trajectory X0 = (ξ1
k,n)0≤k≤n, we sample a new genetic type

model ξn =
(
ξin
)

1≤i≤N defined as above with a frozen trajectory X0. More precisely, the first par-

ticle at time k(≤ n) coincides with the k-th ancestor ξ1
k,n; and the acceptance-rejection/selection

transition defined in (2.8) only concern the (N − 1) remaining particles. Then, we choose ran-
domly a genealogical line X1 or we sample backward in time a ancestral line X1 according to
the backward particle Markov chain model defined in (2.11). The Markov transition X0  X1

on path space is reversible w.r.t. Qn. Thus, iterating this procedure, we define a Markov chain
on path space with invariant measure Qn.

• We start with a realization of the particle model X0 := ξ := (ξk)0≤k≤n. Then we sample a new
independent particle model ξ := (ξk)0≤k≤n and we accept ξ with probability

a(ξ, ξ) := min

1,
∏

0≤k<n

1
N

∑
1≤i≤N Gk(ξ

i
k)

1
N

∑
1≤i≤N Gk(ξ

i
k)


In this case we set X1 = ξ; otherwise X1 = X0. The Markov transition X0  X1 on path space
is reversible w.r.t. some measure on the product space (E0 × . . . × En)N with (E0 × . . . × En)-
marginals equal to Qn. Thus, iterating this procedure, we define a Markov chain on path space
with invariant measure Qn.

For a detailed discussion on these particle Markov chain Monte Carlo methodologies, we refer the
reader to section 10.5.2.
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2.4 Twisted models and h-processes

2.4.1 Spectral decompositions

We consider homogeneous models (En, Gn,Mn) = (E,G,M) equipped with a reversible transition
M w.r.t. some probability measure µ. Under some rather weak regularity conditions, the integral
operator Q(x, dy) = G(x)M(x, dy) on L2(µ) has a h(x) a positive eigenvector associated with the
maximal eigenvalue λ; that is, we have that

Q(h)(x) = G(x)M(h)(x) = λh(x) =⇒ G(x) = λ h(x)/M(h)(x)

To simplify the presentation and avoid some unnecessary technical discussion on the integrability
of the potential function w.r.t. reference measure µ, we further assume that ε ≤ G ≤ ε−1, for some
ε > 0, and M(x, dy) = m(x, y)µ(dy) for some density function m ∈ L2(µ⊗µ). In this situation, Q is a
compact self-adjoint operator on L2(µ) = L2(ΨG−1(µ)) (with G−1 = 1/G). The ΨG−1(µ)-reversibility
of Q comes from the fact that for any functions f1, f2 ∈ L2(µ) we have

ΨG−1(µ) (f1Q(f2)) ∝ µ(f1M(f2)) = µ(M(f1) f2) ∝ ΨG−1(µ) (Q(f1) f2)

The spectral theorem for compact and self adjoint and positive operators allows to rewrite any power
Qn in terms of a countable (by the compactness property) orthonormal basis (ϕi)i≥0 ∈ L2(ΨG−1(µ))
of eigenfunctions associated with a non increasing sequence of positive eigenvalues (λi)i≥0 of Q

Qn(x, dy) =
∑
i≥0

λni ϕi(x)ϕi(y) ΨG−1(µ)(dy) with (λ0, ϕ0) = (λ, h) (2.12)

In this situation, in section 4.3.2 we prove that

Qn(d(x0, . . . , xn)) =
1

E(h−1(Xh
n))

h−1(xn) Phn(d(x0, . . . , xn)) (2.13)

where Phn = Law
(
Xh

0 , . . . , X
h
n

)
stands for the distribution of the random path of a Markov chain Xh

n

with initial distribution ηh0 = Ψh(η0) and Markov transitions

P
(
Xh
n ∈ dxn | Xh

n−1 = xn−1

)
= Mh(xn−1, dxn) :=

M(x, dy)h(y)

M(h)(x)

In this situation, the sampling of (2.1) reduces to that of sampling the h-process Xh
n . It is also readily

check that Mh is reversible w.r.t. ΨhM(h)(µ)

ΨhM(h)(µ)
(
f1M

h(f2)
)
∝ µ((hf1)M(hf2)) = µ(M(hf1) (hf2)) ∝ ΨhM(h)(µ)

(
Mh(f1) f2

)
Last but not least, we observe that

ηn(f) =
E
(
h−1(Xh

n)f(Xh
n)
)

E (h−1(Xh
n))

'n↑∞
ΨhM(h)(µ)(h−1f)

ΨhM(h)(µ)(h−1)
=
µ(M(h)f)

µ(M(h))
= ΨM(h)(µ)(f) := η∞(f)

Using the fact that M is µ-reversible, we also find that

µ(M(h)f) = µ(hM(f))

⇒ η∞(f) = ΨM(h)(µ)(f) = Ψh(µ)M(f) =
ΨG−1(µ)(hf)

ΨG−1(µ)(h)
(⇐ h/G ∝M(h))
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We also notice that
ΨG (η∞) = Ψh(µ)

Finally using (2.12) we have

λ0 > λ1 =⇒ ηn(f) = η∞(f) + O ((λ1/λ0)n)

and by (2.4) we find that

1

n
logZn =

1

n
log γn(1) =

1

n

∑
0≤p<n

log ηn(G) = log η∞(G) + O (1/n) = log λ+ O (1/n)

The r.h.s. formula comes from the fact that

η∞(G) = ΨM(h)(µ)(G) =
µ(GM(h))

µ(M(h))
= λ (⇐ G M(h) = λh)

The measure η∞ can be approximated using the genetic type particle models ξn defined in section 2.3.2.
More formally, we have

ηNn :=
1

N

∑
1≤i≤N

δξin 'N↑∞ ηn 'n↑∞ η∞

as well as the empirical spatio-temporal averages

1

n

∑
0≤k<n

ηNk 'N↑
1

n

∑
0≤k<n

ηk 'n↑∞ η∞

2.4.2 Guiding and pilot functions

Unfortunately, most of the time in the function h is unknown. One strategy is to use a judiciously
chosen trial function hT . In this case, we have

Q(d(x0, . . . , xn)) ∝

 ∏
0≤k<n

G(xk)h
−1
T (xk)M(hT )(xk)

 h−1
T (xn) PhTn (d(x0, . . . , xn)) (2.14)

For instance, choosing hT = G we have

Q(d(x0, . . . , xn)) G(xn) ∝

 ∏
0≤k<n

Ĝ(xk)

 P̂n(d(x0, . . . , xn))

with the potential function Ĝ = M(G) the distribution P̂n = Law(X̂0, . . . , X̂n) of a Markov chain with
transition probabilities

M̂(xn−1, dxn) =
M(xn−1, dxn)G(xn)

M(G)(xn−1)
(2.15)

On natural way to evaluate the functions M(hT )(x) and sample the Markov chain transitions XhT
k−1 =

x XhT
k consists in replacing the Markov transitions M by the empirical transitions associated with

N independent random variables XhT ,i
k (x) with common law MhT (x, dy); that is, we have that

MhT ,N (x, dy) :=
1

N

∑
1≤i≤N

δ
X
hT ,i
k (x)

(dy) 'N↑∞ MhT (x, dy)

For a more thorough discussion on importance sampling schemes and change of probability measures
we refer the reader to section 4.1.1.
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2.5 Some illustrations

We illustrate the rather abstract model (2.1) with a series of examples.

2.5.1 Self avoiding walks

The first one concerns the simulation of a self-avoiding walk X ′n on Z2 starting at the origin. In this
situation, the Markov chain Xn and the potential functions Gn are given by

Xn =
(
X ′0, . . . , X

′
n

)
∈ En := (Z2)n+1 and Gn(Xn) = 1X′n 6∈{X′0,...,X′n−1} (2.16)

In this case, we notice that

Qn := Law
(
(X ′0, . . . , X

′
n) | ∀0 ≤ k 6= l < n X ′k 6= X ′l

)
and Zn+1 = 4−n Card(An) with

An :=
{

(x0, . . . , xn) ∈ (Z2)n+1 | ∀0 ≤ k 6= l ≤ n |xk − xk−1| = 1 xk 6= xl
}

The following picture illustrates a sample of the SRW on Z2 on the time horizon [0, 1000]

The following pictures illustrates an ancestral line and the genealogical tree based particle model
with N = 100 non intersection on Z2 on the time horizon [0, 1000].
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These particle models have been simulated using the free evolution of the random walk and the
selection indicator potential functions (2.16). Alternatively, we can choose any stretching type change
of random walk motion. For instance, the random walk with transition (2.15) (often termed the myopic
random walk) evolve using local transitions that avoid the states visited in the past. In this case, the
selection potential function Ĝ evaluates the chances to avoid these historical states in the next local
transition.

Using the fact that Card(Ap+q) ≤ Card(Ap) × Card(Aq) and 2n ≤ Card(An) ≤ 4 × 3n, using
sub-additivity arguments we find that

c := lim
n→∞

Card(An)1/n ∈ [2, 3]

To estimate the co-called connectivity constant c (a.k.a. the critical fugacy), we use the fact that

ηn(Gn) = P
(
X ′ 6∈ {X ′0, . . . , X ′n−1} | ∀0 ≤ p < q < n X ′p 6= X ′q

)
= Card(An)/ (4 Card(An−1))

and therefore
1

n
log γn(Gn) =

1

n

∑
0≤k≤n

log ηk(Gk) = log (c/4)

The following picture provides an estimate of the connectivity constant with N = 100 particles.
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Self avoiding random walks (abbreviated SAW) are used in physics to model the evolution of
linear/directed polymers. These polymers represent the formation of long molecules consisting of
monomers linked together in a given chemical solvent. The location of the monomers is encoded in the
random walk evolution, the time horizon represents the length of the molecule. These models can be
extended with little extra work to analyze polymer models in a confined geometry. For instance, given
some subsets An ∈ Z2 the Feynman-Kac models (2.1) associated with the historical process (2.16) and
the potential functions

Gn(Xn) = 1X′n 6∈{X′0,...,X′n−1} × 1An(X ′n)

are given by

Qn := Law
(
(X ′0, . . . , X

′
n) | ∀0 ≤ k 6= l < n X ′k 6= X ′l and (X ′0, . . . , X

′
n−1) ∈ (A0 × . . .×An−1)

)
and

Zn = P
(
∀0 ≤ k 6= l < n X ′k 6= X ′l and (X ′0, . . . , X

′
n−1) ∈ (A0 × . . .×An−1)

)
2.5.2 Particle filters

The second one is related to nonlinear filtering models. We consider a couple signal-observation model
(Xn, Yn) ∈ R2 satisfying the following recursion{

Xn = an(Xn−1,Wn)
Yn = bn(Xn) + Vn

In the above display, Wn and Vn stands for a sequence of i.i.d.centered Gaussian r.v. with unit variance.
The functions an and bn stands for some regular functions. We fix an observation sequence Y = y,
and for any n ≥ 0 we set

Gn(x) :=
1√
2π

exp

(
−1

2
(yn − hn(x))2

)
In this situation, using Bayes’ rule we prove that the Feynman-Kac measure (2.1) coincides with the
posterior distribution of the trajectories of the signal (X0, . . . , Xn) given the observation sequence
Yk = yk, up to time n; that is, we have that

Qn = Law ((X0, . . . , Xn) | (Y0, . . . , Yn−1) = (y0, . . . , yn−1))

In addition, the density pn(y0, . . . , yn) of the observation sequence Yk = yk, k ≤ n is approximated
using the unbiased particle estimate

1
√

2π
(n+1)

∏
0≤k≤n

1

N

∑
1≤i≤N

exp

(
−1

2
(yk − hk(ξik))2

)
'N↑∞ pn(y0, . . . , yn)

In statistical machine learning and advanced signal processing the particle approximation (2.8) of
these measures are called particle filters, or sequence Monte Carlo samplers. For a more thorough
discussion on these models, we refer to section 10.2, section 10.1, and section 11.2.

We illustrate these particle models with the Bernoulli signal jump filtering problem discussed in
the end of section 2.2.3. The resulting algorithm is also termed a particle filter.

The next picture compares the extended Kalman filter with the smoothed empirical means of the
genealogical tree associated with the particle filter.
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The next picture illustrate the extended Kalman filter associated with a Bernoulli switching signal

Xn = (εn × 1 + (1− εn)× 1/2) Xn−1 +Wn

with P(εn = 1) = 1%, and a collection of uniform r.v. Wn on [−5, 5], and an unit sensor perturbation
noise.

The next figure illustrate the genealogical tree evolution associated with a particle filter with
N = 100 particles.
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We end this section with a discussion on the twisted models discussed in section 2.4.2. We consider
a signal-observation model (Xn, Yn) ∈ Rp+q of the form{

Xn = An(Xn−1) +Wn

Yn = CnXn + cn + Vn

with independent centered Gaussian r.v. Wn and Vn with covariance matrices Rwn and Rvn. Bn, Cn and
cn are matrices and vectors with appropriate dimension, and An a collection of functions from Rp into
itself. In this situation, using the standard Bayes’ rule for Gaussian densities (cf. (8.29) we have

Law (Xn | Xn−1, Yn) = N
(
m̂n(Xn−1), Σ̂n

)
with the mean and covariance matrices given by

m̂n(Xn−1) = An(Xn−1) +RwnC
′
nΣn(Rwn )−1 (Yn − (CnAn(Xn−1) + cn))

Σ̂n = (I −RwnC ′nΣn(Rwn )−1Cn)Rwn and Σn(Rwn ) := CnR
w
nC
′
n +Rvn

In addition, recalling that

P (Yn ∈ dyn | Xn−1) =

∫
P (Yn ∈ dyn | Xn = xn) P (Xn ∈ dxn | Xn−1)

we find that
Law (Yn | Xn−1) = N

(
CnAn(Xn−1), CnR

w
nC
′
n +Rvn

)
In this situation, the twisted Markov transition and the corresponding potential function given in
(2.15) are defined by

M̂n(xn−1, dxn) = P (Xn ∈ dxn | Xn−1 = xn−1, Yn = yn)

and

Ĝn(xn) ∝ exp

(
−1

2
(yn+1 − Cn+1An+1(xn))′[Cn+1R

w
n+1C

′
n+1 +Rvn+1]−1(yn+1 − Cn+1An+1(xn))

)
2.5.3 Sequential Monte Carlo methods

We consider a sequence of probability measures µn on some state space E defined in terms of the
product of some functions hn and some reference measure λ

µn(dz) =
1

Zn

 ∏
1≤p≤n

hp(z)

 λ(dz)

We let Gn−1 = hn, and Xn a Markov chain with transitions Mn s.t. µn = µnMn. In this situation, µn
coincides with the n-th time marginal ηn of the Feynman-Kac measure Qn given in (2.1). In addition,
the normalizing constants are given by the product formulae

Zn/Z0 = E

 ∏
0≤k<n

Gk(Xk)

 =
∏

0≤k<n
ηk(Gk)

We illustrate these models with a series of examples:

• Bolztmann-Gibbs measures associated with some inverse cooling schedule βn ↑, with β0 = 0 =
β−1 and some energy type function V :

hn = e−(βn−βn−1)V =⇒ µn(dx) ∝ e−βnV (x) λ(dx)
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• Bolztmann-Gibbs measures associated with some decreasing subsets An ↑ and some probability
measure λ:

hn = 1An =⇒ µn(dx) ∝ 1An(x) λ(dx)

The following pictures illustrate the empirical histogram of a particle scheme with N = 200
particle, and the particle estimation of the normalizing constants in the case λ = N (0, 1) and a
terminal level set An = [5,∞[.

• Hidden Markov chain models associated with a couple signal-observation processes (Xn, Yn)
depending on some r.v. Θ:

hn(θ) = p(yn | θ, y0, . . . , yn−1) =⇒ µn = Law (Θ | y0, . . . , yn)
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In the above display we have used standard abusive but natural Bayesian notation. For instance,
p(yn | θ, y0, . . . , yn−1) stands for the density of the r.v. Yn evaluated at Yn = yn given Θ = θ
and (Y0, . . . , Yn−1) = (y0, . . . , yn−1).

• Extended Hidden Markov chain models are defined in terms of a realization ξ = (ξn)n≥0 of the
conditional particle approximation of the optimal prediction problem of Xn given (Y0, . . . , Yn−1)
and given the value of the parameter Θ. More precisely, we have that

hn(θ, ξ) =

∫
p(yn | xn, θ, y0, . . . , yn−1)

1

N

∑
1≤i≤N

δξin(dxn)︸ ︷︷ ︸
'dp(xn|θ,y0,...,yn−1)

=⇒ The Θ-marginal of µn = Law (Θ | y0, . . . , yn)



Chapter 3

Some advanced Monte Carlo
methodologies

3.1 Integro-partial differential equations

We let at(x) = (at,i(x))1≤i≤p ∈ Rp, λt(x) ∈ R+, and σt(x) = (σt,i,j(x))1≤i,j≤p ∈ Rp×p be a couple

of smooth functions on Rp. We also consider a smooth function qt(x, y) on Rp+p s.t.
∫
qt(x, y)dy = 1,

and we denote by St(x, dy) the Markov transition

St(x, dy) = qt(x, y)dy

We let p(t, x) be the solution of the partial differential equation

∂tpt = −
d∑
i=1

∂xi (at,i pt)+
1

2

d∑
i,j=1

∂xi,xj

((
σt(σt)

T
)
i,j

pt

)
+

∫
pt(y) λt(y) [qt(y, x) dy − δx(dy)] (3.1)

This evolution model is sometimes called the Fokker-Planck equation. In the weak form, by a simple
integration by part we have

ηt(f) =

∫
f(x) ηt(dx) with ηt(dx) = pt(x) dx =⇒ d

dt
ηt(f) = ηt (Lt(f))

for sufficiently smooth test functions f with the infinitesimal generator

Lt(f)(x) :=
d∑
i=1

at,i ∂xif(x)︸ ︷︷ ︸
drift term

+
1

2

d∑
i,j=1

(
σt(σt)

T
)
i,j

∂xi,xjf(x)︸ ︷︷ ︸
diffusion term

+λt(x)

∫
[f(y)− f(x)] St(x, dy)︸ ︷︷ ︸

jump term

We consider the jump-diffusion process Xλ
t with jump rate λt(Xt) and evolving between two consec-

utive jump times according to the following stochastic differential equation

dXλ
t = at

(
Xλ
t

)
dt+ σt

(
Xλ
t

)
dWt (3.2)

where Wt stands for a p-dimensional standard Brownian motion. The jump times Tn are defined
sequentially by setting T0 = 0 and

∀n ≥ 1 Tn = inf

{
t ≥ Tn−1 s.t.

∫ t

Tn−1

λs(X
λ
s )ds ≥ − logUn

}

33
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where Un stands for a sequence of uniform r.v. Un ∼ Unif]0, 1]. Whenever p0 is the density of the
initial r.v. Xλ

0 , we have

∀t ≥ 0 P
(
Xλ
t ∈ dx

)
= pt(x) dx

The analysis of these models is provided in section 5.1 and section 5.6. We choose a time mesh tn with
(tn − tn−1) = ε with intermediate time steps (tn+1 − tn+ 1

2
) = ε/2, a sequence of i.i.d. Gaussian r.v.

Vn ∼ N (0, Idp×p), a sequence of uniform r.v. Un ∼ Unif[0, 1], and a sequence of i.i.d. r.v. Fn(x) with
common distribution

P (Fn(x) ∈ dy) = St(x, dy) (3.3)

The ε-approximated Monte Carlo simulation of Xt is given by the recursion

Xλ,ε
tn  Xλ,ε

t
n+ 1

2

= Xλ,ε
tn + atn(Xλ,ε

tn ) ε +
√
ε σtn(Xλ,ε

tn ) Vn

 Xλ,ε
tn+1

=


Xλ,ε
t
n+ 1

2

if Un ≤ exp

{
−λtn(Xλ,ε

t
n+ 1

2

)δ

}

Fn

(
Xλ,ε
t
n+ 1

2

)
if Un > exp

{
−λtn(Xλ,ε

t
n+ 1

2

)δ

}
(3.4)

We also notice that X0,ε
tn+1

= X0,ε
t
n+ 1

2

, for any n ≥ 0 and any time step ε. In this situation, we also have

tn = bt/εc ε := nε =⇒ P
(
Xλ,ε
tn ∈ dx

)
'ε↓0 pt(x) dx

The next picture illustrates the solution pt(x) of the Fokker-Planck equation (3.1) associated with
the pure diffusion process starting at the origin

dX(t) = sin(X(t))dt+ σ dB(t)
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3.2 Mean field particle models

3.2.1 Discrete generation models

Suppose we are given a Markov chain Xn with transition probabilities Kn on some state spaces En.
In this situation, the law ηn of the random states satisfies the evolution equation

ηn = ηn−1Kn ⇐⇒ ηn(dxn) =

∫
ηn−1(dxn−1) Kn(xn−1, dxn) (3.5)

The sampling of this chain requires to sample random variables Xn with distribution Kn(xn−1, dxn),
for any given state Xn−1 = xn−1. If Kn is replaced by some Markov transition Kn,ηn−1 that depends
on ηn−1, the sampling of the random states Xn requires to compute the law ηn−1 of the random states
Xn−1. Notice that in this situation the evolution of these distribution is given by a nonlinear system

ηn = ηn−1Kn,ηn−1

This shows that ηn = Law(Xn), with the nonlinear Markov chain model

P
(
Xn ∈ dxn | Xn−1 = xn−1

)
= Kn,ηn−1(xn−1, dxn) with ηn−1 = Law(Xn−1)

In general, this type of nonlinear evolution equations cannot be solved explicitly, and we need to
introduce another level of approximation. The mean field particle interpretation of these nonlinear
Markov chain models is defined by an N -interacting particle Markov chain ξn =

(
ξin
)

1≤i≤N on the

product space ENn with elementary transitions

P (ξn ∈ dxn | ξn−1) =
∏

1≤i≤N
Kn,ηNn−1

(
ξin−1, dx

i
n

)
with ηNn−1 :=

1

N

∑
1≤i≤N

δξin−1
(3.6)

In the above display dxn := d(x1
n, . . . , x

N
n ) stands for an infinitesimal neighborhood of the state

xn = (xin)1≤i≤N ∈ ENn . In other words, given ξn−1, the r.v. ξin are independent r.v. with distribution
Kn,ηn−1

(
ξin−1, dxn

)
. For a more thorough discussion on these discrete generation nonlinear processes,

we refer the reader to section 9.1.

3.2.2 Continuous time models

The evolution equation (3.4) can be interpreted as the continuous time version of (3.5). To get
some feasible solution, we have implicitly assumed in (3.3) that the values of the functions at(x),
λt(x) and σt(x) are known at any state x ∈ Rp, and it is possible to sample r.v. with the distribution
qt(x, y)dy

In more general instance, these functions may depend on the solution pt of the integro-partial
differential equations (3.1). For instance, let us suppose that

at(x) = bt,ηt(x) :=

∫
at(x, y) ηt(dy) and σt(x) = τt,ηt(x) :=

∫
σt(x, y) ηt(dy) (3.7)

and

λt(x) = Vt,ηt(x) :=

∫
λt(x, y) ηt(dy) and St(x, y) = St,ηt(x, dy) =

[∫
qt((x, y), z) ηt(dz)

]
dy

(3.8)
with ηt(dx) = pt(x) dx, and for some regular function at, σt, λt and qt. In this situation, (3.1) is a
nonlinear partial differential equation. In addition, we have

d

dt
ηt(f) = ηt (Lt,ηt(f))
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with the infinitesimal generator

Lt,ηt(f)(x) :=
d∑
i=1

bt,ηt,i(x) ∂xif(x)︸ ︷︷ ︸
drift term

+
1

2

d∑
i,j=1

(
τt,ηt(τt,ηt)

T
)
i,j

(x) ∂xi,xjf(x)︸ ︷︷ ︸
diffusion term

+Vt,ηt(x)

∫
[f(y)− f(x)] St,ηt(x, dy)︸ ︷︷ ︸

jump term

The mean field particle interpretation of this model is defined by a Markov chain ξt =
(
ξit
)

1≤i≤N
on the product space (Rd)N with infinitesimal generator defined, for sufficiently regular functions F
on (Rd)N , by the following formulae

Lt(F )(x1, . . . , xN ) :=
∑

1≤i≤N
L

(i)
t,m(x)(F )(x1, . . . , xi, . . . , xN ) with m(x) :=

1

N

∑
1≤i≤N

δxi (3.9)

In the above display, L
(i)
t,m(x) stands for the operator Lt,m(x) acting on the function xi 7→

F (x1, . . . , xi, . . . , xN ). For a more thorough discussion on these continuous time particle models we
refer the reader to section 9.3.2.

The stochastic model (3.4) and its mean field interpretation (3.9) cannot be simulated on some
computer without an additional level of approximation.

The discrete time mean field particle approximated scheme is defined by an N -interacting jump
particle process on the product space (Rp)N with a two step elementary transitions

ξλ,εtn :=
(
ξλ,ε,itn

)
1≤i≤N

−→ ξλ,εtn+1/2
:=
(
ξλ,ε,itn+1/2

)
1≤i≤N

−→ ξλ,εtn+1
=
(
ξλ,ε,itn+1

)
1≤i≤N

To clarify the presentation, when there is no confusion we drop the indices (.)(λ,ε), and we write ξitn
instead of ξλ,ε,itn .

In this notation, replacing in the evolution equation (3.4) the measure ptn(y)dy by the empirical
measures

m(ξtn) :=
1

N

∑
1≤i≤N

δξitn

the transition ξitn  ξitn+1/2
of the i-th particle takes the form

ξitn+1/2
= ξitn +

1

N

∑
1≤j≤N

atn(ξitn , ξ
j
tn)︸ ︷︷ ︸

=btn,m(ξtn )(ξ
i
tn

)

ε +
√
ε

1

N

∑
1≤j≤N

σtn(ξitn , ξ
j
tn)︸ ︷︷ ︸

=τtn,m(ξtn )(ξ
i
tn

)

V i
n

where (V i
n)1≤i≤N stands for N i.d.d. copies of Vn.

In much the same way, the the transition ξitn+1/2
 ξitn of the i-th particle takes the form

ξitn+1
=


ξitn+1/2

if U in ≤ exp
{
−λNtn

(
ξitn+1/2

)
δ
}

FNn

(
ξitn+1/2

)
if U in > exp

{
−λNtn

(
ξitn+1/2

)
δ
}



3.3. SOME ILLUSTRATIONS 37

with N i.d.d. copies (U in)1≤i≤N of Un, FNn

(
ξit
n+ 1

2

)
a r.v. with distribution

S
tn,m

(
ξtn+1/2

) (ξitn+1/2
, dy
)

=
1

N

∑
1≤j≤N

qtn

((
ξitn+1/2

, y
)
, ξjtn+1/2

)
dy

and

λNtn

(
ξitn+1/2

)
:= V

tn,m
(
ξtn+1/2

) (ξitn+1/2

)
=

1

N

∑
1≤j≤N

λtn

(
ξitn+1/2

, ξjtn+1/2

)
In this case, under some rather weak regularity conditions we prove that

tn = bt/εc ε := nε =⇒ 1

N

∑
1≤i≤N

δξitn
'N↑∞ P

(
Xλ,ε
tn ∈ dx

)
'ε↓0 pt(x) dx

3.3 Some illustrations

3.3.1 Discrete generation Feynman-Kac models

We consider the Feynman-Kac measures ηn discussed in (2.2). To simplify the presentation we assume
that the potential functions Gn take values in [0, 1]. In this situation, combining (2.3) with (8) and
(9) we readily check that

ηn = ΨGn−1(ηn−1)Mn = ηn−1Kn,ηn−1

with

Kn,ηn−1(xn−1, dxn) := Gn−1(xn−1) Mn(xn−1, dxn) + (1−Gn−1(xn−1)) (ΨGn−1(ηn−1)Mn)(dxn)

The N -particle interpretation (3.6) of the Feynman-Kac measures ηn is defined by an N -interacting
particle Markov chain ξn =

(
ξin
)

1≤i≤N on the product space ENn . Given the values of the N particle

model ξn−1 at time (n− 1), the N particles ξin are independent r.v. with distributions

Kn,ηNn−1

(
ξin−1, dx

i
n

)
= Gn−1(ξin−1) Mn(ξin−1, dx

i
n) +

(
1−Gn−1(ξin−1)

) ∑
1≤j≤N

Gn−1(ξjn−1)∑
1≤k≤N Gn−1(ξkn−1)

Mn(ξjn−1, dx
i
n)

with 1 ≤ i ≤ N . The resulting particle algorithm coincides with the fixed population size branching
process discussed in section 2.3.2. Further details on particle Feynman-Kac models are provided in
section 9.1.4 and in chapter 10.

3.3.2 A particle systemic risk model

We consider the log-monetary reserves (Xi
t)1≤i≤N of N banks. The inter-bank exchanges (borrowing

and lending) are represented by the diffusion equation

dXi
t =

α

N

∑
1≤j≤N

(Xj
t −Xi

t) dt+ σ dW i
t

where (W i
t )1≤i≤N stands for N independent Brownian motions, and a couple of parameters α and σ.

This model is the mean field approximation of the nonlinear process associated with the parameters
(3.7) and (3.8) with

at(x, y) = α× (y − x) σt(x) = σ and λt(x) = 0
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This model has been introduced by J.P. Fouque and L.H. Sun in [273] (see also [105] for a mean
field game interpretation of this model). Simulations shows that stability is created by increasing the
parameter α. Nevertheless the systemic risk is also increase when α is large.

The following pictures illustrates an Euler type discrete time approximation of the model with 10
banks when α = 100 and α = 0.

3.3.3 The burgers equation

We consider the nonlinear model (3.7) and (3.8) on R with

at(x, y) = 1[x,∞[(y) σt(x) = σ > 0 and λt(x) = 0

We set

Vt(x) =

∫ ∞
x

pt(y)dy = at(x) =⇒ ∂xVt = −pt
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This implies that

∂tpt = −∂t∂xVt = −∂x ∂tVt

= −∂x (Vt pt) +
σ2

2
∂x,xpt = ∂x

[
Vt ∂xVt −

σ2

2
∂x,xVt

]
(by (3.1))

In other words, Vt satisfies the Burgers equation

∂tVt = −Vt ∂xVt +
σ2

2
∂x,xVt

An explicit solution (cf. exercise 5.7.1 in [211]) is given by

Vt(x) =
E
(

1]−∞,0](x+ σWt) e
− 1
σ2 (x+σWt)

)
E
(
1]0,∞[(x+ σWt)

)
+ E

(
1]−∞,0](x+ σWt) e

− 1
σ2 (x+σWt)

) (3.10)

This formula can be computed using a crude Monte Carlo technique or using the function erfc(x) =
2√
π

∫∞
x e−y

2
dy, with

Vt(x) =
exp

(
t−2x
2σ2

) (
1− 1

2erfc
(

t−x√
2σ2t

))
exp

(
t−2x
2σ2

) (
1− 1

2erfc
(

t−x√
2σ2t

))
+ 1

2erfc
(
− x√

2σ2t

) (3.11)

The mean field particle interpretation of this model is given by

dXi
t =

1

N

∑
1≤j≤N

1[Xi
t ,∞[(X

j
t ) dt+ σ dW i

t

where (W i
t )1≤i≤N stands for N independent Brownian motions. In this case, we have

V N
t (x) :=

1

N

∑
1≤j≤N

1[x,∞[(X
j
t ) 'N↑∞ V (x)

The following pictures illustrates these three approximations. The top l.h.s picture compares the
exact solution with the mean field particle estimate based on an Euler type scheme with N = 100
particles and a ∆t = .01 time step. The top r.h.s. represents the exact values on the simulated states,
and the bottom picture compares the crude Monte Carlo method with the exact solution.
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3.3.4 Langevin-McKean-Vlasov processes

The Langevin-McKean-Vlasov model is a stochastic gradient process on R associated with some
smooth energy function V , coupled with an attraction or repulsion force around ensemble averages.
This model is defined by N interacting diffusion processes

dXi(t) = −β V ′(Xi
t)dt+ α

 1

N

∑
1≤j≤N

Xj
t −Xi

t

 dt+ σ dW i
t

where (W i
t )1≤i≤N stands for N independent Brownian motions, and some fixed parameters α, β and

σ. This model has been introduced by S. Herrmann, and J. Tugaut in [342]. This stochastic model
coincides with the mean field particle interpretation of the nonlinear model (3.7) and (3.8) on R with

at(x, y) = −β V ′(x) + α× (y − x) σt(x) = σ > 0 and λt(x) = 0

The following pictures illustrate the time evolution Langevin-McKean-Vlasov model with a double
well potential with α = −7, and N = 50 particles.
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3.3.5 The Dyson equation

In nuclear physics, the statistical properties of the spectrum of quantum systems can be analyzed
using the nonlinear Dyson equations dλi(t) =

1

N

∑
j 6=i

1

λi(t)− λj(t)
dt+

√
2

N
dW i

t

1 ≤ i ≤ N

with some initial conditions λ1 < . . . < λN . This mean field type particle model is slightly different
from the nonlinear processes discussed in these lectures. One can show (cf. exercises 5.3.2-5.3.4 in [211])
that λ1 < . . . < λN cöıncides with the eigenvalues of the symmetric Gaussian matrices

Ai,i(t) = W i(t)/
√
N/2 et Ai,j(t) = Aj,i(t) = W i,j(t)/

√
N

In the above display Wi,j , 1 ≤ i < j ≤ N and W i
t , 1 ≤ i ≤ N , stand for N(N + 1)/2 independent

Brownian motions on the real line.
The following picture illustrates the time evolution of N = 30 eigenvalues of the matrices A(t) on

the interval [0, 1].

3.4 Boltzmann-Gibbs measures and Langevin diffusions

3.4.1 Stochastic gradient models

A stochastic process of particular interest is the pure diffusion model associated with λt = 0, σt,i,j(x) =
1i=j
√

2, and the gradient at = −β ∇V of some smooth function V on Rp, and some inverse temperature
parameter β ∈ Rt. We let µβ be the Boltzmann-Gibbs measure on Rp defined by

µβ(dx) =
1

Zβ
e−βV (x) dx with Zβ =

∫
e−βV (x) dx

Several examples of Boltzmann-Gibbs measures are provided in section 7.1. In this situation, we have

Law(X0) = µβ =⇒ ∀t ≥ 0 Law(Xt) = µβ (3.12)
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and for any bounded function f we have

1

t

∫ t

0
f(Xs) ds =

∫
f(x)

[
1

t

∫ t

0
δXs(dx)

]
ds 't↑∞

∫
f(x) µβ(dx)

These gradient flow models are discussed in section 7.8.

3.4.2 Metropolis-Hasting adjustments

Unfortunately, when λt = 0 and at = −β ∇V , the discrete time version of (3.12) is not met. Neverthe-
less, we can recover this important property adding a Metropolis-Hasting type acceptance rate. The
resulting algorithm is called the Metropolis-Hasting-Adjusted-Langevin model, and it is discussed in
section 7.9. This model is defined by replacing in (3.4) the definition of X0,ε

tn+1
by

X0,ε
tn+1

:=


X0,ε
t
n+ 1

2

if Un ≤ aε
(
X0,ε
tn , X

0,ε
t
n+ 1

2

)

X0,ε
tn if Un > aε

(
X0,ε
tn , X

0,ε
t
n+ 1

2

)
with the acceptance rare

aε (x, y) = 1 ∧
(
e−β(V (y)−V (x)) × pε(y, x)

pε(x, y)

)
and the density function

pε(x, y) =
1

(4πε)p/2
exp

(
− 1

4ε
‖y − x+ β ∇V (x)ε‖2

)
In this situation, we recover the fact that

Law(X0) = µβ =⇒ ∀n ≥ 0 Law(Xε
tn) = µβ

and for any bounded function f we have

1

n

∑
0≤k<n

f(Xk) 'n↑∞
∫
f(x) µβ(dx)

3.4.3 Boltzmann-Gibbs measures on manifolds

We let S = ϕ−1(0) be some non empty and connected manifold defined in terms of the null level
sets of some smooth function ϕ = (ϕi)1≤i≤q from Rp+q into Rq. For instance, the 2-Torus is the null
level set of the function

ϕ(x) =

(
R−

√
x2

1 + x2
2

)2

+ x2
3 − r2

with r < R.
We assume that, for any x ∈ S, the vector space generated by the gradient vectors ∂ϕi(x) has

dimension q. We consider the (q × q)-matrices

g−1
⊥ =

(
gi,j⊥

)
1≤i,j≤q

with g⊥ = (g⊥,i,j)1≤i,j≤q = (〈∂ϕi, ∂ϕj〉)1≤i,j≤q

The projection π(x)(W (x)) of a vector field x 7→ W (x) ∈ Rr=p+q on the tangent space Tx(S) of the
manifold S at x is defined by the formula

π(x)(W (x)) = W (x)−
∑

1≤i≤q

〈 ∑
1≤j≤q

gi,j⊥ (x)∂ϕj(x),W (x)

〉
∂ϕi(x)
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We refer the reader to section 6.1 for a review of projection operators on vector spaces. In the above
displayed formulae, 〈., .〉 stands for the standard Euclidian inner product on Rq.

We consider the diffusion equation

dXt = −π(Xt)(∂V )(Xt) dt+

[
π(Xt) dBt −

1

2
H(Xt) dt

]
(3.13)

with a standard r-dimensional Brownian motion Bt, and the mean curvature vector field H defined by

H =
∑

1≤i≤q
div⊥

 ∑
1≤j≤q

gi,j⊥ ∂ϕj

 ∂ϕi

with

div⊥ (W ) =
1√

det(g⊥)

∑
1≤m≤r

∂xm

(√
det(g⊥) Wm

)
In this situation, we have

X0 ∈ S =⇒ ∀t ≥ 0 Xt ∈ S

We let η be the Boltzmann-Gibbs measure on S defined by

η(dx) :=
1

Z
e−2V (x) µS(dx)

where µS stands for the volume measure on S (cf. section 6.6.3 for a detailed discussion on these
measures and an overview of integration techniques on manifolds). By construction, we have

P (X0 ∈ dx) := =⇒ ∀t ≥ 0 P (Xt ∈ dx) :=
1

Z
e−2V (x) µS(dx)

In addition, for any bounded function f on S we have

1

t

∫ t

0
f(Xs) ds =

∫
f(x)

[
1

t

∫ t

0
δXs(dx)

]
ds 't↑∞

∫
f(x) η(dx)

When V = 0, the stochastic differential equation (3.13) reduces to the Brownian motion on the Torus.
For a more thorough discussion on diffusions on manifolds, we refer the reader to section 6.4 and
section 7.8.3.

In practice, the sampling of the diffusion process (3.13) requires some discrete time approximation.
For instance, an Euler type approximation on a time mesh (tn)n≥0 with (tn − tn−1) = ε ' 0 is given
by the equation

Xε
tn −X

ε
tn−1

= −π(Xtn)(∂V )(Xtn) (tn − tn−1)

−1

2
H(Xε

tn−1
) (tn − tn−1) + π(Xε

tn−1
)
√
tn − tn−1 Bn

where Bn stands for a sequence of i.i.d. centered and normalized Gaussian r.v. on Rr. Unfortunately
any type of these scheme ensure that Xε

tn stay in the Manifold S. As for deterministic dynamical
systems, we often handle this issue by projecting each step on the manifold

Xε
tn = projS

(
Xε
tn−1
− π(Xtn)(∂V )(Xtn) (tn − tn−1)

−1

2
H(Xε

tn−1
) (tn − tn−1) + π(Xε

tn−1
)
√
tn − tn−1 Bn

)
(3.14)

Another strategy is to use a description of the stochastic process in some judicious chart space. An
illustration of a realization of a Brownian motion on the Torus is provided in the next picture.



44 CHAPTER 3. SOME ADVANCED MONTE CARLO METHODOLOGIES

−2
−1

0
1

2
3

−2

−1

0

1

2

−0.5

0

0.5

xy

z

3.4.4 Langevin equation in Riemannian manifolds

Suppose we are given a smooth parametrization of the manifold S

ψ : θ ∈ Sψ ⊂ Rp 7→ ψ(θ) =
(
ψ1(θ), . . . , ψr(θ)

)T ∈ S ⊂ Rr (3.15)

with a well defined smooth inverse mapping φ = ψ−1. In differential geometry φ is called a chart or
a coordinate mapping. These chart maps and their inverse ψ = φ−1 are often defined locally on open
neighborhoods of each states and the set of all chart maps is often called an atlas (cf. section 6.3). For
instance, the 2-Torus can be parametrized by the spherical coordinates

ψ (θ) =

 (R+ r cos(θ1)) cos(θ2)
(R+ r cos(θ1)) sin(θ2)

r sin(θ1)


We let g = (gi,j)1≤i,j≤p be the (p× p)-matrix field on Sψ defined by

∀1 ≤ i, j ≤ p gi,j :=
〈
∂θiψ, ∂θjψ

〉
(3.16)

We let η be the Boltzmann-Gibbs measure on Sψ defined by

η(dθ) =
1

Z
e−2U(θ)

√
det(g(θ)) dθ with U := V ◦ ψ

We let Bt be the d-dimensional Brownian motion on the Riemannian manifold defined for any
1 ≤ i ≤ p by

dB
i
t =

∑
1≤k≤p

√
g−1

i

k (Θt) dB
k
t +

1

2

∑
1≤j≤p

1√
det(g(Θt))

∂θj

(√
det(g) gi,j

)
(Θt) dt

where
√
g−1

i

k stands for the (i, k)-th entry of the square root matrix of g−1, and Bt stands for a
standard p-dimensional Brownian motion. We consider the diffusion equation

dΘt = −∇gU(Θt) dt+ dBt (3.17)

with the Riemannian gradient

∇gU :=


∑

1≤j≤p g
1,j ∂θjU

...∑
1≤j≤p g

p,j ∂θjU

 and g−1 = (gi,j)1≤i,j≤p
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We refer the reader to section 6.3.2 and section 7.8.4 for a detailed discussion on Riemannian
gradients and Riemannian Langevin diffusions. By construction, we have

Xt = ψ(Θt) satisfies the Langevin diffusion (3.13)

In addition, for any bounded function f on Sψ we have

1

t

∫ t

0
f(Θs) ds =

∫
f(θ)

[
1

t

∫ t

0
δΘs(dθ)

]
ds 't↑∞

∫
f(θ) η(dθ)

3.5 Feynman-Kac and Schrödinger equations

3.5.1 A particle absorption interpretation

We replace the r.v. Fn(x) defined in (3.3) by an auxiliary cemetery state c; that is, we set Fn(x) = c.
The resulting jump-diffusion process (3.2), resp. (3.4) can be interpreted as a particle model absorbed
at rate λt := Vt, resp. at rate λtn := Vtn .

We let T , resp. T ε, the first time the process (3.2), resp. (3.4) is placed in the cemetery state c. In
this notation, for any bounded function f , we have

E (f(Xt) 1T>t) = E
(
f(X0

t ) exp

{
−
∫ t

0
Vs(X

0
s )ds

})

'ε↓0 E

f(X0,ε
tn )

∏
0≤k<n

Gk

(
X0,ε
tk

) = E
(
f(Xλ,ε

tn ) 1T ε>tn

)
(3.18)

with the potential functions

Gk(x) = exp {−Vtk(x)ε}

The above Feynman-Kac formulae are studied in section 4.2 and section 5.5. The particle interpretation
of these models are defined as in (2.8). In computational physics, these particle algorithms are also
termed Resampled and/or Quantum Monte Carlo methods (cf. for instance [93, 94]).

Under some regularity conditions, when at = 0 and σt = Id, the identity matrix, we have

P (Xt ∈ dx ; T > t) = qt(x) dx (3.19)

for some density qt satisfying the Schrödinger (imaginary time) equation

∂tqt = LV (qt) :=
1

2

∑
1≤i≤p

∂2
xiqt − Vt(x)qt(x)

This equation is sometimes written in terms of the Hamiltonian operator

H := −LV = −L+ V = −1
2

∑
1≤i≤p ∂

2
xi + Vt

⇐⇒ ∀sufficiently regular f H(f) = −LV (f) = −1
2

∑
1≤i≤p ∂

2
xif + Vt f ⇒ ∂tqt = −H(qt)

(3.20)

In view of (3.18), for any bounded function f we have the Feynman-Kac formula

∫
f(x) qt(x) dx = E

(
f(X0

t ) exp

{
−
∫ t

0
Vs(X

0
s )ds

})
'ε↓0 E

f(X0,ε
tn )

∏
0≤k<n

Gk

(
X0,ε
tk

) (3.21)
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In this context, we also have that

−1

t
logP (T > t) 't↑∞ E0 and P (Xt ∈ dx | T > t) 't↑∞

ϕ0(x) dx∫
ϕ0(y) dy

where −E0 is the top of the spectrum of the operator LV on smooth L2-functions and

LV (ϕ0) = −E0 ϕ0 ⇐⇒ H(ϕ0) = E0 ϕ0

We refer the reader to section 8.5.2 for a physical derivation of these models, and their extensions to
more general diffusions associated with some drift at and some diffusion σt functions.

We end this section with a brief discussion on the description of the Hamiltonian operator (3.20)
associated with a molecule in quantum physics. In this context, a state x = ((xa,i)1≤i≤Na , (xe,j)1≤j≤Ne)

represents the locations xia of Na atom nuclei, and the location xje of Ne electrons (we assume that each
atom has the same number of electrons) w.r.t. a Cartesian reference frame. The (exact non-relativistic,
time-independent molecular) Hamiltonian (3.20) is now given by H = −L + 1

~V with the diffusion
generator

L :=
~
2

∑
1≤i≤Na

1

ma,j
∂2
xa,i︸ ︷︷ ︸

:= L(a) nuclear kinetic energy

+
~
2

∑
1≤i≤Ne

1

me,j
∂2
xe,i︸ ︷︷ ︸

:= L(e) electronic kinetic energy

(where ma,j stands for the mass of the j-th nuclei, me,i stands for the mass of the i-th electron, and
~ the Planck constant) and the potential function defined in terms of repulsive or attractive Coulomb
forces

V (x) :=
1

2

∑
1≤i<j≤Na

za,iza,j
‖xa,i − xa,j‖︸ ︷︷ ︸

nuclear repulsion

+
∑

1≤i<j≤Ne

e2

‖xe,i − xe,j‖︸ ︷︷ ︸
electronic repulsion

− 1

2

∑
1≤i≤Na

∑
1≤j≤Ne

za,ie
2

‖xa,i − xe,j‖︸ ︷︷ ︸
electron-nuclear attraction

for some non negative atomic numbers za,i. The nuclei being much more heavier than electrons (for
instance, the proton mass (1.67 10−27 kg) is 1800 times larger than the electron one (9.31 10−31 kg)),
in the Born-Oppenheimer approximation [62] the nuclei (xa,i)1≤i≤Na are fixed parameters, and we
reduce the problem to the electronic configuration x = ((xe,j)1≤j≤Ne) associated with the Hamiltonian
operator H = −L(e) + V . In physics, the Schrödinger (imaginary time) equation is often written as

~ ∂tqt(x) = ~ L(qt)(x)− V (x)qt(x)

In this situation, the Hamiltonian operator is defined as above by replacing H by ~H = −~L+V . We
refer the reader to (8.47) for a physical derivation of these models.

3.5.2 The harmonic oscillator

In some particular instances, the spectrum of the operator H := −LV acting on smooth functions

of L2(Rp) can be explicitly computed. For instance, for p = 1, at = 0, σt = σ :=
√

~2

2m and Vt(x) =
1
2 mω

2 x2, the nonnegative function qt(x) in (3.19) satisfies the Schrödinger (imaginary time) equation
with

LV (f)(x) =
~

2m
∂2
x(f)(x)− 1

2~
mω2 x2 f(x)

⇐⇒ ~ ∂tqt(x) =
~2

2m
∂2
x(qt)(x)− 1

2
mω2 x2 qt(x)
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We refer the reader to (8.47) for a physical derivation of these evolution equations. Recalling (3.21)
we have the Feynman-Kac representation∫

f(x) qt(x) dx = E
(
f(Bt) exp

{
− 1

2~
mω2

∫ t

0
B2
t ds

})
'ε↓0 E

f(Bε
tn)

∏
0≤k<n

e
− εmω

2

2
Bεtk


(3.22)

with the Gaussian processes

dBt :=

√
~
m

dWt 'ε=tk−tk−1↓0 Bε
tk
−Bε

tk−1
:=

√
~ε
m
Wk with ε := (tk − tk−1) (3.23)

In the above display, Wt stands for a standard Brownian motion on the real line, andWk a sequence of
i.i.d. centered Gaussian r.v. with unit variance. The r.h.s. of the above display is a particular example

of the linear-Gaussian filtering models discussed in section 2.2 (cf. (2.6) with Xn = Bε
tn , σ =

√
~ε
m ,

τ2 = ε mω2

~ and yn = 0).
This model is called the harmonic oscillator and it is discussed in section 11.1.2. In this situation,

the orthonormal eigenfunctions ϕn associated with the eigenvalues

∀n ≥ 0 En = ~
(
n+

1

2

)
ω

are defined by

ϕn(x) :=
1√

2nn!
√
π

(mω
~

)1/4
exp

[
−x

2

2

mω

~

]
Hn

(√
mω

~
x

)
with the Hermite polynomials Hn defined by the Rodrigues’ formula

Hn(x) = (−1)n ex
2 dn

dxn
e−x

2
(3.24)

The numerical solving of the eigenvalues problem for general potential functions V (x) in 1 dimen-
sion can be done using the software Maltalb Chebfun software (based on 1-dimensional dynamical
system integrations).

The next picture illustrates the first 10 eigenstates associated with V (x) = x2 and σ2 = 0.1.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

h =  0.1      10 eigenstates

http://www.mathworks.com/matlabcentral/fileexchange/23972-chebfun-v4/content/chebfun/examples/ode-eig/html/Eigenstates.html
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3.5.3 Ground state energies of quantum systems

We consider a time homogeneous Feynman-Kac model

Qt(f)(x) := E
(
f(Xt) exp

{
−
∫ t

0
V (Xs)ds

}
| X0 = x

)
(3.25)

associated with a Rp valued Markov process Xt with infinitesimal generator L, and some energy
function V . In the above display, the function f stands for a test function (a.k.a. observable in com-
putational physics). For any s ≤ t, we have the semigroup property

Qt(f)(x) := E
(
f(Xt) E

(
exp

{
−
∫ t

0
V (Xr)dr

}
| Xt

)
| X0 = x

)

= E

E
(
f(Xt) exp

{
−
∫ t

s
V (Xr)dr

}
| Xs

)
︸ ︷︷ ︸

=Qt−s(f)(Xs)

exp

{
−
∫ s

0
V (Xr)dr

}
| X0 = x


= Qs(Qt−s(f))(x) (3.26)

In addition, in view of (3.25)

Qt(f)(x) := E
(
f(Xt) E

(
exp

{
−
∫ t

0
V (Xr)dr

}
| Xt

)
| X0 = x

)
=

∫
f(y) E

(
exp

{
−
∫ t

0
V (Xs)ds

}
| Xt = y

)
P(Xt ∈ dy | X0 = x)︸ ︷︷ ︸

:=Qt(x,dy)

(3.27)

When P(Xt ∈ dy | X0 = x) has a density pt(x, y) w.r.t. the Lebesgue measure dy we have

Qt(x, dy) = qt(x, y)dy with qt(x, y) = E
(

exp

{
−
∫ t

0
V (Xs)ds

}
| Xt = y

)
pt(x, y) (3.28)

We also consider the Feyman-Kac measures

γt(f) = E
(
f(Xt) exp

{
−
∫ t

0
V (Xs)ds

})
and ηt(f) = γt(f)/γt(1) (3.29)

The normalizing constant

Zt := γt(1) = E
(

exp

{
−
∫ t

0
V (Xs)ds

})
is also termed the free energy, or the partition function. In section 8.5.2 and section 9.2.3 we will check
that for any s ≤ t

γt = γsQt−s
∂

∂t
Qt(f) = −H(Qt(f)) with the Hamiltonian H(f) = −L(f) + V f

and the normalized Schrödinger equation

∂tηt(f) = ηt (L(f)) + ηt(V )ηt(f)− ηt(fV ) = −ηt(H(f)) + ηt(V )ηt(f) = −ηt ([H− ηt(V )] (f)) (3.30)

The operator Qt is sometimes termed a Feynman-Kac propagator and it is oftenwritten in the expo-
nential form Qt = e−tH.
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A direct calculation shows that

∂t log γt(1) =
1

γt(1)
E
(
∂t exp

{
−
∫ t

0
V (Xs)ds

})
=

E
(
V (Xt) exp

{
−
∫ t

0 V (Xs)ds
})

E
(

exp
{
−
∫ t

0 V (Xs)ds
}) = ηt(V )

from we conclude that

γt(1) = exp

{
−
∫ t

0
ηs(V ) ds

}
⇒ −1

t
logZt = −1

t

∫ t

0
ηs(V ) ds 't↑∞ η∞(V )

for some limiting Feynman-Kac measure η∞ satisfying the fixed point equation

(3.30) =⇒ η∞(H(f)) = η∞(V )η∞(f) ⇐⇒ η∞(L(f)) = ΨV (η∞)(f) (3.31)

When L is a self adjoint operator on L2(Rd) (equipped with the Lebesgue measure dx, and the
inner product 〈f1, f2〉 =

∫
f1(x)f2(x)dx), we have the spectral decomposition

Qt(x, dy) =
∑
i≥0

e−tEi ϕi(x)ϕi(y) dy (3.32)

in terms of a sequence of non negative eigenvalues 0 ≤ E0 ≤ E1 ≤ . . . and a corresponding set of
orthonormal eigenfunctions ϕi, i ≥ 0, of H; that is, we have that

∀i ≥ 0 H(ϕi) = Eiϕi

For a more rigorous and detailed discussion on these spectral decompositions we refer the reader
to [185]. The ground state of a quantum mechanical system associated with the Schrödinger Hamil-
tonian operator H is its lowest-energy state ϕ0. The energy E0 of the ground state is known as the
zero-point energy of the system. An excited state is any state ϕi with energy Ei greater than the one
of the ground state.

Notice that
〈ϕ0,H(ϕ0)〉
〈ϕ0, ϕ0〉

= E0

Expressing any normalized function ϕ ∈ L2(Rd) on the basis of orthonormal eigenfunctions ϕi,
i ≥ 0, we find that

ϕ =
∑
i≥0

〈ϕ,ϕi〉 ϕi ⇒ 〈ϕ,H(ϕ)〉 =
∑

i≥0Ei 〈ϕ,ϕi〉2 〈ϕi, ϕi〉
=

∑
i≥0Ei 〈ϕ,ϕi〉2 ≥ E0

∑
i≥0 〈ϕ,ϕi〉2 = E0

(3.33)

This yields the variational principle
〈ϕ,H(ϕ)〉
〈ϕ,ϕ〉

≥ E0 (3.34)

In addition, we also have that

(3.31)⇒ η∞(H(ϕ0)) = E0 η∞(ϕ0) = η∞(V )η∞(ϕ0)⇒ η∞(V ) = E0

3.5.4 Bra-kets and path integral formalism

In theoretical and computational physics, the state space S is generally the Euclidian space S = Rd.
For any absolutely continuous distributions

µf (dx) = f(x) dx
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and for functions g on Rd, the Feynman-Kac measures γt introduced in (3.29), and the left and right
actions of the integral operator Qt defined in (3.27) on measures and functions are often written in
terms of bra-kets

η0 = Law(X0) = µf ⇒ γt = η0Qt = µfQt =≺ f |e−tH

as well as
Qt(g) = e−tH |g � and γt(g) = η0Qt(g) = µfQt(g) =≺ f |e−tH|g �

We further assume that the semigroup Qt(x, dy) of the Hamiltonian operator

H = −LV = −L+ V

has a density qt(x, y) w.r.t. the Lebesgue measure dy. In this context, the density qt(x, y) introduced
in (3.28) is sometimes written as

qt(x, y) =≺ x|e−tH|y � or qt(x, y) =≺ δx|e−tH|δy �

so that ∫
dx f(x) qt(x, y) g(y) dy =

∫
≺ x|e−tH|y � f(x) g(y) dxdy

Representing formally functions on the ”basis” of delta functions

”f(.) =

∫
f(x) δx(.) dx” in the sense that ∀y ∈ Rd ”

∫
f(x) δx(y)︸ ︷︷ ︸

=1x=y

dx = f(y)”

using the linearity of the brackets, we arrive at the formal expression

≺ f |e−tH|g � = ≺
(∫

f(x) δx(.) dx
)
|e−tH|

(∫
g(y) δy(.) dy

)
�

=

∫
f(x) g(y) ≺ δx|e−tH|δy � dxdy =

∫
≺ x|e−tH|y � f(x) g(y) dxdy

In this notation, we have

≺ f1|e−tH|f2 � =

∫
f1(x) ≺ x|e−tH|y � f2(y) dxdy

=

∫
(µf1Qt)(dy) f2(y) =

∫
µf1(dx) Qt(f2)(x) = µf1Qt(f2)

Similarly, the variational principle (3.34) takes the form

≺ ϕ|H|ϕ �
≺ ϕ,ϕ �

≥ E0 =
≺ ϕ0|H|ϕ0 �
≺ ϕ0, ϕ0 �

Dividing [0, n∆t] = [0, tn] into n intervals ([0,∆t] ∪ . . . ∪ [(n− 1)∆t, n∆t]) of length ∆t, the semi-
group property (3.26) implies that

Qn∆t(x0, dxn) =
︷ ︸︸ ︷
(Q∆t . . . Q∆t)

n times
(x0, dxn)

=

[∫
q∆t(x0, x1) . . . q∆t(xn−1, xn) dx1 . . . dxn−1

]
dxn

=

∫  ∏
0≤k<n

≺ xk|e−∆t H|xk+1 �

 dx1 . . . dxn−1

 dxn
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Whenever Xt = Bt is the Gaussian process defined in (3.23), and replacing V by 1
~ V in (3.28) we

have

≺ xk|e−∆t H|xk+1 � '∆t↓0 e−
V (xk)

~ ∆t p∆t(xk, xk+1) =

√
m

2π~∆t
e
− 1

~

[
m
2

(
xk+1−xk

∆t

)2
+V (xk)

]
∆t

In this situation, the discrete time approximation of the integral operator Qt defined in (3.25) is given
by the formula

Qn∆t(x0, dxn) '∆t↓0

[∫ (√
m

2π~∆t

)n
e−

1
~ Sn(x0,...,xn)∆t dx1 . . . dxn−1

]
dxn

with the so-called Euclidian action functional

Sn(x0, . . . , xn) =
∑

0≤k<n

[
m

2

(
xk+1 − xk

∆t

)2

+ V (xk)

]

Taking formally the limit ∆t ↓ 0, the density qt(x, y) is often written in physics literature as a path
integral

qt(x, y) =

∫ xt=y

x0=x
Dx e−

1
~ St(x) with St(x) =

∫ t

0

{m
2

.
x

2
s +V (xs)

}
ds

3.5.5 The ϕ0-process Feynman-Kac model

The continuous time version of (2.13) is given by the formula

ηt(f) :=
γt(f)

γt(1)
=

E
(
ϕ−1

0 (Xϕ0
t ) f(Xϕ0

t )
)

E
(
ϕ−1

0 (Xϕ0
t )
) =

〈f, ϕ0〉
〈1, ϕ0〉︸ ︷︷ ︸
:=η∞(f)

+O
(
e−t(E1−E0)

)
(⇐= (3.32)) (3.35)

as soon as E1 > E0; where η0 = Law(X0), and Xϕ0
t stands for the Markov process with initial

distribution
η

[ϕ0]
0 = Ψϕ0(η0)

and the infinitesimal generator

L[ϕ0](f) = L(f) + ϕ−1
0 ΓL(ϕ0, f)

with the carré du champ operator

ΓL(f, g)(x) := L([f − f(x)][g − g(x)])(x) = L(fg)(x)− f(x)L(g)(x)− g(x)L(f)(x)

We also notice that

(3.35) =⇒ P(Xϕ0
t ∈ dx) 't↑∞ Ψϕ0(η∞) := ϕ2

0(x)dx /

∫
ϕ2

0(y)dy (3.36)

For instance, for p = 1 we have

L =
1

2
∂2
x ⇒ L[ϕ0](f) = 1

2 ∂
2
x(f) + (∂x logϕ0) ∂x(f) = 1

2 ϕ
−2
0 ∂x

(
ϕ2

0 ∂x(f)
)

(3.37)

so that Xϕ0
t satisfies the Langevin diffusion equation

dXϕ0
t = (∂x logϕ0) (Xϕ0

t ) dt+ dWt
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where Wt stands for a Brownian motion on the real line. In addition, for any smooth functions (f1, f2)
with compact support, using a simple integration by part we prove that

(3.37) =⇒
∫
ϕ2

0(x) f1(x) L[ϕ0](f2)(x) dx =
∫
f1(x) ∂x

(
ϕ2

0 ∂x(f2)
)
dx

= −
∫
∂x(f1)(x) ϕ2

0(x) ∂x(f2)(x) dx

=
∫
ϕ2

0(x) L[ϕ0](f1)(x) f2(x) dx (by symmetry)

Using (3.36), this implies that L[ϕ0] is reversible w.r.t. Ψϕ0(η∞); that is, we have that

(3.36) =⇒ Ψϕ0(η∞)
(
f1 L

[ϕ0](f2)
)

= Ψϕ0(η∞)
(
L[ϕ0](f1) f2

)
More generally, suppose that L is reversible with respect to some reference non negative measure

µ on Rp; that is we have that

µ (f1L(f2)) = µ (L(f1)f2) =⇒ µ (f1H(f2)) = µ (H(f1)f2) (3.38)

for any couple of smooth functions f1, f2. In this situation, the measure η∞ is given by

η∞ = Ψϕ0(µ)

To check this claim, we observe that

H(ϕ0) = E0ϕ0 ⇒ µ(H(ϕ0)) = −

=µ(L(1)ϕ0)=0︷ ︸︸ ︷
µ(L(ϕ0)) +µ(V ϕ0) = E0 µ(ϕ0)⇒ Ψϕ0(µ)(V ) = E0

This yields that

Ψϕ0(µ)(H(f))−Ψϕ0(µ)(V )Ψϕ0(µ)(f) =
1

µ(ϕ0)
[µ(ϕ0H(f))−Ψϕ0(µ)(V )µ(ϕ0f)]

=
1

µ(ϕ0)
[µ(H(ϕ0)f)−Ψϕ0(µ)(V )µ(ϕ0f)]

= Ψϕ0(µ)(f) [E0 −Ψϕ0(µ)(V )] = 0

3.5.6 Variational Monte Carlo method

As in the discrete time case discussed in section 2.4, the ground state ϕ0 is usually unknown
and we often use the ϕT -process XϕT

t associated with a trial energy function (a.k.a. guiding or trial
wave function) denoted by ϕT . In this case, the continuous time version of (2.14) is given by the
Feynman-Kac formula

γt(f) = η0(ϕT ) E
(
ϕ−1
T (XϕT

t ) f(XϕT
t ) exp

(
−
∫ t

0
VT (XϕT

s )ds

))
with the trial ground state energy (a.k.a. local energy) VT given by

VT := V − ϕ−1
T L(ϕT ) = ϕ−1

T H(ϕT )

In the above display, XϕT
t stands for the ϕT -twisted process with initial distribution η

[ϕT ]
0 = ΨϕT (η0)

and infinitesimal generator

LT (f) = L(f) + ϕ−1
T ΓL(ϕT , f)
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We further assume that L is reversible with respect to some non negative measure µ; that is, we have
(3.38). In this situation, for any couple of smooth functions f1 and f2 we have

µ
(
ϕ2
T f1 L

[ϕT ](f2)
)

= µ
(
ϕ2
T f1 L(f2)

)
+ µ

(
ϕ2
T f1

[
ϕ−1
T ΓL(ϕT , f2)

])
= µ

(
ϕ2
T f1 L(f2)

)
+ µ

(
ϕ2
T f1

[
ϕ−1
T L(ϕT f2)− L(f2)− ϕ−1

T f2L(ϕT )
])

= µ (ϕT f1 L(ϕT f2))︸ ︷︷ ︸
=µ(ϕT f2 L(ϕT f1))

−µ (ϕT f1 f2L(ϕT )) = µ
(
ϕ2
T f2 L

[ϕT ](f1)
)

This shows that L[ϕT ] is reversible w.r.t. Ψϕ2
T

(µ), so that

P(XϕT
t ∈ dx) 't↑∞ µT := Ψϕ2

T
(µ)

Arguing as in (3.33), the spectral decomposition (3.32) takes the form

Qt(x, dy) =
∑
i≥0

e−tEi ϕi(x)ϕi(y) µ(dy)

and we find that

1

t

∫ t

0
VT (XϕT

s ) ds 't↑∞ Ψϕ2
T

(µ)(VT ) =
µ(ϕ2

T VT )

µ(ϕ2
T )

=
〈ϕT ,H(ϕT )〉µ
〈ϕ,ϕ〉µ

≥ E0 =
〈ϕ0,H(ϕ0)〉µ
〈ϕ0, ϕ0〉µ

with the inner product 〈f1, f2〉µ := µ(f1f2) on L2(Rd, µ). The above approximation is known as the
variational Monte Carlo methods and it only provides an upper bound of the ground state energy.

3.5.7 Twisted models, pilot and trial guiding waves

We return to the Feynman-Kac models discussed in section 3.5.6. We let γT ,t, ηT ,t and ηT ,∞ be
the Feynman-Kac measures defined as γt and ηt by replacing (Xt, V ) by (XϕT

t , VT ); that is, we have
that

ηT ,t(f) := γT ,t(f)/γT ,t(1) with γT ,t(f) = E
(
f(XϕT

t ) exp

(
−
∫ t

0
VT (XϕT

s )ds

))
(3.39)

In this notation, we have

γt(f) = η0(ϕT ) γT ,t(ϕ
−1
T f)⇐⇒ γT ,t(f) = γt(ϕT f)/η0(ϕT ) = ηt(ϕT f) γt(1)/η0(ϕT )

as well as
∀0 ≤ t ≤ ∞ ηt = Ψϕ−1

T
(ηT ,t)⇐⇒ ηT ,t = ΨϕT (ηt)

In addition, we have the semigroup evolutions

γT ,t = γT ,sQT ,t−s with QT ,t(f)(x) := E
(
f(Xt) exp

{
−
∫ t

0
VT (Xs)ds

}
| X0 = x

)
Arguing as above, we find that

∂

∂t
QT ,t(f) = −HT (Qt(f)) with the Hamiltonian HT (f) = −LT (f) + VT f

= −ϕ−1
T L (ϕT f)− V f

As underlined in [93], ”the role of the trial function ϕT is to guide the stochastic walkers (a.k.a.
particles) in the important regions (regions corresponding to an important contribution to the aver-
ages).” For a more thorough discussion on these models we refer the reader to section 11.1.3. For a
more detailed discussion on the choice of the trial waves functions in quantum systems, we also refer
the reader to the review article by M. D. Towler [572].
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3.5.8 Non homogeneous models

We return to the particle absorption Feynman-Kac models discussed in the beginning of section 3.5.1.

We further suppose that the absorption rate is given by Vt =
.
βt ×V (≥ 0), for some βt ↑ and some

energy function V on Rp. Also assume that Xt is given by the non homogeneous Langevin diffusion

dXt = −βt∇V (Xt) dt+
√

2 dWt with Law(X0) = µβ0 (3.40)

In this situation, we have
∀t ≥ 0 Law (Xt | 1T>t) = µβt (3.41)

and

Zβt/Zβ0 = exp

{∫ t

0

.
βs µβs(V )ds

}
These Feynman-Kac absorption interpretation of the Botzmann-Gibbs measures µβt are discussed in
section 9.2.4. We emphasize that the particle interpretation of these models are particular instances of
the evolutionary type particle models discussed in (2.8). In this context, using a time mesh sequence
tn − tn−1 = ε, the potential functions

Gn(x) = e−(βtn+1−βtn )V (x) 'ε↓0 e−
.
βtnV (x)ε

and Mn are the elementary of a Metropolis Adjusted Langevin Algorithm with fixed inverse temper-
ature βtn .

3.5.9 Diffusion Monte Carlo models

The imaginary time Schrödinger equation associated with the Hamiltonian operator (3.20), the har-
monic oscillator (3.22), the path-integration quantum systems (3.25) and (3.29), the twisted model
with pilot and trial guiding waves (3.39), the time inhomogeneous model associated a temperature
schedule (3.41), are all particular instances of the Feynman-Kac models associated with some reference
Markov process Xt and some possibly non homogeneous potential functions Vt on general state space
E.

The discrete time approximation of these path integration formula on a time mesh tn, with time
step ∆t = (tn − tn−1), is given by

E
(
f(Xtn) exp

{
−
∫ tn

0
Vs(Xs)ds

})
'∆t↓0 E

f(Xtn)
∏

0≤k<n
Gk(Xtk)

 (3.42)

with the potential functions

Gk(Xtk) = exp (−Vtk(Xtk) ∆t) '∆t↓0 exp

(
−
∫ tk+1

tk

Vs(Xs)ds

)
The Markov chain Xtn can be taken as the values of the process Xt at the time step tn (when these
r.v. are easily sampled), or as an Euler-type discrete time approximation of the process Xt on the time
mesh tn. For instance, if Xt is a jump-diffusion type process (3.2), then we can choose the discrete
time approximation scheme presented in (3.4). For the time inhomogeneous Langevin models (3.40) we
can also combined at every time step an elementary Euler-type transition with a Metropolis-Hasting
adjustment acceptance scheme discussed in section 3.4.2. Finally, for Langevin diffusions Xt on a
manifold (3.13) we can choose the Euler-projection transitions (3.14), or an Euler discretization of the
Langevin equation on the Riemannian parameter space manifold (3.17).

The r.h.s. discrete time approximation model in (3.42) are particular instances of the Feynman-
Kac models discussed in chapter 2. All the branching and mean field particle approximation schemes
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discussed in section 2.3 can be used to approximate these path integrals. In computational physics the
fixed population branching schemes discussed in section 2.3.2 are also termed Diffusion Monte Carlo
methods.





Part II

Linear Monte Carlo methods
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Chapter 4

Markov chain models

4.1 Markov chains

4.1.1 Historical, transition and twisted models

Markov chain models are one of the simplest stochastic models developed in probability theory. These
processes are characterized by the fact that their past and their future evolutions are independent,
given the present value of the chain. In other words, the next state of a Markov chain only depends
on its current state.

The methodology, and the stochastic analysis developed in these lecture notes, apply to abstract
Markov processes taking values in virtually arbitrary measurable state spaces. This abstract framework
encapsulates a surprising wide class of random processes, including Markov chain taking values in
transition spaces, as well as excursions, and historical processes taking values in path space models.

For finite and ordered state space valued processes, the evolution of the chain is characterized by
a sequence of stochastic matrices. These matrices represent the transitions probability of the chain
between two consecutive time integers. In other instances, Markov chains are represented by random
dynamical systems, defined in terms of a recursive equation relating the next state, with the current
state, and some noisy random variables. In applied probability and engineering sciences, these random
dynamical systems are also called nonlinear state space models. Much of probability theory is devoted
to the simulation and the analysis of these stochastic processes. Reference books on this subjects
are [77, 326, 369, 382, 455, 456, 485, 529, 560]. Concrete examples of Markov chain models can also
be found in the books by S. Asmussen, P.W. Glynn [20], O. Cappé, E. Moulines, and T. Rydèn [99],
G. Fishman [269], and S.P. Meyn and R.L. Tweedie [455].

In discrete time settings, the random states of these models are defined in terms of a sequence
of random variables Xn indexed by the integer time parameter n ∈ N, and taking values in some
measurable state spaces En. By the “memoryless” property of the Markov process, the evolution
of the random states is characterized by the probability description of the elementary transitions
Xn−1 ∈ En−1  Xn ∈ En between two consecutive integers; that is, we have that

Kn(xn−1, dxn) = P (Xn ∈ dxn | Xn−1 = xn−1) (4.1)

For instance, the simple Gaussian random walk on En = R starting at the origin is given in terms
of a sequence of i.i.d. centered Gaussian r.v. Wn with unit variance by the formulae

Xn = Xn−1 +Wn ⇒ Kn(xn−1, dxn) ∝ exp

(
−1

2
(xn − xn−1)2

)
dxn (4.2)

59
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The historical process of the Markov chain Xn is defined by the sequence of random
paths

Xn = (X0, . . . , Xn) ∈ En := (E0 × . . .× En)

In operation research and computer sciences, the historical process is often used to store
some the random states of a chain evolving in a solution space, and Xn is sometimes called
the archive. Another model of interest is the Markov chain on transition space defined by

Xn = (Xn, Xn+1) ∈ En := (En × En+1)

Notice that the Markov transitions of the chain Xn is given for any

yn = ((y0, . . . , yn−1), yn) = (yn−1, yn) ∈ En = (En−1 × En)

and any xn−1 ∈ En−1 by the following formulae

Kn(xn−1, dyn) = δxn−1(dyn−1) Kn(yn−1, dxn) (4.3)

We further assume that Yn is an auxiliary En-valued Markov chain starting at Y0 = X0

with transitions probabilities Mn(xn−1, dxn) that dominate Kn(xn−1, dxn); in the sense that

∀xn−1 ∈ En−1 Kn(xn−1, dxn)�Mn(xn−1, dxn)

For regular Radon Nikodym derivatives

Gn(xn, xn+1) :=
dKn+1(xn, .)
dMn+1(xn, .)

(xn+1)

we have the Feynman-Kac type change of probability measure

∀n ≥ 0 E
(
fn(Xn)

)
= E

fn(Y n)
∏

0≤k<n
Gk(Y k)

 (4.4)

with the historical processes

Xn =
(
X0, . . . , Xn

)
and Yn =

(
Y 0, . . . , Y n

)
∈ En :=

(
E0 × . . .× En

)
associated with the Markov chains Xn = (Xn, Xn+1) and Y n = (Yn, Yn+1) on transition
spaces. The equation (4.4) is valid for any bounded function fn on En. The chain Yn is
sometimes called a twisted Markov chain.

For instance, returning to the example discussed in (4.2) for any λ ∈ R we can take

Yn = Yn−1 + λ+Wn ⇒Mn(yn−1, dyn) ∝ exp

(
−1

2
((yn − yn−1)− λ)2

)
dyn (4.5)

In this situation, we have

Gn(yn, yn+1) := exp

(
1

2

[
((yn+1 − yn)− λ)2 − (yn+1 − yn)2

])
= exp

(
λ2

2
− λ (yn+1 − yn)

)
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and therefore∏
0≤k<n

Gk(Y k) = exp

(
λ2n

2
− λ Yn

)
⇒ E

(
fn(Xn)

)
= E

(
fn(Y n) exp

(
−λYn +

λ2n

2

))
(4.6)

4.1.2 Crude Monte Carlo methodologies

Suppose we are given some integral of the form

η(f) :=

∫
f(x) η(dx) = E(f(X)) (4.7)

where η(dx) is some probability measure on some state space E, and f some function from E into R
such that η(|f |) = E(|f(X)|) <∞.

The central idea is to sample a sequence of independent random copies (Xi)i≥1 of the r.v. X and
use the so-called empirical average estimates

ηN (f) :=

∫
f(x) ηN (dx) =

1

N

∑
1≤i≤N

f(Xi) with ηN :=
1

N

∑
1≤i≤N

δXi (4.8)

In the above display δa stands for the Dirac measure at some point a ∈ E.

We set √
N
(
ηN − η

)
:= V N ⇐⇒ ηN = η +

1√
N

V N (4.9)

The r.h.s. formula in the above display can be interpreted as a first order type decomposition
of the random deviations between the empirical measure ηN and its limiting value η. In this
notation, a simple calculation shows that

E
(
V N (f)

)
= 0 and E

(
V N (f)2

)
= σ2(f) (4.10)

for any function f s.t. η(f2) <∞ with

σ2(f) := E
(
f(X)2

)
− E (f(X))2 = η(f2)− η(f)2

= η([f − η(f)]2) =
1

2

∫
(f(x)− f(y))2 η(dx)η(dy) (4.11)

Working a little harder we prove that

E(|f(X)|) <∞ =⇒ lim
N→∞

ηN (f) = η(f) P− a.s.

We further assume that we have a dedicated Monte Carlo simulation tool to draw independent
random samples of the elementary transitions Xn−1  Xn. In this situation, by the law of large num-
bers, the distribution Pn = Law(Xn) of the random (historical) trajectories Xn can be approximated
by the sequence of occupation measures

PNn :=
1

N

∑
1≤i≤N

δXin with Xi
n := (Xi

0, . . . , X
i
n)

associated with N independent copies (Xi
n)1≤i≤N of the stochastic process Xn, as N → ∞. More

formally, we have the almost sure convergence

PNn (fn) −→N→∞ Pn(fn) = E (fn(Xn))
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for any bounded measurable function fn on the path space En. The above convergence estimates can
be made precise in various ways using standard tools related to empirical processes associated with
i.i.d. random variables.

We return to the Gaussian model discussed in (4.2) and we set

fn(x0, . . . , xn) = 1xn≥λn for some λ > 0

In this situation, we have

Xn = Xn−1 +Wn =
∑

1≤k≤n
Wk

in law
=
√
n W1 =⇒ Pn(fn) = P

(
W1 ≥ λ

√
n
)

(4.12)

Applying Mills inequalities

∀δ > 0
1

δ + 1/δ

1√
2π

e−δ
2/2 ≤ P (W1 ≥ δ) ≤

1

δ

1√
2π

e−δa
2/2

to δ = λ
√
n, we have

Pn(fn) = P (Xn ≥ λn) 'n↑∞
1

λ

1√
2πn

e−λ
2n/2

⇒ N E
(
[PNn (fn)− Pn(fn)]2

)
= Pn(f2

n)− (Pn(fn))2

= Pn(fn) (1− Pn(fn))

'n↑∞ Pn(fn) 'n↑∞
1

λ

1√
2πn

e−λ
2n/2

(4.13)

In some instances, to estimate the expectation (4.7) it is more judicious to use a r.v. Y related to
the function f . Suppose that Y has some dominating distribution µ s.t. η � µ. In this situation, we
have

g =
dη

dµ
⇒ η(f) :=

∫
f(x) η(dx) =

∫
f(y) g(y) µ(dy) := µ(fg) ⇔ E(f(X)) = E(f(Y )g(Y ))

In this situation, sampling a sequence of independent random copies (Y i)i≥1 of the r.v. Y we have

µN (fg) :=

∫
f(y) g(y) µN (dx) 'N↑∞ µ(fg) with µN =

1

N

∑
1≤i≤N

δY i

The variance of this estimate is now given by

N E
(
[µN (fg)− µ(fG)]2

)
= µ((fg)2)− (µ(fg))2

The measure µ is sometimes called the twisted distribution. For a nonnegative function f , if we choose
the Boltzmann-Gibbs measure µ = ψf (η) then we have a null variance Monte Carlo sampling scheme:

µ(dy) = ψf (η)(dy) :=
1

η(f)
f(y) η(dy)⇒ f(y)g(y) = η(f)⇒ µ((fg)2)− (µ(fg))2 = 0

These optimal twisted distributions are usually untractable. For instance, in the example discussed in
(4.12) they coincide with the conditional distributions of the path of a Markov chain Xn given the
fact that the terminal point ends at time n above the level λn. Nevertheless, sampling N independent
copies Y i

n of the path Yn of the twisted chain (4.5), using (4.6) we have

Pλ,Nn (fngn) −→N→∞ Pλn(fngn) = Pn(fn) = P(Xn ≥ λn) = e
λ2n

2 E
(

1Yn≥λn e
−λYn

)
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with

Pλn := Law(Yn) 'N↑∞ Pλ,Nn :=
1

N

∑
1≤i≤N

δY in

and

gn(yn) =
∏

0≤k<n
Gk(yk, yk+1) = exp

(
−λyn +

λ2n

2

)
In this case, the variance of the estimate Pλ,Nn (fngn) is given by

N E
(

[Pλ,Nn (fngn)− Pλn(fngn)]2
)

= Pλn((fngn)2)− (Pλn(fngn))2

'n↑∞ Pλn((fngn)2) = E
(

1Yn≥λn e
−λYn+λ2n/2e−λYn+λ2n/2

)
= E

(
1Xn≥λn e

−λXn+λ2n/2
)

≤ e−λ
2n/2 P (Xn ≥ λn)

= e−λ
2n/2Pn(fn) 'n↑∞

1

λ

1√
2πn

e−λ
2n

This shows that the variance of the twisted Markov chain approximation is much smaller that the one
(4.13) of the direct Monte Carlo scheme.

4.1.3 Martingale decompositions

We let Fn = σ(Xp, p ≤ n) be the natural filtration of information generated by the random states Xp

of the Markov chain from the origin p = 0, up to time p = n. For any sequence of functions fn ∈ B(En)
we have

fn(Xn) = f0(X0) +
∑

1≤p≤n
∆fp(Xp) with ∆fp(Xp) = (fp(Xp)− fp−1(Xp−1))

On the other hand, we have the decomposition

∆fp(Xp) = ∆Ap(f) + ∆Mp(f)

with the predictable part

∆Ap(f) = E (∆fp(Xp) | Fp−1)

= E (fp(Xp) | Fp−1)− fp−1(Xp−1)

= Kp(fp)(Xp−1)− fp−1(Xp−1) = [fp − fp−1](Xp−1) + Lp(fp)(Xp−1)

and the martingale part

∆Mp(f) = [∆fp(Xp)− E (∆fp(Xp) | Fp−1)]

= fp(Xp)− E (fp(Xp) | Fp−1) = fp(Xp)−Kp(fp)(Xp−1)

The terminology ”predictable and martingale parts” comes from the fact that the discrete time
processes

An(f) =
∑

1≤p≤n
∆Ap(f) and Mn(f) =

∑
1≤p≤n

∆Mp(f)

are predictable, resp. martingales w.r.t. Fp; that is we have that

E (An(f) | Fn−1) = An(f) and E (Mn(f) | Fn−1) =Mn−1(f)
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We recall that the angle bracket 〈M〉n (a.k.a. the predictable quadratic variation) of a
given martingale Mn w.r.t. some filtration Fn is the predictable stochastic process 〈M〉n
s.t. M2

n − 〈M〉n is a martingale given by

〈M〉n =
∑

1≤p≤n
∆〈M〉p with ∆〈M〉p := E

(
(∆Mp)

2 | Fp−1

)

In our framework, the angle bracket 〈M(f)〉n of Mn(f) is given by the local variance increment

∆〈M(f)〉p = E
(
(fp(Xp)−Kp(fp)(Xp−1))2 | Xp−1

)
=

∫
Kp(Xp−1, dxp) [fp(xp)−Kp(fp)(Xp−1)]2

= ΓLp(fp, fp)(Xp−1)− (Lp(fp)(Xp−1))2

with the ”carré du champ” operator

ΓLp(fp, fp)(x) = Lp((fp − fp(x))2)(x) = Lp(f
2
p )(x)− 2fp(x)Lp(fp)(x)

For any n ≥ 1 we have

∆fn(Xn) = [fn − fn−1](Xn−1) + Ln(fn)(Xn−1) + ∆Mn(f)

with a martingale Mn(f) with predictable angle bracket

∆〈M(f)〉n = ΓLn(fn, fn)(Xn−1)− (Ln(fn)(Xn−1))2

4.1.4 Evolution semigroups

By construction, the laws of the random states ηn = Law(Xn) of the process satisfy the
linear evolution equation

ηn = ηn−1Kn ⇐⇒ ηn − ηn−1 = ηn−1Ln (4.14)

with the operators Ln : f ∈ B(En) 7→ B(En−1) defined by

Ln(f)(x) = (Kn − Id)(f)(x) = E (f(Xn) | Xn−1 = x)− f(x)

On the other hand, we also have

P ((X0, . . . , Xn) ∈ d(x0, . . . , xn)) = η0(dx0)

n∏
p=1

Kp(xp−1, dxp)

Given Xp = xp for some p < n, the law of the random state Xn is given by

P (Xn ∈ dxn | Xp = xp ) := Kp,n(x0, dxp)

with the semigroup Kp,n of integral operators defined by

Kp,n = Kp+1 . . .Kn−1Kn

with the convention Kn,n = Id, the identity operator. In the same way, the distribution ηn
of Xn satisfies the integral formula ηn = ηpKp,n.
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4.2 Feynman-Kac models

4.2.1 Perturbation semigroups

We let Xn be given reference Markov chain taking values in some state spaces En with Markov
transitions

Mn(xn−1, dxn) = P (Xn ∈ dxn | Xn−1 = xn−1)

We also consider a collection of nonnegative potential functions Gn on En. We let Qn(xn−1, dxn) be
the positive integral operator from En−1 into En defined by

Qn(xn−1, dxn) = Gn−1(xn−1) Mn(xn−1, dxn) (4.15)

These integral operators can be interpreted as a perturbation of the Markov transitions Mn w.r.t.
some potential functions Gn.

We let Qp,n, p ≤ n be the semigroup defined by

Qp,n(xp, dxn) =

∫
Ep+1×...×En−1

Qp+1(xp, dxp+1) . . . Qn(xn−1, dxn)

By construction, for any function fn on En we have

Qp,n(fn)(xp) =

∫
Qp,n(xp, dxn) fn(xn)

= E

fn(Xn)
∏

p≤q<n
Gq(Xq) | Xp = xp



This shows that Qp,n is the semigroup of the flow of Feynman-Kac measures γn on En
defined by

γn(fn) = E

fn(Xn)
∏

p≤q<n
Gq(Xq)

 = γp(Qp,n(fn))

for any p ≤ n, with γ0 = η0 = Law(X0). The normalized version of these distributions are
given by

ηn(fn) = γn(fn)/γn(1)

4.2.2 Path space measures

We emphasize that γn, and resp. ηn, are the marginal w.r.t. the final time horizon n of the measures
γn, and resp. ηn, on the set of paths En = (E0 × . . . × En) defined for any measurable function fn
on En by

γn(fn) = E

fn(Xn)
∏

p≤q<n
Gn(Xn)

 and ηn(fn) = γn(fn)/γn(1) (4.16)

with

Xn = (X0, . . . , Xn) and Gn(Xn) = Gn(Xn)



66 CHAPTER 4. MARKOV CHAIN MODELS

The measures ηn = Qn are sometimes written in terms of the weighted distribution

Qn(dx) :=
1

Zn
Γn(dx) with Γn(dx) :=

 ∏
0≤p<n

Gp(xp)

 Pn(dx) (4.17)

of the random trajectories of the Markov chain Pn = Law (Xn), with the normalizing
constants

Zn = γn(1) = E

 ∏
0≤q<n

Gq(Xq)


In the above display, dx = d(x0, . . . , xn) stands for an infinitesimal neighborhood of the path

x = (x0, . . . , xn).

4.2.3 Partition functions

We underline that the normalizing constants Zn (a.k.a. partition functions), as well as the measures
Qn, can be represented in terms of the flow of marginal measures (ηp)0≤p≤n. More precisely, we have
the easily checked multiplicative formulae

Zn = E

 ∏
0≤p<n

Gp(Xp)

 =
∏

0≤p<n
ηp(Gp) (4.18)

We check this claim using the fact that

Zn+1 = γn+1(1) = γn(Gn) =
γn(Gn)

γn(1)
γn(1) = ηn(G) Zn

More generally, using this formula the unnormalized measures γn := Zn × ηn can also
be rewritten for any fn ∈ Bn(fn) in the following form

γn(fn) = ηn(fn)×
∏

0≤p<n
ηp(Gp)

4.2.4 Backward integration

Next, we present a description of the Feynman-Kac measure Qn on path space defined in (4.17) in
terms of (ηp)0≤p≤n. We further assume that the Markov transitions Mn are absolutely continuous with
respect to some measures λn on En, and for any (xn−1, xn) ∈ (En−1 × En) we have

Gn−1(xn−1) Mn(xn−1, dxn) = Hn(xn−1, xn) λn(dxn) (4.19)

for some density function Hn.
In this situation, for any f on En+1, and for any xn ∈ En we have

Gn(xn)Mn+1(f)(xn) =
∫
Hn+1(xn, xn+1) f(xn+1) λn+1(dxn+1)

⇒ ηn+1(f) = ΨGn(ηn) (Mn+1(f))

=
∫
En+1

[∫
En
ηn(dxn) 1

ηn(Gn) Hn+1(xn, xn+1)
]
f(xn+1) λn+1(dxn+1)
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This shows that
ηn+1(dxn+1) = 1

ηn(Gn) ηn (Hn+1(., xn+1)) λn+1(dxn+1)

from which we prove that

Qn(d(x0, . . . , xn)) =
1

Zn
η0(dx0)G0(x0) M1(x0, dx1) . . . Gn−1(xn−1) Mn(xn−1, dxn)

=
1∏

0≤p<n ηp(Gp)
η0(dx0)

∏
1≤p≤n

Hp(xp−1, xp)λp(dxp)

= η0(dx0)
∏

1≤p≤n

Hp(xp−1, xp)

ηp−1(Hp(., xp))
ηp(dxp)

This implies that

Qn(d(x0, . . . , xn)) = ηn(dxn)

n∏
q=1

Mq,ηq−1(xq, dxq−1) (4.20)

with the collection of Markov transitions

Mn+1,ηn(x, dy) =
ηn(dy) Hn+1(y, x)

ηn (Hn+1(., x))

If we take the unit potential functions Gn = 1, the backward formula (4.20) reduces to the conven-
tional backward representation of conditional distribution of the random paths (X0, . . . , Xn−1) given
the terminal time Xn; that is we have that

P ((X0, X1, . . . , Xn−1) ∈d(x0, x1, . . . , xn−1) | Xn = xn)

=Mn,ηn−1(xn, dxn−1) · · ·M2,η1(x2, dx1)M1,η0(x1, dx0)

To the best of our knowledge, these forward-backward representations of Feynman-Kac measures were
introduced by Ruslan L. Stratonovitch in the early 1960s in the context of nonlinear filtering [554].
For a more thorough discussion on these backward Markov chain models, and their application in
advanced signal processing, and hidden Markov chain problems, we also refer the reader to [232] and
to a series of articles of the author with A. Doucet and S.S. Singh [203, 204, 205].

4.2.5 Spatial branching processes

We denote by E = ∪p≥0E
p the state space of a branching process with individuals taking values on

some measurable state space E. The integer p ≥ 0 represents the size of the population. For p = 0 we
use the convention E0 := {c}, where c stands for an auxiliary cemetery state.

We let Mn(x, dy), with n ≥ 1, be a sequence of Markov transitions from E into inself, and by
(gin(x))i≥1,x∈E,n≥0 we denote a collection of integer number-valued random variables with uniformly
finite first moments. We further assume that for any x ∈ E, and any n ≥ 0, (gin(x))i≥1 are identically
distributed, and we set

Gn(x) := E(gin(x))

Our branching process is defined as follows. We start at some point x0 with a single particle, that is
p0 = 1 and ζ0 = ζ1

0 = x0 ∈ Ep0 = E. This particle branches into p̂0 offsprings ζ̂0 = (ζ̂1
0 , . . . , ζ̂

p̂0
0 ) ∈ Ep̂0 ,

with p̂0 = g1
0(ζ1

0 ).
Each of these individuals explores randomly the state space E, according to the transition M1.

At the end of this mutation step, we have a population of p1 = p̂0 particles ζi1 ∈ E with distribution
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M1(ζ̂i0, .), i = 1, . . . , p1. Then each of these particles ζi1 branches into g1
1(ζi1) offsprings. At the end of

this transition, we have p̂1 particles ζ̂1 = (ζ̂1
1 , . . . , ζ̂

p̂1
1 ) ∈ Ep̂1

1 , with p̂1 =
∑p1

i=1 g
i
1(ζi1).

Then, each of these individuals explores randomly the state space E, according to the transition
M2, and so on.

Whenever the system dies, p̂n = 0 at a given time n, we set ζ̂q = ζq+1 = c, and p̂q = pq+1 = 0, for
any q ≥ n.

By construction, we have pn+1 = p̂n, and
∑p̂n

i=1 f(ζ̂in) =
∑pn

i=1 g
i
n(ζin) f(ζin), for any function

f ∈ Bb(E). If we consider the random measures

Xn =

pn∑
i=1

δζin and X̂n =

p̂n∑
i=1

δ
ζ̂in

then, we find that

E(X̂n(f) | ζn) = Xn(Gn f) and E(Xn+1(f) | ζ̂n) = X̂n(Mn(f))

This clearly implies that

E(Xn+1(f) | ζn) = Xn(GnMn+1(f))

We readily conclude that the first moments of the branching distributions Xn are given
by the Feynman-Kac model

E(Xn(f)) = Ex0

f(Xn)
∏

0≤k<n
Gk(Xk)

 := γn(f)

In the above display, Xn stands for the Markov chain on E with Markov transitions Mn.
In this interpretation, the mean number of individuals in the current population is given by
E(Xn(1)) = γn(1).

In probability theory, the stochastic process Xn is called a Branching Markov chain. The long
time behavior of these branching models, their connections with particle absorption models, and
their applications in physics and biology is a rapidly developing subject in probability theory. We
refer the reader to the series of articles [19, 20, 21, 54, 76, 358, 375, 376, 465], the more recent
studies [5, 37, 51, 212, 214, 215, 337, 536], and references therein.

4.3 Sub-Markov models

4.3.1 Particle absorption models

In probability theory, particle absorption models are represented by Markov chains evolving in a
deterministic, or in a random, environment associated with some absorption rate functions.

The interpretation of the absorption event clearly depends on their application models. In optical
ray propagation problems, the event of interest is related to photon absorptions [500]. In particle
physics or in chemistry, the absorption rate is dictated by the energy of an electronic or macro-
molecular configuration. For a more detailed discussion on these models, and their applications to the
computation of Schrödinger ground state energies, we refer the reader to the series of articles [97, 170,
184, 185, 516]. In natural evolution theory, as well as in population model analysis, the absorption
event is often related to an extinction probability. Further details on these applications can be found
in the series of articles [437, 449, 583, 584, 585].



4.3. SUB-MARKOV MODELS 69

Absorption and critical type events can also be thought of as network overflows in complex queueing
systems [252] and production systems [495]. Absorbed Markov chain also used in Web engineering [496]
and bio-chemistry [414], as well as in environmental analysis [598], and in many others scientific
disciplines.

This rather extraordinary variety of application domains is not really surprising, since all of these
absorption models can be represented by a Feynman-Kac model. Inversely, we emphasize that any
Feynman-Kac model (4.17) can be interpreted as the distribution of the random trajectories of a
Markov chain evolving in an absorbing environment.

We consider a collection of measurable state spaces En and an auxiliary coffin, or cemetery, state
c. We set En,c = En ∪ {c}. We also denote by Gn some [0, 1]-valued potential functions on En, and
Mn+1 some Markov transitions from En, into En+1. We define an En,c-valued Markov chain Xc

n with
two separate killing/exploration transitions:

Xc
n

killing
−−−−−−−−−−−−−−−−−→ X̂c

n

exploration
−−−−−−−−−−−−−−−−−→Xc

n+1 (4.21)

These killing/exploration mechanisms are defined as follows:

• Killing: If Xc
n = c, we set X̂c

n = c. Otherwise the particle Xc
n is still alive. In this case, with

a probability Gn(Xc
n), it remains in the same site, so that X̂c

n = Xc
n; and with a probability

1−Gn(Xc
n), it is killed, and we set X̂c

n = c.

• Exploration: Once a particle has been killed, it cannot be brought back to life; so if X̂c
n = c,

then we set X̂c
p = Xp = c, for any p > n. Otherwise, the particle X̂c

n ∈ En evolves to a new
location Xc

n+1 in En+1, randomly chosen according to the distribution Mn+1(Xc
n, dxn+1).

Definition 4.3.1 The Markov chain Xc
n defined above is called a Markov chain with the absorption

rates (1−Gn), and the free exploration transitions Mn, on the state spaces En.

Notice that the Markov chain Xc
n on the augmented state spaces En,c can be interpreted as a

conventional Markov chain, with a single absorbing state {c}, as soon as Mn(xn, {xn}) 6= 1 for any
xn ∈ En. Inversely, any Markov chain with a single absorbing state can be represented in this form.

In branching processes and population dynamics literature, the model Xc
n often represents the

number of individuals of a given species [268, 305, 552]. Each individual can die or reproduce. The
state 0 ∈ En = N is interpreted as a trap, or as a hard obstacle, in the sense that the species
disappears as soon as Xc

n hits 0. For a more thorough discussion on particle motions in an absorbing
medium with hard and soft obstacles and their application domains, we refer the reader to the series
of articles [185, 184, 516], the monograph [172], and the more recent lecture notes [195].

We end this section with a Feynman-Kac formulation of particle absorption models. We denote
by Xn the Markov chain on En, with elementary transitions Mn. In this notation, the Feynman-Kac
measures Qn associated with the parameters (Gn,Mn), and defined in (4.17), represent the conditional
distributions of the random paths of a nonabsorbed Markov particle. To see this claim, we let T be
the killing time; that is, the first time at which the particle enters in the cemetery state

T = inf {n ≥ 0 ; X̂c
n = c}

By construction, we have

P(T ≥ n) = P(X̂c
0 ∈ E0, . . . , X̂

c
n−1 ∈ En−1)

=

∫
E0×...×En−1

η0(dx0) G0(x0)
∏

1≤p<n
(Mp(xp−1, dxp)Gp(xp))
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This shows that the normalizing constants Zn of the Feynman-Kac measures Qn represent the prob-
ability for the particle to be alive at time n− 1; that is, we have that

Zn = P(T ≥ n) = E

 ∏
0≤p<n

Gp(Xp)


In the above display, Xn stands for a Markov chain on En, with initial distribution η0 and elementary
Markov transitions Mn.

In the same vein, in terms of the n-th time marginal Feynman-Kac models we have

E(f(Xc
n) 1T≥n) = γn(fn) := E

 fn(Xn)

 ∏
0≤p<n

G(Xp)


 (4.22)

E(f(Xc
n) | T ≥ n) = ηn(fn) := γn(fn)/γn(1) (4.23)

Using these formulae, we also find that

Zn = P(T ≥ n) = γn(1) = E

 ∏
0≤p<n

Gp(Xp)

 =
∏

0≤p<n
ηp(Gp)

More generally, similar arguments yield that is the distribution of a particle conditional
upon being alive at time n − 1 that is defined by the Feynman-Kac model introduced in
(4.17); that is, we have that

Qn(d(x0, . . . , xn)) = P ((Xc
0, . . . , X

c
n) ∈ d(x0, . . . , xn) | T ≥ n)

Inversely, any Feynman-Kac model of the form (4.17) associated with some bounded potential
functions Gn can be interpreted in terms of a particle absorption model. To prove this claim, we
further assume that ‖Gn‖ ≤ cn for some finite constant cn < ∞. We let Xc

n be the Markov chain on
En,c defined in (4.21) with absorption rate (1−Gn(xn)/cn). By construction, we readily check that

Qn := Law ((Xc
0, . . . , X

c
n) | T ≥ n)

We end this section with a couple of particle absorption model with hard obstacles:

• If we choose indicator potential functions Gn = 1An , then we have

Zn = P (Xp ∈ Ap , ∀0 ≤ p < n)

Qn = Law ((X0, . . . , Xn) | Xp ∈ Ap , ∀0 ≤ p < n)

• We assume that Xn = (X ′0, . . . , X
′
n) is the historical process associated with a random walk

evolving in a d-dimensional lattice E = Zd. In this situation, if we set Gn(Xn) = 1Zd−{X′0,...,X′n−1},

then we find that

Zn = P
(
X ′p 6= X ′q , ∀0 ≤ p < q < n

)
Qn = Law

(
(X ′0, . . . , X

′
n) | X ′p 6= X ′q , ∀0 ≤ p < q < n

)
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4.3.2 Doob h-processes

We consider the time homogeneous Feynman-Kac model (Γn,Qn), associated with the parameters
(En, Gn,Mn) = (E,G,M) on some measurable state space E, defined in (4.17). We also set

Q(x, dy) := G(x)M(x, dy)

We also assume that G is uniformly bounded above and below by some positive constant, and the
Markov transition M is reversible w.r.t. some probability measure µ on E, with M(x, .) ' µ and
dM(x, .)/dµ ∈ L2(µ). We denote by λ the largest eigenvalue of the integral operator Q on L2(µ), and
by h(x) a positive eigenvector

Q(h) = λh

Under some regularity conditions on (G,M), there exists some constant ρ ≥ 1 such that

1/ρ ≤ h(x)/h(y) ≤ ρ (4.24)

for any x, y ∈ E. For instance, let us suppose that

M(x, dz) ≥ ε M(y, dz) and G(x) ≤ g G(y)

for some ε ∈]0, 1] and some g <∞. In this situation, we have

Q(h)(x)/Q(h)(y) = h(x)/h(y) ≤ ρ with ρ ≤ g/ε

The Doob h-process, corresponding to the ground state eigenfunction h defined above, is a
Markov chain Xh

n , with initial distribution ηh0 = Ψh(η0), and the Markov transition

Mh(x, dy) :=
1

λ
× h−1(x)Q(x, dy)h(y) =

M(x, dy)h(y)

M(h)(x)

We also denote by ηhn the distribution of the random state Xh
n starting with initial distribution ηh0 ;

that is, we have that
Law(Xh

n) = ηhn = ηh0 (Mh)n

Our next objective is to connect the distribution of the paths of the h-process

P
(

(Xh
0 , . . . , X

h
n) ∈ d(x0, . . . , xn)

)
= ηh0 (dx0)Mh(x0, dx1) . . .Mh(xn−1, dxn)

with the Feynman-Kac measures Γn and Qn introduced in (4.17). Firstly, by construction we have

G = λ× h/M(h)

and therefore

Γn(d(x0, . . . , xn)) = η0(dx0)

 ∏
0≤p<n

G(xp)

 ×

 ∏
1≤p≤n

M(xp−1, dxp)


= λn η0(dx0) h(x0)

 ∏
1≤p≤n

M(xp−1, dxp)h(xp)

M(h)(xp−1)

 1

h(xn)

We conclude that

Γn(d(x0, . . . , xn)) = λn η0(h) Phn(d(x0, . . . , xn))
1

h(xn)
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where Phn stands for the law of the historical process

Xh
n = (Xh

0 , . . . , X
h
n)

This clearly implies that

Qn(d(x0, . . . , xn)) =
1

E(h−1(Xh
n))

h−1(xn) Phn(d(x0, . . . , xn))

with the normalizing constants

Zn = λn η0(h) E(h−1(Xh
n))

4.3.3 Quasi-invariant measures

Under condition (4.24), using the multiplicative formula (4.18) we also have that

1

n
logZn =

1

n

∑
0≤p<n

log ηp(G) = log λ+
1

n
log
(
η0(h) E(h−1(Xh

n))
)

and therefore

log λ− 1

n
log ρ ≤ 1

n
logZn =

1

n

∑
0≤p<n

log ηp(G) ≤ log λ+
1

n
log ρ (4.25)

from which we conclude that

lim
n→∞

1

n

∑
0≤p<n

log ηp(G) = log λ

In terms of the h-process, the n-th time marginal γn of the Feynman-Kac measures Γn takes the
following form

γn(f) = λn η0(h) ηh0 (Mh)n(f/h) = λn η0(h) ηhn(f/h)

In terms of particle absorption models we have

Law((Xc
0, . . . , X

c
n) | T c ≥ n) =

1

E(h−1(Xh
n))

h−1(Xh
n) dPhn

and
Zn = P (T c ≥ n) = λn η0(h) E(h−1(Xh

n)) −→n↑∞ 0 (4.26)

Whenever it exists, the Yaglom limit of the measure η0 is defined as the limiting of measure

ηn −→n↑∞ η∞ (4.27)

of the Feynman-Kac flow ηn, when n tends to infinity. We also say that η0 is a quasi-invariant measure
as we have η0 = ηn, for any time step. When the Feynman-Kac flow ηn is asymptotically stable, in
the sense that it forgets its initial conditions, we also say that the quasi-invariant measure η∞ is the
Yaglom measure.

Quantitative convergence estimates of the limiting formulae (4.27) can be derived using the stability
properties of the Feynman-Kac models. For a more thorough discussion on these particle absorption
models, we refer the reader to the series of articles of the author with A. Guionnet [178, 179], L.
Miclo [170, 185] and A. Doucet [184], as well as the monograph [172].
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4.4 Stability properties

4.4.1 Dobrushin ergodic coefficient

This section provides a very brief treatise on the regularity properties of Markov semigroups. For
a more thorough discussion, we refer the reader to [455]. We recall that the total variation distance
‖µ1 − µ2‖tv between probability measures µ1, µ2 ∈ P(E) is defined by

‖µ1 − µ2‖tv = sup
A∈E
|µ1(A)− µ2(A)|

= 2−1 sup {|µ1(f)− µ2(f)| ; ‖f‖ ≤ 1} = sup {|µ1(f)− µ2(f)| ; osc(f) ≤ 1}

A probability measure π on some state space E is invariant w.r.t. some time homogeneous Markov
transition K if we have πK = π. The measure π is reversible w.r.t. K if we have

π(dx) K(x, dy) = π(dy) K(y, dx)

or equivalently, for any pair of functions (f, g) ∈ B(E)2

π(fK(g)) = π(K(f)g)

We recall that the Dobrushin ergodic coefficient β(K) of a Markov transition K from E1 into E2,
is the norm of the operator K fromM0(E1) intoM0(E2); that is, we have the equivalent formulations

β(K) = sup ‖K(x, .)−K(y, .)‖tv = sup
µ∈M0(E1)

‖µK‖tv/‖µ‖tv

= sup {osc(K(f)) : osc(f) ≤ 1}

with the first supremum taken over all (x, y) ∈ E2
1 .

We also have the contraction inequalities

‖µK − νK‖tv ≤ β(K) ‖µ− ν‖tv and osc(K(f)) ≤ β(K) osc(f) (4.28)

We check these assertions using the fact that

‖µ1M − µ2M‖tv = sup
f :osc(f)≤1

(
osc(M(f))×

∣∣∣∣(µ1 − µ2)

[
M(f)

osc(M(f))

]∣∣∣∣)
= β(M)× sup

g :osc(g)≤1
|(µ1 − µ2)(g)|

= β(M)× ‖µ1 − µ2‖tv

for any Markov transition M .
Several rather crude estimates can be underlined. For instance, we have

(∀x, y, z ∈ E1 K(x, dz) ≥ ε K(y, dz))⇒ β(K) ≤ (1− ε)

In the same vein, we have β(K) ≤ (1− ε) as soon as

∀x, y ∈ E1 K(x, dy) ≥ ε µ(dy) for some µ ∈ P(E2) (4.29)

The last assertion comes from the fact that the Markov transition

Kµ(x, dy) =
1

1− ε
[K(x, dy)− εµ(dy)]
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is such that
[K(x, dz)−K(y, dz)] = (1− ε) [Kµ(x, dz)−Kµ(y, dz)]

Given a pair of Markov transitions K1 from E1 into E2, and K2 from E2 into E3 , and any f3 ∈ Osc(E3)
we have

osc(K1K2(f3)) ≤ β(K2) osc(K1(f2)) ≤ β(K1)β(K2) osc(f1)

with
f2 = K2(f3)/β(K2) ∈ Osc(E2) and f1 = K1(f2)/β(K1) ∈ Osc(E1)

This clearly implies that β(K1K2) ≤ β(K1)β(K2). Iterating this argument, for any collection of Markov
transitions Kn such that β(Kn) ≤ (1− ε) we have the quantitative contraction estimate

β(K1K2 . . .Kn) ≤
∏

1≤p≤n
β(Kp) ≤ (1− ε)n

In this situation, in time homogeneous settings we have

‖µ1K
n − µ2K

n‖tv ≤ (1− ε)n ‖µ1 − µ2‖tv →n→∞ 0 (4.30)

from which we conclude that there exists a unique measure π such that π = πK.

4.4.2 Boltzmann-Gibbs transformations

Given a positive and bounded potential function G on E, we denote by ΨG the Boltzmann-
Gibbs mapping from P(E) into itself, defined for any µ ∈ P(E) by

ΨG(µ)(dx) =
1

µ(G)
G(x) µ(dx) (4.31)

There is no loss of generality to assume that G is a ]0, 1]-valued function. For [0, 1]-valued potential
functions, the transformation is only defined on measures µ s.t. µ(G) > 0. To avoid unnecessary
repetition of technical abstract conditions, and unless otherwise stated, in the further development of
this section we frame the standing assumption that G is chosen so that

g := sup
x,y

(G(x)/G(y)) <∞ (4.32)

Next we present a rather strong Lipschitz type estimate. For any pair of measures µ and ν, and any
bounded positive function G, we have

‖ΨG(µ)−ΨG(ν)‖tv ≤
‖G‖

µ(G) ∨ ν(G)
‖µ− ν‖tv (4.33)

There is no loss of generality to assume that G is a ]0, 1]-valued function. We prove (4.33) using
the fact that the mapping ΨG can be expressed in the following form

ΨG(µ) = µSµ (4.34)

with the Markov transitions

Sµ(x, dy) = G(x) δx(dy) + (1−G(x)) ΨG(µ)(dy) (4.35)

On the other hand, we notice that

ΨG(µ)−ΨG(ν) = (µ− ν)Sµ + ν(Sµ − Sν)

ν(Sµ − Sν) = (1− ν(G)) [ΨG(µ)−ΨG(ν)]
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from which we find the formula

ΨG(µ)−ΨG(ν) =
1

ν(G)
(µ− ν)Sµ (4.36)

In addition, we have

Sµ(x, .) ≥ (1− ‖G‖) ΨG(µ) =⇒ β(Sµ) ≤ ‖G‖

The end of the proof of (4.33) is now clear. This ends the proof of (4.33).

We end this section with an interesting contraction property of a Markov transition

MG(x, dy) =
M(x, dy)G(y)

M(G)(x)
= ΨG(δxM)(dy) (4.37)

associated with a potential function G satisfying (4.32) It is easily checked that

|MG(f)(x)−MG(f)(y)| = |ΨG(δxM)(f)−ΨG(δyM)(f)| ≤ g ‖δxM − δyM‖tv

from which we conclude that

β (MG) ≤ g β (M) (4.38)

This estimate is clearly only useful when β (M) < 1/g.

4.4.3 Normalized Feynman-Kac semigroups

We return to the Feynman-Kac semigroups discussed in section 4.2.1. We let Pp,n be the normalized
semigroups defined by

Pp,n(f) := Qp,n(f)/Qp,n(1)

For any 0 ≤ p ≤ q ≤ n, we have

Pp,n(f) :=
Qp,q(Qq,n(f))

Qp,q(Qq,n(1))
=
Qp,q

(
Qq,n(1)

Qq,n(f)
Qq,n(1)

)
Qp,q(Qq,n(1))

If we set

Gp,n = Qp,n(1) and R(n)
p,q (f) :=

Qp,q (Gq,n f)

Qp,q(Gq,n)
=
Pp,q (Gq,n f)

Pp,q(Gq,n)

then we find that

Pp,n(f) =
Qp,q (Gq,n Pq,n(f)))

Qp,q(Gq,n)
=
Pp,q (Gq,n Pq,n(f)))

Pp,q(Gq,n)
= R(n)

p,qPq,n(f)

In a more synthetic form, we have proved that

∀0 ≤ p ≤ q1 ≤ . . . ≤ qk ≤ n Pp,n = R(n)
p,q1Pq1,n = R(n)

p,q1R
(n)
q1,q2 . . . R

(n)
qk,n

For instance, for q = p+ 1 we find that

R
(n)
p,p+1(f) :=

Qp+1 (Gp+1,n f)

Qp+1(Gp+1,n)
=
Mp+1 (Gp+1,n f))

Mp+1(Gp+1,n)

Assuming that

Mp+1(x, dz) ≥ ε Mp+1(y, dz)
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for any non negative function f , we find that

R
(n)
p,p+1(f)(x) =

Mp+1 (Gp+1,n f) (x)

Mp+1(Gp+1,n)(x)
≥ ε2 Mp+1 (Gp+1,n f) (y)

Mp+1(Gp+1,n)(y)
= R

(n)
p,p+1(f)(y)

This implies that

R
(n)
p,p+1(x, dz) ≥ ε2 R(n)

p,p+1(y, dz) =⇒ β
(
R

(n)
p,p+1

)
≤ 1− ε2

from which we conclude that

β (Pp,n) ≤ β
(
R

(n)
p,p+1

)
β (Pp+1,n) ≤ (1− ε2) β (Pp+1,n) ≤ (1− ε2)n−p

4.4.4 Foster-Lyapunov condition

We further assume that E is a topological vector space equipped with the Borel σ-field E .
• Dobrushin local contraction property
For any compact subset C ⊂ E, we have

β(C;M) := sup
(x,y)∈C2

‖M(x, .)−M(y, .)‖tv < 1 (4.39)

• Foster-Lyapunov condition
There exists some non negative function W on E with compact subset levels, such that

M(W ) ≤ ε W + c (4.40)

for some ε ∈ [0, 1[ and some finite constant c <∞. The function W is called a Lyapunov function.
Replacing W by W/c in (4.40) there is no loss of generality to assume that c = 1. In addition,

replacing W by Wε = 1 + ε W ≥ 1 we have

M (Wε) = ε M(W ) + 1 ≤ ε Wε + 1

Therefore, there is no loss of generality to replace (4.40) by

M(W ) ≤ ε W + 1 for some function W ≥ 1. (4.41)

When the Dobrushin local contraction and the Foster-Lyapunov condition are satisfied, for
any R ∈ R+, we set

β(R)(M) = β ({W ≤ R},M) = sup
(x,y) : W (x)∨W (y)≤R

‖M(x, .)−M(y, .)‖tv ≤ 1

We consider a Markov transition M on some complete separable metric space E such that

M(x, dy) ≥ m(x, y) λ(dy) (4.42)

for some some strictly positive Radon measure λ(dy) (i.e. nonempty open balls have positive measure).
We further assume that for any compact set A there exists some positive measurable function qA s.t.

inf
x∈A

m(x, y) ≥ qA(y) (4.43)

In this situation, the Dobrushin local contraction condition (4.39) is satisfied. For instance, the mi-
norization condition (4.43) is met when the functions m(x, y) are lower semicontinuous w.r.t. the first
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variable, and upper semicontinuous w.r.t. the second. We recall that a characteristic of Radon mea-
sures is that the measure of a Borel set B is the supremum of the measures λ(A) of the compact sets
A ⊂ B. Thus, if λ is a strictly positive Radon measure on E, one can always find for every open set
B ⊂ E a compact A ⊂ B such that

λ(A) ≥ (1/2) λ(B) (> 0)

This ensures that λ charges all the compact sets.
To check this claim, it is of course tempting to set infx∈Am(x, y) = qA(y) but it is well known that

the infimum of an uncountable collection of functions may fails to be measurable. Under the condition
(4.43), we clearly have that

∀x ∈ A M(x, dy) ≥ qA(y) λ(dy) := γA(dy) with γA(1) = λ(qA) > 0

In this situation, the Dobrushin condition (4.39) is clearly met with

∀x ∈ A M(x, dy) ≥ εA νA(dy)

with
εA = γA(1) > 0 and νA(dy) := γA(dy)/γA(1)

When the density function m(x, y) is lower semicontinuous w.r.t. the first variable and upper
semicontinuous w.r.t. the second variable, there exists some measurable function hA : y 7→ hA(y)
such that

inf
x∈A

m(x, y) = m(hA(y), y) := qA(y) > 0

A proof of this result can be found in [115]. It this situation, the minorization condition (4.43) is
clearly met. This ends the proof of the assertion.

The Foster-Lyapunov condition ensures that the Markov chain Xn with transition probabilities M
has little chances to escape from the level sets {W ≤ w} of the function W . Indeed, we have

(4.40) =⇒ Mn(W ) ≤ εn W + c (1 + ε+ . . .+ εn−1) ≤ εn W + c/(1− ε)

from which we prove the uniform estimate

sup
n≥0

E (W (Xn)) ≤ εn E(W (X0)) + c/(1− ε) ≤ C := E(W (X0)) + c/(1− ε)

Using Markov inequality, when the level sets of W are compact we have

∀ρ > 0 ∃{W ≤ C/ρ} := Aρ compact s.t. sup
n≥0

P (W (Xn) 6∈ Aρ) ≤ ρ

We let V be a non negative function V s.t.

M(V ) ≤ c1 V + c2

for some c1, c2 ≥ 0. We equip the set of probability measures P(S) on some state space E with the
V -norm.

The V -Dobrushin ergodic coefficient βV (M) is defined by

βV (M) = sup {oscV (M(f)) , f : oscV (f) ≤ 1} = sup
(x,y)∈E2

‖M(x, .)−M(y, .)‖V
1 + [V (x) + V (y)]

with ‖.‖V and oscV (.) defined in (12) and (13).
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The r.h.s. formulation in the above display is readily checked using the fact that

βV (M) = sup
(x,y)∈E2

sup
f :oscV (f)≤1

|M(f)(x)−M(f)(y)|
1 + [V (x) + V (y)]

Arguing as in the proof of (4.28), for any couple of measures µ1, µ2 ∈ P(S), and any function
f s.t. ‖f‖V <∞, and any n ∈ N we have

oscV (M(f)) ≤ βV (M) oscV (f)

‖µ1M − µ2M‖V ≤ βV (M) ‖µ1 − µ2‖V and βV (Mn) ≤ βV (M)n (4.44)

When the drift condition (4.40) and the local Dobrushin condition (4.39) are satisfied for some
function W and some parameter ε ∈ [0, 1[, there exist some positive function V s.t. βV (M) < 1.

4.5 Some illustrations

4.5.1 Minorization condition

Let a be a bounded function on E = R, and let M be the Markov transition associated with the
evolution equation

Xn = a(Xn−1) +Wn

where Wn stands for a sequence of independent and absolutely continuous r.v. with common density
p(w) = 1

2λ e
−λ|w|. In this situation, if we fix a point x0 ∈ E, we have

ν(dy) := M(x0, dy) ≤M(x, dy) eλ||y−a(x)|−|y−a(x0)|| ≤M(x, dy) eλ osc(a)

This implies that

M(x, dy) ≥ ε ν(dy) with ε = exp (−λosc(a))

We consider a compact set E′ ⊂ E = Rd, and we let p(x, y) some continuous positive function on
(Rd × Rd). The Markov transition M(x, dy) ∝ p(x, y) 1S′(y) dy on E′ satisfies (4.29). We check this
claim using the fact that

√
ε ≤ p(x′, y)

p(x, y)
≤ 1√

ε
with

√
ε := inf

x,x′,y∈S′
p(x′, y)

p(x, y)
> 0 (4.45)

These estimates implies (4.29) with ν(dx) ∝ M(x0, dy). This indicates that (4.29) is satisfied for any
Markov transitions with a continuous density on some compact space (equipped with some metric).
For instance any regular Markov chain evolving in our galaxy satisfies (4.29).

We assume that there exist some subset A ⊂ E and some positive measure γ s.t. γ(A) > 0 and for
any x ∈ E

M(x, dy) 1A(y) ≥ γ(dy) 1A(y) (4.46)

In this case, we have

M(x, dy) ≥ M(x, dy) 1A(y) ≥ γ(dy) 1A(y) = ε ν(dy)

with

ε = γ(A) and ν(dy) =
γ(dy)1A(y)

γ(A)
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For instance, the Gaussian transition on E = R defined by

M(x, dy) =
1√

2πσ2(x)
exp

(
− 1

2σ2(x)
(y − a(x))2

)
dy

satisfies (4.46) with A = R as soon as

0 < σ2
min ≤ σ2(x) ≤ σ2

max <∞ and ‖a‖ <∞

We check this claim using the fact that

y ≥ 0 ⇒ sup
x∈S

(y − a(x))2 ≤ y2 + 2y‖a‖A + ‖a‖2 = (y + ‖a‖)2

y ≤ 0 ⇒ sup
x∈S

(y − a(x))2 ≤ y2 − 2y‖a‖A + ‖a‖2 = (y − ‖a‖)2

and
M(x, dy) ≥ γ(dy) := γ1(dy) + γ2(dy)

with

γ1(dy) =
1√

2πσ2
max

exp

(
− 1

2σ2
min

(y + ‖a‖)2

)
1y≥0 dy

γ2(dy) =
1√

2πσ2
max

exp

(
− 1

2σ2
min

(y − ‖a‖)2

)
1y<0 dy

Notice that in this case we have

γ1(1) + γ2(1) =
σmin
σmax

[P (−‖a‖+ σminY ≥ 0) + P (‖a‖+ σminY ≤ 0)]

=
σmin
σmax

[1− P (|Y | ≤ ‖a‖/σmin)] > 0

where Y stands for a centered Gaussian r.v. with unit variance.

4.5.2 Gaussian transitions

A simple way to check the Dobrushin local contraction condition is to prove that for any compact
subset C ⊂ E, there exists some εC ∈]0, 1] and some probability measure νC on E such that

∀x ∈ C M(x, dy) ≥ εC νC(dy) (4.47)

In this situation, using the same arguments as the ones we used in (4.29) we prove that

β(C;M) ≤ (1− εC)

In the literature on Markov chain stability the subsets C satisfying the minorization condition (4.47)
are often called ”small” sets.

This local contraction condition is satisfied for most of the Markov chain encountered in practice.
For instance, for the Gaussian transition

M(x, dy) =
1√

2πσ2(x)
exp

(
− 1

2σ2(x)
(y − a(x))2

)
dy

associated with some locally bounded drift and variance functions a and σ2 on E = R we have

y ≥ 0 ⇒ sup
x∈A

(y − a(x))2 ≤ y2 + 2y‖a‖A + ‖a‖2A = (y + ‖a‖A)2

y ≤ 0 ⇒ sup
x∈A

(y − a(x))2 ≤ y2 − 2y‖a‖A + ‖a‖2A = (y − ‖a‖A)2
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for any bounded subset A ⊂ E, with ‖a‖A := supx∈A |a(x)|. We further assume that

∀x ∈ A 0 < σ2
min,A ≤ σ2(x) ≤ σ2

max,A <∞

This implies that

M(x, dy) ≥ γ(dy)

:= 1y≥0

(√
2πσ2

max,A

)−1

exp

(
− 1

2σ2
min,A

(y + ‖a‖A)2

)
dy

+1y<0

(√
2πσ2

max,A

)−1

exp

(
− 1

2σ2
min,A

(y − ‖a‖A)2

)
dy ≥ τA ν(dy)

with the probability measure ν(dy) = γ(dy)/γ(1) and the ]0, 1[ valued constant

τA =
σmin,A
σmax,A

[
1−

∫ ‖a‖A/σmin,A
−‖a‖A/σmin,A

1√
2π

e−y
2/2 dy

]

This clearly implies that

sup
(x,y)∈A2

‖M(x, .)−M(y, .)‖tv ≤ 1− τA

In the Gaussian model discussed above, we notice that

|a(x)| ≤ ε |x| ⇒ E [ |Xn| |Xn−1 = x ] ≤ ε |x|+ σ2

In this case, W (x) = |x| satisfies (4.40) with c = σ2.
More generally, suppose that Xn and X ′n are two non necessarily independent copies of the tran-

sition of the chain starting at x and x0; that is, we have that

M(x, dy) := P (Xn ∈ dy | Xn−1 = x)

M(x0, dy) := P (Xn ∈ dy | Xn−1 = x0)

We suppose that the state space E is equipped with some metric d and we have the local contraction
inequality

E
(
d(Xn, X

′
n) | (Xn−1, X

′
n−1) = (x, x0)

)
≤ ε d(x, x0)

Returning to the Gaussian model discussed above, we can take

Xn = a(x) + σ Y and X ′n = a(x0) + σ Y

where Y stands for a centered Gaussian r.v. with unit variance. In this situation, the local contraction
stated above is met for the Euclidian distance d(x, y) = |x− y| as soon as

|a(x)− a(x0)| ≤ ε |x− x0|

We set W (x) := d(x, x0) for some fixed state x0 ∈ E. Using the triangle inequality

d(Xn, x0)− d(X ′n, x0) ≤ d(Xn, X
′
n)

we prove that
E
(
d(Xn, x0)− d(X ′n, x0) | (Xn−1, X

′
n−1) = (x, x0)

)
= M(W )(x)−M(W )(x0) ≤ ε d(x, x0) = ε W (x)
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This implies that the Foster-Lyapunov condition is met with

M(W )(x) ≤ ε W (x) + c with c := M(W )(x0)

We end this section with a sufficient condition of the Foster-Lyapunov condition. Suppose there
exists some subset A ⊂ E s.t.{

M(W )(x) ≤ ε W (x) for any x ∈ E −A
M(W )(x) ≤ c for any x ∈ A (4.48)

then we have
∀x ∈ S M(W )(x) ≤ ε W (x) 1E−A(x) + c 1A(x) ≤ εW + c

Whenever M(W ) is continuous the condition (4.48) is met as soon as we can find some compact set
A s.t.

∀x 6∈ A M(W )(x) ≤ ε W (x)

for some ε ∈ [0, 1[. In this case (4.48) is satisfied with c = supx∈A |W (x)|.

4.5.3 Some quantitative estimates

In the further development of this section, we assume that the condition (4.41) is met and we set
Vρ = ρ W , for some ρ ∈]0, 1]. Notice that

(4.41) ⇒ M(Vρ) ≤ ε Vρ + ρ

In addition, we have the uniform estimate

(Vρ = ρ W and W ≥ 1) ⇒ V −1
ρ M(Vρ) ≤ ε +

ρ

ρW
≤ 1 + ε

We also notice that for any R ≥ 1 we have

W (x) ≥ R ⇒
{
Vρ(x)−1 M(Vρ)(x) ≤ ε + 1

W (x) ≤ ε+ 1
R

Vρ(x) = ρ W (x) ≥ ρR
(4.49)

and

W (x) ≤ R ⇒
{
Vρ(x)−1 M(Vρ)(x) ≤ 1 + ε

ρ ≤ Vρ(x) = ρ W (x) ≤ ρR (4.50)

We set

∆ρ(x, y) :=
‖M(x, .)−M(y, .)‖Vρ

1 + Vρ(x) + Vρ(y)

By definition of the V -norm (12), using the triangle inequality (for the the total variation of the mea-
sures; namely |µ1 + µ2| ≤ |µ1|+ |µ2|, for any measures µ1, µ2), we prove the following decomposition

∆ρ(x, y)

=
1

1 + Vρ(x) + Vρ(y)
‖M(x, .)−M(y, .)‖tv

+
Vρ(x)

1 + Vρ(x) + Vρ(y)

M(Vρ)(x)

Vρ(x)
+

Vρ(y)

1 + Vρ(x) + Vρ(y)

M(Vρ)(y)

Vρ(y)

≤ 1

1 + Vρ(x) + Vρ(y)
‖M(x, .)−M(y, .)‖tv

+
Vρ(x) + Vρ(y)

1 + Vρ(x) + Vρ(y)

(
M(Vρ)(x)

Vρ(x)
∨ M(Vρ)(y)

Vρ(y)

)
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When W (x) ∧W (y) ≥ R, using (4.49) we find that

∆ρ(x, y) ≤ 1

1 + Vρ(x) + Vρ(y)
+

Vρ(x) + Vρ(y)

1 + Vρ(x) + Vρ(y)

(
ε+

1

R

)
= 1−

(
1− 1

1 + Vρ(x) + Vρ(y)

) (
1−

(
ε+

1

R

))
from which we conclude that

sup
W (x)∧W (y)≥R

∆ρ(x, y) ≤ 1−
(

1− 1

1 + 2ρR

) (
1−

(
ε+

1

R

))
< 1

for any ρ ∈]0, 1]. Using (4.50) we also find that

sup
W (x)∨W (y)≤R

∆ρ(x, y) ≤ 1

1 + 2ρ
β(R)(M) + 2

ρR

1 + 2ρ
(1 + ε)

≤ β(R)(M) + 4ρR < 1

for any ρ < (1− β(R)(M))/(4R).

Combining these estimates with (4.44) we readily prove the following result.

When the drift condition (4.40) and the local Dobrushin condition (4.39) are satisfied for
some function W and some parameter ε ∈ [0, 1[, there exist some positive function V s.t.

βV (M) < 1

In this case there exists an unique invariant measure π = πM and we have the exponential
contraction inequality

‖µ1M
n − µ2M

n‖V ≤ βV (M)n ‖µ1 − µ2‖V −→n↑∞ 0 (4.51)

In exercise 4.7.1 we design a function V such that

βV (M) ≤ 1− 1− β(Rε)(M)

Rε(1 + 2
√

3)
with Rε := 2/(1− ε)

By definition of βV (Mn), for any function f such that

|f(x)| ≤ 1/2 + V (x) (⇒ |f(x)− f(y)| ≤ 1 + V (x) + V (y))

and for any (x, y) ∈ E we have

|Mn(f)(x)−Mn(f)(y)| ≤ βV (Mn) (1 + V (x) + V (y))

This implies that

|Mn(f)(x)− π(f)| ≤
∫
π(dy) |Mn(f)(x)−Mn(f)(y)|

≤ βV (Mn) (1 + V (x) + π(V ))
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4.6 The ergodic theorem

We consider the occupation measures of a Markov chain Xn with transition K on some state
space E defined by

πn :=
1

n+ 1

∑
0≤p≤n

δXp = π +
1√
n+ 1

V n
(
⇔ V n =

√
n+ 1 [πn − π]

)
(4.52)

We further assume that the Dobrushin ergodic coefficient of K is s.t.

β(Kn) ≤ a e−b n (4.53)

for some parameters a < ∞, and b > 0, and for any n ≥ 0. In this situation, the chain an unique
invariant measure π = πK and we have osc (Kn(f)) ≤ a e−b n, for any f s.t. osc(f) ≤ 1. Using the
fact that

‖Kn(f)− π(f)‖ = ‖Kn(f)− πKn(f)‖ ≤ osc (Kn(f))

we check that the functional series

P (f)(x) =
∑
n≥0

Kn(f)(x) ⇐⇒ P := [Id−K]−1 =
∑
n≥0

Kn

are well defined bounded functions for any f s.t. π(f) = 0, and osc (f) ≤ 1. We check this claim using
the fact that

‖P (f)‖ ≤
∑
n≥0

‖Kn(f)− πKn(f)‖ ≤
∑
n≥0

osc (Kn(f)) ≤ a/1− e−b

In addition, they solve the Poisson equation

g = P (f) ⇒ − L(g) = f with L = K − Id (4.54)

for any given function f s.t. π(f) = 0. We check this claim using the fact that

[Id−K]P (f)(x) =
∑
n≥0

Kn(f)(x)−
∑
n≥1

Kn(f)(x) = f(x)

By construction, we have [Id−K](g) = f − π(f), from which we check that

f(Xp)− π(f) = [Id−K](g)(Xp)

= g(Xp)−K(g)(Xp) = g(Xp)− E (g(Xp+1) | Xp)

= − (g(Xp+1)− g(Xp))︸ ︷︷ ︸
∆g(Xp+1)

+ (g(Xp+1)− E (g(Xp+1) | Xp))︸ ︷︷ ︸
=∆Mp+1(g)

This yields the decomposition

V n(f) =
1√
n+ 1

(g(Xn+1)− g(X0))− 1√
n+ 1

Mn+1(g) = −Mn+1(g)√
n+ 1

+ O(1/
√
n) (4.55)
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A a direct consequence of (4.55), we have |E [V n(f)]| →n↑∞ 0, and

E
(
V n(f)2

)
=

1

n+ 1
E (〈M(g)〉n+1)︸ ︷︷ ︸
≤(n+1) osc(g)

2

+o(1/n)⇒ sup
n≥0

E
(
V n(f)2

)
<∞ (4.56)

To compute the limiting variance, we notice that

n−1 E (〈M(g)〉n) = E

n−1
∑

0<p≤n

[
K(g2)−K(g)2

]
(Xn−1)


= E

(
πn−1(K(g2)−K(g)2)

)
−→n→∞ π

(
K(g2)−K(g)2

)
Thus, recalling that πK = π, we also have the asymptotic result

E
([
V n(f)2

])
−→n→∞ σ2(f) := π

(
g2
)
− π

(
K(g)2

)
Since g satisfies the Poisson equation we have

g = K(g) + (f − π(f))

⇒ π(g2) = π(K(g)2) + 2 π((f − π(f))K(g)) + π((f − π(f))2)

This implies that

σ2(f) = 2π((f − π(f))K(g)) + π((f − π(f))2)

= 2
∑
p≥1

π([f − π(f)]Kp[f − π(f)]) + π([f − π(f)]2)

4.7 Exercises

Exercise 4.7.1 The aim of this exercise is to quantify more explicitly the geometric drift contraction
inequalities discussed in section 4.4.4. We set Rε := 2/(1− ε), αε := 1− β(Rε)(M), and δ := (1− ε).

• Choosing R = Rε in (4.49) and (4.50), check that

∀ρ ∈]0, 1] sup
W (x)∧W (y)≥Rε

∆ρ(x, y) ≤ 1− 1

2

4ρ(1− ε)
(1− ε) + 4ρ

< 1

and

∀ρ ∈]0, αεδ/8[ sup
W (x)∨W (y)≤Rε

∆ρ(x, y) ≤ 1−
(
αε −

8ρ

1− ε

)
< 1

• We set u := 4ρ/δ, and

g(u) :=
1

2

4ρ(1− ε)
(1− ε) + 4ρ

=
δ

2

(
1− 1

1 + u

)
h(u) :=

(
αε −

8ρ

1− ε

)
= (αε − 2u)

Check that these two functions intersects at some point

u =
√
a2 + b− a ∈ [0, b]
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with

a :=
1

2

(
1− b+

δ

4

)
≤ 1

2
and b :=

αε
2

Prove that for any v ≥ 0 we have

√
1 + v ≥ 1 +

v

2
√

1 + v

and deduce that

g(u) = h(u) ≥ δb

1 + 2
√

3

• Deduce from the above that for ρ = uδ/4 we have

βVρ(M) ≤ 1− (1− ε)(1− β(Rε)(M))

2(1 + 2
√

3)

Exercise 4.7.2 We consider a stochastic matrix with positive entries

M =

 p11 p12 p13

p21 p22 p23

p31 p32 p33


For any x ∈ S = {1, 2, 3}, we denote by G(i) the set of all the i-graphs. An i-graph is a set of directed
edges without any loops connecting all the states j 6= i without cycles to i; and with a single edge
starting from the states j 6= i. For instance, the set 1-graphs G(1) = {g1, g2, g3} with the directed
graphs defined below

2

��

3

��
1

2

��

3oo

1

3

��

2oo

1
g1 g2 g3 and

Prove that the unique invariant measure of the chain is given by

π(i) = γ(i)/
∑

1≤j≤3

γ(j) with γ(i) =
∑
g∈G(i)

∏
(k,l)∈g

pk,l

For instance, for i = 1 we have

γ(1) =
∑
g∈G(1)

∏
(i,j)∈g

pi,j = (p21p31 + p32p21 + p23p31)

Exercise 4.7.3 We consider a Markov transition on some finite state space such that the Mm(x, y) >
0, for any x, y ∈ E, for some m ≥ 1. Prove that the unique invariant measure of the chain is given by

π(x) = γ(x)/
∑
y∈E

γ(y) with γ(x) =
∑
g∈G(x)

∏
(y,z)∈g

M(y, z)

where G(x) stands for the set of x-graphs defined in exercise 4.7.2.

Exercise 4.7.4 We consider the stochastic matrix presented in exercise 4.7.2.
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• Prove that the characteristic polynomial P (λ) = Det(M − λI) is given by

P (λ) = (1− λ)
(
λ2 + (1−A)λ+ C

)
with C = 1− (A+B), and

A = p11 + p22 + p33

B = p23p32 + p12p21 + p13p31 − (p11p22 + p11p33 + p22p33)

• Check that

−1−A
2

= 1− (q12 + q13 + q23)

with the parameters qi,j = (pij + pji)/2.

• Check that
B = −3 + 4 (q12 + q13 + q23)−D

with
D = 4 (q12q13 + q12q23 + q13q23)− (p21p23 + p12p13 + p31p32)

• Deduce that (
1−A

2

)2

− C = ∆(q) + δ(p)

with the parameters

∆(q) =
1

2

[
(q12 − q13)2 + (q12 − q23)2 + (q13 − q23)2

]
δ(p) = [p12p13 − q12q13] + [p21p23 − q21q23] + [p31p32 − q31q32]

• Conclude that the eigenvalues of M are given by λ1 = 1, and

λ2 = (1− (q12 + q13 + q23)) +
√

∆(q) + δ(p)

λ3 = (1− (q12 + q13 + q23))−
√

∆(q) + δ(p)

with the convention
√
−a = i

√
a, for any a ≥ 0.

• In the reversible case, check that δ(p) = 0, and

λ3 ≤ λ2 ≤ λ1 = 1



Chapter 5

Continuous time models

5.1 Continuous vs discrete time models

The abstract Markov chain framework introduced in Section 4 encapsulates continuous time evolutions
of nonanticipative processes, as well as càdlàg Markov processes (X ′t)t≥0, taking values on some Polish
state space E (i.e., a separable and completely metrizable topological space).

For instance, given some time mesh (tn)n≥0, the sequence of random variables Xn defined by

Xn = X ′tn , Xn = (X ′t)tn≤t≤tn+1 , and resp. Xn = (X ′t)0≤t≤tn

are Markov chains taking values in En = E, En = D([tn, tn+1], E), and resp. En = D([0, tn], E), where
D([a, b], E) stands for the set of càdlàg paths from the time interval [a, b] into the set E.

Of course the Monte Carlo simulation of continuous time models (X ′t)t≥0 often requires to discretize
the time into small time intervals, just like a video is actually discretized into a series of discrete
generation frame sequences.

For instance, let us suppose we are given an Rd-valued Itô stochastic differential equation

dX ′t = a′t(X
′
t) dt+ σ′t(X

′
t) dWt (5.1)

with some initial random variable X ′0 with distribution η′0 = Law(X ′0). In the above display, Wt is a
standard d-dimensional Wiener process, and for any x ∈ Rd, σ′t(x) = (σ′t,i,j(x))1≤i,j≤d and a′t(x) =
(a′t,i(x))1≤i≤d are, respectively, a symmetric nonnegative definite matrix and a vector with appropriate
dimensions. In the further development of these lectures notes, it is implicitly assumed that the drift
and diffusion functions are sufficiently regular so that the stochastic processes are well defined at all
times.

A Euler type discretization Xn ' X ′tn of the diffusion (5.1) is given by the Markov chain

Xn = Xn−1 + an (Xn−1) ∆ + σn (Xn−1)
(
Wtn −Wtn−1

)
(5.2)

on the time mesh (tn)n≥0 s.t. (tn − tn−1) = ∆ > 0, with the drift and diffusion functions
given by

(an, σn) =
(
a′tn−1

, σ′tn−1

)
and the initial random variable, X0 = X ′0.

High order or implicit time discretization schemes can also be used to cure the instability of some
evolution models.

In the same vein, suppose we are given a jump type Markov process X ′t that evolves between jump
times Tn as in (5.1).

87
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The jump times Tn are defined in terms of a sequence (en)n≥1 of independent and iden-
tically distributed (abbreviated i.i.d.) exponentially distributed random variables with unit
parameter. The successive jump times are defined sequentially by the following recursion

Tn = inf

{
t ≥ Tn−1 :

∫ t

Tn−1

λ′u(X ′u) du ≥ en

}
(5.3)

with T0 = 0, and some nonnegative function λ′u. At jump times Tn, the process at X ′Tn−
jumps to a new location X ′Tn randomly selected with some distribution S′Tn−(X ′Tn−, dy).

In the above discussion, we have implicitly assumed that the parameters (a′t, σ
′
t, λ
′
t) are sufficiently

regular, so that the jump diffusion defined by (5.1) and (5.3) is well defined on the real line R+ = [0,∞[.

Discretizing the integral in (5.3) on a time mesh tn with time step h, we define a sequence of
random times

T hn = inf

tm ≥ T hn−1 : exp

− ∑
Thn−1≤tk<tm

λ′tk(X ′tk) h

 ≤ − exp en = un


= inf

tm ≥ T hn−1 :
∏

Thn−1≤tk<tm

e
−λ′tk (X′tk

) h ≤ un


where un stands for a sequence of i.i.d. random variables on [0, 1].

This shows that

P
(
T hn = tm | X ′tk , tk < tm

)
=

 ∏
Thn−1≤tk<tm−1

e
−λ′tk (X′tk

) h

 (
1− e−λ

′
tm−1

(X′tm−1
) h
)

Thus, a discrete time approximation of the jump-diffusion model on a time mesh tn is
given by a Markov chain Xn with elementary transitions

Kn(x, dz) =

∫
Mn(x, dy) Jn(y, dz) (5.4)

where Mn stands for the transition of the Markov chain (5.2), and Jn is the geometric jump
type Markov transition defined in terms of the couple (Gn, Sn) =

(
exp

(
−∆λ′tn

)
, S′tn

)
, by

the following equation

Jn(y, dz) = Gn(y) δy(dz) + (1−Gn(y)) Sn(y, dz) (5.5)

We refer to the articles by E. Pardoux and D. Talay [486], V. Bally and D. Talay [34], as well as the
seminal articles by P.E. Kloeden, E. Platen, and their co-authors [384, 385, 386, 387], for a detailed
convergence analysis of time discretization schemes.
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5.2 Martingale decomposition

To clarify the presentation, we suppress the index (.)′ and we let Xt be a jump-diffusion process defined
as in (5.1) and (5.3) replacing (a′t, σ

′
t, λ
′
t, S
′
t) by some parameters (at, σt, λt, St). For any s ∈ R+ and

x ∈ R we denote by
t ∈ [s,∞[ 7→ ϕs,t (x) ∈ Rd

the solution of the equation (5.1) starting at x at time t = s. The mappings ϕs,t (x) are called the
stochastic flow of the diffusion process (5.1).

5.2.1 The Ito formula

In this notation, if Ts stands for the first jump time after time s, we have

P
(
T (s) ∈ dt ,XT (s) ∈ dy | Xs, ϕs,r (Xs) , r ≥ s

)
= λt(ϕs,t(Xs)) exp

(
−
∫ t

s
λr(ϕs,r(Xs)) dr

)
1s≤t dt︸ ︷︷ ︸

P(T (s)∈dt | Xs, ϕs,r(Xs), r≥s)

× St(ϕs,t(Xs), dy)︸ ︷︷ ︸
P(X

T (s)∈dy | T (s)=t, ϕs,r(Xs), r≥s)

=⇒ P
(
T (t) ∈ dt ,Xt+dt ∈ dy | Xt

)
= λt(Xt) dt St(Xt, dy)

(5.6)

Expanding a formal Taylor series, for smooth functions f on R+ × Rd we have

df(t,Xt) = f(t+ dt,Xt + dXt)− f(t,Xt)

=
∂f

∂t
(t,Xt)dt +

d∑
i=1

∂if(Xt) dX
i
t +

1

2

d∑
i,j=1

∂i,jf(Xt) dX
i
tdX

j
t

+∆f(t,Xt)−

 d∑
i=1

∂if(Xt) ∆Xi
t +

1

2

d∑
i,j=1

∂i,jf(Xt) ∆Xi
t∆X

j
t


(5.7)

The terminology smooth is used to described functions which can be derived at any order and have
bounded derivatives with compact support. These regularity conditions can be relaxed using appro-
priate domains of definitions; we have chosen here these strong conditions to clarify the presentation
and concentrate on the stochastic modeling rather than on sophisticated analytical considerations.

The r.h.s. term comes from the fact that

dXi
t = dXc,i

t + ∆Xi
t

with the jump term ∆Xi
t , and the increment

dXc,i
t := bit(Xt) dt+

∑
1≤j≤d

σij,t(Xt) dW
j
t

of the continuous process

Xc,i
t := Xi

0 +

∫ t

0
bit(Xs) ds+

∑
1≤j≤d

∫ t

0
σij,s(Xt) dW

j
s
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In this situation, we have

dXc,i
t dX

c,j
t =

∑
1≤k,l≤d

σik,t(Xt) σ
j
l,t(Xt) dW

k
t dW

l
t

and applying the rules dW k
t × dW l

t = 1k=l dt, and dt× dW i
t = 0, we conclude that

dXci
t dX

cj
t =

∑
1≤k≤d

σik,t(Xt) σ
j
k,t(Xt) dt =

(
σt(σt)

T
)i
j

(Xt) dt

In this context, the quadratic term dXi
tdX

j
t is interpreted as the increment of the covariation

process

dXi
tdX

j
t =

(
σt(σt)

T
)
i,j

(Xt) dt+ ∆Xi
t∆X

j
t

:= d
[
Xi, Xj

]
t

= d〈Xc,i, Xc,j〉t + ∆Xi
t∆X

j
t

with

d〈Xc,i, Xc,j〉t = dXc,i
t dX

c,j
t =

(
σt(σt)

T
)i
j

(Xt) dt

Rewritten in terms of the continuous and jump parts of the process, the Doeblin-Itō formula (5.7)
takes the form

df(t,Xt) =
∂f

∂t
(t,Xt)dt +

d∑
i=1

∂if(Xt) dX
c,i
t

+
1

2

d∑
i,j=1

∂i,jf(Xt) dX
c,i
t dX

c,j
t + ∆f(t,Xt)

To take the final step, we use (5.6) to check that

∆f(t,Xt) = E (∆f(t,Xt) | Ft) + ∆f(t,Xt)− E (∆f(t,Xt) | Ft)

with the predictable part of the increment

E (∆f(t,Xt) | Ft) = λt(Xt) dt

∫
(f(t, y)− f(t, x)) St(x, dy)

and the martingale part of the increment

dMd
t (f) = ∆f(t,Xt)− E (∆f(t,Xt) | Ft)
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This shows that

df(t,Xt) =

[
∂

∂t
+ Lt

]
f(t,Xt) dt+ dMt(f) (5.8)

with the sum Lt = Lct + Ldt of the generators

Lct(f) =
d∑
i=1

ait ∂if +
1

2

d∑
i,j=1

(
σt(σt)

T
)i
j
∂i,jf

:= at ∇f +
1

2
Tr
(
σtσ

T
t ∇2f

)
and Ldt = λt [St − Id] (5.9)

and the martingale increments

dMt(f) = dM c
t (f) + dMd

t (f) with dM c
t (f) :=

d∑
i,j=1

∂if(Xt) σ
i
j,t(Xt) dW

j
t

We recall that the angle bracket 〈M〉t (a.k.a. the predictable quadratic variation) of a given
martingale Mt w.r.t. some filtration Ft is the predictable stochastic process 〈M〉t s.t. M2

t − 〈M〉t is
a martingale. By construction, arguing as in the discrete time case, the angle bracket of Mt(f) w.r.t.
the filtration Ft = σ(Xs, s ≤ t) is the sum

〈M(f)〉t = 〈M c(f)〉t + 〈Md(f)〉t

of the angle brackets of the martingales M c
t (f) and Md

t (f) given by

〈M c(f)〉t =

d∑
i,j=1

∫ t

0
E
(
(dM c

s (f))2 | Fs
)

=

d∑
j=1

∫ t

0

(
d∑
i=1

∂if(Xs) σ
i
j,s(Xs)

)2

ds (5.10)

and

〈Md(f)〉t =

∫ t

0
E
(

(dMd
s (f))2 | Fs

)
=

∫ t

0
E
(

(∆Md
s (f))2 | Fs

)
=

∫ t

0
E
(
(∆f(s,Xs))

2 | Fs
)

=

∫ t

0
λs(Xs)

[∫
(f(s, y)− f(s,Xs))

2 Ss(Xs, dy)

]
ds

(5.11)

These angle brackets can be rewritten in a more synthetic form

〈M(f)〉t =

∫ t

0
ΓLs(f(s, .), f(s, .))(Xs) ds

in terms of the ”carré du champ” operators

ΓLt(f, f)(x) := Lt((f − f(x))2)(x)

= Lt(f
2)(x)− 2f(x)Lt(f)(x) = ΓLct (f, f)(x) + ΓLdt

(f, f)(x)

The ”carré du champ” is non negative since we have

ΓLt(f, f)(x) 'h↓0
[Pt,t+h − Id][(f − f(x))2]

h
(x) =

Pt,t+h[(f − f(x))2]

h
(x) ≥ 0
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We can also show that

Mt(f)Mt(g)− 〈M(f),M(g)〉t is a martingale

with the angle bracket

d〈M(f),M(g)〉t = E (dMt(f)dMt(g) | Xt) = ΓL(f, g)(Xt) dt

defined in terms of the ”carré du champ” operators

ΓLt(f, g)(x) = Lt((f − f(x))(g − g(x)))(x) ='h↓0
[Pt,t+h − Id][(f − f(x))(g − g(x))]

h
(x)

5.2.2 A local characterization

In this section, we present an alternative, and more intuitive, local characterization of the infinitesimal
generator, and its “carré du champ” operator in terms of limiting predictable averages of the increments
of ft(Xt) and the ones of the martingale Mt(f).

Firstly, using (5.8), we readily show that

1

t− s
E (ft(Xt)− fs(Xs) | Fs )

=
1

t− s
E
(∫ t

s

(
∂

∂τ
+ Lτ

)
(fτ )(Xτ ) dτ | Fs

)
This implies that

1

t− s
E ( [ft(Xt)− fs(Xs)] | Xs = x) −→t→s

(
∂

∂s
+ Ls

)
(fs)(x)

On the other hand, using the fact that Mt(f) and Mt(f)2 − 〈M(f)〉t are F-martingales, we prove
that

E
(
[Mt(f)−Ms(f)]2 | Fs

)
= E

(
Mt(f)2 | Fs

)
−Ms(f)2

= E
(
Mt(f)2 − 〈M(f)〉t | Fs

)
−
(
Ms(f)2 − 〈M(f)〉s

)︸ ︷︷ ︸
=0

+E (〈M(f)〉t − 〈M(f)〉s | Fs )

= E (〈M(f)〉t − 〈M(f)〉s | Fs )

from which we conclude that

E
(
[Mt(f)−Ms(f)]2 | Fs

)
= E

(∫ t

s
ΓLτ (fτ , fτ ) (Xτ ) dτ | Xs

)
Arguing as above, we prove that

1

t− s
E
(
[Mt(f)−Ms(f)]2 | Fs

)
−→t→s ΓLs (fs, fs) (Xs)
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or alternatively

1

t− s
E

([
ft(Xt)− fs(Xs)−

∫ t

s

(
∂

∂τ
+ Lτ

)
(fτ )(Xτ ) dτ

]2

| Xs = x

)

−→t→s ΓLs (fs, fs) (x)

We end this section, we an informal derivation of the infinitesimal generator of the jump-diffusion
process (5.3) in terms of the Markov chain with elementary transitions Kn.

Infinitesimal generators play a central role in stochastic analysis. They provide a complete analytic
description of continuous time Markov process in terms of integro-differential operators L′t acting on
some domain D of sufficiently regular functions f with the following formulae

lim
s→t

[
P ′s,t − Id

ε

]
(f)(x) = lim

s→t
ε−1E ((f(Xt)− f(x)) | Xs = x) = L′t(f)(x)

This yields the first order expansion of the semigroup

P ′s,t = Id+ (t− s) L′t + O((t− s))

The regularity property of the functions depends on the dynamics of the Markov process under study.
The generator of pure jump models are defined on every bounded measurable functions. The one of
Rd-valued diffusion processes is a second oder differential operator, only defined on twice differentiable
and bounded functions.

Taking ∆ ' 0 in (5.5), we find the approximations

Jn − Id =
(
1− exp

(
−∆λ′tn

))
(P ′tn − Id) ' λ′tn (P ′tn − Id) ∆

In much the same way, for any smooth functions f we have

(Mn − Id)(f)(x) ' E
(
f
(
a′tn−1

(x) ∆ + σ′tn−1
(x)

(
Wtn −Wtn−1

))
− f(x)

)
' L′tn−1

(f)(x) ∆

with the operator L′t defined by the following formula

L′t :=
d∑
i=1

a′t,i ∂i +
1

2

d∑
i,j=1

(
σ′t(σ

′
t)
T
)
i,j

∂i,j (5.12)

Combining these couple of approximations, we find that

(Kn − Id)(f)(x) = [(Id+ (Mn − Id))(Id+ (Jn − Id))− Id](f)(x) (5.13)

' (Mn − Id)(f)(x) + (Jn − Id)(f)(x) = Ltn−1(f)(x) ∆ (5.14)

with the infinitesimal generator of the jump-diffusion model

Lt(f)(x) := L′t(f)(x) + λ′t(x)

∫
[f(y)− f(x)] P ′t(x, dy) (5.15)

For a more thorough and rigorous discussion on these probabilistic models, we refer the reader to the
seminal books by Daniel Revuz and Marc Yor [506], Ioannis Karatzas and Steven Shreve [372], as well
as the book by Stewart Ethier and Thomas Kurtz [392], the one by Bernt Øksendal [471], and my
review article with N. Hadjiconstantinou [182].
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5.3 Path space and twisted processes

Continuous time stochastic processes are defined in terms of a sequence of random variables Xt with
a time index t taking values in the uncountable continuous time axis R+. As a result, proving the
existence and the uniqueness of their distribution on the set of trajectories require some sophisticated
probabilistic and analytic tools. In contrast with discrete generation stochastic processes, we don’t
have any explicit description of these probability measures.

Nevertheless, apart from some mathematical technicalities, the analysis of these path space mea-
sures often follows the same construction as in the discrete time case. Furthermore, despite the formal
derivation of our constructions, all the formulae presented in this section are mathematically correct.

Path space measures are not only of pure mathematical interest. They are commonly used in engi-
neering sciences, statistical machine learning, reliability analysis, as well as in mathematical finance.s
Most of these applications rely on Bayesian inference, maximum likelihood estimation, importance
sampling techniques and Girsanov type change of probability measures.

To guide the reader’s intuition we present a rather informal discussion on these path space models
and their application models.

5.3.1 Pure jump models

Path space measures

We start with a pure jump process Xt with intensity function λt(x) and jump amplitude transition
Mt(x, dy) on some state space S. In other words, Xt is a stochastic process with infinitesimal generator

Lt(f)(x) = λt(x)

∫
[f(y)− f(x)] Mt(x, dy)

We let (Tk)k≥0 be the sequence of jump times of Xt, with the convention T0 = 0, and we assume that
X0 = ω0 for some ω0 ∈ S.

The random trajectories of the process on some time interval [0, t] are càdlag paths

ω : s ∈ [0, t] 7→ ωs ∈ S

with a finite number, say n, of jump epochs tk ∈ [0, t], k ≤ n, defined by the fact that ∆ωtk 6= 0, with
k ≤ n. In addition, between the jumps the trajectory remains constant, in the sense that ωs = ωtk , for
any s ∈ [tk, tk−1[. We let D([0, t], S) be the set of all the càdlag paths from [0, t] into S, and D0([0, t], S)
the subset of the càdlag piecewise constant paths, with a finite number of jump times.

By construction, we have

P
(
(Tk+1, XTk+1

) ∈ d(tk+1, ωtk+1
) | (Tk, XTk) ∈ d(tk, ωtk)

)
= λtk+1

(ωtk) exp
(
−
∫ tk+1

tk
λs(ωtk) ds

)
dtk+1 ×Mtk+1

(ωtk , dωtk+1
)

and

P (Tn+1 ≥ t | (Tn, XTn) ∈ d(tn, ωtn)) = exp

(
−
∫ t

tn

λs(ωtn) ds

)
In the above displayed formula, dtk and dωtk stands for an infinitesimal neighborhood of the points

tk ∈ [0, t] and ωtk ∈ S.

In the further development of this section, (tk)1≤k≤n ∈ [0, t]n stands for the jump times or a
trajectory ω = (ωs)s≤t ∈ D0([0, t], S). Recalling that ωs = ωtk , for any s ∈ [tk, tk+1[, we have the
following construction.
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The path space distribution of X = (Xs)s≤t is defined for any ω = (ωs)s≤t ∈ D0([0, t], S) by

P (X ∈ dω)

:= P ((T1, XT1) ∈ d(t1, ωt1), . . . , (Tn, XTn) ∈ d(tn, ωtn) , Tn+1 ≥ t)

= exp

(
−
∫ t

0
λs(ωs−) ds

)
×

∏
s≤t : ∆ωs 6=0

[λs(ωs−) ds Ms(ωs−, dωs)]

(5.16)

One direct consequence of this result is the conditional distribution formula

P ((Xr)s≤r≤t ∈ d(ωs)s≤r≤t) | (Xr)0≤r<s = (ωr)0≤r<s )

= P ((Xr)s≤r≤t ∈ d(ωs)s≤r≤t) | Xs− = ωs− )

= exp

(
−
∫ t

s
λr(ωr−) dr

)
×

∏
s≤r≤t : ∆ωr 6=0

[λr(ωr−) dr Mr(ωr−, dωr)]

There exists a unique path space measure P on D([0,∞[,R) s.t. its restrictions to every time
mesh sequence are given by (5.20). This path space measure is the distribution of the pure
jump process X = (Xs)s∈[0,t].

Proof :
One strategy is to consider the set of paths sequence indexed by rationals and taking values in the
compact space R = R ∪ {∞}:

Ω := D([0,∞[∩ Q,R) :=
∏
t∈Q

R =
{

(ωs)s∈Q : ωs ∈ R ∀s ∈ Q
}

By construction the product space Ω is a compact metrizable state space. Then, we interpret the
measures P defined in (5.16) as positive linear functionals on the space C(Ω) of real valued continuous
functions over ΩQ s.t. P(1) = 1. For any F ∈ C(Ω) that only depends on the values of ω on some mesh
sequence tn ∈ Q we have

P(F ) =

∫
F (ω) P (X ∈ dω)

with the measure P defined in (5.20). This proves the existence and the consistency of these mea-
sures on the subspace Cfinite(Ω) of functions that only depends on the values of ω on some finite
mesh sequence tn ∈ Q. Since Cfinite(Ω) is dense in C(Ω), invoking the Stone-Weierstrass theorem,
we conclude that there exists a unique extension to the set C(Ω). This ends the proof of the theorem.

The Poisson process with time non homogenous intensity λt corresponds to the situation where
Mt(x, dy) = δx+1(dy) and λt(x) = λt.

In this situation, for any ω ∈ D0([0, t], S), such that ∆ωtk = 1, with k ≤ n, we have

P (X ∈ dω) = exp

(
−
∫ t

0
λs ds

)
×

∏
s≤t : ∆ωs 6=0

[λs ds]

= exp

(
−
∫ t

0
λs ds+

∫ t

0
log (λs) dωs

)
dt1 . . . dtn (5.17)
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The corresponding path space measure on ω ∈ D0([0, t], S) is called the Poisson measure.

For time homogenous models, this formula also reduces to

P (X ∈ dω) = e−λt λn dt1 . . . dtn

= e−λt λωt dt1 . . . dtn

Likelihood functionals

We let Λ be some positive valued random variable. Given Λ = λ, we let X = (Xs)s≤t be a Poisson
process with intensity λ. Combining

P (X ∈ dω | Λ = λ) = e−λt λωt dt1 . . . dtn

with Bayes’ rule, we find that the conditional distribution of Λ given a realization

X = (Xs)s≤t = (ωs)s≤t = ω

of the Poisson process is given by the formula

P [Λ ∈ dλ | X = ω] ∝ exp (L (λ | ωt))× P (Λ ∈ dλ)

with the log likelihood function

L (λ | ωt) := −λt + ωt log λ

We observe that the maximum value of the log-likelihood function is given by

∂

∂λ
L (λ | ωt) = −t + ωt

1

λ
= 0⇔ λ = ωt/t

We let Θ =
(
Θ1,Θ2

)
be some positive valued random variables. Given Θ = θ = (θ1, θ2), we

let X = (Xs)s≤t be a time non homogeneous Poisson process with power law intensity function
λt = θ1θ2tθ2−1. In this situation, we have

P (X ∈ dω | Λ = λ)

= exp

(
−
∫ t

0
λs ds

)
×

 ∏
1≤k≤n

λtk

 dt1 . . . dtn

= exp
(
−θ1tθ2

)
× (θ1θ2)n

 ∏
1≤k≤n

tθ2−1
k

 dt1 . . . dtn

Using Bayes’ rule, we find that the conditional distribution of Θ given a realization (Xs)s≤t =
(ωs)s≤t of the Poisson process is given by

P [Θ ∈ dθ | X = ω]

∝ exp [L (θ | ω)]× P (Θ ∈ dθ)
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with the log likelihood function

L (θ | ω) := −θ1tθ2 + ωt log
(
θ1θ2

)
+ (θ2 − 1)

∑
1≤k≤ωt

log tk

We observe that the maximum value of the log-likelihood function is given by the point θ s.t.
∂
∂θ1L (θ | (ωs)s≤t) = −tθ2

+ ωt
θ1 = 0 ⇐⇒ ωt = θ1tθ

2

=
∂
∂θ2L (θ | (ωs)s≤t) = − θ1 tθ

2︸ ︷︷ ︸
=ωt

log t+ ωt
θ2 + log

(∏
1≤k≤n tk

)
= 0

This implies that

θ2 = ωt

(
log

tωt∏
1≤k≤n tk

)−1

= ωt

 ∑
1≤k≤n

log
t

tk

−1

and

θ1 = ωt exp

(
− 1

1− 1
ωt

∑
1≤k≤ωt

log tk
log t

)

Girsanov’s transformations

We let (Xt, X
′
t) be a pair of pure jump process with positive intensity functions (λt(x), λ′t(x)), and

jump amplitude transitions (Mt(x, dy),M ′t(x, dy)) on some state space S.

We further assume that Mt and M ′t have a density mt and m′t with respect to some measure ν on
S; that is, we have that

Mt(x, dy) = mt(x, y) ν(dy) and M ′t(x, dy) = m′t(x, y) ν(dy)

For instance, all the Gaussian transitions on S = R are absolutely continuous w.r.t. the Lebesgue
measure ν(dx) = dx.

In this situation, the path space measures of

X = (Xs)s≤t and X ′ = (X ′s)s≤t

are defined for any ω = (ωs)s≤t ∈ D0([0, t], S) (with jump times (tk)1≤k≤n ∈ [0, t]n) by the formulae

P (X ∈ dω)

= exp

(
−
∫ t

0
λs(ωs−) ds

)
×

∏
s≤t : ∆ωs 6=0

[λs(ωs−) ds ms(ωs−, ωs) ν(dωs)]

and

P
(
X ′ ∈ dω

)
= exp

(
−
∫ t

0
λ′s(ωs−) ds

)
×

∏
s≤t : ∆ωs 6=0

[
λ′s(ωs−) ds m′s(ωs−, ωs) ν(dωs)

]
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It is readily check that
P
(
X ′ ∈ dω

)
= Z(ω)× P (X ∈ dω)

with the function

Z(ω) = exp

(
−
∫ t

0

[
λ′s − λs

]
(ωs−) ds

)

×
∏

s≤t : ∆ωs 6=0

[
λ′s(ωs−)

λs(ωs−)

m′s(ωs−, ωs)

ms(ωs−, ωs)

]

The above formula is called the Girsanov change of measure, or a Girsanov transformation. It is
often written for any function F on the path space D0([0, t], S) as follows

E
(
F
(
(X ′s)s≤t

))
= E (F ((Xs)s≤t) Zt) (5.18)

with the exponential stochastic processes Zt defined by

Zt = exp

(
−
∫ t

0

[
λ′s − λs

]
(Xs−) ds

)

×
∏

0≤s≤t : ∆ωs 6=0

[
λ′s(Xs−)

λs(Xs−)

m′s(Xs−, Xs)

ms(Xs−, Xs)

]

Exponential martingales

The Poisson processes (Xt, X
′
t) = (Nt, N

′
t) with time non homogenous intensity (λt, λ

′
t) corresponds

to the situation where

Mt(x, dy) = M ′t(x, dy) = δx+1(dy) and (λt(x), λ′t(x)) = (λt, λ
′
t)

In this situation, for any ω ∈ D0([0, t], S), such that ∆ωtk = 1, with k ≤ n, we have

Z(ω) = exp

[
−
∫ t

0

[
λ′s − λs

]
ds+

∫ t

0
log
(
λ′s/λs

)
dωs

]
Sometimes, we also rewrite this function in the following form

Z(ω) = exp

(
−
∫ t

0

[
λ′s − λs

]
ds

) ∏
0≤s≤t

(
1 +

(
λ′s
λs
− 1

)
∆ωs

)
We also have that

Zt = exp

[
−
∫ t

0

[
λ′s − λs

]
ds+

∫ t

0
log
(
λ′s/λs

)
dNs

]
= exp

(
−
∫ t

0

[
λ′s − λs

]
ds

) ∏
0≤s≤t

(
1 +

(
λ′s
λs
− 1

)
∆Ns

)
In terms of the martingale

dMλ
t =

(
λ′t
λt
− 1

)
(dNt − λtdt) =

(
λ′t
λt
− 1

)
dNt︸ ︷︷ ︸

∆Mλ
t

−
(
λ′t − λt

)
dt
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we also have the exponential formula

Zt = eM
λ
t

∏
0≤s≤t

((
1 + ∆Mλ

s

)
e−∆Mλ

s

)
We also notice that

Zt+dt − Zt = Zt

(
e(M

λ
t+dt−M

λ
t )−∆Mλ

t

(
1 + ∆Mλ

t

)
− 1
)

= Zt

(
e−(λ′t−λt)dt

[
1 + ∆Mλ

t

]
− 1
)

= Zt

([
1−

(
λ′t − λt

)
dt
] [

1 + ∆Mλ
t

]
− 1
)

= Zt

(
∆Mλ

t −
(
λ′t − λt

)
dt
)

= Zt dM
λ
t

This implies that
dZt = Zt dM

λ
t

In this notation, the change of measure formula (5.18) takes the following form.

For any t ≥ 0, and any functional F on D0([0, t],R) we have

E (F ((Ns)s≤t) Zt) = E
(
F
(
(N ′s)s≤t

))
(5.19)

with the martingale dZt = Zt dM
λ
t defined by the exponential formula

Zt = exp
(
Mλ
t

) ∏
0≤s≤t

{(
1 + ∆Mλ

s

)
exp

(
−∆Mλ

s

)}
and the martingale increments

dMλ
t =

(
λ′tλ
−1
t − 1

)
(dNt − λt dt)

If we interpret dZt = Zt − Zt−dt, then it is preferable to write dZt = Zt− dM
λ
t . In our notational

system, we interpret dZt = Zt+dt − Zt so that dZt = Zt dM
λ
t is well defined infinitesimal increment.

For time homogenous models (λt, λ
′
t) = (λ, λ′), this formula also reduces to

Z(ω) = e(λ−λ′)t ×
(
λ′/λ

)ωt ⇐⇒ Zt = e(λ−λ′)t ×
(
λ′/λ

)Nt
5.3.2 Diffusion models

The Wiener measure

The random trajectories of a Brownian process on some time interval [0, t] are continuous paths

ω : s ∈ [0, t] 7→ ωs ∈ R

We let C([0, t], S) be the set the continuous trajectories from [0, t] into R.
We consider a time mesh sequence tn = nh, with n ∈ N, and a given time step ∆t := h ∈]0, 1[.

By construction, the path space distribution of W = (Wtk)0≤k≤n is defined for any ω = (ωs)s≤tn ∈
C([0, tn],R) by

P (W ∈ dω) := P (Wt1 ∈ dωt1 , . . . , Wtn ∈ dωtn)

=
1

(2π∆t)n/2
exp

−1

2

∑
1≤k≤n

(
∆ωtk
∆t

)2

∆t

 dωt1 . . . dωtn (5.20)
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Since the path space measure of W := (Ws)s≤t is supported by the set of functions ω = (ωs)s≤t
that are nowhere differentiable we cannot pass in the limit ∆t→ 0 in the above formula. Nevertheless,
using the same lines of arguments as in the ones we used on page 95, we have the following result.

There exists a unique path space measure P on C([0,∞[,R) s.t. its restrictions to every
time mesh sequence are given by (5.20) This path space measure is the distribution of the
Brownian motion W = (Ws)s≥0, and it is called the Wiener measure on the set of continuous
trajectories Ω := C([0,∞[,R). The set Ω equipped with the Wiener measure P is called the
Wiener space.

Path space diffusions

To simplify the presentation, we restrict ourselves with a 1-dimensional diffusion Xt defined by the
SDE

dXt = b(Xt) dt+ dWt (5.21)

with some regular homogenous function b.

We denote by Xh
tn the discrete approximation model on some time mesh defined by

∆Xh
tn+1

:= Xh
tn+1
−Xh

tn = btn(Xh
tn) h+ σtn(Xh

tn) ∆Wtn+1 (5.22)

We assume that Xh
0 = ω0 = X0, for some ω0 ∈ R.

By construction, the the path space distribution of Xh = (Xh
tk

)0≤k≤n is defined for any ω =
(ωs)s≤tn ∈ C([0, tn],R) by

P
(
Xh ∈ dω

)
:= P

(
Xh
t1 ∈ dωt1 , . . . , X

h
tn ∈ dωtn

)
=

1

(2π∆t)n/2
exp

−1

2

∑
1≤k≤n

[
∆ωtk
∆t

− b(ωtk−1
)

]2

∆t

 dωt1 . . . dωtn

It is now readily checked that

P
(
Xh ∈ dω

)
:= Zh(ω)× P (W ∈ dω)

with the density function

Dh(ω) = exp

 ∑
1≤k≤n

b(ωtk−1
) ∆ωtk −

1

2

∑
1≤k≤n

b2(ωtk−1
) ∆t


Choosing tn = hbt/hc, and taking the limit h = ∆t → 0, we obtain the path space measure of the
diffusion process X = (Xs)s≤t on C([0, t],R)

P (X ∈ dω) := D(ω)× P (W ∈ dω) (5.23)

with the density function

D(ω) = exp

( ∫ t

0
b(ωs) dωs −

1

2

∫ t

0
b2(ωs) ds

)
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Girsanov transformations

The formula (5.23) is called the Cameron Martin formula or the Girsanov’s theorem for diffusion
processes.

As in the pure jump case, this formula is often rewritten as follows.

For any function F on the path space C([0, t],R) we have

E (F ((Xs)s≤t)) = E (F ((Ws)s≤t) D ((Ws)s≤t)) (5.24)

with the density function D on the path space C([0, t],R) defined by

Zt := D ((Ws)s≤t) = exp

(∫ t

0
b(Ws) dWs −

1

2

∫ t

0
b2(Ws) ds

)

Notice that

Zt = eUt with Ut :=

∫ t

0
b(Ws) dWs −

1

2

∫ t

0
b2(Ws) ds

Combining Doeblin-Itō formula with the fact that

dUt = b(Wt) dWt −
1

2
b(Wt)

2 dt and dUtdUt = b(Wt)
2 dW 2

t = b(Wt)
2 dt

we prove that Zt is a martingale with increments given by

dZt = eUt dUt +
1

2
eUt dUtdUt = Zt b(Wt) dWt

Girsanov Theorem:
We let Xt be the diffusion process defined as in (5.21) by replacing b(x) by some regular
function bt(x) and taking σt = 1. For any t ≥ 0, and any functional F on C([0, t],R) we
have

E (F ((Xs)s≤t) Lt) = E (F ((Ws)s≤t)) (5.25)

with the martingale
dLt = Lt b(Xt) dWt

given by the exponential formula

Lt = exp

(
−
∫ t

0
b(Xs) dWs −

1

2

∫ t

0
b2(Xs) ds

)

Proof :
We first observe that

exp
(
−
∫ t

0 b(Xs) dWs − 1
2

∫ t
0 b2(Xs) ds

)
= exp

(
−
∫ t

0 b(Xs) dXs + 1
2

∫ t
0 b2(Xs) ds

)
We check this claim using the fact that

dXt = b(Xt) dt+ dWt =⇒ dWt = dXt − b(Xt) dt

=⇒ b(Xt) dWt = b(Xt) dXt − b2(Xt) dt
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Replacing in (5.24) the function F ((Xs)s≤t) by the function

F ((Xs)s≤t) exp
(
−
∫ t

0 b(Xs) dWs −
∫ t

0 b2(Xs) ds
)

= F ((Xs)s≤t) exp
(
−
∫ t

0 b(Xs) dXs + 1
2

∫ t
0 b2(Xs) ds

)
we find that

E
(
F ((Xs)s≤t) exp

(
−
∫ t

0 b(Xs) dWs − 1
2

∫ t
0 b2(Xs) dr

))
= E

(
F ((Xs)s≤t) exp

(
−
∫ t

0 b(Xs) dXs + 1
2

∫ t
0 b2(Xs) ds

))
The end of the proof is now a direct consequence of (5.24). This ends the proof of the theorem.

The Girsanov theorem stated above and the formula (5.23) can be extended to d-dimensional non
homogeneous diffusions

dXt = bt(Xt) dt+ dWt (5.26)

where Wt is a d-dimensional Brownian motion (i.e. Wt =
(
W i
t

)
1≤i≤d with d independent Brownian

motions W i
t , 1 ≤ i ≤ d), and bt is a function taking values in Rd. In this situation, the formulae (5.23),

(5.24), and (5.25) are valid with

Zt = exp

(∫ t

0
bs(Ws)

′ dWs −
1

2

∫ t

0
‖bs(Ws)‖2 ds

)
and

Lt = exp

(
−
∫ t

0
bs(Xs)

′ dWs −
1

2

∫ t

0
‖bs(Xs)‖2 ds

)
5.3.3 Exponential twisted measures

We let Xt be some Markov process on some state space E with infinitesimal generator Lt.

We also consider a collection of sufficiently smooth positive functions ht, and we set

Mh
t := h−1

0 (X0)ht(Xt) exp

(
−
∫ t

0

[
h−1
s (∂s + Ls)hs

]
(Xs)ds

)
with h−1

t = 1/ht. Using Doeblin-Itō formula (5.8), we prove that Mh
t is a positive martingale

with unit mean.

More precisely, we have

dMh
t = Mh

t

{(
h−1
t (∂tht + Lt(ht))

)
(Xt) dt+ h−1

t (Xt)dMt(h)
}
−Mh

t [h−1
t Lt(ht)](Xt) dt

= h−1
t (Xt)M

h
t dMt(h) (5.27)

We let Xh be the process defined by the change of probability measure

E
(
F ((Xh

s )s≤t)
)

= E
(
F ((Xs)s≤t) M

h
t

)
The conditional expectations w.r.t. (Xh

r )r≤s, with s ≤ t are given by the formula

E
(
F1((Xh

r )r≤s) F2((Xh
r )s≤r≤t)

)
= E

(
F1((Xh

r )r≤s) E
(
F2((Xh

r )s≤r≤t) | (Xh
r )r≤s

) )
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On the other hand, using the Markov property we have

E
(
F1((Xh

r )r≤s) F2((Xh
r )s≤r≤t)

)
= E

(
F1((Xr)r≤s)M

h
s E

(
F2((Xr)s≤r≤t)M

h
t /M

h
s | Xs

) )
= E

(
F1((Xr)r≤s)M

h
s Phs,Xs(F2)

)
= E

(
F1((Xh

r )r≤s) Ph
s,Xh

s
(F2)

)
with the functional

Phs,x(F2) := E
(
F2((Xr)s≤r≤t)M

h
t /M

h
s | Xs = x

)
= h−1

s (x) E
(
F2((Xr)s≤r≤t) ht(Xt) exp

(
−
∫ t

s
h−1
s (Xs)(∂s + Ls)(hs)(Xs)ds

)
| Xs = x

)
This implies that

E
(
F2((Xh

r )s≤r≤t) | (Xh
r )r≤s

)
= E

(
F2((Xh

r )s≤r≤t) | Xh
s

)
= Phs,Xh

s
(F2)

To get one step further, for any sufficiently regular function f on E, combining (5.27) with Doeblin-
Itō formula (5.8) we prove that

d(f(Xt)M
h
t ) = Mh

t

df(Xt)︷ ︸︸ ︷
(Lt(f)(Xt)dt+ dMt(f)) +f(Xt)

=dMh
t︷ ︸︸ ︷

h−1
t (Xt)M

h
t dMt(h)

+E
(
df(Xt)dM

h
t | (Xs)s≤t

)
+ df(Xt)dM

h
t − E

(
df(Xt)dM

h
t | (Xs)s≤t

)
︸ ︷︷ ︸

:=Mt

for some martingale Mt. On the other hand, we have

E
(
df(Xt)dM

h
t | (Xs)s≤t

)
= E

(
dMt(f)dMh

t | (Xs)s≤t

)
= h−1

t (Xt)M
h
t E (dMt(f)dM(h)t | (Xs)s≤t)

= h−1
t (Xt)M

h
t d〈M(h),M(f)〉t = Mh

t

(
h−1
t ΓLt(ht, f)

)
(Xt) dt

This yields

f(Xt+dt) M
h
t+dt/M

h
t − f(Xt) =

(
f(Xt+dt)M

h
t+dt − f(Xt)M

h
t

)
/Mh

t

=
[
Lt(f) + h−1

t ΓLt(ht, f)
]

(Xt)dt+ dM̃t

for some martingale M̃t. In particular, This implies that

1

dt

[
E
(
f(Xh

t+dt) | Xh
t = x

)
− f(x)

]
=

1

dt

[
E
(
f(Xh

t+dt) M
h
t+dt/M

h
t | Xt = x

)
− f(x)

]
'dt↓0 L

[h]
t (f)(x) := Lt(f)(x) + h−1

t (x)ΓLt(ht, f)(x)

This show that Xh
t has infinitesimal generator

L
[h]
t (f) := Lt(f) + h−1

t ΓLt(ht, f)
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For the diffusion generator Lt = Lct defined in (5.9), using (5.10) we have

L
[h]
t (f) =

d∑
i=1

ah,it ∂if

with the drift functions ah,it defined for any 1 ≤ i ≤ d by

ah,it := ait +
d∑

k=1

(
σtσ

T
t

)k
i
∂k log ht

with
(
σtσ

T
t

)k
i

=
d∑
j=1

σkj,tσ
i
j,t


For the jump generator Lt = Ldt defined in (5.9), using (5.11) we find that

L
[h]
t (f)(x) = Lt(f)(x) + λt(x)

∫
(f(y)− f(x))

(
ht(y)

ht(x)
− 1

)
St(x, dy)

= λht (x)

∫
(f(y)− f(x)) Sht (x, dy)

with the jump intensity and transition kernels

λht := λt h
−1
t St(h) and Sht (x, dy) :=

St(x, dy) ht(y)

St(h)(x)

5.4 Evolution semigroups

We return to the jump-diffusion process Xt discussed in section 5.2. Its conditional transitions are
given for any 0 ≤ r ≤ s ≤ t, and any bounded Borel function f on Rd by the formulae

Pr,t(f)(x) := E (f(Xt) | Xr = x) = E (ϕ0,t (x))

= = E (E (f(Xt) | Xs ) | Xr = x) = Pr,s(Ps,t(f))(x)⇔ Pr,t = Pr,sPs,t

In probability theory, the r.h.s. semigroup property is also called the Chapman-Kolmogorov formula.
The law of the random states ηt = Law(Xt) satisfy the linear evolution equation

∀s ≤ t ηt = ηsPs,t

Using (5.8), we have the local description of the predictable increment

[Pt,t+dt − Id](f)(x) = E ([f(Xt+dt)− f(Xt)] | Xt = x)

= Lt(f)(x) dt ⇐⇒ Pt,t+dt = Id+ Lt dt + o(dt)

We quote 2 important consequences of these expansions

d

dt
Ps,t =

1

dt
[ Ps,t+dt︸ ︷︷ ︸
=Ps,tPt,t+dt

−Ps,t] = Ps,t

[
Pt,t+dt − Id

dt

]
= Ps,tLt (5.28)

d

ds
Ps,t =

1

−ds
[ Ps−ds,t︸ ︷︷ ︸
=Ps−ds,sPs,t

−Ps,t] =

[
Ps−ds,s − Id
−ds

]
= −LsPs,t (5.29)
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For time homogeneous models Ps,t = P0,t−s := Pt−s, these two formulae reduce to

d

dt
Pt = PtL = LPt (5.30)

The semigroup Pt is sometimes written in the exponential form

Pt = etL (5.31)

For pure jump models on a finite set E, the infinitesimal generator L is given by the matrix

L(f)(x) = λ(x)
∑
y∈E

(f(y)− f(x)) S(x, y)

where S(x, y) stands for the (x, y)-entry of a stochastic matrix S.

In this situation (5.31) reduces to the exponential matrix formula

Pt = etL =
∑
n≥0

tn

n!
Ln (5.32)

It is also instructive to notice that

P (Xt+dt = y | Xt = x) = Pdt(x, y) = eLdt(x, y)

with

eLdt(x, y) 'dt↓0 1x=y + L(x, y)dt

= 1x=y + λ(x) (S(x, y)− 1x=y) dt = λ(x)dt S(x, y) + (1− λ(x)dt) 1x=y

This shows that the discrete time approximation of the continuous time jump process is
defined by an aperiodic Bernoulli type jump Markov chain model.

5.5 Feynman-Kac perturbation semigroups

In the further development of this section Xt stands for the jump-diffusion process with jump intensity
λt discussed in section 5.2, and ϕs,t (x) stands for the stochastic flow of the diffusion process (5.1).
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5.5.1 Feynman-Kac models

We let P λs,t be the semigroup defined by

P λs,t(f)(x) := E
[
f(ϕs,t(x)) exp

(
−
∫ t

s
λu(ϕs,u(x))du

)]
(5.33)

Notice that P λs,t is the semigroup of flow of Feynman-Kac measures γt defined by

γt(f) = E
[
f(ϕ0,t(x)) exp

(
−
∫ t

0
λu(ϕ0,u(x))du

)]
= γs

(
P λs,t(f)

)
(5.34)

for any s ≤ t. The normalized version of these distributions are given by

ηt(f) = γt(f)/γt(1)

For the null intensity function λt = 0, P 0
s,t coincides with the evolution semigroup of the d-

dimensional diffusion without jumps; that is, we have that

P 0
s,t(f)(x) = E [f(ϕs,t(x))] = Ps,t(f)(x)

We emphasize that γt, and resp. ηt, are the marginal w.r.t. the final time horizon t of the measures
γt, and resp. ηt, on the set of càdlàg paths Et = D([0, t],Rd) from the interval [0, t] into Rd defined
for any measurable function ft on D([0, t],Rd) by

γt(ft) = E
(
ft(Xt) exp

(
−
∫ t

0
λs(Xs)ds

))
and ηt(ft) = γt(ft)/γt(1)

with
Xt = (Xs)s≤t and λt(Xt) = λt(Xt)

The measures ηt = Qt are sometimes written in terms of the weighted distribution

Qt(dx) :=
1

Zt
exp

(
−
∫ t

0
λs(xs)ds

)
Pt(dx) (5.35)

of the random trajectories of the Markov chain Pt = Law (Xt), with the normalizing
constants

Zt = γt(1) = E
(

exp

(
−
∫ t

0
λs(Xs)ds

))
In the above display, dx = d(xs)s≤t stands for an infinitesimal neighborhood of the path
x = (xs)s≤t.

5.5.2 Partition functions

We underline that the normalizing constants Zt (also termed in physics the partition function or the
free energy), as well as the measures Qt, can be represented in terms of the flow of marginal measures
(ηs)0≤s≤t. More precisely, we have the easily checked multiplicative formulae

Zt = E
(

exp

(
−
∫ t

0
λs(Xs)ds

))
= exp

(
−
∫ t

0
ηs(λs)ds

)
(5.36)
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We check this claim using the fact that

d

dt
logZt = − 1

Zt
E
(
λt(Xt) exp

(
−
∫ t

0
λs(Xs)ds

))
= ηt(λt)

More generally, using this formula the unnormalized measures γt := Zt × ηt can also be
rewritten in the following form

γt(f) = ηt(ft) exp

(
−
∫ t

0
ηs(λs)ds

)
(5.37)

Inversely, we also have that

ηt(ft) = γt(f) exp

∫ t

0
ηs(λs)ds = E

(
f(Xt) exp

(
−
∫ t

0
[λs(Xs)− ηs(λs)]ds

))
= E

(
f(Xt) exp

(
−
∫ t

0
λs(Xs)ds

))
(5.38)

with the normalized function

λt = λt − ηt(λt)

5.5.3 Evolution semigroups

Using the fact that

d

dt
exp

(
−
∫ t

s
λu(ϕs,u(x))du

)
= −λt(ϕs,t(x)) exp

(
−
∫ t

s
λu(ϕs,u(x))du

)
we find the integral formula

exp

(
−
∫ t

s
λu(ϕs,u(x))du

)
= 1−

∫ t

s
λr(ϕs,r(x)) exp

(
−
∫ r

s
λu(ϕs,u(x))du

)
dr

from which we prove that

P λs,t(f)(x) = P 0
s,t(f)(x)−

∫ t

s
E
(
E (f(ϕs,t(x)) |ϕs,r(x))λr(ϕs,r(x)) exp

[
−
∫ r

s
λu(ϕs,u(x))du

])
dr

= P 0
s,t(f)(x)−

∫ t

s
P λs,r

(
λr P

0
r,t(f)

)
dr

Using the above formula, it is readily checked that

d

dt
P λs,t(f)(x) = P 0

s,t(Lt(f))(x)−
∫ t

s
P λs,r

(
λr P

0
r,t(Lt(f))

)
dr − P λs,t (λt f )

= P λs,t(Lt(f)− λt f)(x)

This shows that
d

dt
P λs,t = P λs,tL

λ
t with Lλt (f) = Lt(f)− λt f (5.39)
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It is also readily checked that the Feynman-Kac measures γt defined in (5.34) satisfy the
equation

(5.39) ⇒ d

dt
γt(f) = γt(L

λ
t (f)) and d

dtηt(f) = ηt(L
λ
t (f))

= ηt(Lt(f))− [ηt(λtf)− ηt(f)ηt(λt)]

(5.40)
with

Lλt (f) = Lt(f)− λt f

For any y ∈ Rd, we also have that

d

ds
exp

(
−
∫ t

s
λu(ϕ0,u(y))du

)
= λs(ϕ0,s(y)) exp

(
−
∫ t

s
λu(ϕ0,u(y))du

)
from which we prove that

1− exp

(
−
∫ t

s
λu(ϕ0,u(y))du

)
=

∫ t

s
λr(ϕ0,r(y)) exp

(
−
∫ t

r
λu(ϕ0,u(y))du

)
dr

Recalling that

∀s ≤ u ≤ t ϕ0,u(y) = ϕs,u(ϕ0,s(y))

for any x(= ϕ0,s(y)) we have

exp

[
−
∫ t

s
λu(ϕs,u(x))du

]
= 1−

∫ t

s
λr(ϕs,r(x)) exp

[
−
∫ t

r
λu(ϕs,u(x))du

]
dr

This implies that

f(ϕs,t(x)) exp

(
−
∫ t

s
λu(ϕs,u(x))du

)

= f(ϕs,t(x))−
∫ t

s
λr(ϕs,r(x)) f(ϕr,t(ϕs,r(x))) exp

[
−
∫ t

r
λu(ϕr,u(ϕs,r(x)))du

]
dr

and therefore

P λs,t(f) = P 0
s,t(f)−

∫ t

s
P 0
s,r

(
λr P

λ
r,t(f)

)
dr

Using the above formula, it is readily checked that

d

ds
P λs,t(f) = −Ls(P 0

s,t(f)) +

∫ t

s
Ls

(
P 0
s,r

(
λr P

λ
r,t(f)

))
dr + λs P

λ
s,t(f)

This implies that
d

ds
P λs,t = −LλsP λs,t
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We also have the decomposition

Ps,t(f)(x) = E
(
f(Xt) 1T (s)>t | Xs = x

)
+ E

(
f(Xt) 1T (s)≤t | Xs = x

)
with the first time of the jump after time s. By construction, we have

E
(
f(Xt) 1T (s)>t | Xs = x

)
= E

(
f(ϕs,t(x)) 1T (s)>t | Xs = x

)
= E

(
f(ϕs,t(x)) exp

(
−
∫ t

s
λr(ϕs,r(x)) dr

))
= P λs,t(f)(x)

On the other hand, we have

E
(
f(Xt) 1T (s)≤t | Xs = x

)
= E

(
E
(
f(Xt) | T (s), XT (s)

)
︸ ︷︷ ︸ 1T (s)≤t | Xs = x

)

= E

 ||︷ ︸︸ ︷
PT (s),t(f)(XT (s)) 1T (s)≤t | Xs = x


Using (5.6), we prove that

E
(
f(Xt) 1T (s)≤t | Xs = x

)
=

∫ t

s
E
([∫

S
Su(ϕs,u(x), dy)Pu,t(f)(y)

]
λu(ϕs,u(x)) exp

[
−
∫ u

s
λr(ϕs,r(x))dr

]
|Xs = x

)
du

=

∫ t

s
P λs,u (λu Su(Pu,t(f))) (x) du

We conclude that

Ps,t(f)(x) = P λs,t(f)(x) +

∫ t

s
P λs,u (λu Su(Pu,t(f))) (x) du (5.41)

5.5.4 Discrete time approximations

For time homogeneous models Lλs = Lλ we conclude that

P λs,t = P λ0,t−s := P λt−s ⇒
d

dt
P λt = LλP λt = P λt L

λ (5.42)

As in (5.31), the semigroup P λt is sometimes written in the exponential form

P λt = etL
λ

For the pure jump models on a finite set E discussed in (5.32) the Feynman-Kac semigroup (5.42)
associated with some potential function V reduces to the exponential matrix formula
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P Vt = etL
V

=
∑
n≥0

tn

n!
(LV )n with LV (x, y) = L(x, y)− V (x) 1x=y

In this case, we also have

eL
V dt(x, y) 'dt↓0 1x=y + LV (x, y)dt = 1x=y + L(x, y)dt− V (x) 1x=y dt

'dt↓0 (1− V (x)dt) (1x=y + L(x, y)dt)

'dt↓0 Gdt(x) Pdt(x, y) with G(dt)(x) := e−V (x)dt

Thus, a discrete time approximation P V,εtn of the Feynman-Kac semigroup P Vtn = P Vnε on a
time mesh (tn)n≥0 with (tn − tn−1) = ε ' 0 is given by the formulae

P V,εtn (f)(x) = E

f(Xε
tn)

∏
0≤k<n

Gε(Xε
tk

)


where Xε

tn stands for a Markov chain with transition probabilities Pε(x, y)

5.6 Integro-differential equations

Continuous time Markov processes are intimately related to intro-differential linear evolution equa-
tions. To underline the role of Monte Carlo simulation of discrete generation Markov chain models in
the numerical solving of these equations, this section provides a brief description of the continuous
time version of the Markov transport Equation (4.14).

Using elementary manipulations, we can show that the evolution equation of the laws ηt of the
random states Xt of the jump diffusion model (5.3) is given by weak integro-differential equation

d

dt
ηt(f) = ηt (Lt(f)) (5.43)

for sufficiently regular functions f on E = Rd, with the integro-differential operator Lt defined in
(5.15).

We further assume that St(x, dy) = qt(x, y) dy and the law of the random states ηt(dy) = pt(y) dy
have a smooth density qt(x, y), and pt(y) w.r.t. the Lebesgue measure dy on Rd. In this situation, the
equation (5.43) takes the form

d

dt
ηt(f) =

∫
f(x)

dpt
dt

(x) dx =

∫
pt(x) Lct(f)(x) dx+

∫
pt(x) λt(x) qt(x, y) (f(y)− f(x)) dxdy

For smooth functions f with compact support, we have the integration by part formulae∫
pt(x) Lct(f)(x) dx =

∫
Lc,?t (pt)(x) f(x) dx

with the dual differential operator

Lc,?t (pt) = −
d∑
i=1

∂xi
(
a′t,i pt

)
+

1

2

d∑
i,j=1

∂xi,xj

((
σ′t(σ

′
t)
T
)
i,j

pt

)
On the other hand, we also have that∫

pt(x) λt(x) qt(x, y) (f(y)− f(x)) dxdy =

∫
f(x) Ld,?t (pt)(x)
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with

Ld,?t (pt)(x) :=

(∫
pt(y) λt(y) qt(y, x) dy

)
− pt(x) λt(x)

This implies that∫
f(x)

dpt
dt

(x) dx =

∫
f(x) L?t (pt)(x) dx with L?t = Lc,?t + Ld,?t

Since this equation is valid for any smooth functions f , we conclude that

dpt
dt

(x) = L?t (pt)(x) (5.44)

Inversely, any equation of the form (5.44) can be interpreted as the probability densities of the
random states of a jump diffusion model of the form (5.3).

The Fokker-Planck type integro-differential equation (5.44) is sometimes rewritten in the following
form

dpt
dt

(x) + div (at pt)−
1

2
∇2 :

(
σt(σt)

T pt
)
−Θt(pt) = 0

with the operators

div (at pt) :=

d∑
i=1

∂i (at,i pt)

∇2 :
(
σt(σt)

T pt
)

=
d∑

i,j=1

∂i,j

((
σt(σt)

T
)
i,j

pt

)
Θt(pt) :=

∫
pt(y) λt(y) [qt(y, x) dy − δx(dy)]

5.7 Stability properties

5.7.1 Invariant measures

A probability measure π on some state space E is invariant w.r.t. some time homogeneous
Markov semigroup Pt = P0,t if we have πPt = π, for any t ≥ 0. The invariance property is
also characterized in terms of the generator L of the semigroup:

π is Pt-invariant ⇐⇒ (∀t ≥ 0 πPt = π) ⇐⇒ πL = 0

We check this claim using the couple of formulae

π

(
Pt − Id

t

)
→t↓0 πL and Pt = Id+

∫ t

0
LPs ds (5.30)

The measure π is reversible w.r.t. Pt if we have

π(dx) Pt(x, dy) = π(dy) Pt(y, dx)

or equivalently, for any pair of functions (f, g) ∈ B(S)2

∀t ≥ 0 π(fPt(g)) = π(Pt(f)g) ⇐⇒ π(fL(g)) = π(L(f)g)
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5.7.2 Foster-Lyapunov conditions

We start with a general result that allows to apply the V -norm contraction techniques developed in
section 4.4.4.

We consider the sg Pt = P0,t of a time homogeneous Markov process on some state space E
satisfying the evolution equations (5.30) for some infinitesimal generator L acting on some domain
D(L) of sufficiently smooth functions.

We assume that there exists some non negative function W ∈ D(L) on E such that

L(W ) ≤ −a W + c (5.45)

for some parameters a > 0, and c ≥ 0. In this situation, for any t > 0 the Markov transition
Pt satisfies the Foster-Lyapunov condition (4.40)

Pt(W ) ≤ εt W + ct with εt =
1

1 + at
with ct = c t (5.46)

In addition, if Pt satisfies the Dobrushin local contraction condition (4.39) for any t > 0
then there exists an unique invariant measure π = πM .
Furthermore, for any h > 0 there exist some positive function V s.t. βV (Ph) < 1. In partic-
ular, we have the exponential contraction inequality

‖Phbt/hc(x, .)− π‖V ≤ βV (Ph)bt/hc (1 + V (x) + π(V ))

To prove these claims, we first use (5.28) to check that

Pt(W ) = W +

∫ t

0
Ps(L(W )) ds

≤ W +

∫ t

0
[−a Ps(W ) + c] ds = W + ct− a

∫ t

0
Ps(W )ds

On the other hand, by an integration by part we have∫ t

0
Ps(W )ds = [s Ps(W )]t0 −

∫ t

0
s
d

ds
Ps(W ) ds

= t Pt(W )−
∫ t

0
s Ps(L(W )︸ ︷︷ ︸

≤c

) ds ≥ t Pt(W )− ct2/2

This implies that

Pt(W ) ≤ W + ct− a
(
t Pt(W )− ct2/2

)
from which we conclude that

Pt(W ) ≤ 1

1 + at
W + ct

1 + at/2

1 + at
≤ 1

1 + at
W + ct

The last assertion is a direct consequence of the theorem 4.51 applied to the Markov transition Pnh =
Pnh . This ends the proof of the desired result.

Replacing in (5.45) W by W + b for some b > 0 we find that

L(W + b) = L(W ) + b L(1)︸︷︷︸
=0

= L(W ) ≤ −a (W + b) + (c+ ab)
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This shows that there is no loss of generality to assume that (5.45) is met for some function W ≥ b,
for some b > 0.

On the other hand, using the fact that

(5.45) with c > 0 ⇒ L

(
W

c

)
≤ −a W

c
+ 1

there is also no loss of generality to assume that (5.45) is met for some non negative function W ≥ 0,
with c = 1.

Last, but not least it suffices to check that there exists some subset A ⊂ E s.t.

∀x ∈ E −A W−1(x)L(W )(x) ≤ −a and ∀x ∈ A L(W )(x) ≤ c

In this situation, it is readily checked that

L(W ) = W−1L(W )1E−A W + L(W ) 1A ⇒ L(W ) ≤ −a W + c (5.47)

For instance, when E is equipped with some norm ‖.‖, and L(W ) is continuous it suffices to find some
sufficiently large radius R s.t.

∀‖x‖ ≥ R W−1(x)L(W )(x) ≤ −a (5.48)

We also mention that any s.g. Pt on E = Rd satisfies the Dobrushin local contraction condition
(4.39) for any t > 0 as soon as the Markov transitions Pt(x, dy) = pt(x, y) dy have continuous densities
(x, y) 7→ pt(x, y) > 0 w.r.t. the Lebesgue measure dy. Much more is true, rephrasing (4.42) we have
the following result.

We assume that the s.g. Pt satisfies some minorization property

Pt(x, dy) ≥ qt(x, y) dy (5.49)

for some function qt(x, y) that is lower semicontinuous w.r.t. the first variable, and upper
semicontinuous w.r.t. the second. In this situation the s.g. Pt satisfies the Dobrushin local
contraction condition (4.39) for any t > 0.

We consider a d-dimensional jump diffusion process with jump intensity function λ(x), jump
amplitude transition M(x, dy) and a stochastic flow ϕs,t (x). We assume that the s.g. P 0

t of
the stochastic flow satisfies the minorisation condition (5.49) for some q0

t (x, y). When the
intensity function λ is bounded the s.g. Pt of the jump-diffusion model satisfies (5.49) with

Pt(x, dy) ≥ e−‖λ‖t q0
t (x, y) dy

The proof if a direct consequence of the integral formula (5.41):

Pt(f) = P λt (f) +

∫ t

0
P λu (λSPt−u(f)) du ≥ P λt (f) ≥ e−‖λ‖t P 0

t (f)

for any non negative function f . This clearly ends the proof of the desired result.
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5.8 Some illustrations

It is clearly far beyond the scope of these lecture notes to discuss in full details the absolutely continuity
properties of Markov semigroups. For a more detailed discussion we refer the reader to [150, 330, 372],
and references therein.

In this section we present some examples of Lyapunov functions for some classes of diffusion
processes.

5.8.1 Ornstein-Uhlenbeck process

The infinitesimal generator of the Ornstein-Uhlenbeck process is given by

L := −
d∑
i=1

ai x
i ∂i +

1

2

d∑
i,j=1

(
σ(σ)T

)i
j
∂i,j

with some deterministic covariance matrix σ and a collection of parameters ai <∞. In this situation,
the s.g. Pt(x, dy) = pt(x, y) dy has smooth densities (x, y) 7→ pt(x, y) > 0 w.r.t. the Lebesgue measure
dy [330]. When amin = ∧1≤i≤dai > 0, we can choose the Lyapunov function

W (x) =
1

2
‖x‖2 :=

1

2

∑
1≤i≤d

(xi)2

In this situation, we have

L(W )(x) = −
d∑
i=1

ai (xi)2 +
1

2
Trace

(
σ(σ)T

)
≤ − 2 amin W (x) + Trace

(
σσT

)
5.8.2 Stochastic gradient process

The infinitesimal generator of the stochastic gradient process is given by

L := −
d∑
i=1

∂iV ∂i +
1

2

d∑
i=1

∂i,i

with some smooth function V behaving as ‖x‖α with α ≥ 1 at infinity; that is, there exists some
sufficiently large radius R s.t. for any ‖x‖ ≥ R we have

d∑
i=1

|∂i,iV (x)| ≤ c1 ‖x‖α−2 and
d∑
i=1

(∂iV (x))2 ≥ c2 ‖x‖2(α−1)

for some constants c1 < ∞ and c2 > 0. In this situation, the s.g. Pt(x, dy) = pt(x, y) dy has smooth
densities (x, y) 7→ pt(x, y) > 0 w.r.t. the Lebesgue measure dy [330]. In addition, we can choose the
Lyapunov functions

W (x) = exp (2εV )

for any ε ∈]0, 1[. To check this claim, we observe that

W−1L(W )

= −2ε
∑d

i=1 (∂iV )2 + 1
2

∑d
i=1

(
4ε2 (∂iV )2 + 2ε∂i,iV

)
≤ −2ε

[
(1− ε) ‖∇V ‖2 − 1

2 4V
]
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Under our assumptions, for any ‖x‖ ≥ R > [c1/(2c2)]1/α we have

(1− ε) ‖∇V ‖2 − 1

2
4V ≥ (1− ε)c2 ‖x‖2(α−1) − c1

2
‖x‖α−2

= ‖x‖α−2
[
c2 ‖x‖α −

c1

2

]
≥ Rα−2

[
c2 R

α − c1

2

]
> 0

We conclude that (5.48) holds with a := 2εRα−2
[
c2 R

α − c1
2

]
.

5.8.3 A two dimensional Langevin diffusion

We consider the R2-valued stochastic process Xt = (qt, pt) defined by the couple of equations
dqt = β

pt
m

dt

dpt = −β
(
∂V

∂q
(qt) +

σ2

2

pt
m

)
dt+ σ dWt

(5.50)

with some positive constants β,m, σ, some Brownian motion Wt, and some smooth positive function
V on R s.t. for some sufficiently large R we have

|q| ≥ R q
∂V

∂q
(q) ≥ δ

(
V (q) + q2

)
for some positive constant δ. This condition is clearly met when V behaves at infinity as q2α, for some
α ≥ 1; that is, there exists some sufficiently large radius R s.t. for any |q| ≥ R we have

q
∂V

∂q
(q) ≥ c1 q

2α and c2 q
2α ≥ V (q)

for some constants c1 <∞ and c2 > 0.
The generator of the process (5.50) is defined by

L(f)(q, p) = β
p

m

∂f

∂q
− β

(
∂V

∂q
+
σ2

2

p

m

)
∂f

∂p
+
σ2

2

∂2f

∂p2

We let W (q, p) be the function on R2 defined by

W (q, p) =
1

2m
p2 + V (q) +

ε

2

(
σ2

2
q2 + 2pq

)
with ε <

σ2

2m

Recalling that 2pq ≤ p2 + q2, we prove that

W (q, p) ≤ 1

2

(
1

m
+ ε

)
p2 +

ε

2

(
σ2

2
+ 1

)
q2 + V (q)

≤ C?(ε)
(
p2 + q2 + V (q)

)
with

C?(ε) := max

{
1

2

(
1

m
+ ε

)
,
ε

2

(
σ2

2
+ 1

)
, 1

}
On the other hand, we have

L(W ) = β
p

m

(
∂V

∂q
+ ε

σ2

2
q + ε p

)
−β

(
∂V

∂q
+
σ2

2

p

m

) ( p
m

+ ε q
)

+
σ2

2m

= −β
[

1

m

(
σ2

2m
− ε

)
p2 + ε q

∂V

∂q

]
+
σ2

2m
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Under our assumptions, this implies that for any |q| ≥ R we have

L(W ) ≤ −β
[

1

m

(
σ2

2m
− ε

)
p2 + ε δ

(
V (q) + q2

)]
+
σ2

2m

≤ −C?(ε, δ)
(
p2 + q2 + V (q)

)
+
σ2

2m

with

C?(ε, δ) := β min

{(
1

m

(
σ2

2m
− ε

)
, ε δ

)}
We conclude that for any |q| ≥ R we have

(W−1L(W ))(q, p) ≤ −
C?(ε, δ)

(
p2 + q2 + V (q)

)
− σ2

2m

W (q, p)

≤ −
C?(ε, δ)

(
p2 + q2 + V (q)

)
− σ2

2m

C?(ε) (p2 + q2 + V (q))

= −C?(ε, δ)
C?(ε)

+
σ2

2mC?(ε)

1

p2 + q2 + V (q)

≤ −
[
C?(ε, δ)

C?(ε)
− σ2

2mC?(ε)

1

p2 + q2

]
≤ −

[
C?(ε, δ)

C?(ε)
− σ2

2mC?(ε)

1

p2 +R2

]
Choosing R sufficiently large s.t.

|p| ≥ R and |q| ≥ R

⇒ C?(ε,δ)
C?(ε) −

σ2

2mC?(ε)
1

p2+q2 ≥ C?(ε,δ)
C?(ε) −

σ2

2mC?(ε)
1

R
2
+R2
≥ C?(ε,δ)

2C?(ε) > 0

we conclude that (5.47) is met with the set

A = {|p| ∧ |q| < R ∨R}

and the parameter a = C?(ε, δ)/(2C
?(ε)) > 0; that is, we have that

|p| ∧ |q| ≥ R ∨R⇒ (W−1L(W ))(q, p) ≤ −a



Chapter 6

Diffusions on manifolds

6.1 A review of differential geometry

6.1.1 Projection operators

We let V = Vect (V1, . . . , Vp) ⊂ Rr be a p-dimensional vector space with a (non necessarily orthonor-

mal) basis (V1, . . . , Vp) ∈ (Rr)p, with the column vectors Vi =

 V 1
i
...
V r
i

, with 1 ≤ i ≤ p ≤ r. We equip

V with the Euclidian scalar product

gi,j := 〈Vi, Vj〉 = V T
i Vj =

∑
1≤k≤r

V k
i V

j
k = tr(ViV

T
j )

We let gi,j be the entries of the inverse g−1 of the matrix g = (gi,j)1≤i,j≤p and we set

V = [V1, . . . , Vp] and V T :=

 V T
1
...
V T
p

 =⇒ g = V TV

In this notation, the orthogonal projection πV : W ∈ Rr 7→ πV(W ) ∈ V on V is given
by the matrix

πV = V g−1V T =⇒ πV(W ) =
∑

1≤i≤p

〈 ∑
1≤j≤p

gi,jVj ,W

〉
Vi

The r.h.s. formula comes from the fact that

g−1V T =


∑

1≤j≤p g
1,jV T

j
...∑

1≤j≤p g
p,jV T

j

 =⇒ g−1V TW =


∑

1≤j≤p g
1,jV T

j W
...∑

1≤j≤p g
p,jV T

j W


Given a collection of vectors (Wi)1≤i≤k we set

πV ([W1, . . . ,Wk]) = [πV(W1), . . . , πV(Wk)]

117
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In this notation, for any W1,W2 ∈ Rr, we observe that

W1W
T
2 :=

[
W 1

2 W1, . . .W
r
2 W1

]
=⇒ πV(W1W

T
2 ) =

[
W 1

2 πV(W1), . . .W r
2 πV(W1)

]
= πV(W1)W T

2

In summary, we have proved that

πV(W1W
T
2 ) = πV(W1)W T

2

If we choose an orthonormal basis (U1, . . . , Up) ∈ (Rr)p we have

Vi =
∑

1≤j≤p
〈Vi, Uj〉Uj = [U1, . . . , Up]︸ ︷︷ ︸

U

 UT1
...
UTp


︸ ︷︷ ︸

UT

Vi := UUTVi =⇒ V = UP

with

P = UTV =

 〈U1, V1〉 . . . 〈U1, Vp〉
...

〈Up, V1〉 . . . 〈Up, Vp〉


from which we conclude that

V g−1V T = V (V TV )−1V T

= UP ((UP )TUP )−1(UP )T = UP (P TUTUP )−1(UP )T

= UP (P TP )−1P TUT = UPP−1(P T )−1P TUT = UUT

This shows that the projection matrix πV =
(
πkV,l

)
1≤k,l≤r

doesn’t depend on the choice of the basis

of the vector field V, and we have that

πV = πTV and πVπV = πV ⇒ ∀1 ≤ k, l ≤ r
∑

1≤i≤r
πiV,lπ

i
V,k = πkV,l

6.1.2 First order covariant derivatives

We further assume that we are given a collection of smooth vector functionals (a.k.a. vector fields)
Vi : x ∈ Rr 7→ Vi(x) ∈ Rr and V ⊥j : x ∈ Rr 7→ V ⊥j (x) ∈ Rr, with 1 ≤ i ≤ p and 1 ≤ j ≤ q = r − p
such that

Rp+q = Vect (V1, . . . , Vp)︸ ︷︷ ︸
=V

⊥
+ Vect

(
V ⊥1 , . . . , V ⊥q

)
︸ ︷︷ ︸

=V⊥

(
⇔ 〈Vi, V ⊥j 〉 = 0 ∀ 1 ≤ i ≤ p and ∀ 1 ≤ j ≤ q

)

By construction, for any vector field we have

W = πV(W ) + πV⊥(W ) (6.1)

Notice that π := πV and π⊥ := πV⊥ are smooth matrix functionals and

π⊥(W ) =
∑

1≤i≤q

〈 ∑
1≤j≤q

gi,j⊥ V
⊥
j ,W

〉
V ⊥i (6.2)
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with the entries gi,j⊥ of the inverse g−1
⊥ of the matrix g⊥ = (g⊥,i,j)1≤i,j≤p given by

g⊥,i,j := 〈V ⊥i , V ⊥j 〉

Given a smooth function F and a smooth vector field W =

 W 1

...
W r

 on Rr, for any 1 ≤ i ≤ r

we set

∂F =

 ∂x1F
...

∂xrF

 ∂xiW =

 ∂xiW
1

...
∂xiW

r

 and ∂W =
[
∂W 1, . . . , ∂W r

]

The Euclidian gradient operator ∂ : F 7→ ∂F maps smooth functions to vector fields ∂F : x 7→
(∂F )(x) that encapsulate information about the change of the function F w.r.t. infinitesimal variations
of the independent coordinates xi of the state x = (x1, . . . , xr)

T .

We also consider the operators

∂W (F ) =
∑

1≤k≤r
W k ∂xk(F ) = W T∂F = 〈W,∂F 〉 and ∇ = π∂

Given smooth curve C : t ∈ [0, 1] 7→ C(t) =
(
C1(t), . . . , Cr(t)

)T ∈ Rr starting at some state
C(0) = x ∈ Rr, with a velocity vector field W , we have

d

dt
F (C(t)) =

∑
1≤k≤r

W k(C(t)) ∂xk(F )(C(t)) = (∂W (F )) (C(t)) = 〈W (C(t)), (∂F )(C(t))〉

The function ∂W (F ) is called the directional derivative of F w.r.t. the vector field W . The r.h.s.
equation makes clear the dependency of the gradient on the inner product structure on Rr. If
A((∂F )(x),W (x)) represents the angle between (∂F )(x) and W (x) we have

∂W (F )(x) = ‖(∂F )(x)‖ ‖W (x)‖ cos (A((∂F )(x),W (x)))

When W (x) is perpendicular to (∂F )(x), then the rate of change of (∂F )(x) in the direction W (x) is
null. In the reverse angle, the rate of change of (∂F )(x) in the direction W (x) is maximal when W (x)
is parallel to (∂F )(x).

The covariant derivative
∇F := π (∂F ) = ∂F − π⊥(∂F )

expresses the changes of the function F w.r.t. vectors W ∈ V:

∀W ∈ V 〈∂F,W 〉 = 〈π (∂F ) ,W 〉 = 〈∇F,W 〉

By construction, we readily check that

∂(FW ) = ∂F W T + F ∂W (6.3)
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and

∇(FW ) = π∂(FW )

= π
(
∂F W T

)
+ π (F ∂W )

= π (∂F ) W T + F π (∂W )

from which we conclude that

∇(FW ) = ∇F W T + F ∇W (6.4)

We also observe that

(6.1) =⇒ ∂W = ∂π(W ) + ∂π⊥(W )

=⇒ ∇W = ∇π(W ) +∇π⊥(W ) (6.5)

On the other hand, we have

π(W ) =

 π1
1 . . . π1

r
...

...
...

πr1 . . . πrr


 W 1

...
W r

 =


∑

1≤k≤r π
1
k W

k

...∑
1≤k≤r π

r
k W

k


and therefore

∂ π(W ) =

=

 ∑
1≤k≤r

∂
(
π1
k W

k
)
, . . . ,

∑
1≤k≤r

∂
(
πrk W

k
)

=

 ∑
1≤k≤r

W k ∂π1
k, . . . ,

∑
1≤k≤r

W k ∂πrk

+

 ∑
1≤k≤r

π1
k ∂W

k, . . . ,
∑

1≤k≤r
πrk ∂W

k


=

∑
1≤k≤r

W k
[
∂π1

k, . . . , ∂π
r
k

]
+

 ∂x1W
1 . . . ∂x1W

r

...
...

...
∂xrW

1 . . . ∂xrW
r


 π1

1 . . . πrr
...

...
...

π1
r . . . πrr


=

∑
1≤k≤r

W k ∂πk +
[
∂W 1, . . . , ∂W r

]
πT =

∑
1≤k≤r

W k ∂πk + (∂W )πT

with the vector field

πk =

 π1
k
...
πrk


This yields the formula

∇π(W ) = π∂π(W ) =
∑

1≤k≤r
W k ∇πk + π∂WπT
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with the matrix

π∂WπT =


∑

1≤l≤r π
1
l

∑
1≤k≤r π

1
k ∂xlW

k, . . . ,
∑

1≤l≤r π
1
l

∑
1≤k≤r π

r
k ∂xlW

k

...
...

...∑
1≤l≤r π

r
l

∑
1≤k≤r π

1
k ∂xlW

k, . . . ,
∑

1≤l≤r π
r
l

∑
1≤k≤r π

r
k ∂xlW

k



On the other hand, we have

tr
(
π∂WπT

)
=

∑
1≤k,l≤r

 ∑
1≤i≤r

πilπ
i
k

 ∂xlW
k

=
∑

1≤k,l≤r
πlk ∂xlW

k = tr (π∂W ) = tr (∇W ) =
∑

1≤k≤r
∂πkW

k (6.6)

with

∇W = π∂W =
[
π(∂W 1), . . . , π(∂W r)

]
=
[
∇W 1, . . . ,∇W r

]
= πT∂W =

 πT1
...
πTr

 [∂W 1, . . . , ∂W r
]

=

 ∂π1W
1, . . . , ∂π1W

r

...
...

...
∂πrW

1, . . . , ∂πrW
r


In much the same way, we have

∇πk = π∂πk = πT∂πk

=

 πT1
...
πTr

 [∂π1
k, . . . , ∂π

r
k

]
=

 ∂π1π
1
k, . . . , ∂π1π

r
k

...
...

...
∂πrπ

1
k, . . . , ∂πrπ

r
k


We conclude that

tr (∇π(W )) =
∑

1≤k≤r
W k tr (∇πk) +

∑
1≤k≤r

∂πkW
k

=
∑

1≤k,l≤r
W k ∂πlπ

l
k + tr (π∂W ) =

∑
1≤k,l≤r

W k ∂πlπ
l
k + tr (∇W )

Using the fact that

(6.5) =⇒ tr (∇W ) = tr (∇π(W )) + tr (∇π⊥(W ))
=

∑
1≤k,l≤rW

k ∂πlπ
l
k + tr (∇W ) + tr (∇π⊥(W ))

we conclude that
tr (∇π⊥(W )) = −

∑
1≤k,l≤r

W k ∂πlπ
l
k

6.1.3 Divergence and mean curvature

For q = 1, we have g⊥ =
∥∥V ⊥1 ∥∥2

, g−1
⊥ =

∥∥V ⊥1 ∥∥−2
and

π⊥(W ) =
〈
V
⊥
1 ,W

〉
V
⊥
1 = V

⊥
1 V

⊥,T
1 W =

V ⊥1 V ⊥,T1

V ⊥,T1 V ⊥1
W with V

⊥
1 =

V ⊥1∥∥V ⊥1 ∥∥
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In this particular case, we have the formula

tr (∇π⊥(W )) = 〈H,W 〉 (6.7)

with the mean curvature vector H defined by

H = div⊥

(
V
⊥
1

)
V
⊥
1 = −

∑
1≤k≤r

 ∑
1≤l≤r

∂πlπ
l
k

 ek with div⊥

(
V
⊥
1

)
=
∑

1≤i≤r
∂xi

(
V
⊥,i
1

)

and the unit vectors ei on ⊂ Rr defined by

∀1 ≤ i ≤ r ei =



0
...
0
1
0
...
0


← i-th term

To check this assertion, we use the fact that

∂π⊥(W ) = ∂
(〈
V
⊥
1 ,W

〉)
V
⊥,T
1 +

〈
V
⊥
1 ,W

〉
∂V
⊥
1

from which we prove that

∇π⊥(W ) = π∂π⊥(W ) = π
(
∂
〈
V
⊥
1 ,W

〉)
V
⊥,T
1 +

〈
V
⊥
1 ,W

〉
π
(
∂V
⊥
1

)
To analyze the r.h.s. term, we observe that

π
(
∂V
⊥
1

)
=
[
∂V
⊥,1
1 , . . . , ∂V

⊥,r
1

]
−
[
π⊥

(
∂V
⊥,1
1

)
, . . . , π⊥

(
∂V
⊥,r
1

)]
On the other hand, we have that

tr
(
π
(
∂
〈
V
⊥
1 ,W

〉)
V
⊥,T
1

)
=
〈
π
(
∂
〈
V
⊥
1 ,W

〉)
, V
⊥
1

〉
= 0

and

tr
(
π
(
∂V
⊥
1

))
=
∑

1≤i≤r
∂xiV

⊥,i
1 − tr

[
π⊥

(
∂V
⊥,1
1

)
, . . . , π⊥

(
∂V
⊥,r
1

)]
Finally, we check that

tr
[
π⊥

(
∂V
⊥,1
1

)
, . . . , π⊥

(
∂V
⊥,r
1

)]
= tr

[〈
V
⊥
1 , ∂V

⊥,1
1

〉
V
⊥
1 , . . . ,

〈
V
⊥
1 , ∂V

⊥,r
1

〉
V
⊥
1

]
=

∑
1≤i≤r

〈
V
⊥
1 , ∂V

⊥,i
1

〉
V
⊥,i
1

=
∑

1≤j≤r
V
⊥,j
1

∑
1≤i≤r

∂xjV
⊥,i
1 V

⊥,i
1

=
∑

1≤j≤r
V
⊥,j
1

〈
∂xjV

⊥
1 , V

⊥
1

〉
=

1

2

∑
1≤j≤r

V
⊥,j
1 ∂xj

〈
V
⊥
1 , V

⊥
1

〉
= 0
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This ends the proof of (6.7).

Our next objective is to extend this formula to any dimensional vector spaces V⊥ spanned
by a given basis of vector fields V ⊥i , 1 ≤ i ≤ q. In this general situation, we have

π⊥(W ) =
∑

1≤i≤q

〈∑
1≤j≤q g

i,j
⊥ V

⊥
j ,W

〉
V ⊥i

⇒ ∂π⊥(W ) =
∑

1≤i≤q

[
∂
〈∑

1≤j≤q g
i,j
⊥ V

⊥
j ,W

〉]
V ⊥,Ti +

∑
1≤i≤q

〈∑
1≤j≤q g

i,j
⊥ V

⊥
j ,W

〉
∂V ⊥i

⇒ ∇π⊥(W ) =
∑

1≤i≤q π
[
∂
〈∑

1≤j≤q g
i,j
⊥ V

⊥
j ,W

〉]
V ⊥,Ti +

∑
1≤i≤q

〈∑
1≤j≤q g

i,j
⊥ V

⊥
j ,W

〉
∇V ⊥i

Using the fact that

tr

π
∂〈 ∑

1≤j≤q
gi,j⊥ V

⊥
j ,W

〉 V ⊥,Ti

 =

〈
π

∂〈 ∑
1≤j≤q

gi,j⊥ V
⊥
j ,W

〉 , V ⊥i
〉

= 0

we prove the formula

tr (∇π⊥(W )) =
∑

1≤i≤q

〈 ∑
1≤j≤q

gi,j⊥ V
⊥
j ,W

〉
tr
(
∇V ⊥i

)

=

〈 ∑
1≤j≤q

 ∑
1≤i≤q

gi,j⊥ tr
(
∇V ⊥i

)V ⊥j ,W
〉

(6.8)

We also observe that

∇V ⊥i = π∂V ⊥i = ∂V ⊥i − π⊥∂V ⊥i
=

[
∂V ⊥,1i , . . . , ∂V ⊥,ri

]
−
[
π⊥∂V

⊥,1
i , . . . , π⊥∂V

⊥,r
i

]
with

π⊥∂V
⊥,j
i =

∑
1≤k≤q

〈 ∑
1≤l≤q

gk,l⊥ V
⊥
l , ∂V

⊥,j
i

〉
V ⊥k

This yields

tr
(
∇V ⊥i

)
=

∑
1≤m≤r

∂xmV
⊥,m
i −

∑
1≤m≤r

∑
1≤k,l≤q

gk,l⊥

〈
V ⊥l , ∂V

⊥,m
i

〉
V ⊥,mk

and therefore

∑
1≤i≤q

gi,j⊥ tr
(
∇V ⊥i

)
=
∑

1≤i≤q
gi,j⊥

 ∑
1≤m≤r

∂xmV
⊥,m
i −

∑
1≤m≤r

∑
1≤k,l≤q

gk,l⊥

〈
V ⊥l , ∂V

⊥,m
i

〉
V ⊥,mk


We further assume that the vector fields V ⊥i satisfy the following condition

∀1 ≤ i ≤ q ∀1 ≤ k, l ≤ r ∂xkV
⊥,l
i = ∂xlV

⊥,k
i
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This condition is clearly met when for gradient type vector field models V ⊥i = ∂ϕi associated with
some smooth functions ϕi on Rr. In this situation, we have〈

∂xiV
⊥
k , V

⊥
l

〉
=

∑
1≤j≤r

∂xiV
⊥,j
k V ⊥,jl

=
∑

1≤j≤r
V ⊥,jl ∂xjV

⊥,i
k = ∂V ⊥l

V ⊥,ik =
〈
∂V ⊥,ik , V ⊥l

〉
and 〈

∂V ⊥j
V ⊥k , V

⊥
l

〉
=

∑
1≤i≤r

V i
j

〈
∂xiV

⊥
k , V

⊥
l

〉
=

∑
1≤i,i′≤r

V i
j ∂xi V

⊥,i′
k V ⊥,i

′

l =
∑

1≤i,i′≤r
V i
j ∂x′i V

⊥,i
k V ⊥,i

′

l

=
∑

1≤i,i′≤r
V ⊥,i

′

l ∂x′i V
⊥,i
k V i

j =
〈
∂V ⊥l

V ⊥k , V
⊥
j

〉
(6.9)

Using the fact that

∂xj (g⊥,k,m) = ∂xj

〈
V ⊥k , V

⊥
m

〉
=
〈
∂xjV

⊥
k , V

⊥
m

〉
+
〈
V ⊥k , ∂xjV

⊥
m

〉
we have

∂V ⊥j
(g⊥,k,m) =

〈
∂V ⊥j

V ⊥k , V
⊥
m

〉
+
〈
∂V ⊥j

V ⊥m , V
⊥
k

〉
(6.10)

=
〈
∂V ⊥m V

⊥
k , V

⊥
j

〉
+
〈
∂V ⊥k

V ⊥m , V
⊥
j

〉
=
〈
∂V ⊥m V

⊥
k + ∂V ⊥k

V ⊥m , V
⊥
j

〉
In addition, for any 1 ≤ k, l,m ≤ q we have〈

∂V ⊥m V
⊥
k , V

⊥
l

〉
=

∑
1≤i≤r

V ⊥,im

〈
∂xiV

⊥
k , V

⊥
l

〉
=
∑

1≤i≤r
V ⊥,im

〈
∂V ⊥,ik , V ⊥l

〉
(6.11)

This yields∑
1≤i≤q

gi,j⊥ tr
(
∇V ⊥i

)
=

∑
1≤i≤q

∑
1≤m≤r

gi,j⊥ ∂xmV
⊥,m
i −

∑
1≤i,k,l≤q

gi,j⊥ gk,l⊥

∑
1≤m≤r

V ⊥,mk

〈
∂V ⊥,mi , V ⊥l

〉

=
∑

1≤i≤q

∑
1≤m≤r

gi,j⊥

 ∂xmV ⊥,mi −
∑

1≤k,l≤q
gk,l⊥

〈
∂V ⊥k

V ⊥i , V
⊥
l

〉 (6.12)

To get one step further in our discussion, we need to recall some basic facts on the differentiation

of determinant of invertible matrices. We let ε 7→ A(ε) =

 A1
1(ε) . . . A1

r(ε)
...

...
...

Ar1(ε) . . . Arr(ε)

 be a smooth (r× r)-

invertible matrix functional. The co-factor expansion of the determinant of A(ε) along the i-th row is
given by the formula

det(A(ε)) =
∑

1≤j≤r
Aij(ε) C

i
j(ε) =⇒ Cij(ε) =

∂det(A)

∂Aij
(ε)

where Cij(ε) stands for the co-factor of the entry Aij(ε) defined by multiplying by (−1)i+j the deter-
minant of the minor of the entry in the i-th row and the j-th column. We recall that this (i, j)-minor
is the determinant of the sub-matrix deduced from A(ε) by deleting the i-th row and j-th column.
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The inverse of the matrix A(ε) is defined by

A−1(ε) =
1

det(A(ε))

 C1
1 (ε) . . . Cr1(ε)
...

...
...

C1
r (ε) . . . Crr (ε)

 =
1

det(A(ε))
CT (ε)

This leads quickly to the Jacobi formula for the derivative of the detreminant

d

dε
(det(A(ε))) =

∑
1≤i,j≤r

∂det(A)

∂Aij
(ε)

dAij(ε)

dε
=
∑

1≤i≤r

∑
1≤j≤r

(CT (ε))ji

(
dA(ε)

dε

)i
j

= tr

(
CT (ε)

dA(ε)

dε

)
= det(A(ε)) tr

(
A−1(ε)

dA(ε)

dε

)

For any smooth vector field W on Rr we set

div⊥ (W ) =
1√

det(g⊥)

∑
1≤m≤r

∂xm

(√
det(g⊥) Wm

)
(6.13)

We have

1√
det(g⊥)

∂xm

(√
det(g⊥) Wm

)
=

1√
det(g⊥)

∂xm

(√
det(g⊥)

)
Wm + ∂xm (Wm)

=
1

2det(g⊥)
∂xm (det(g⊥)) Wm + ∂xm (Wm)

=
1

2
tr
(
g−1
⊥ ∂xmg⊥

)
Wm + ∂xm (Wm)

=
1

2

∑
1≤k,l≤q

gk,l⊥ ∂xmg⊥,k,l W
m + ∂xm (Wm)

from which we find that

1√
det(g⊥)

∂xm

(√
det(g⊥) Wm

)
=

∑
1≤k,l≤q

gk,l⊥

〈
∂xmV

⊥
k , V

⊥
l

〉
Wm + ∂xm (Wm)

On the other hand, we have∑
1≤j≤q

g⊥,i,j g
j,k
⊥ = 1i=k ⇒

∑
1≤j≤q

g⊥,i,j ∂xmg
j,k
⊥ = −

∑
1≤j≤q

(∂xmg⊥,i,j) gj,k⊥

⇒
∑

1≤i,j≤q
gl,i⊥ g⊥,i,j ∂xmg

j,k
⊥ = ∂xmg

l,k
⊥ = −

∑
1≤i,j≤q

gl,i⊥ g
k,j
⊥ ∂xmg⊥,i,j
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Applying these formulas to W =
∑

1≤j≤q g
i,j
⊥ V

⊥
j we find that

div⊥

(∑
1≤j≤q g

i,j
⊥ V

⊥
j

)
=

∑
1≤j,k,l≤q

gi,j⊥ gk,l⊥

∑
1≤m≤r

V ⊥mj

〈
∂xmV

⊥
k , V

⊥
l

〉

−
∑

1≤j≤q

∑
1≤m≤r

V ⊥,mj

∑
1≤k,l≤q

gi,k⊥ g
j,l
⊥ ∂xmg⊥,k,l +

∑
1≤j≤q

gi,j⊥

∑
1≤m≤r

∂xmV
⊥,m
j

Using (6.9) we obtain

div⊥

(∑
1≤j≤q g

i,j
⊥ V

⊥
j

)

=
∑

1≤j≤q
gi,j⊥

〈 ∑
1≤k,l≤q

gk,l⊥ ∂V ⊥l
V ⊥k , V

⊥
j

〉
−
∑

1≤j≤q
gi,j⊥

∑
1≤k,l≤q

gk,l⊥ ∂V ⊥k
g⊥,j,l +

∑
1≤j≤q

gi,j⊥

∑
1≤m≤r

∂xmV
⊥,m
j

Using (6.10) we have

∑
1≤k,l≤q

gk,l⊥ ∂V ⊥k
(g⊥,j,l) =

∑
1≤k,l≤q

gk,l⊥

〈
∂V ⊥k

V ⊥j , V
⊥
l

〉
+

〈 ∑
1≤k,l≤q

gk,l⊥ ∂V ⊥k
V ⊥l , V

⊥
j ,

〉

Combining this formula with (6.12) we conclude that

div⊥

(∑
1≤j≤q g

i,j
⊥ V ⊥j

)

=
∑

1≤j≤q
gi,j⊥

 ∑
1≤m≤r

∂xmV
⊥,m
j −

∑
1≤k,l≤q

gk,l⊥

〈
∂V ⊥k

V ⊥j , V
⊥
l

〉 =
∑

1≤j≤q
gi,j⊥ tr

(
∇V ⊥j

) (6.14)

Finally, using (6.8) we conclude that

tr (∇π⊥(W )) = tr ((π∂π⊥)W ) = 〈H,W 〉 (6.15)

with the mean curvature vector

H =
∑

1≤i≤q
div⊥

 ∑
1≤j≤q

gi,j⊥ V ⊥j

 V ⊥i = −
∑

1≤k≤r

 ∑
1≤l≤r

∂πlπ
l
k

 ek (6.16)

We let div(W ) be the divergence of a vector field W defined by

div(W ) = tr (∇W )

Using (6.5), we have
div(W ) = tr (∇π(W )) + tr (∇π⊥(W ))
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Choosing W =
∑

1≤j≤q g
i,j
⊥ V ⊥j , for some 1 ≤ i ≤ q, we have

div

 ∑
1≤j≤q

gi,j⊥ V ⊥j

 = tr

∇
 ∑

1≤j≤q
gi,j⊥ V ⊥j

 = div⊥

 ∑
1≤j≤q

gi,j⊥ V ⊥j

 =
∑

1≤j≤q
gi,j⊥ div

(
V ⊥j

)
We check this claim using the fact that

∇

 ∑
1≤j≤q

gi,j⊥ V ⊥j

 =
∑

1≤j≤q
∇
(
gi,j⊥ V ⊥j

)
=

∑
1≤j≤q

∇
(
gi,j⊥

)
V ⊥,Tj +

∑
1≤j≤q

gi,j⊥ ∇V
⊥
j

so that

div

 ∑
1≤j≤q

gi,j⊥ V ⊥j

 =
∑

1≤j≤q

〈
∇
(
gi,j⊥

)
, V ⊥j

〉
+
∑

1≤j≤q
gi,j⊥ tr

(
∇V ⊥j

)
=
∑

1≤j≤q
gi,j⊥ tr

(
∇V ⊥j

)

6.1.4 Laplacian and second order covariant derivatives

By (6.6) we have

div(W ) = tr (∇W ) =
∑

1≤k≤r
∂πkW

k = tr (∇π(W )) +

〈 ∑
1≤i≤q

div⊥

 ∑
1≤j≤q

gi,j⊥ V ⊥j

 V ⊥i ,W

〉

If we choose W = ∂F we find the second covariant derivative

∇2F =
∑

1≤k≤r
∂xk(F ) ∇πk + π∂2FπT (6.17)

and the Laplacian formula

∆F := tr
(
∇2F

)
= tr

(
π∂2F

)
+

∑
1≤k,l≤r

∂xkF ∂πlπ
l
k (6.18)

with ∇2F = ∇(∇F ), and the Hessian matrix ∂2F = (∂xk,xlF )1≤k,l≤r. On the other hand, we also have

∇F = π∂F = πT∂F =

 πT1
...
πTr

 ∂F =

 ∂π1F
...

∂πrF


and

∇2F = ∇(∇F ) = [∇∂π1F, . . . ,∇∂πrF ] =

 ∂π1∂π1F . . . ∂π1∂πrF
...

...
...

∂πr∂π1F . . . ∂πr∂πrF


This shows that

tr
(
∇2F

)
=
∑

1≤i≤r
∂2
πiF = tr

(
π∂2F

)
+

∑
1≤k,l≤r

∂xkF ∂πlπ
l
k
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Using (6.15), we also have

∆F = tr
(
∇2F

)
=
∑

1≤i≤r
∂2
πiF = tr

(
π∂2F

)
− 〈H, ∂F 〉 = tr

(
π∂2F

)
− ∂HF (6.19)

with the mean curvature vector H ∈ V⊥ defined in (6.16)

6.2 Stochastic differential calculus on manifolds

6.2.1 Embedded manifolds

In this section we briefly recall some terminology used in geometry and differential calculus. We only
consider submanifolds S of dimension p which are ”smooth subsets” of the ambient Euclidian space
Rp+q, for some q ≥ 1. The case q = 1 corresponds to hypersurfaces (a.k.a. hypermanifolds). We let
ϕ : x ∈ Rr=p+q 7→ ϕ(x) = (ϕ1(x), . . . , ϕq(x))T ∈ Rq be a smooth function with a non empty connected
null-level set S := ϕ−1(0) s.t.

∀x ∈ S rank (∂ϕ(x)) = (∂ϕ1(x), . . . , ∂ϕq(x)) = q

We consider a smooth curve C : t ∈ [0, 1] 7→ C(t) =
(
C1(t), . . . , Cr(t)

)T ∈ S starting at some state
C(0) = x ∈ S, with a velocity vector field W , that is we have that

dC

dt
=

(
dC1

dt
, . . . ,

dCr

dt

)T
= W (C(t)) =

(
W 1(C(t)), . . . ,W r(C(t))

)T
By construction, we have

∀1 ≤ i ≤ q d

dt
ϕi(C(t)) =

∑
1≤j≤r

(
∂xjϕi

)
(C(t)) W j(C(t)) = 0

For t = 0, this implies that

〈∂ϕi(x),W (x)〉 =
∑

1≤j≤r

(
∂xjϕi

)
(x) W j(x) = 0 ⇐⇒ W (x) ∈ ker (∂ϕi(x))

We let Tx(S) be the vector space spanned by the kernels ker (∂ϕi(x)) of the gradient vectors ∂ϕi(x),
with 1 ≤ i ≤ q; that is

Tx(S) = Vect (∪1≤i≤qker (∂ϕi(x)))

Under our assumptions, we have

Rr = Tx(S)
⊥
+ T⊥x (S) with T⊥x (S) = Vect (∂ϕ1(x), . . . , ∂ϕq(x))

This implies that Tx(S) is a p-dimensional vector space, so that S is a p-dimensional manifold
embedded in the ambient space Rr.
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We let π(x) be the orthogonal projection from Rr into Tx(S), and by H(x) the mean curva-
ture vector given by

H =
∑

1≤i≤q
div⊥

 ∑
1≤j≤q

gi,j⊥ ∂ϕj

 ∂ϕi

with
g−1
⊥ =

(
gi,j⊥

)
1≤i,j≤q

and g⊥ = (g⊥,i,j)1≤i,j≤q = (〈∂ϕi, ∂ϕj〉)1≤i,j≤q

where div⊥ (.) stands for the divergence operator defined in (6.13). We also recall from
(6.16) that

∀1 ≤ k ≤ r Hk = −
∑

1≤i,j≤r
πij∂xiπ

j
k = −

∑
1≤j≤r

∂πjπ
k
j ⇔ HT = −

∑
1≤j≤r

∂πjπj

with the vector fields πj on Rr defined by the column vectors

∀1 ≤ j ≤ r πj :=

 π1
j
...
πrj


The r.h.s. formulation comes from the fact that π = πT . By construction, we also notice that

∀1 ≤ i ≤ q ∂ϕi ∈ T⊥(S) =⇒ ∇ϕi = π(∂ϕi) = 0 (6.20)

In the case of orthogonal constraints

〈∂ϕi, ∂ϕj〉 = 1i=j ‖∂ϕj‖2 ⇒ gi,j⊥ = 1i=j ‖∂ϕj‖−2 ⇒ H =
∑

1≤i≤q
div⊥

(
∂ϕi

‖∂ϕi‖2

)
∂ϕi

In addition, by (6.13) we find the computationally useful formula

q = 1⇒ H = div⊥

(
∂ϕ1

‖∂ϕ1‖2

)
∂ϕ1 =

 ∑
1≤m≤r

∂xm

(
∂xmϕ1

‖∂ϕ1‖

) ∂ϕ1

‖∂ϕ1‖
(6.21)

In the special case of the sphere S = Sp ⊂ Rp+1, with p = r − 1 we can can take

ϕ(x) = ‖x‖ − 1⇒ ∂ϕ(x) = x/‖x‖ and π(x) = Id− ∂ϕ(x)∂ϕ(x)T = Id− xxT

xTx
(6.22)

In this situation, we have

∀x 6= 0 H(x) =

 ∑
1≤m≤r

∂xm

(
xm√

x2
1 + . . .+ x2

r

) x√
x2

1 + x2
2

= (r − 1)
x

‖x‖2
= (r − 1)

x

xTx

(6.23)
We check this claim using the fact that

∂xm

(
xm√

x2
1 + . . .+ x2

r

)
=

1√
x2

1 + . . .+ x2
r

[
1− x2

m

(x2
1 + . . .+ x2

r)

]

⇒ div⊥

(
∂ϕ

‖∂ϕ‖2

)
=

1

‖x‖
∑

1≤m≤r
∂xm

(
xm
‖x‖

)
=

1

‖x‖2
∑

1≤m≤r

(
1− x2

m

‖x‖2

)
=
r − 1

‖x‖2
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For p = 2, the projection on the unit sphere can also be represented in terms of the cross product

π(x)W (x) =
x

‖x‖
∧Wx

x∈S2

= x ∧Wx =

 x2W
3(x)− x3W

2(x)
W 1(x)x2 −W 2(x)x1

x1W
2(x)− x2W

1(x)

 (6.24)

In much the same way the cylinder of unit radius on R2 is given ϕ(x1, x2, x3) =
√
x2

1 + x2
2− 1 = 0.

In this case, we have

∂ϕ(x) =
1√

x2
1 + x2

2

 x1

x2

0

 and π(x) = Id− ∂ϕ(x)∂ϕ(x)T =


x2

2

x2
1+x2

2
− x1x2

x2
1+x2

2
0

− x1x2

x2
1+x2

2

x2
1

x2
1+x2

2
0

0 0 1

 (6.25)

and

H(x) =

 ∑
m=1,2

∂xm(∂xmϕ)(x)

 ∂ϕ(x) =
1

x2
1 + x2

2

 x1

x2

0



6.2.2 Brownian motion on manifolds

6.2.3 A diffusion model in the ambient space

We let Xt =

 X1
t

...
Xr
t

 be the Rr-valued diffusion defined by

dXt = −1

2
H(Xt) dt+ π(Xt) dBt (6.26)

where Bt stands for a standard r-dimensional Brownian motion.

In the special case of the sphere S = Sp ⊂ Rp+1 we have

dXt = −r − 1

2

Xt

XT
t Xt

dt+

(
Id− XtX

T
t

XT
t Xt

)
dBt (6.27)

In terms of the cross product (6.24) we have

dXt = −r − 1

2

Xt

XT
t Xt

dt+
Xt√
XT
t Xt

∧ dBt

The next picture illustrates a realization of a Brownian motion on the unit sphere.
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Using (6.25), the Brownian motion on the cylinder with unit radius is given by
dX1

t = −1
2

X1
t

(X1
t )2+(X2

t )2 dt+
(

(X2
t )2

(X1
t )2+(X2

t )2 dB
1
t −

X1
tX

2
t

(X1
t )2+(X2

t )2 dB
2
t

)
dX2

t = −1
2

X2
t

(X1
t )2+(X2

t )2 dt+
(
− X1

tX
2
t

(X1
t )2+(X2

t )2 dB
1
t +

(X1
t )2

(X1
t )2+(X2

t )2 dB
2
t

)
dX3

t = dB3
t

(6.28)

The next picture illustrates a realization of a Brownian motion on the cylinder of unit radius.
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6.2.4 The infinitesimal generator

Recalling that π = πT , for any 1 ≤ k ≤ r we have

dXk
t = −1

2
Hk(Xt) dt+

∑
1≤j≤r

πkj (Xt) dB
j
t

=
∑

1≤j≤r

[
1

2
∂πj (π

k
j )(Xt) dt+ πkj (Xt) dB

j
t

]
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Notice that

dXk
t dX

l
t

∑
1≤i,j≤r

πki (Xt)π
l
j(Xt) dB

i
tdB

j
t '

∑
1≤i≤r

(πki π
l
i)︸ ︷︷ ︸

:=(ππT )kl

(Xt) dt = πkl (Xt) dt

Using Ito formula, for any smooth function F on Rr we have

dF (Xt) =
∑

1≤k≤r
∂xk(F )(Xt) dX

k
t +

1

2

∑
1≤k,l≤r

∂xk,xl(F )(Xt) dX
k
t dX

l
t

= 〈∂F (Xt), dXt〉+
1

2
tr
(
∂2F (Xt) dXtdX

T
t

)
= 〈∂F (Xt), dXt〉+

1

2
tr
(
π(Xt)∂

2F (Xt)
)
dt = L(F )(Xt) dt+ dMt(F )

with the infinitesimal generator

L(F ) =
1

2

[
tr
(
π∂2F

)
− ∂HF

]
=

1

2

∑
1≤j≤r

∂2
πjF

=
1

2
∆(F ) =

1

2
tr
(
∇2F

)
(⇐= (6.18) & (6.19))

and the martingale Mt(F ) given by

dMt(F ) = 〈(∂F )(Xt), π(Xt)dBt〉 = 〈π(Xt)(∂F )(Xt), dBt〉
= 〈π(Xt)∂F (Xt), dBt〉 = 〈(∇F )(Xt), dBt〉

=
∑

1≤j≤r

 ∑
1≤k≤r

πkj ∂xk(F )

 (Xt) dB
j
t =

∑
1≤j≤r

∂πj (F )(Xt) dB
j
t

Using (6.20), we check that Xt ∈ S for any t, as soon as X0 ∈ S. More precisely, we have

F = ϕi ⇒ ∇F = 0

⇒ dMt(F ) = 〈(∇F )(Xt), dBt〉 = 0 & L(F ) =
1

2
tr (∇(∇F )) = 0

⇒ ϕi(Xt) = ϕ(X0) = 0

Thus, (6.27) can be rewritten as follows

dXt = −r − 1

2
Xt dt+

(
Id−XtX

T
t

)
dBt

Monte Carlo simulation

In practice, the sampling of the diffusion process (6.29) requires some discrete time approximation.
For instance, an Euler type approximation on a time mesh (tn)n≥0 with (tn − tn−1) = ε ' 0 is given
by the equation

Xε
tn −X

ε
tn−1

= −1

2
H(Xε

tn−1
) (tn − tn−1) + π(Xε

tn−1
)
√
tn − tn−1 Bn
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where Bn stands for a sequence of i.i.d. centered and normalized Gaussian r.v. on Rr. Unfortunately
any type of these scheme ensure that Xε

tn stay in the Manifold S. As for deterministic dynamical
systems, we often handle this issue by projecting each step on the manifold

Xε
tn = projS

(
Xε
tn−1
− 1

2
H(Xε

tn−1
) (tn − tn−1) + π(Xε

tn−1
)
√
tn − tn−1 Bn

)
Another strategy is to use a description of the stochastic process in some judicious chart space.
Manifold parametrizations and chart spaces are discussed in section 6.3. We also refer the reader to
section 6.4 for an overview of stochastic calculus on chart spaces, with several illustrations.

6.2.5 Stratonovitch differential calculus

We recall that an r-dimensional stochastic differential equation of the form

dXt = b(Xt) dt+ σ(Xt) dBt

can be rewritten as a Stratonovitch differential equation

∂Xt =

b− 1

2

∑
1≤j≤r

∂σj (σj)
T

 (Xt) ∂t+ σ(Xt) ∂Bt (6.29)

with the vector fields σj on Rr defined by the column vectors

∀1 ≤ j ≤ r σj :=

 σ1
j
...
σrj

 =⇒ ∂σj (σj)
T =

 ∂σjσ
1
j

...
∂σjσ

r
j


In other words, we have

∀1 ≤ k ≤ r ∂Xk
t =

bk − 1

2

∑
1≤j≤r

∂σjσ
k
j

 (Xt) ∂t+
∑

1≤j≤r
σkj (Xt)∂B

j
t

An heuristic but constructive derivation of these formulae is given below. The Stratonovich and the
Ito increments are connected by

bk(Xt) ∂t = bk
(
Xt +

1

2
dXt

)
× dt and σkj (Xt) ∂B

j
t = σkj

(
Xt +

1

2
dXt

)
× dBj

t

with the middle state of the increment of Xt given by

Xt +Xt+dt

2
:= Xt +

1

2
dXt

Using this rule, we have

bk(Xt) ∂t+
∑

1≤j≤r
σkj (Xt) ∂B

j
t ' bk

(
Xt +

1

2
dXt

)
× dt+

∑
1≤j≤r

σkj

(
Xt +

1

2
dXt

)
× dBj

t

= bk(Xt)× dt+
∑

1≤j≤r
σkj (Xt) dB

j
t

+
1

2

∑
1≤j≤r

∑
1≤i≤r

(
∂xiσ

k
j

)
(Xt)× dXi

tdB
j
t + . . .

= bk(Xt)× dt+
∑

1≤j≤r
σkj (Xt) dB

j
t +

1

2

∑
1≤j≤r

(
∂σjσ

k
j

)
(Xt) dt
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The last assertion comes from the fact that

dXi
tdB

j
t =

∑
1≤l≤r

σil(Xt) dB
l
tdB

j
t = σij(Xt) dt

Thus, the Stratonovitch formulation of (6.29) is given by

∂Xt = π(Xt) ∂Bt

In much the same way, using the fact that

(
∂πjF

)
(Xt) ∂B

j
t =

(
∂πjF

)(
Xt +

1

2
dXt

)
dBj

t

=
(
∂πjF

)
(Xt) dBj

t +
1

2

∑
1≤l≤r

∂xl
(
∂πjF

)
(Xt) dX l

tdB
j
t

and

∑
1≤l≤r

∂xl
(
∂πjF

)
(Xt) dX l

tdB
j
t =

∑
1≤l≤r

∂xl
(
∂πjF

)
(Xt)

∑
1≤m≤r

πlm(Xt) dB
m
t dB

j
t

=

 ∑
1≤l≤r

πjl (Xt) ∂xl
(
∂πjF

)
(Xt)

 dt = ∂2
πjF (Xt) dt

we prove that (
∂πjF

)
(Xt) ∂B

j
t =

(
∂πjF

)
(Xt) dBj

t +
1

2

(
∂2
πjF

)
(Xt) dt

and therefore (
∂πjF

)
(Xt) dBj

t =
(
∂πjF

)
(Xt) ∂B

j
t −

1

2

(
∂2
πjF

)
(Xt) dt

Therefore, the Stratonovitch formulation of the equation

dF (Xt) = L(F )(Xt) dt+
∑

1≤j≤r

(
∂πjF

)
(Xt) dB

j
t

is given by

∂F (Xt) =

L(F )− 1

2

∑
1≤j≤r

∂2
πjF

 (Xt) dt+
∑

1≤j≤r

(
∂πjF

)
(Xt) ∂B

j
t

=
∑

1≤j≤r

(
∂πjF

)
(Xt) ∂B

j
t =

∑
1≤k≤r

(∂xkF ) (Xt)
∑

1≤j≤r
πkj (Xt) ∂B

j
t

=
∑

1≤k≤r
∂xkF (Xt) ∂X

k
t = 〈(∂F )(Xt), ∂Xt〉



6.2. STOCHASTIC DIFFERENTIAL CALCULUS ON MANIFOLDS 135

6.2.6 Projected diffusions on manifolds

We let Xt =

 X1
t

...
Xr
t

 be the Rr-valued diffusion defined by

dXt = π(Xt) (b(Xt)dt+ σ(Xt) dBt)−
1

2
Hσ(Xt) dt (6.30)

= b(Xt)dt+

[
σ(Xt) dBt −

1

2
Hσ(Xt) dt

]
with

σ(x) = π(x)σ(x) and b(x) = π(x)b(x)

where Bt stands for a standard r-dimensional Brownian motion and

σ =

 σ1
1 . . . σ1

r
...

...
...

σr1 . . . σrr

 and Hσ(x) = −


∑

1≤j≤r ∂σjσ
1
j

...∑
1≤j≤r ∂σjσ

r
j



Using (6.29), the Stratonovitch formulation of the above equation is given by

∂Xt = b(Xt) ∂t+ σ(Xt) ∂Bt

In this situation, we have

dXtdX
T
t = σ(Xt) dBt dB

T
t σ(Xt)

T =
(
σσT

)
(Xt)

This yields, for any smooth function F on Rr the Ito formula.

dF (Xt) = 〈∂F (Xt), dXt〉+
1

2
tr
(
∂2F (Xt) dXtdX

T
t

)
= 〈∂F (Xt), dXt〉+

1

2
tr
((
σσT

)
(Xt)∂

2F (Xt)
)
dt = L(F )(Xt) dt+ dMt(F )

with

L(F ) = ∂bF +
1

2

[
tr
((
σσT

)
∂2F

)
− ∂HσF

]
and the martingale

dMt(F ) = 〈∂F (Xt), σ(Xt)dBt〉 = 〈∇F (Xt), σ(Xt)dBt〉
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To get one step further in our discussion, we notice that

tr
((
σσT

)
(x)∂2F (x)

)
=
∑

1≤k,l≤r ∂xk,xl(F )(x)
(
σ(x)σT (x)

)k
l

=
∑

1≤j,k,l≤r σ
k
j (x)σlj(x) ∂xk,xl(F )(x)

=
∑

1≤j≤r
∑

1≤k≤r σ
k
j (x) ∂xk

(∑
1≤l≤r σ

l
j ∂xlF

)
(x)

−
∑

1≤l≤r

{∑
1≤j≤r

[∑
1≤k≤r σ

k
j (x) ∂xk

(
σlj

)
(x)
]}

∂xlF

=
∑

1≤j≤r ∂σj
(
∂σjF

)
(x) + ∂HσF (x)

This implies that

L(F ) = ∂b(F ) +
1

2

∑
1≤j≤r

∂2
σj (F ) = 〈b,∇F 〉+

1

2
tr
(
σT∇ σT∇F

)
(6.31)

The r.h.s. formulation comes from the fact that

σT∂F =


∑

1≤k≤r σ
k
1∂xkF

...∑
1≤k≤r σ

k
r∂xkF


=⇒ ∂

(
σT∂F

)
=

[∑
1≤k≤r ∂

(
σk1∂xkF

)
, . . . ,

∑
1≤k≤r ∂

(
σkr∂xkF

)]
=


∑

1≤k≤r ∂x1

(
σk1∂xkF

)
. . .

∑
1≤k≤r ∂x1

(
σkr∂xkF

)
...

...∑
1≤k≤r ∂xr

(
σk1∂xkF

)
. . .

∑
1≤k≤r ∂xr

(
σkr∂xkF

)


=⇒ σT
(
∂
(
σT∂F

))
=


∑

1≤k,l≤r σ
l
1∂xl

(
σk1∂xkF

)
. . .

∑
1≤k,l≤r σ

l
1∂xl

(
σkr∂xkF

)
...

...∑
1≤k,l≤r σ

l
r∂xl

(
σk1∂xkF

)
. . .

∑
1≤k,l≤r σ

l
r∂xl

(
σkr∂xkF

)


This yields

tr
(
σT∂ σT∂F

)
= tr

(
σT∇ σT∇F

)
=
∑

1≤j≤r

∑
1≤k,l≤r

σlj∂xl

(
σkj ∂xkF

)
=
∑

1≤j≤r
∂2
σi(F )

Using (6.20), we check that Xt ∈ S for any t, as soon as X0 ∈ S. More precisely, we have

F = ϕi ⇒ ∇F = 0

⇒
{
dMt(F ) = 〈(∇F )(Xt), σ(Xt)dBt〉 = 0
L(F ) = 〈b,∇F 〉+ 1

2 tr
(
σT∇ σT∇F

)
= 0

⇒ ϕi(Xt) = ϕ(X0) = 0
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6.2.7 Brownian motion on orbifolds

We let S = ϕ−1(0) ⊂ Rr=p+1 be some hypersurface, and H be a subgroup of the orthogonal group
O(r) on Rr, acting on S, such that

∀h ∈ H ∀x ∈ S hx ∈ S (=⇒ ϕ(x) = ϕ(hx))

The prototype of model we have in head is the unit sphere

S = Sp =

x = (xi)
T
1≤i≤r : ϕ(x) :=

√ ∑
1≤i≤r

x2
i − 1 = 0

 ⊂ Rp+1

and the group action induced by the subgroup

O :=

h =


ε1 0 . . . 0
0 ε2 . . . 0
...

...
...

0 0 . . . εr

 : ∀1 ≤ i ≤ r εi ∈ {−1, 1}

 (6.32)

In the case of the sphere the quotient manifold is isomorphic to the positive orthant S/H = S ∩ Rr+

〈hx, hy〉 = xThThy = xT y = 〈x, y〉

Quotient manifolds defined by the orbit space S/H are often called orbifolds.

By construction, we have

ϕh(x) := ϕ(hx) =⇒ ∂xi(ϕh)(x) =
∑

1≤k≤r (∂xkϕ) (hx) ∂xi

(∑
1≤j≤r h

j
k xj

)
=

∑
1≤k≤r h

j
k (∂xkϕ) (hx) =

∑
1≤k≤r (hT )kj (∂xkϕ) (hx)

=⇒ (∂ϕh)(x) = h−1(∂ϕ)(hx) = hT (∂ϕ)(hx)

=⇒ ‖(∂ϕh)(x)‖2 = 〈(∂ϕh)(x), (ϕh)(x)〉

= (∂ϕ)(hx)ThhT (∂ϕ)(hx) = (∂ϕ)(hx)T (∂ϕ)(hx)

= ‖(∂ϕ)(hx)‖2

This shows that the unit normal at hx is given by

h
(∂ϕh)(x)

‖(∂ϕh)(x)‖
=

(∂ϕ)(hx)

‖(∂ϕ)(hx)‖

On the other hand, under our assumptions we have

ϕh(x) := ϕ(hx) = ϕ(x) =⇒ (∂ϕh)(x)

‖(∂ϕh)(x)‖
=

(∂ϕ)(x)

‖(∂ϕ)(x)‖

This implies that

h
(∂ϕh)(x)

‖(∂ϕh)(x)‖
= h

(∂ϕ)(x)

‖(∂ϕ)(x)‖
=

(∂ϕ)(hx)

‖(∂ϕ)(hx)‖
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from which we prove that

π(x) = Id− (∂ϕ)(x)

‖(∂ϕ)(hx)‖
(∂ϕ)(x)T

‖(∂ϕ)(x)‖

=⇒ hπ(x)hT = Id− h (∂ϕ)(x)

‖(∂ϕ)(x)‖

(
h

(∂ϕ)(x)

‖(∂ϕ)(x)‖

)T

= Id− (∂ϕ)(hx)

‖(∂ϕ)(hx)‖
(∂ϕ)T (hx)

‖(∂ϕ)(hx)‖
=⇒ hπ(x)hT = π(hx)

(6.33)

On the other hand, we have

(∂ϕh)

‖(∂ϕh)‖
(x) = hT

(∂ϕ)(hx)

‖(∂ϕ)(hx)‖
=

∂ϕ

‖(∂ϕ)‖
(x)

⇒ ∂xm

[
(∂xmϕh)(x)

‖(∂ϕh)(x)‖

]
=

∑
1≤j≤r h

m
j ∂xm

[
(∂xjϕ)(hx)

‖(∂ϕ)(hx)‖

]
= ∂xm

[
(∂xmϕ)
‖(∂ϕ)‖

]
(x)

=
∑

1≤j≤r
hmj

∑
1≤k≤r

∂xk

[
(∂xjϕ)

‖(∂ϕ)‖

]
(hx) ∂xm

 ∑
1≤i≤r

hikxi


=

∑
1≤j≤r

hmj h
m
k

∑
1≤k≤r

∂xk

[
(∂xjϕ)

‖(∂ϕ)‖

]
(hx)

Taking the sum over m, this implies that

∑
1≤j≤r

=1j=k︷ ︸︸ ︷ ∑
1≤m≤r

hmj (hT )km

 ∑
1≤k≤r

∂xk

[
(∂xjϕ)

‖(∂ϕ)‖

]
(hx) =

∑
1≤m≤r

∂xm

[
(∂xmϕ)

‖(∂ϕ)‖

]
(x)

=⇒
∑

1≤m≤r
∂xm

[
(∂xmϕ)

‖(∂ϕ)‖

]
(hx) =

∑
1≤m≤r

∂xm

[
(∂xmϕ)

‖(∂ϕ)‖

]
(x)

(6.34)

Combining this result with (6.21) we conclude that

h H(x) =

 ∑
1≤m≤r

∂xm

(
∂xmϕ

‖∂ϕ‖

)
(x)

 h

[
∂ϕ

‖∂ϕ‖
(x)

]

=

 ∑
1≤m≤r

∂xm

(
∂xmϕ

‖∂ϕ‖

)
(hx)

 (∂ϕ)(hx)

‖(∂ϕ)(hx)‖
⇒ h H(hTx) = H(x)

We let Xt be the Brownian motion on S defined in (6.29). Using (6.33) and (6.34), for any h ∈ H
we have

Yt = hXt ⇒ dYt = hdXt = −1

2
hH(hT (hXt)) dt+ hπ(Xt)h

T hdBt

= −1

2
H(Yt) dt+ π(Yt) dB

(h)
t (6.35)
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where B
(h)
t is a standard r-dimensional Brownian motion. Roughly speaking, this result shows that

all the stochastic processes in the same orbit

OrbH(X) = {(hXt)t≥0 : h ∈ H}

only differ by changing their driving Brownian motion. This coupling technique allows to define in a
unique way the Brownian motion on the quotient manifold S/H.

6.3 Parametrizations and Charts

We denote by

ψ : θ ∈ Sψ ⊂ Rp 7→ ψ(θ) =
(
ψ1(θ), . . . , ψr(θ)

)T ∈ S ⊂ Rr (6.36)

a given smooth parametrization of S, with a well defined smooth inverse mapping

φ = ψ−1 : x ∈ S 7→ φ(x) = (φ1(x), . . . , φp(x))T ∈ Sφ ⊂ Rp

To clarify the presentation, we further assume that the manifold S can be parametrized by a single
map ψ, and thus thus with a single chart coordinate.

By construction, we have

∀1 ≤ l ≤ q ∀θ ∈ Sψ ϕl(ψ(θ)) = 0

⇓

∂θj (ϕl ◦ ψ) (θ) =
∑

1≤k≤r
(∂xkϕl) (ψ(θ)) ∂θiψ

l(θ) = 〈(∂ϕl) (ψ(θ)), ∂θiψ(θ)〉 = 0

⇓

∀x ∈ S 〈∂ϕl(x), (∂θiψ) (φ(x))〉 = 0

To clarify the presentation, we set

(∂θiψ)φ : x ∈ S 7→ (∂θiψ)φ (x) := (∂θiψ) (φ(x)) ∈ Tx(S)

and (
∂φi
)
ψ

: θ ∈ Sψ 7→
(
∂φi
)
ψ

(θ) =
(
∂φi
)

(ψ(θ)) ∈ Rr

In this notation, we have shown that

T (S) = Vect
(

(∂θ1ψ)φ , . . . ,
(
∂θpψ

)
φ

)

in the sense that

∀x ∈ S Tx(S) = Vect
(

(∂θ1ψ)φ (x), . . . ,
(
∂θpψ

)
φ

(x)
)
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We let ei be the unit vectors on Sψ(⊂ Rp) defined by

∀1 ≤ i ≤ p ei =



0
...
0
1
0
...
0


← i-th term (6.37)

We end this section with an alternative description of the vector fields (∂θiψ)φ. For each 1 ≤ i ≤ p,
we let ci(t) = φ(x) + t ei be a curve in Sψ with starting point φ(x) and velocity ei and

Ci(t) = ψ (φ(x) + t ei)

is the pushed forward curve in the manifold S with velocity

dCi
dt

(0) =
∑

1≤j≤p

(
∂θjψ

)
φ

(x) eji = (∂θiψ)φ (x)

In differential geometry these vector fields in Tx(S) are often denoted using the somehow
misleading notation

∂

∂θi
|x := (∂θiψ)φ (x) (6.38)

The main reason for this pretty strange notation will become clear in section 6.3.2 (see
formula (6.46)).

6.3.1 Orthogonal projection operators

We let g = (gi,j)1≤i,j≤p be the (p× p)-matrix field on Sψ defined by

∀1 ≤ i, j ≤ p gi,j :=
〈
∂θiψ, ∂θjψ

〉 (
⇔ ∀θ ∈ Sψ gi,j(θ) :=

〈
∂θpψ(θ), ∂θpψ(θ)

〉)
(6.39)

We also consider the push-forward matrix fields on S given by

gφ = (gφ,i,j)1≤i,j≤p = (gi,j ◦ φ)1≤i,j≤p

By construction, the projection of any vector field W on Rr onto T (S) is given by

π(W ) =
∑

1≤i≤p

〈 ∑
1≤i≤p

gi,jφ
(
∂θjψ

)
φ
,W

〉
(∂θiψ)φ with g−1 = (gi,j)1≤i,j≤p

in the sense that

π(x)(W (x)) =
∑

1≤i≤p

〈 ∑
1≤i≤p

gi,jφ (x)
(
∂θjψ

)
φ

(x),W (x)

〉
(∂θiψ)φ (x)
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We let Wψ = W ◦ ψ be the pull back vector field on the parameter space, and we denote by
πψ(θ) = π(ψ(θ)) = π(x) the orthonormal projection functional onto Tx(S) with x = ψ(θ). In this
notation, we have

πψ(θ)(Wψ(θ)) =
∑

1≤i≤p

〈 ∑
1≤i≤p

gi,j(θ)
(
∂θjψ

)
(θ),Wψ(θ)

〉
(∂θiψ) (θ)

or in a more synthetic form

πψ(Wψ) =
∑

1≤i≤p

〈 ∑
1≤i≤p

gi,j ∂θjψ,Wψ

〉
∂θiψ

By construction, for any 1 ≤ i, j ≤ p we also have that

φi(ψ(θ)) = θi ⇒ ∂θj
(
φi ◦ ψ

)
)(θ) =

∑
1≤k≤r

(
∂xkφ

i
)
ψ

(θ) ∂θjψ
k(θ)

=
〈(
∂φi
)
ψ

(θ), ∂θjψ(θ)
〉

= 1i=j

so that
∀x ∈ S

〈(
∂φi
)

(x), (∂θjψ)φ (x)
〉

= 1i=j

This implies that

∇φi = π
(
∂φi
)

=
∑

1≤k≤p

〈 ∑
1≤l≤p

gk,lφ (∂θlψ)φ , ∂φ
i

〉
(∂θkψ)φ

=
∑

1≤k≤p
gi,kφ (∂θkψ)φ (6.40)

and ∑
1≤i≤p

gφ,j,i ∇φi =
∑

1≤k≤p

∑
1≤i≤p

gφ,j,i g
i,k
φ (∂θkψ)φ = (∂θjψ)φ

By construction, we have〈(
∇φi

)
, (∂θjψ)φ

〉
= 1i=j and

〈
∇φi,∇φj

〉
= gi,jφ (6.41)

We check these claims using the fact that〈(
∇φi

)
, (∂θjψ)φ

〉
=
∑

1≤k≤p
gi,kφ gφ,k,j = 1i=j

and 〈
∇φi,∇φj

〉
=

∑
1≤k,l≤p

gi,kφ gj,lφ

〈
(∂θkψ)φ , (∂θlψ)φ

〉
=

∑
1≤k≤p

gi,kφ

∑
1≤l≤p

gj,lφ gφ,l,k = gi,jφ
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In summary, the vector fields ∇φi form a new basis of T (S)

T (S) = Vect
(
∇φ1, . . . ,∇φp

)
with the scalar product

〈
∇φi,∇φj

〉
= gi,jφ

and the change of basis formulae are given by

(∂θiψ)φ =
∑

1≤j≤p
gφ,i,j ∇φj and ∇φi =

∑
1≤j≤p

gi,jφ (∂θjψ)φ (6.42)

Expressed in this new basis vector fields, the orthogonal projection operators π take the
form

π(W ) =
∑

1≤i≤p

〈 ∑
1≤j≤p

gφ,i,j ∇φj ,W

〉
∇φi

Notice that

W =
∑

1≤i≤p
V i
φ (∂θiψ)φ =⇒ ∀1 ≤ i ≤ p V i

φ =
〈
W,∇φi

〉

Rewritten in a slightly different form we have

π(W ) =
∑

1≤j≤p

〈
∇φj ,W

〉 ∑
1≤i≤p

gφ,j,i ∇φi =
∑

1≤j≤p

〈
∇φj ,W

〉
(∂θjψ)φ (6.43)

6.3.2 Riemannian structures

We consider a smooth curve in the parameter space c : t ∈ [0, 1] 7→ c(t) =
(
c1(t), . . . , cp(t)

)T ∈ Sψ
starting at some parameter state c(0) = θ ∈ Sψ, with a velocity vector field V (∈ Rp), that is we have
that

dc

dt
=

(
dc1

dt
, . . . ,

dcp

dt

)T
= V (c(t)) =

(
V 1(c(t)), . . . , V p(c(t))

)T
The function c is called an integral curve of V (a.k.a. V -integral curve). By construction, C(t) :=
ψ(c(t)) is a smooth curve on S and we have

∀1 ≤ i ≤ q dC

dt
=

d

dt
ψ(c(t)) =

∑
1≤i≤p

(∂θiψ) (c(t)) V i(c(t))

For t = 0, this implies that
dC

dt
(0) =

∑
1≤i≤p

V i
φ(x) (∂θiψ)φ(x)

with

x = ψ(θ)⇔ θ = φ(x) and V i
φ(x) = V i(φ(x))

In other words, C is an integral curve of the vector field

W (x) =
∑

1≤i≤p
V i
φ(x) (∂θiψ)φ(x)
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For any smooth function F = f ◦ φ on S we have

d

dt
F (C(t)) =

∑
1≤k≤r

W k(C(t)) (∂xkF )(C(t)) = ∂W (F )(C(t))

=
∑

1≤j≤p
V j(c(t))

∑
1≤k≤r

(∂xkF )(ψ(c(t)))
(
∂θjψ

k
)

(c(t))

=
∑

1≤j≤p
V j(c(t))

(
∂θj (F ◦ ψ)

)
(c(t))

=
∑

1≤j≤p
V j(c(t))

(
∂θjf

)
(c(t)) = ∂V (f)(c(t)) =

d

dt
f(c(t)) (6.44)

This shows that

d

dt
F (C(t)) = ∂W (F )(C(t)) = ∂V (f)(c(t)) =

d

dt
f(c(t))

t=0
=⇒ ∂WF = (∂V f) ◦ φ (6.45)

Vector fields can also be interpreted as differential operators

W : F 7→ W (F ) = ∂W (F ) = W T∂F = 〈W,∂F 〉

In this interpretation, rewritten in terms of (6.38), we have

(
∂θj (F ◦ ψ)

)
φ

=
∑

1≤k≤r

(
∂

∂θi

)k
(∂xkF ) =

〈
∂

∂θi
, ∂F

〉
=

∂

∂θi
(F )

and therefore

∀x ∈ S W (x) =
∑

1≤i≤p
V i
φ(x)

(
∂

∂θi

)
|x ⇔ W =

∑
1≤i≤p

V i
φ

∂

∂θi
(6.46)

In this synthetic notation, we have

W (F ) =
∑

1≤i≤p
V i
φ

∂

∂θi
(F ) =

∑
1≤i≤p

V i
φ ∂θi(f) with f = F ◦ ψ ⇔ F = f ◦ φ

This induces a one to one linear mapping between the tangent spaces Tθ(Sψ) of the param-
eter space and the tangent space Tψ(θ)(S) on the manifold S. This mapping is called the
pushforward of the vector fields on Tθ(Sψ) into Tψ(θ)(S), and it is given by

(dψ) : V ∈ T (Sψ) 7→ (dψ) (V ) :=
∑

1≤i≤p
V i (∂θiψ) ∈ Tψ(S)

in the sense that

(dψ)θ : V (θ) ∈ T (Sψ) 7→ (dψ)θ (V (θ)) :=
∑

1≤i≤p
V i(θ) (∂θiψ) (θ) ∈ Tψ(θ)(S)
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Alternatively, we have

(dψ)φ : Vφ ∈ Tφ(Sψ) 7→ (dψ)φ (Vφ) :=
∑

1≤i≤p
V i
φ (∂θiψ)φ ∈ T (S)

in the sense that

(dψ)φ(x) : V (φ(x)) = Vφ(x) ∈ Tφ(x)(Sψ) 7→ (dψ)φ(x) (Vφ(x)) :=
∑

1≤i≤p
V i
φ(x) (∂θiψ)φ (x) ∈ Tx(S)

Finally, we notice that

W = (dψ)φ(Vφ) =
∑

1≤i≤p
V i
φ (∂θiψ)φ ⇒

〈
∇φj ,W

〉
=
∑

1≤i≤p
V i
φ

〈
∇φj , (∂θiψ)φ

〉
= V j

φ

Thus, for any W ∈ T (S) we have

Vφ = (dψ)−1
φ (W ) =

 (∇φ1)T

...
(∇φp)T

W
The parameter space Sψ ⊂ Rp is free of any constraints and we have

Tθ(Sψ) = Vect (e1, . . . , ep)

with the unit vectors defined in (6.37).
In this notation, (dψ) maps the basis functions ei of Tθ(Sψ) into the basis functions (∂θiψ) of

Tψ(θ)(S); that is, we have that

(dψ) (ei) = (∂θiψ) and (dψ)−1
φ (∂θiψ) = ei

It is also essential to notice that

〈(dψ) (V1), (dψ) (V2)〉 =
∑

1≤i≤p
V i

1 gi,j V
j

2 = V T
1 g V2

Thus, if we equip the tangent space Tθ(Sψ) with the scalar product

〈V1, V2〉g =
∑

1≤i≤p
gi,j V

i
1V

j
2

the description of T (S) in the chart φ given by

(Wk)ψ = (dψ)(Vk)⇒ 〈(dψ) (V1), (dψ) (V2)〉 =
∑

1≤i≤p
V i

1V
j

2 gi,j

In summary, we have
〈V1, V2〉g = 〈(W1)ψ, (W2)ψ〉

More formally, the (linear) push forward mappings (dψ)θ are smooth isomorphisms between
the inner product spaces

(
Tθ(Sψ), 〈., .〉g(θ)

)
and

(
Tψ(θ)(S), 〈., .〉

)
The scalar product induced by g on the tangent space T (Sψ) of the parameter space Sψ is
called the Riemannian scalar product.



6.3. PARAMETRIZATIONS AND CHARTS 145

6.3.3 First order covariant derivatives

Pushed forward functions

Smooth functions F on S are the push forward of functions f on Sψ, and inversely functions
f on the parameter space are the pull back of functions F on S using the relations

F = f ◦ φ and f = F ◦ ψ

As a rule, we use the letters F and W to denote functions, and vector fields on S and f, V
to denote functions and vector fields on the parameter space Sψ.
We also denote by Fψ = F ◦ ψ, resp. Wψ = W ◦ ψ, and fφ = f ◦ φ, resp. Vφ = V ◦ φ, the
pull back of W , resp. F , and V , resp. f , w.r.t. ψ and φ.

In this notation, differential of push forward functions are given by

∂θi(Fψ) =
∑

1≤j≤r

(
∂xjF

)
ψ
∂θiψ

j = (∂θiψ)T (∂F )ψ

In terms of (6.38)
In much the same way, differential of pull back functions are given by the formula

∂xi(fφ) =
∑

1≤j≤p

(
∂θjf

)
φ
∂xiφ

j ⇔ (∂fφ)ψ =
∑

1≤j≤p
∂θjf

(
∂φj

)
ψ

and therefore

(∇F )ψ = πψ(∂F )ψ =
∑

1≤j≤p

(
∂θjf

)
πψ
(
∂φj

)
ψ

=
∑

1≤j≤p

(
∂θjf

)
(∇φj)ψ =

∑
1≤i≤p

 ∑
1≤j≤p

gi,j
(
∂θjf

) ∂θiψ (6.47)

=
∑

1≤i≤p
(∇g(f))i ∂θiψ = dψ (∇g(f)) (6.48)

with the vector field ∇gf on Sψ given by

∇gf :=


∑

1≤j≤p g
1,j
(
∂θjf

)
...∑

1≤j≤p g
p,j
(
∂θjf

)
 = g−1∂f (6.49)

The last assertion comes from the change of basis formula (6.42). It is also instructive to observe that

∇gf =
∑

1≤i≤p
〈
∑

1≤j≤p
gi,j ej , ∂f〉 ei =

∑
1≤i≤p

 ∑
1≤i≤p

gi,j ∂θjf

 ei and
(
∇φi

)j
ψ

=
(
∇gψj

)i
Furthermore, using (6.41) for any

F = f ◦ φ and W = (dψ)φ (Vφ)
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we have

〈∇F,W 〉 =
∑

1≤i,j≤p
V i
φ

(
∂vjf

)
φ

〈
∇φj , (∂θiψ)φ

〉
=

∑
1≤i≤p

V i
φ (∂vif)φ = 〈(∂f)φ, Vφ〉

In much the same way, we have

〈(∇F )ψ,Wψ〉 =
∑

1≤i,j≤p
(∇g(f))i V j 〈∂θiψ, ∂θjψ〉

=
∑

1≤i,j≤p
gi,j (∇g(f))i V j = 〈∇gf, V 〉g = 〈∂f, V 〉

In terms of directional derivatives, we have

(∂W (F )) ◦ ψ = 〈(∇F )ψ,Wψ〉 = 〈∇gf, V 〉g

In particular, for any couple of functions F1 = f1 ◦ φ and F2 = f2 ◦ φ we have

〈∇F1,∇F2〉 =
〈

(∇gf1)φ , (∇gf2)φ

〉
gφ

(
=
〈

(∂f1)φ , (∂f2)φ

〉
g−1
φ

)
(6.50)

We consider the r coordinate projection mappings

χi= ψi ◦ φ : x ∈ S 7→χi (x) =
(
ψi ◦ φ

)
(x) = xi ∈ R (6.51)

Applying the above formula to f = ψi, using (6.48) we find that

∇ χi= (dψ)φ

((
∇gψi

)
φ

)
=
∑

1≤j≤p
(∇φj)ψ

(
∂vjψ

i
)

On the other hand, by (6.43) we have

π(W ) =
∑

1≤j≤p

〈
∇φj ,W

〉
(∂θjψ)φ (6.52)

=


∑

1≤j≤p
〈
∇φj ,W

〉 (
∂θjψ

1
)
φ

...∑
1≤j≤p

〈
∇φj ,W

〉
(∂θjψ

r)φ

 =


(
∇ χ1

)T
...

(∇ χr)T

 W

We also have  ∆ χ1

...
∆ χr

 = −H

We check this claim using the fact that

χk (x) = xk ⇒ ∂2 χk= 0⇒ ∆ χk =
∑

1≤l≤r ∂πlπ
l
k (⇐ (6.18))

= −∂H χk= −Hk (⇐ (6.19))

(6.53)
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Pushed forward vector fields

We consider the push forward Wx on Tx(S) of a vector field V on T (Sψ) given by the formula

W (x) = (dψ)φ(x) (Vφ(x)) :=
∑

1≤j≤p
V j
φ (x)

(
∂θjψ

)
φ

(x)

We have

V j
φ = V j ◦ φ =⇒ ∂xk

(
V j
φ

)
(x) =

∑
1≤l≤p

(
∂θlV

j
)

(φ(x))
(
∂xkφ

l
)

(x)

and

∂xk

((
∂θjψ

i
)
φ

)
(x) =

∑
1≤l≤p

(
∂θl,θjψ

i
)

(φ(x))
(
∂xkφ

l
)

(x)

Rewritten in a more synthetic way we have

∂xkV
j
φ =

∑
1≤l≤p

(
∂θlV

j
)
φ
∂xkφ

l

∂xk
(
∂θjψ

)
φ

=
∑

1≤l≤p

(
∂θl,θjψ

)
φ
∂xkφ

l

This implies that

∂xkW
i =

∑
1≤j≤p

[
∂xk(V j

φ )
(
∂θjψ

i
)
φ

+ V j
φ ∂xk

(
∂θjψ

i
)
φ

]
=

∑
1≤j,l≤p

[(
∂θlV

j
)
φ

(
∂θjψ

i
)
φ

+ V j
φ

(
∂θl,θjψ

i
)
φ

]
∂xkφ

l

In vector form, we have

∂W i =
∑

1≤j,l≤p

[(
∂θlV

j
)
φ

(
∂θjψ

i
)
φ

+ V j
φ

(
∂θl,θjψ

i
)
φ

]
∂φl

and

∂W =
∑

1≤j,l≤p

[(
∂θlV

j
)
φ
∂φl

(
∂θjψ

)T
φ

+ V j
φ ∂φl

(
∂θl,θjψ

)T
φ

]
This implies that

∇W = π(∂W )

=
∑

1≤j,l≤p

[(
∂θlV

j
)
φ
∇φl

(
∂θjψ

)T
φ

+ V j
φ ∇φ

l
(
∂θl,θjψ

)T
φ

]
=

∑
1≤j,k,l≤p

gl,kφ

[(
∂θlV

j
)
φ

(∂θkψ)φ
(
∂θjψ

)T
φ

+ V j
φ (∂θkψ)φ

(
∂θl,θjψ

)T
φ

]
Taking the trace, we obtain

tr (∇W ) =
∑

1≤j,k,l≤p
gl,kφ

[(
∂θlV

j
)
φ

gφ,k,j + V j
φ

〈
(∂θkψ)φ ,

(
∂θl,θjψ

)
φ

〉]
=

∑
1≤j≤p

(
∂θjV

j
)
φ

+
1

2

∑
1≤j,k,l≤p

gl,kφ V j
φ

(
∂θj 〈∂θkψ, ∂θlψ〉

)
φ
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This yields

tr (∇W )ψ =
∑

1≤j≤p
∂θjV

j +
∑

1≤j≤p
V j 1

2

∑
1≤k,l≤p

gl,k ∂θjgk,l

Recalling that∑
1≤k,l≤p

gl,k ∂θjgk,l = tr
(
g−1∂θjg

)
=

1

det(g)
∂θj (det(g)) =

2√
det(g)

∂θj

(√
det(g)

)

we conclude that

div (W )ψ := tr (∇W )ψ =
∑

1≤j≤p

1√
det(g)

∂θj

(√
det(g) V j

)
:= divg(V ) (6.54)

Choosing W = ∇F = (dψ)φ (∇g(f))φ we also have that

(∆F )ψ = div (∇F )ψ := tr
(
∇2F

)
ψ

=
∑

1≤j≤p

1√
det(g)

∂θj

√det(g)
∑

1≤i≤p
gj,i ∂θif

 := divg(∇gf) (6.55)

Directional derivatives

We let W1,W2 be a couple of vector fields in T (S). We let V1, V2 their pull back vector fields so that

Wk ◦ ψ = (dψ) (Vk) :=
∑

1≤j≤p
V j
k ∂θjψ

for any k = 1, 2. We let C1 be a W1-integral curve, that is

dC1

dt
(t) = W1 (C1(t))⇒ d

dt
F (C1(t)) =

∑
1≤k≤r

W k
1 (C1(t)) (∂xkF )(C1(t)) = ∂W1(F )(C1(t))

We recall from (6.44) that

∂W1(F ) ◦ ψ =
∑

1≤j≤p
V j

1 ∂θj (F ◦ ψ) = ∂V1(F ◦ ψ) = 〈∇g(F ◦ ψ), V1〉g (6.56)

Notice that

(∂W1(∂W2(F ))) ◦ ψ = (∂W1(F2)) ◦ ψ with F2 ◦ ψ =
∑

1≤j≤p
V j

2 ∂θj (F ◦ ψ) = ∂V2(F ◦ ψ)

= ∂V1(F2 ◦ ψ)) = ∂V1 (∂V2(F ◦ ψ))

=
∑

1≤i,j≤p
V i

1 ∂θi(V
j

2 ) ∂θj (F ◦ ψ) +
∑

1≤i,j≤p
V i

1V
j

2 ∂θi,θj (F ◦ ψ) (6.57)
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The directional derivative of the vector field W2 along the curve C1 is given by

d

dt
W2(C1(t)) =


d
dtW

1
2 (C1(t))

...
d
dtW

r
2 (C1(t))

 =


(
∂W1W

1
2

)
(C1(t))

...
(∂W1W

r
2 ) (C1(t))

 := ∂W1(W2)(C1(t))

with

∂W1(W2) =

 ∂W1W
1
2

...
∂W1W

r
2

⇒ ∂W1(W2) ◦ ψ =

 ∂V1(W 1
2 ◦ ψ)
...

∂V1(W r
2 ◦ ψ)



Using the fact that

∂V1(W k
2 ◦ ψ) =

∑
1≤i≤p

V i
1 ∂θi

 ∑
1≤j≤p

V j
2 ∂θjψ

k


=

∑
1≤i,j≤p

V i
1 ∂θi(V

j
2 ) ∂θjψ

k +
∑

1≤i≤p
V i

1 V
j

2 ∂θi,θjψ
k

we conclude that

∂W1(W2) ◦ ψ =
∑

1≤i,j≤p
V i

1 ∂θi(V
j

2 ) ∂θjψ +
∑

1≤i≤p
V i

1 V
j

2 ∂θi,θjψ

The directional covariant derivative is defined by taking the projection on the tangent space T (S)

∇W1W2 = π (∂W1(W2)) =
∑

1≤i,j≤p
V i

1,φ

(
∂θiV

j
2

)
φ

(
∂θjψ

)
φ

+
∑

1≤i≤p
V i
φ,1 V

j
φ,2 π

((
∂θi,θjψ

)
φ

)

or equivalently

(∇W1W2) ◦ ψ = πψ

(
(∂W1(W2))ψ

)
=

∑
1≤i,j≤p

V i
1

(
∂θiV

j
2

)
∂θjψ +

∑
1≤i≤p

V i
1 V

j
2 πψ

((
∂θi,θjψ

))

with

πψ
((
∂θi,θjψ

))
=
∑

1≤k≤p

〈 ∑
1≤l≤p

gk,l ∂θlψ, ∂θi,θjψ

〉
︸ ︷︷ ︸

:=Γki,j

∂θkψ (6.58)

The coordinate functions Γki,j are called the Christoffel symbol.
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In this notation, we have

(∇W1W2) ◦ ψ =
∑

1≤k≤p

 ∑
1≤i≤p

V i
1

(
∂θiV

k
2

)
+

∑
1≤i,j≤p

Γki,j V
i

1 V
j

2

 ∂θkψ

(6.59)

=
∑

1≤k≤p

 ∑
1≤i≤p

V i
1

(∂θiV k
2

)
+
∑

1≤j≤p
Γki,j V

j
2


 ∂θkψ = (dψ) (∇g,V1V2)

with the Riemannian directional derivative

∇g,V1V2 =


∑

1≤i≤p V
i

1

{(
∂θiV

1
2

)
+
∑

1≤j≤p Γ1
i,j V

j
2

}
...∑

1≤i≤p V
i

1

{
(∂θiV

p
2 ) +

∑
1≤j≤p Γpi,j V

j
2

}
 (6.60)

This shows that

(
∇W1 (∂θlψ)φ

)
◦ ψ =

∑
1≤i,k≤p

Γki,l V
i

1 ∂θkψ =⇒
(
∇(∂θiψ)

φ

(
∂θjψ

)
φ

)
◦ ψ =

∑
1≤k≤p

Γki,j ∂θkψ

On the other hand, we have

ci1(t) = φi(C1(t))⇒ .
c
i
1 (t) = ∂W1(φi)(C1(t)) =

∑
1≤j≤p V

j
1 (c1(t)) ∂θj

(
φi ◦ ψ

)
(c1(t))︸ ︷︷ ︸

=1i=j

= V i
1 (c1(t))

Thus, using (6.59), we find that

(∇W1W2) (C1(t))

=
∑

1≤k≤p

 ∑
1≤i≤p

.
c
i
1 (t)

(
∂θiV

k
2

)
(c1(t)) +

∑
1≤i,j≤p

Γki,j(c1(t))
.
c
i
1 (t) V j

2 (c1(t))

 (∂θkψ) (c1(t))

=
∑

1≤k≤p

 d
dt

(V k
2 (c1(t)) +

∑
1≤i,j≤p

Γki,j(c1(t))
.
c
i
1 (t) V j

2 (c1(t))

 (∂θkψ) (c1(t))

In differential geometry, the above formula is sometimes written in terms of the linear differential
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operator

DW2

dt
(t) :=

(
∇ .
C1(t)

W2

)
(C1(t))

=
∑

1≤k≤p

 d
dt

(V k
2 (c1(t)) +

∑
1≤i,j≤p

Γki,j(c1(t))
.
c
i
1 (t) V j

2 (c1(t))

 (∂θkψ) (c1(t))

=
∑

1≤j≤p

 d
dt

(V j
2 (c1(t))

(
∂θjψ

)
(c1(t)) + V j

2 (c1(t))
∑

1≤i,k≤p
Γki,j(c1(t))

.
c
i
1 (t) (∂θkψ) (c1(t))


=

∑
1≤j≤p

[
d

dt
(V j

2 (c1(t))
(
∂θjψ

)
(c1(t)) + V j

2 (c1(t))
(
∇ .
C1(t)

(∂θlψ)φ

)
(C1(t))

]
= (dψ)c1(t)

(
∇g,.c1V2

)
(c1(t))

We say that the vector field V (t) = V2(c1(t)) is parallel along the curve C1(t) = C(t) = ψ(c(t)), with
c(t) = c1(t) if we have

∀1 ≤ k ≤ p DV

dt
(t) :=

(
∇g,.cV2

)
(c(t)) =

.
V (t) +

∑
1≤i,j≤p

Γki,j(c(t))
.
c
i

(t) V j(t) = 0 (6.61)

Note that for any fixed initial vector field V ′ there always exists a vector field curve V : t ∈ [0, 1] 7→
V (t) ∈ Rp parallel to c(t) s.t. V (0) = V ′. In this case, one says that V (1) = V ′′ is obtained from
V (0) = V ′ by parallel transport along the curve c. Replacing [0, 1] by [s, t], we obtain the following
definition

parallc,s,t : V ′ ∈ Tc(s)Sφ 7→ parallc,s,t(V
′) = V (c(t)) ∈ Tc(s)Sφ (6.62)

where V (c(τ)), τ ∈ [s, t], is a unique vector field on (c(τ)), τ ∈ [s, t], s.t.

V (c(s)) = V ′ and
(
∇g,.cV2

)
(c(τ)) = 0

6.3.4 Second order covariant derivative

Tangent basis functions

We recall from (6.40) that

(∇φi)ψ =
∑

1≤k≤p
gi,k ∂θkψ

Notice that

∂θm
(
(∇φi)ψ

)
=

∑
1≤k,l≤p

(
∂θm(gi,k) ∂θkψ + gi,k ∂θm,θkψ

)
(6.63)

Using the differential rule (6.4) we also prove that

∇2φi =
∑

1≤k≤p

[
∇
(
gi,kφ

)
(∂θkψ)Tφ + gi,kφ ∇

(
(∂θkψ)φ

)]
Notice that

∂xl

(
gi,kφ

)
= ∂xl

(
gi,k ◦ φ

)
=

∑
1≤m≤p

(
∂θmg

i,k
)
φ
∂xlφ

m ⇒ ∂
(
gi,kφ

)
=

∑
1≤m≤p

(
∂θmg

i,k
)
φ
∂φm
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from which we prove that

∇
(
gi,kφ

)
= π

(
∂
(
gi,kφ

))
=

∑
1≤m≤p

(
∂θmg

i,k
)
φ
∇φm

On the other hand, we have

∂xm

((
∂θkψ

l
)
φ

)
=
∑

1≤i≤p
(
∂θi,θkψ

l
)
φ
∂xmφ

i

⇒ ∂
((
∂θkψ

l
)
φ

)
=
∑

1≤i≤p
(
∂θk,θiψ

l
)
φ
∂φi

⇒ ∇
((
∂θkψ

l
)
φ

)
=
∑

1≤i≤p
(
∂θk,θiψ

l
)
φ
∇φi

This implies that

∂
(

(∂θkψ)φ

)
=
[
∂
((
∂θkψ

1
)
φ

)
, . . . , ∂

(
(∂θkψ

r)φ

)]
⇒ ∇

(
(∂θkψ)φ

)
=
[
∇
((
∂θkψ

1
)
φ

)
, . . . ,∇

(
(∂θkψ

r)φ

)]
=
∑

1≤m≤p ∇φm (∂θk,θmψ)Tφ

Using (6.63), we conclude that

∇2φi =
∑

1≤m≤p
∇φm ∂θm

((
∇φi

)T
ψ

)
(6.64)

=
∑

1≤k,m≤p

[(
∂θmg

i,k
)
φ
∇φm (∂θkψ)Tφ + gi,kφ ∇φ

m (∂θk,θmψ)Tφ

]

and

tr
(
∇2φi

)
=

∑
1≤k,m≤p

[(
∂θmg

i,k
)
φ

〈
∇φm, (∂θkψ)φ

〉
+ gi,kφ

〈
∇φm, (∂θk,θmψ)φ

〉]

=
∑

1≤m≤p

 〈∇φm, ∑
1≤k≤p

(
∂θmg

i,k
)
φ

(∂θkψ)φ +
∑

1≤k≤p
gi,kφ (∂θk,θmψ)φ

〉

Using (6.63) this formula can be rewritten as follows

tr
(
∇2φi

)
ψ

=
∑

1≤m≤p

〈
(∇φm)ψ , ∂θm

(
(∇φi)ψ

)〉

Using the fact that

∇φm =
∑

1≤l≤p
gm,lφ (∂θlψ)φ =⇒

〈
∇φm, (∂θkψ)φ

〉
= 1m=k

we also have the following formulae.
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(∆φi)ψ = tr
(
∇2φi

)
ψ

=
∑

1≤m≤p
∂θmg

i,m +
∑

1≤k≤p
gi,k

∑
1≤m,l≤p

gm,l 〈∂θlψ, ∂θk,θmψ〉

=
∑

1≤j≤p
∂θjg

i,j +
1

2

∑
1≤j≤p

gi,j
∑

1≤k,l≤p
gk,l ∂θjgk,l

=
∑

1≤j≤p

1√
det(g)

∂θj

(√
det(g) gi,j

)
= div

(
∇φi

)
ψ

(6.65)

The last assertion is a direct consequence of (6.54) applied to the vector field

W = ∇φi =
∑

1≤j≤p
gi,jφ

(
∂θjψ

)
φ

(6.66)

We end this section with a formula relating ∆φi to the Christoffel symbols introduced in (6.58).
Firstly, we observe that ∑

1≤m≤m
∂θp
〈
(∇φm)ψ, (∇φi)ψ

〉
=

∑
1≤m≤p

∂θmg
i,m (6.67)

On the other hand, we have∑
1≤m≤p ∂θm

〈
(∇φm)ψ, (∇φi)ψ

〉
=
∑

1≤m≤p
〈
∂θm ((∇φm)ψ) , (∇φi)ψ

〉
+
∑

1≤m≤p

〈
(∇φm)ψ , ∂θm

(
(∇φi)ψ

)〉
=
∑

1≤m,l≤p
〈
∂θm

(
gm,l ∂θlψ

)
, (∇φi)ψ

〉
+
(
∆φi

)
ψ

=
∑

1≤m,l≤p ∂θmg
m,l

〈
∂θlψ, (∇φi)ψ

〉
+
∑

1≤m,l≤p g
m,l

〈
∂θmθlψ, (∇φi)ψ

〉
+
(
∆φi

)
ψ

Combined with (6.67), this implies that∑
1≤m≤p

∂θmg
i,m =

∑
1≤m≤p

∂θmg
m,i +

∑
1≤m,l≤p

gm,l
〈
∂θmθlψ, (∇φ

i)ψ
〉︸ ︷︷ ︸

=Γim,l

+
(
∆φi

)
ψ

Using (6.65), we conclude that(
∆φi

)
ψ

= −
∑

1≤m,l≤p
gm,l Γim,l = div

(
∇φi

)
ψ

=
∑

1≤j≤p

1√
det(g)

∂θj

(√
det(g) gi,j

)
(6.68)

Composition formulae

Suppose we are given a function F = f ◦ φ on S. By (6.48) we have

∇F = ∇(f ◦ φ) =
∑

1≤j≤p

(
∂θjf

)
φ
∇φj (6.69)



154 CHAPTER 6. DIFFUSIONS ON MANIFOLDS

and

F =
(
∂θjf

)
φ

= (∂θjf) ◦ φ =⇒ ∇
((
∂θjf

)
φ

)
=
∑

1≤i≤p

(
∂θi,θjf

)
φ
∇φi

Using the differential rule (6.4) we find that

∇2F =
∑

1≤j≤p

[
∇
((
∂θjf

)
φ

) (
∇φj

)T
+
(
∂θjf

)
φ
∇2φj

]
By (6.64), this yields the second covariant derivative formula

∇2(f ◦ φ) =
∑

1≤i,j≤p

(
∂θi,θjf

)
φ
∇φi

(
∇φj

)T
+
∑

1≤j≤p

(
∂θjf

)
φ
∇2φj

=
∑

1≤i,j≤p

[(
∂θi,θjf

)
φ
∇φi

(
∇φj

)T
+
(
∂θjf

)
φ
∇φi

[
∂θi

((
∇φj

)T
ψ

)]
φ

]
(6.70)

We also readily check that

tr
(
∇2F

)
=

∑
1≤i,j≤p

(
∂θi,θjf

)
φ

〈
∇φi,∇φj

〉
+
∑

1≤j≤p

(
∂θjf

)
φ

tr
(
∇2φj

)
=

∑
1≤i,j≤p

gi,jφ
(
∂θi,θjf

)
φ

+
∑

1≤j≤p

(
∂θjf

)
φ

tr
(
∇2φj

)
from which we find the Laplacian formula

∆(f ◦ φ) := tr
(
∇2(f ◦ φ)

)
=

∑
1≤i,j≤p

gi,jφ
(
∂θi,θjf

)
φ

+
∑

1≤j≤p

(
∂θjf

)
φ

∆φj (6.71)

Using (6.68) we also have

∆(f ◦ φ) := tr
(
∇2(f ◦ φ)

)
=

∑
1≤l,m≤p

gl,mφ

 (∂θl,θmf)φ −
∑

1≤j≤p
Γjφ,l,m

(
∂θjf

)
φ


with Γjφ,l,m = Γjl,m ◦ φ.

Using (6.68), we have a divergence formulation of the Riemannian Laplacian:

(∆(f ◦ φ))ψ =
∑

1≤i≤p

 ∑
1≤j≤p

gi,j∂θi(∂θjf) +
1√

det(g)
∂θi

√det(g)
∑

1≤j≤p
gi,j

 ∂θjf


=

∑
1≤i≤p

1√
det(g)

∂θi

√det(g)
∑

1≤j≤p
gi,j ∂θjf

 := divg (∇g(f)) := ∆g(f)

(6.72)

For any couple of functions f1 and f2 we also quote the following formula

divg (f1 ∇g(f2)) = f1 divg (∇g(f2)) + 〈∇gf1,∇gf2〉g (6.73)
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We check this claim using the fact that

∂θi

(√
det(g) f1

∑
1≤j≤p g

i,j ∂θjf2

)
= f1 ∂θi

(√
det(g)

∑
1≤j≤p g

i,j ∂θjf2

)
+ ∂θi (f1)×

√
det(g)

∑
1≤j≤p g

i,j ∂θjf2

and ∑
1≤i≤p

∂θi (f1)
∑

1≤i,j≤p
gi,j ∂θjf2 =

∑
1≤i,j≤p

gi,j ∂θif1 ∂θjf2 = 〈∂f1, ∂f2〉g−1 = 〈∇gf1,∇gf2〉g

Hessian operators

We end this section with an Hessian interpretation of the second covariant derivative ∇2F . We let
W1,W2 be a couple of vector fields in T (S). We let V1, V2 their pull back vector fields so that

Wk ◦ ψ = (dψ) (Vk) :=
∑

1≤m≤p
V m
k ∂θmψ

for any k = 1, 2. Using (6.70) we prove that

W T
1 ∇2F W2 =

∑
1≤m,m′≤p

V m
φ,1V

m′
φ,2

∑
1≤i,j≤p

(
∂θi,θjf

)
φ

=1m=i︷ ︸︸ ︷
(∂θmψ)Tφ ∇φ

i

=1m′=j︷ ︸︸ ︷(
∇φj

)T (
∂θm′ψ

)
φ

+
∑

1≤m,m′≤p
V m
φ,1V

m′
φ,2

∑
1≤i,j≤p

(
∂θjf

)
φ

(∂θmψ)Tφ ∇φ
i︸ ︷︷ ︸

=1m=i

[
∂θi

((
∇φj

)T
ψ

)]
φ

(
∂θm′ψ

)
φ︸ ︷︷ ︸

=−Γj
φ,i,m′

The r.h.s. assertion comes from the fact that

∂θi

(∇φj)Tψ (∂θmψ)︸ ︷︷ ︸
=1m=j

 = 0⇒ ∂θi

((
∇φj

)T
ψ

)
( ∂θmψ) = −

(
∇φj

)T
ψ

(∂θi,θmψ) = −Γji,m

This yields

W T
1 ∇2F W2 =

∑
1≤m,m′≤p

V m
φ,1V

m′
φ,2

(∂θm,θm′f)φ − ∑
1≤j≤p

Γjφ,m,m′
(
∂θjf

)
φ

 = V T
φ,1 (Hessg(f))φ Vφ,2

or equivalently(
W T

1 ∇2F W2

)
ψ

= 〈W1,∇2F W2〉 = V T
1 Hessg(f) V2 = 〈V1,Hessg(f) V2〉 = 〈V1,∇2

gf V2〉g

with the Hessian matrix field Hessg(f) =
(
(Hessg(f))m,m′

)
1≤m,m′≤p on Sψ with entries

(Hessg(f))m,m′ = ∂θm,θm′f −
∑

1≤j≤p
Γjm,m′ ∂θjf

and the Riemannian second covariant derivative

∇2
g = g−1Hessg(f)

(
⇒ 〈V1,∇2

gf V2〉g = V T
1 g

(
g−1Hessg(f)

)
V2 = V T

1 Hessg(f) V2

)
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In differential calculus literature, the above formulae are sometimes written in the following form(
∇2F

)
(W1, ,W2) := W T

1 ∇2F W2 = V T
φ,1 (∇2

gf)φ Vφ,2 :=
((
∇2
gf
)

(V1, V2)
)
◦ φ

or using the Hessian symbol

Hess(F ) (W1,W2) :=
(
∇2F

)
(W1, ,W2) =

((
∇2
gf
)

(V1, V2)
)
◦ φ := (Hessg(f)(V1, V2)) ◦ φ

In view of (6.57) and (6.59) we also have

(∂W1(∂W2(F ))) =
∑

1≤m,m′≤p
V m
φ,1

(
∂θmV

m′
2

)
φ

(
∂θm′f

)
φ

+
∑

1≤m,m′≤p
V m
φ,1V

m′
φ,2

(
∂θm,θ′mf

)
φ

∇W1W2 =
∑

1≤m′≤p

 ∑
1≤m≤p

V m
φ,1

(
∂θmV

m′
2

)
φ

+
∑

1≤m,j≤p
Γm
′

φ,m,j V
m
φ,1 V

j
φ,2

 (
∂θm′ψ

)
φ

Since
(∂θkψ)T (∂F )ψ =

∑
0≤l≤r

(∂xlF )ψ ∂θkψ
l = ∂θk (F ◦ ψ) = ∂θkf

we find that

(∇W1W2)T ∂F =
∑

1≤m,m′≤p
V m
φ,1

(
∂θmV

m′
2

)
φ

(
∂θm′f

)
φ

+
∑

1≤m,m′≤p
V m
φ,1 V

m′
φ,2

∑
1≤j≤p

Γjφ,m,m′
(
∂θjf

)
φ

and therefore
W T

1 ∇2F W2 = (∂W1(∂W2(F )))− (∇W1W2)T ∂F

Last but not least, for any vector fields W1,W2,W3 ∈ T (S) we have

∂W1 (〈W2,W3〉) =
∑

1≤k,l≤r
W k

1

[
W l

2∂xk

(
W l

3

)
+ ∂xk

(
W l

2

)
W l

3

]
= 〈∂W1W2,W3〉+ 〈W2, ∂W1W3〉

Notice that
W3 ∈ T (S) =⇒ 〈∂W1W2,W3〉 = 〈π(∂W1W2),W3〉 = 〈∇W1W2,W3〉

so that
∂W1 (〈W2,W3〉) = 〈∇W1W2,W3〉+ 〈W2,∇W1W3〉 (6.74)

On the other hand, we have

∂W2(F ) = 〈W2, ∂F 〉 = 〈W2,∇F 〉

⇒ ∂W1(∂W2(F )) = ∂W1 〈W2,∇F 〉 = 〈∇W1W2,∇F 〉+ 〈W2,∇W1∇F 〉

and therefore

W T
1 ∇2F W2 = (∂W1(∂W2(F )))− (∇W1W2)T ∂F

= (∂W1(∂W2(F )))− 〈∇W1W2, ∂F 〉
= (∂W1(∂W2(F )))− 〈∇W1W2,∇F 〉 = 〈W2,∇W1∇F 〉

We end this section with some comments on the parallel transport technique introduced in (6.61).
By (6.56), for and F = f ◦ φ we have

∂W1(F ) ◦ ψ = 〈∇gf, V1〉g = ∂V1(f)
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On the other hand, we have

〈W2,W3〉 = 〈V2, V3〉g ◦ φ⇒ (∂W1 〈W2,W3〉) ◦ ψ = ∂V1 〈V2, V3〉g

and by (6.60) we prove that

〈∇W1W2,W3〉 ◦ ψ = 〈(dψ) (∇g,V1V2) , (dψ) (V3)〉 = 〈∇g,V1V2, V3〉g

Combining these results with (6.74) we conclude that

∂V1 〈V2, V3〉g = 〈∇g,V1V2, V3〉g + 〈V2,∇g,V1V3〉g

We let c1(t) be a given curve in Sφ with
.
c1 (t) = V1(c1(t)), and Ui : t ∈ [0, 1] 7→ Ui(t) = Vi(c1(t)) ∈ Rp

two parallel vectors to c(t) s.t. Ui(0) = Vi(c1(0)), with i = 2, 3. In this situation, using (6.61) we have

d

dt
〈V2(c1(t)), V3(c1(t))〉g(c1(t)) =

(
∂V1

(
〈V2, V3〉g

))
(c1(t))

=
(
〈∇g,V1V2, V3〉g + 〈V2,∇g,V1V3〉g

)
(c1(t)) = 0

This shows that the parallel transport is an isometry

〈V2(c1(0)), V3(c1(0))〉g(c1(0)) = 〈V2(c1(1)), V3(c1(1))〉g(c1(1)) (6.75)

6.4 Stochastic calculus in chart spaces

6.4.1 Brownian motion in Riemannian manifolds

We let Θt =

 Θ1
t

...
Θp
t

 be the Rp-diffusion on the parameter space Sφ defined by

∀1 ≤ i ≤ p dΘi
t =

1

2

(
∆φi

)
ψ

(Θt) dt+
(
∇φi

)T
ψ

(Θt) dBt

= −
∑

1≤j,k≤p
gj,k(Θt) Γij,k(Θt) dt+

(
∇φi

)T
ψ

(Θt) dBt (⇐ (6.68))

(6.76)
where Bt stands for a standard r-dimensional Brownian motion.
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Notice that

dΘtdΘT
t =


(
∇φ1

)T
ψ

...

(∇φp)Tψ

 (Θt) dBtdB
T
t

((
∇φ1

)
ψ
, . . . , (∇φp)ψ

)
(Θt)

=


(
∇φ1

)T
ψ

(
∇φ1

)
ψ

. . .
(
∇φ1

)T
ψ

(∇φr)ψ
...

...

(∇φr)Tψ
(
∇φ1

)
ψ

. . . (∇φr)Tψ (∇φr)ψ

 (Θt)

=


〈(
∇φ1

)
ψ
,
(
∇φ1

)
ψ

〉
. . .

〈(
∇φ1

)
ψ
, (∇φr)ψ

〉
...

...〈
(∇φr)ψ ,

(
∇φ1

)
ψ

〉
. . .

〈
(∇φr)ψ , (∇φr)ψ

〉
 (Θt)

Thus, using Ito formula for any smooth function f on Rp we have

df(Θt) =
∑

1≤i≤p
∂θi(f)(Θt) dΘi

t +
1

2

∑
1≤i,j≤p

∂θi,θj (f)(Θt) dΘi
tdΘj

t

= L(f)(Θt)dt+ dMt(f)

with the infinitesimal generator L associated with the diffusion process Θt is given by

L(f) =
1

2

 ∑
1≤i≤p

∂θif
(
∆φi

)
ψ

+
∑

1≤i,j≤p
∂θi,θj (f)

〈(
∇φi

)
ψ
,
(
∇φj

)
ψ

〉
=

1

2

 ∑
1≤i≤p

∂θif
(
∆φi

)
ψ

+
∑

1≤i,j≤p
gi,j ∂θi,θjf


=

1

2
∆g(f) =

1

2
divg (∇g(f)) (⇐ (6.72)) (6.77)

and the martingale Mt(f) defined by

dMt(f) =
∑

1≤i≤p
∂θi(f)(Θt)

(
∇φi

)T
ψ

(Θt) dBt

Using (6.69) and (6.71) we find that∑
1≤i≤p

(∂θif)φ
(
∇φi

)T
= ∇(f ◦ φ) = ∇F

L(f) ◦ φ =
1

2
∆(f ◦ φ) = ∆(F ) with F = f ◦ φ

Therefore, if we set Xt = ψ(Θt) ⇒ Θt = φ(Xt) we find that

df(Θt) = d(f ◦ φ)(Xt) = dF (Xt) =
1

2
∆(F )(Xt)dt+ dMt(F )

with the martingale
dMt(F ) = (∇F )T (Xt) dBt



6.4. STOCHASTIC CALCULUS IN CHART SPACES 159

Choosing f = ψk ⇒ F = ψk ◦ φ =χk (cf. (6.51)) we find that

π(Xt) dBt =


(
∇ χ1

)T
...

(∇ χr)T

 (Xt) dBt

Combining this observation with (6.53) we find that

dXk
t = dψk(Θt) =

1

2
∆(χk)(Xt) dt+ (∇ χk)T (Xt) dBt

= −1

2
Hk(Xt) dt+

∑
1≤j≤r

πkj (Xt) dB
j
t (⇐ (6.52)) (6.78)

6.4.2 Diffusions in chart spaces

Starting from the equation (6.78), if we set Θi
t = φi(Xt) then we find that

(6.47) ⇒ ∇ χk= ∇(ψk ◦ φ) =
∑

1≤j≤p
(
∂θjψ

k
)
φ
∇φj

⇒ (∇ χk)T (Xt) dBt =
∑

1≤j≤p
(
∂θjψ

k
)
φ

(∇φj)T (Xt) dBt

=
∑

1≤j≤p
(
∂θjψ

k
)
φ

〈
∇φj(Xt) dBt

〉
and

dXk
t dX

l
t =

∑
1≤i,j≤p

(
∂θiψ

k
)
φ

(
∂θjψ

l
)
φ

〈
∇φi(Xt) dBt

〉 〈
∇φj(Xt) dBt

〉
=

∑
1≤i,j≤p

(
∂θiψ

k
)
φ

(
∂θjψ

l
)
φ

〈
∇φi(Xt),∇φj(Xt)

〉
dt

Therefore, using Ito formula we have

dφi(Xt) =
∑

1≤k≤r

(
∂xkφ

i
)

(Xt)

[
1

2
∆(χk)(Xt) dt+ (∇ χk)T (Xt) dBt

]
+

1

2

∑
1≤k,l≤r

(
∂xl,xkφ

i
)

(Xt)
∑

1≤i,j≤p

(
∂θiψ

k
)
φ

(
∂θjψ

l
)
φ

〈
∇φi(Xt),∇φj(Xt)

〉
dt

Notice that

∑
1≤k≤r

(
∂xkφ

i
)

(∇ χk)T =
∑

1≤j≤p

 ∑
1≤k≤r

(
∂xkφ

i
) (
∂θjψ

k
)
φ

 (
∇φj

)T
(6.79)

=
∑

1≤j≤p

(
∂θj
(
φi ◦ ψ

))
φ

(
∇φj

)T
=
(
∇φi

)T (
⇐ (φi ◦ ψ)(v) = vi

)
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and using (6.71) we have

∆(χk) = ∆(ψk ◦ φ) =
∑

1≤i,j≤p
〈
∇φi,∇φj

〉 (
∂θi,θjψ

k
)
φ

+
∑

1≤j≤p
(
∂θjψ

k
)
φ

∆φj

⇒
∑

1≤k≤r

(
∂xkφ

i
)

∆(χk) +
∑

1≤k,l≤r

(
∂xl,xkφ

i
) ∑

1≤i,j≤p

(
∂θiψ

k
)
φ

(
∂θjψ

l
)
φ

〈
∇φi,∇φj

〉

=
∑

1≤i,j≤p

〈
∇φi,∇φj

〉  ∑
1≤k≤r

(
∂xkφ

i
) (
∂θi,θjψ

k
)
φ

+
∑

1≤k,l≤r

(
∂xl,xkφ

i
) (

∂θiψ
k
)
φ

(
∂θjψ

l
)
φ


+
∑

1≤j≤p

∑
1≤k≤r

(
∂xkφ

i
) (
∂θjψ

k
)
φ

∆φj

=
∑

1≤i,j≤p

〈
∇φi,∇φj

〉 (
∂θi,θj (φ

i ◦ ψ)
)
φ

+
∑

1≤j≤p

(
∂θj (φ

i ◦ ψ)
)
φ

∆φj = ∆φi

This implies that

∀1 ≤ i ≤ p dφi(Xt) =
1

2

(
∆φi

)
(Xt)dt+

(
∇φi

)T
(Xt)dBt (6.80)

Letting Θt := φ(Xt) ⇒ Xt = ψ(Θt) we arrive at the equation

dΘt =
1

2

(
∆φi

)
ψ

(Θt) dt+
(
∇φi

)T
ψ

(Θt) dBt

6.5 Somme illustrations

6.5.1 Brownian motion on spheres

The unit circle S = S1 ⊂ R2

The unit circle can be described in terms of the polar coordinates mapping

ψ(θ) =

(
cos(θ)
sin(θ)

)
In this situation, we can check (cf. (6.84) and (6.85)) that

(∇φ)ψ = ∂θψ =

[
− sin(θ)
cos(θ)

]
and (∆φ)ψ = 0

In this situation, we have

(6.76) ⇐⇒ dΘt = (∇φ)Tψ(Θt) dBt = − sin (Θt) dB
1
t + cos (Θt) dB

1
t := dBt

Notice that Bt is itself a standard Brownian motion

dBtdBt =
(
cos2 (Θt) + sin2 (Θt)

)
dt = dt
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The unit sphere S = S2 ⊂ R3

The 2-sphere can be parametrized by the spherical coordinates mapping

ψ(θ) =

 sin(θ1) cos(θ2)
sin(θ1) sin(θ2)

cos(θ1)


In this situation, we can check (cf. (6.86) and (6.87))

(∇φ1)ψ(θ) =

 cos(θ1) cos(θ2)
cos(θ1) sin(θ2)
− sin(θ1)

 (∇φ2)ψ(θ) =
1

sin(θ1)

 − sin(θ2)
cos(θ2)

0


(∆φ1)ψ(θ) = cot(θ1) (∆φ2)ψ(θ) = 0

In this situation, we have

(6.76)

⇐⇒


dΘ1

t =
1

2
cot(Θ1

t ) dt+
[
cos (Θ1

t )
(
cos (Θ2

t )dB
1
t + sin (Θ2

t )dB
2
t

)
− sin (Θ1

t ) dB
3
t

]
:=

1

2
cot(Θ1

t ) dt+ dB
1
t

dΘ2
t =

1

sin(Θ1
t )

[
− sin (Θ2

t ) dB
1
t + cos (Θ2

t ) dB
2
t

]
:=

1

sin(Θ1
t )
dB

2
t

Notice that
dB

1
tdB

2
t = 0 and dB

1
tdB

1
t = dt = dB

2
tdB

2
t

so that (6.76) can be rewritten as follows
dΘ1

t =
1

2
cot(Θ1

t ) dt+ dB1
t

dΘ2
t =

1

sin(Θ1
t )
dB2

t

6.5.2 Brownian motion on the Torus

The 2-Torus is the null level set of the function

ϕ(x) =

(
R−

√
x2

1 + x2
2

)2

+ x2
3 − r2

with r < R. It can be parametrized by the spherical coordinates mapping

ψ (θ) =

 (R+ r cos(θ1)) cos(θ2)
(R+ r cos(θ1)) sin(θ2)

r sin(θ1)


In this situation, we can check (cf. (6.86) and (6.87))

(∇φ1)ψ(θ) = r−1

 − sin(θ1) cos(θ2)
− sin(θ1) sin(θ2)

cos(θ1)

 (∇φ2)ψ(θ) = (R+ r cos(θ1))−1

 − sin(θ2)
cos(θ2)

0


(∆φ1)ψ(θ) = − sin(θ1)

r(R+ r cos(θ1))
(∆φ2)ψ(θ) = 0
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In this situation, we have

(6.76)⇐⇒



dΘ1
t = − sin(Θ1

t )

2r(R+ r cos(Θ1
t ))

dt

+
1

r

[
− sin (Θ1

t )
(
cos (Θ2

t ) dB
1
t + sin (Θ2

t ) dB
2
t

)
+ cos (Θ1

t ) dB
3
t

]
dΘ2

t =
1

(R+ r cos(Θ1
t ))

[
− sin (Θ2

t ) dB
1
t + cos (Θ2

t ) dB
2
t

]
We set

dB
1
t = − sin (Θ1

t )
(
cos (Θ2

t ) dB
1
t + sin (Θ2

t ) dB
2
t

)
+ cos (Θ1

t ) dB
3
t

dB
2
t = − sin (Θ2

t ) dB
1
t + cos (Θ2

t ) dB
2
t

It is readily checked that

dB
1
tdB

2
t = 0 and dB

1
tdB

1
t = dt = dB

2
tdB

2
t

so that (6.76) can be rewritten as follows

(6.76)⇐⇒


dΘ1

t := − sin(Θ1
t )

2r(R+ r cos(Θ1
t ))

dt+
1

r
dB1

t

dΘ2
t =

1

(R+ r cos(Θ1
t ))

dB2
t

6.5.3 Diffusions on the simplex

We return to the Brownian motion on the orbifold S/H = Sp ∩Rr=p+1
+ discussed in section 6.2.7. The

positive orthant of the sphere is in bijection with the p-simplex

Simplex(p) = {θ = (θi)1≤i≤r ∈ Rr+ :
∑

1≤i≤r
θi = 1}

One diffeomorphism is given by the square mapping

x = (xi)
T
1≤i≤r ∈ Sp ∩ Rr=p+1

+
Ξ−→ Ξ(x) =

(
x2

1, . . . , x
2
r

)T ∈ Simplex(p)(√
θ1, . . . ,

√
θr

)T
= Ξ−1(θ) ∈ Sp ∩ Rr=p+1

+
Ξ−1

←− θ = (θi)
T
1≤i≤r ∈ Simplex(p)

Notice that

∂xkΞi = 2 1k=i x
i =⇒ 1

2
∂xk,xlΞ

i = 1k,l=i (6.81)
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Using (6.22), the projection π(x) onto Tx(Sp ∩ Rr=p+1
+ ) is given by

x = Ξ−1(θ)⇒ π(x) = Id− (∂ϕ)(x)

‖(∂ϕ)(x)‖
(∂ϕ)(x)T

‖(∂ϕ)(x)‖

=


1− x2

1
‖x‖2 −x1x2

‖x‖ −x1x3
‖x‖ . . . −x1xr

‖x‖

−x2x1
‖x‖ 1− x2

2
‖x‖2 −x2x3

‖x‖ . . . −x2xr
‖x‖

...
...

...
...

...

−xrx1
‖x‖ −xrx2

‖x‖ . . . . . . 1− x2
r
‖x‖



=


1− θ1∑

1≤j≤r θj
−
√
θ1
√
θ2∑

1≤j≤r θj
−
√
θ1
√
θ3∑

1≤j≤r θj
. . . −

√
θ1
√
θr∑

1≤j≤r θj

−
√
θ2
√
θ1∑

1≤j≤r θj
1− θ2∑

1≤j≤r θj
−
√
θ2
√
θ3∑

1≤j≤r θj
. . . −

√
θ2
√
θr∑

1≤j≤r θj
...

...
...

...
...

−
√
θr
√
θ1∑

1≤j≤r θj
−
√
θr
√
θ2∑

1≤j≤r θj
. . . . . . 1− θr∑

1≤j≤r θj


In addition, using (6.23) the curvature vector H on the sphere is given by

x = Ξ−1(θ)⇒ Hi(x) = p
xi
xTx

= p

√
θi∑

1≤l≤r θl

We let Xt be the Brownian motion on the positive orthant defined in (6.35). We recall that

dXk
t = −1

2
Hk(Xt) dt+

∑
1≤j≤r

πkj (Xt) dB
j
t ⇒ dXk

t dX
k
t =

 ∑
1≤j≤r

πkj π
l
j

 (Xt) dt

Applying Ito formula to

Θt = Ξ(Xt) ⇔ Ξ−1(Θt) = Xt =

(√
Θ1
t , . . . ,

√
Θr
t

)
we find that

dΘi
t =

∑
1≤k≤r

(
∂xkΞi

) (
Ξ−1(Θt)

) −1

2
Hk(Ξ−1(Θt)) dt+

∑
1≤j≤r

πkj (Ξ−1(Θt)) dB
j
t


+

1

2

∑
1≤k,l≤r

(
∂xk,xlΞ

i
) (

Ξ−1(Θt)
)  ∑

1≤j≤r
πkj π

l
j

 (Ξ−1(Θt)) dt

= 2
√

Θi
t

−1

2
Hi(Ξ−1(Θt)) dt+

∑
1≤j≤r

πij(Ξ
−1(Θt)) dB

j
t

+

 ∑
1≤k≤r

πikπ
i
k

 (Ξ−1(Θt)) dt

The last assertion is a direct consequence of (6.81). To take the final step, we observe that

∑
1≤k≤r

(
πik(Ξ

−1(θ))
)2

=

(
1− θi∑

1≤j≤r θj

)2

+
θi∑

1≤j≤r θj

∑
1≤k≤r, k 6=i

θk∑
1≤j≤r θj

= 1− 2
θi∑

1≤j≤r θj
+

θi∑
1≤j≤r θj

∑
1≤k≤r

θk∑
1≤j≤r θj

= 1− θi∑
1≤j≤r θj



164 CHAPTER 6. DIFFUSIONS ON MANIFOLDS

and

∑
1≤j≤r

πij(Ξ
−1(Θt)) dB

j
t =

(
1− Θi

t∑
1≤j≤r Θj

t

)
dBi

t −
∑

1≤j≤r, j 6=i

√
Θi
t

√
Θj
t∑

1≤j≤r Θj
t

dBj
t

= dBi
t −

∑
1≤j≤r

√
Θi
t

√
Θj
t∑

1≤j≤r Θj
t

dBj
t

We conclude that

dΘi
t =

(
−p Θi

t∑
1≤l≤r Θl

t

+

(
1− Θi

t∑
1≤j≤r Θj

t

))
dt

+2
√

Θi
t

dBi
t −

∑
1≤j≤r

√
Θi
t

√
Θj
t∑

1≤j≤r Θj
t

dBj
t


=

(
1− r Θi

t∑
1≤j≤r Θj

t

)
dt+ 2

√
Θi
t

dBi
t −

∑
1≤j≤r

√
Θi
t

√
Θj
t∑

1≤j≤r Θj
t

dBj
t


It is instructive to notice that

dΘi
tdΘj

t

= 4
√

Θi
tΘ

i
t

[(
1i=j −

√
Θit

√
Θjt∑

1≤l≤r Θlt

)
+

(
−
√

Θit

√
Θjt∑

1≤j≤r Θjt
+
∑

1≤k≤r
Θkt∑

1≤l≤r Θlt

√
Θit

√
Θjt∑

1≤l≤r Θlt

)]
dt

= 4
√

Θi
tΘ

i
t

[(
1i=j −

√
Θit

√
Θjt∑

1≤l≤r Θlt

)]
dt = 4Θi

t

(
1i=j − Θjt∑

1≤l≤r Θlt

)
dt

6.6 Some analytical aspects

6.6.1 Geodesics and the exponential map

The distance between two states x, y ∈ S is defined in a chart coordinate by the formula

d (x, y) = inf

∫ b

a

∥∥.c (t)
∥∥
g(c(t))

dt

where the infimum is taken over all parametric curves c : t ∈ [a, b] 7→ c(t) ∈ Sψ s.t.
φ(c(a)) = x, and φ(c(b)) = y, and∥∥.c (t)

∥∥2

g(c(t))
:=

〈.
c (t),

.
c (t)

〉
g(c(t))

=
∑

1≤i,j≤p
gi,j(c(t))

.
c
i

(t)
.
c
j

(t)

=

〈 ∑
1≤i≤p

.
c
i

(t) (∂θiψ)c(t) ,
∑

1≤j≤p

.
c
j

(t) (∂θiψ)c(t)

〉

=
〈 .
C (t),

.
C (t)

〉
=
∥∥∥ .C (t)

∥∥∥2
with C(t) = ψ(c(t))
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To better understand this definition, we simply notice that

‖c(t+ dt)− c(t)‖g(c(t)) '
∥∥.c (t)

∥∥
g
dt⇒

∑
a≤t≤b

‖c(t+ dt)− c(t)‖g(c(t)) dt '
∫ b

a

∥∥.c (t)
∥∥
g(c(t))

dt

The energy of a given curve c is given by

E(c) =
1

2

∫ b

a

∥∥.c (t)
∥∥2

g(c(t))
dt =

∫ b

a
L
(
c(t),

.
c (t)

)
dt

with the Lagrangian

L(c,
.
c) :=

1

2

∥∥.c∥∥2

g(c)
=

∑
1≤i,j≤p

gi,j(c)
.
c
i.
c
j

To find the extremal curves, we let cε(t) = c(t) + εc′(t) and ε-perturbation of c, with some curve c′(t)
s.t. c′(a) = 0 = c′(b). For any t ∈ [a, b], we have

d

dε
L(cε(t),

.
cε (t))|ε=0 =

〈
(∂cL)(c(t),

.
c (t)), c′(t)

〉
+
〈

(∂.cL)(c(t),
.
c (t)),

.
c
′
(t)
〉

with the gradients

(∂cL) =

 (∂c1L)
...

(∂cpL)

 and (∂.cL) =

 (∂.
c
1L)
...

(∂.cpL)


An integration by part w.r.t. the time parameter yields∫ b

a

〈
(∂.cL)(c(t),

.
c (t)),

.
c
′
(t)
〉
dt =

[〈
(∂.cL)(c(t),

.
c (t)), c′(t)

〉]b
a
−
∫ b

a

〈
d

dt

[
(∂.cL)(c(t),

.
c (t))

]
, c′(t)

〉
dt

This implies that for any perturbation c′ we have

d

dε
E(cε)|ε=0 =

∫ b

a

〈
(∂cL)(c(t),

.
c (t))− d

dt

[
(∂.cL)(c(t),

.
c (t))

]
, c′(t)

〉
dt

from which we conclude that the extremal curves satisfy the differential Lagrange equation

(∂cL)(c(t),
.
c (t)) =

d

dt

[
(∂.cL)(c(t),

.
c (t))

]
, (6.82)

In our context, we have

∂ckL =
∑

1≤i,j≤p
(∂θkgi,j) (c)

.
c
i .
c
j

and

∂.
c
kL = 2

∑
1≤i≤p gk,i

.
c
i

⇒ d
dt

[
(∂.
c
kL)(c(t),

.
c (t))

]
= 2

∑
1≤i,j≤p

(
∂θjgk,i

)
(c(t))

.
c
i

(t)
.
c
j

(t) + 2
∑

1≤i≤p gk,i(c(t))
..
c
i

(t)

Thus, the Lagrange equations take the following form

(6.82)⇔ ∀1 ≤ k ≤ p
∑

1≤i≤p
gk,i(c(t))

..
c
i

(t)

=
∑

1≤i,j≤p

[
1

2
(∂θkgi,j) (c(t))−

(
∂θjgk,i

)
(c(t))

] .
c
i

(t)
.
c
j

(t)
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We conclude that

..
c
m

(t) =
∑

1≤i,k≤p
gm,k(c(t)) gk,i(c(t))

..
c
i

(t)

=
∑

1≤i,j≤p

 ∑
1≤k≤p

gm,k
[

1

2
∂θkgi,j − ∂θjgk,i

] (c(t))
.
c
i

(t)
.
c
j

(t)

Next, we express this formula in terms of the Christoffel symbol Γki,j introduced in (6.58). Firstly, we
notice that

〈
δθlψ, δθi,θjψ

〉
= δθi

〈
δθlψ, δθjψ

〉
−
〈
δθiθlψ, δθjψ

〉
= δθigl,j −

〈
δθiθlψ, δθjψ

〉
⇒ Γki,j = Γkj,i

=
∑

1≤l≤p g
k,l
〈
δθlψ, δθi,θjψ

〉
=

∑
1≤l≤p g

k,l δθigl,j −
∑

1≤l≤p g
k,l
〈
δθlθiψ, δθjψ

〉
Thus, for any symmetric functionals f i,j = f j,i, 1 ≤ i, j ≤ p, on Sψ we have

∑
1≤i,j≤p

Γmi,j f
i,j =

∑
1≤i,j≤p

f i,j
∑

1≤k≤p
gm,k δθigk,j −

∑
1≤i,j≤p

f i,j
∑

1≤k≤p
gm,k

〈
δθkθiψ, δθjψ

〉
= −

∑
1≤i,j≤p

∑
1≤k≤p

gm,k
[

1

2
∂θkgi,j − δθigk,j

]
f i,j

We conclude that

∀1 ≤ m ≤ p ..
c
m

(t) = −
∑

1≤i,j≤p
Γmi,j

.
c
i

(t)
.
c
j

(t)

The solution of these equations gives a curve that minimizes the distances between two states φ(x) and
φ(y) in the parameter space. These curves c(t) and their mapping C(t) = ψ(c(t)) into the manifold S
are called the geodesics.

It is instructive to observe that the velocity vector C(t) = ψ(c(t)) of a given curve on S is given
by the formula

dC

dt
(t) =

∑
1≤i≤p

(∂θiψ) (c(t))
.
c
i
t

Thus, its acceleration takes the form

d2C

dt2
(t) =

∑
1≤i≤p

(∂θiψ) (c(t))
..
c
i
t +

∑
1≤i,j≤p

(
∂θj ,θiψ

)
(c(t))

.
c
i
t
.
c
j
t
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Taking the orthogonal projection on the tangent plane TC(t)(S) we have

π(C(t))

(
d2C

dt2
(t)

)
=

∑
1≤i≤p

(∂θiψ) (c(t))
..
c
i
t +

∑
1≤i,j≤p

π
[(
∂θj ,θiψ

)
(c(t))

] .
c
i
t
.
c
j
t

=
∑

1≤m≤p

 ..
c
m
t +

∑
1≤i,j≤p

Γmi,j(c(t))
.
c
i
t
.
c
j
t

 (∂θmψ) (c(t)) = 0

from which we find that

∀1 ≤ m ≤ p ..
c
m
t +

∑
1≤i,j≤p

Γmi,j(c(t))
.
c
i
t
.
c
j
t= 0

This shows that the acceleration vector of the geodesics is orthogonal to the tangent place
T (S). In other words, the speed geodesic vector

.
c (t) is parallel to the curve c(t) (cf. (6.61))

By the existence and uniqueness theorem of solutions of ordinary differential equations, given
a tangent vector field W (x) ∈ Tx(S), for any x = ψ(θ) ∈ S there exists an unique geodesics
Cx(t) with velocity vector W (x) = dCx

dt (0) at the origin. The geodesics cφ(x)(t) = φ(Cx(t))
and Cx(t) associated with a given velocity vector Vφ(x) and Wx = (dψ)φ(x)(Vφ(x)) are
denoted in terms of exponential maps

Cx(t) := Expx(tW ) and cθ(t) := Expθ(tV )

6.6.2 A Taylor expansion

Given a smooth function f on the parameter space Sψ, we have

d

dt
f (cθ(t)) =

∑
1≤i≤p

(∂θif) (cθ(t))
dciθ
dt

(t)

=
∑

1≤i≤p
(∂θif) (cθ(t)) V i (cθ(t)) = ∂V (f) (cθ(t))

= 〈V (cθ(t)) , (∂f) (cθ(t))〉 = 〈V (cθ(t)) , (∇gf) (cθ(t))〉g(cθ(t))

Thus, for t = 0 we have
d

dt
f (Expθ(tV ))|t=0 = 〈V (θ) , (∇gf) (θ)〉g(θ)

In much the same way, we have

d2

dt2
f (cθ(t)) =

∑
1≤i,j≤p

(
∂θi,θjf

)
(cθ(t)) V i (cθ(t))V

j (cθ(t)) +
∑

1≤i≤p
(∂θif) (cθ(t))

d2ciθ
dt2

(t)

=
∑

1≤k,l≤p

(∂θk,θlf) (cθ(t)) −
∑

1≤i≤p
Γik,l(c(t)) (∂θif) (cθ(t))

 V k (cθ(t))V
l (cθ(t))

Thus, for t = 0 we have

d2

dt2
f (Expθ(tV ))|t=0 = V T (θ)

(
∇2
gf
)

(θ) V T (θ) = 〈V (θ),
(
∇2
gf
)

(θ) V (θ)〉g(θ)
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For regular vector fields V this yields the Taylor expansion

f (Expθ(tV )) = f(θ) + t 〈V (θ) , (∇gf) (θ)〉g(θ) +
t2

2
〈V (θ),

(
∇2
gf
)

(θ) V (θ)〉g(θ) + O(t3)

or equivalently

f (Expθ(V )) = f(θ) + 〈V (θ) , (∇gf) (θ)〉g(θ) +
1

2
〈V (θ),

(
∇2
gf
)

(θ) V (θ)〉g(θ) + O
(
‖V ‖3

)

Letting F = f ◦ φ, and using the fact that Expθ(V ) = φ (Expx(W )) when θ = φ(x) and
W = (dψ)φ(Vφ), the above formula takes the form

F (Expx(W )) = F (x) + 〈W (x) ,∇F (x)〉+
1

2

〈
W (x), (∇2F )(x)W (x)

〉
+ O

(
‖W‖3

)

6.6.3 Integration on manifolds

The volume measure on the manifold

Heuristically, for manifolds S in dimension

p = 1 = dim(Tx(S)) = dim(Vect((∂θiψ)φ(θ))

the volume element µS(dx) at some state x = ψ(θ) reduces the length lengthS(ψ(δθ)) of the ψ-image
curve ψ(δθ) of an infinitesimal interval

δθ := [θ, θ + dθ] ∈ Sψ ⊂ R

That is, we have that

ψ(δθ) ' ψ(θ + dθ)− ψ(θ) ' (∂θψ) (θ) dθ

so that

µS(dx) = lengthS(ψ(δθ)) ' ‖ψ(θ + dθ)− ψ(θ)‖
' ‖(∂θψ) (θ)‖ dθ =

√
〈(∂θψ) (θ), (∂θψ) (θ)〉 dθ

More rigorously, for any function F with compact support we have∫
S
F (x) µS(dx) =

∫
Sψ

f(θ)
√
〈(∂θψ) (θ), (∂θψ) (θ)〉 dθ with f = F ◦ ψ

In larger dimensions, the ψ-image ψ(δθ) of a cell δθ =
∏

1≤i≤p[θi, θi + dθi] ∈ Sψ ⊂ Rp is given by

ψ(δθ) ' ψ(θ + dθ)− ψ(θ) '
∑

1≤i≤p
(∂θiψ) (θ) dθi

= (dψ)

 ∑
1≤i≤p

εi ei : εi ∈ [0, dθi]


 = (dψ)

 ∏
1≤i≤p

[0, dθi]


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with the unit vectors ei in Rp, 1 ≤ i ≤ p. We recall that (dψ)(ei) = ∂θi , for any 1 ≤ i ≤ p. On the
other hand, by the change of variables formula

Vol

(dψ)

 ∏
1≤i≤p

[0, dθi]

 ' det ((dψ)(θ))
∏

1≤i≤p
dθi︸ ︷︷ ︸

=dθ

= det ((dψ)(θ)) dθ

Recalling that
√

det (ATA) = det (A), and Ai,j = 〈Aei, ej〉 for any (p× p)-matrix A, we have

det ((dψ)(θ)) =
√

det ((dψ)(θ)T (dψ)(θ))

=
√

det (〈(dψ)(θ)T (dψ)(θ)ei, ej〉)1≤i,j≤p

=
√

det (〈(dψ)(θ)ei, (dψ)(θ)ej〉)1≤i,j≤p

=
√

det
(〈

(∂θiψ) (θ),
(
∂θjψ

)
(θ)
〉)

1≤i,j≤p =
√

det (g(θ))

In summary, for any function F with compact support we have∫
S
F dµS :=

∫
S
F (x) µS(dx) =

∫
Sψ

f(θ)
√

det (g(θ)) dθ with f = F ◦ ψ

If we set
µg(dθ) =

√
det (g(θ)) dθ

the above formulae can be rewritten in a more synthetic form

µS(F ) :=

∫
S
F dµS =

∫
Sψ

f(θ) µg(dθ) := µg (f)

The divergence theorem

We consider the push forward W = (dψ)φ(Vφ) and F = f ◦ψ of a smooth vector field V and a smooth
function f on S with compact support. By construction (cf. (6.45)), we have

W ∈ T (S)⇒ 〈W,∇F 〉 = 〈W,∂F 〉 = ∂WF = (∂V f) ◦ φ = 〈V, ∂f〉 ◦ φ

and ∫
S
〈W,∇F 〉 dµS =

∫
Sψ

〈V (θ), (∂f)(θ)〉
√

det (g(θ)) dθ

=

∫
Sψ

〈V (θ), (∇gf)(θ)〉g(θ) µg(dθ)

with

µg(dθ) =
√

det (g(θ)) dθ

Using the fact that

〈V (θ), (∂f)(θ)〉 =
∑

1≤i≤p
V i(θ) ∂θi(f)(θ)
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by a simple integration by part formula, we prove that∫
Sψ

〈V (θ), (∂f)(θ)〉
√

det (g(θ)) dθ

=
∑

1≤i≤p

∫
Sψ

V i(θ) ∂θi(f)(θ)
√

det (g(θ)) dθ

= −
∑

1≤i≤p

∫
Sψ

f(θ) ∂θi

[√
det (g(θ)) V i(θ)

]
dθ

= −
∫
Sψ

f(θ)
1√

det (g(θ))

∑
1≤i≤p

∂θi

[√
det (g(θ)) V i(θ)

]
︸ ︷︷ ︸

=divg(V )(θ)

√
det (g(θ)) dθ

This implies that∫
S
〈W,∇F 〉 dµS = −

∫
Sψ

f(θ) divg(V )(θ)
√

det (g(θ)) dθ = −
∫
Sψ

f(θ) divg(V )(θ) µg(dθ)

On the other hand, using (6.54) we have

divg(V )(θ) = tr (∇W )ψ = div (W ) ◦ ψ

from which we conclude that∫
S
F div (W ) dµS = −

∫
S
〈W,∇F 〉 dµS (6.83)

We quote a series of direct consequence of this integration by part formula:

• Choosing F = 1 we have ∫
S

div (W ) dµS = 0

• Choosing W = F1 ∇F2 and F = F3, we have∫
S

div (F1 ∇F2) F3 dµS = −
∫
S
〈F1 ∇F2, ∂F3〉 dµS

= −
∫
S
F1 〈∇F2, ∂F3〉 dµS = −

∫
S
F1 〈∇F2,∇F3〉 dµS

The r.h.s. assertion comes from the fact that

∇F2 ∈ T (S) =⇒ 〈∇F2, ∂F3〉 = 〈∇F2, π (∂F3)〉 = 〈∇F2,∇F3〉
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• Choosing F1 = 1 in the above formula, and combining (6.50) with (6.55), we prove the first
type Green formula; that is, for any smooth functions (F1, F2) with (at least one with) compact
support∫
S

∆(F1) F2 dµS =

∫
S

div (∇F1) F2 dµS = −
∫
S
〈∇F1,∇F2〉 dµS =

∫
S
F1 ∆(F2) dµS

=∫
Sψ

∆g(f1) f2 dµg =

∫
S

divg (∇gf1) f2 dµg = −
∫
Sψ

〈∇gf1,∇gf2〉g dµg =

∫
Sψ

f1 ∆g(f2) dµg

• Choosing F2 = 1 in the above formula, we find that for any smooth function F with compact
support ∫

S
∆(F ) dµS = 0

6.7 Some prototype manifolds

6.7.1 The Circle

The prototype of hypermanifold is the unit circle S = S1 ⊂ R2 3 x =

(
x1

x2

)
described as the null

level set S = ϕ−1(0) of the function

ϕ(x) = (x2
1 + x2

2 − 1)/2⇒ (∂ϕ)(x) = x =

(
x1

x2

)
The orthogonal projection π⊥ onto the normal axis T⊥x (S) = Vect ((∂ϕ)(x)) at x ∈ S is given by the
formula

π⊥(x) =
(∂ϕ) (x) (∂ϕ)T (x)

(∂ϕ) (x)T (∂ϕ) (x)
=
xxT

xTx
=

1

x2
1 + x2

2

(
x2

1 x1x2

x2x1 x2
2

)
and the orthogonal projection on Tx(S) is defined by π(x) = Id−π⊥(x). The (mean) curvature vector
H defined by (6.21) on the circle is simply given by

∀x 6= 0 H(x) =

 ∑
1≤m≤2

∂xm

(
xm√
x2

1 + x2
2

) x√
x2

1 + x2
2

=
x

‖x‖2

We check this claim using the fact that

∂x1

(
x1√
x2

1 + x2
2

)
=

1√
x2

1 + x2
2

[
1− x2

1

(x2
1 + x2

2)

]
⇒ div⊥

(
∂ϕ

‖∂ϕ‖2

)
=

∑
1≤m≤2

∂xm

(
xm√
x2

1 + x2
2

)
=

1√
x2

1 + x2
2

The circle S−{(1, 0)} can be parametrized by the polar angle mapping ψ : θ ∈]0, 2π[ 7→ S−{(1, 0)}

ψ(θ) =

(
cos(θ)
sin(θ)

)
=⇒ (∂θψ)(θ) =

(
− sin(θ)
cos(θ)

)
so that

Tx(S) = Vect
(
(∂θψ)φ(x)

)
with (∂θψ)φ(x) =

(
− sin(θ)
cos(θ)

)
θ=φ(x)

=

(
−x2

x1

)
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The Riemannian metric on Sψ = R ⇒ T (Sψ) = R = Vect(1) reduces to

g(θ) = 〈(∂θψ)(θ), (∂θψ)(θ)〉 = 1 = g(θ)−1 ⇒ (∇φ)ψ = ∂θψ (6.84)

Using (6.19) and (6.13), for any smooth function F on S 3 x we have

div⊥ (∂ϕ) = ∂x1 (∂x1ϕ) + ∂x2 (∂x2ϕ) = 2

and therefore

1

2
∆F = tr

(
π∂2F

)
− 〈∂ϕ, ∂F 〉

In addition, we have

(∂θ,θψ)(θ) = −
(

cos(θ)
sin(θ)

)
∈ T⊥(S) ⇒ Γ1

1,1 = 0 and (∆φ)ψ = 0 (6.85)

The geodesics cθ(t) := Expθ(tV ), with V (θ) ∈ R are given by

..
c θ (t) = 0 ⇒ .

cθ (t) = V (θ)

⇒ cθ(t) = t V (θ) + θ ⇒ Cx(t) = ψ(cθ(t)) =

(
cos(t V (θ) + θ)
sin(t V (θ) + θ)

)
6.7.2 The 2-Sphere

The unit sphere S = S2 ⊂ R3 3 x =

 x1

x2

x3

 described as the null level set S = ϕ−1(0) of the function

ϕ(x) = (x2
1 + x2

2 + x2
3 − 1)/2⇒ (∂ϕ)(x) = x =

 x1

x2

x3


Notice that (∂ϕ)(x) is the unit normal at any state x ∈ S. Thus, the orthogonal projection π⊥ onto
the normal axis T⊥x (S) = Vect ((∂ϕ)(x)) at x ∈ S is given by the formula

π⊥(x) = (∂ϕ) (x) (∂ϕ)T (x) = xxT =

 x2
1 x1x2 x1x3

x2x1 x2
2 x2x3

x3x1 x2x2 x2
3


and the orthogonal projection on Tx(S) is defined by

π(x) = Id− π⊥(x) =

 1− x2
1 −x1x2 −x1x3

−x2x1 1− x2
2 −x2x3

−x3x1 −x2x2 1− x2
3


The sphere S can be parametrized by the spherical coordinates mapping ψ : θ = (θ1, θ2) ∈
(]0, π[×]0, 2π[) 7→ S

ψ(θ) =

 sin(θ1) cos(θ2)
sin(θ1) sin(θ2)

cos(θ1)

 = (∂ϕ)ψ(θ)

The first coordinate θ1 is called the colatitude angle, and the second one θ2 is called the azimuthal
angle. We have

∂θ1ψ(θ) =

 cos(θ1) cos(θ2)
cos(θ1) sin(θ2)
− sin(θ1)

 and ∂θ2ψ(θ) =

 − sin(θ1) sin(θ2)
sin(θ1) cos(θ2)

0

 = − sin(θ1)

 sin(θ2)
− cos(θ2)

0


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so that

∂θ1ψ(θ) ∧ ∂θ2ψ(θ) = sin(θ1)

 sin(θ1) cos(θ2)
sin(θ1) sin(θ2)

cos(θ1)

 = sin(θ1) (∂ϕ)ψ(θ) ∈ T⊥(S)

This implies that

Tx(S) = Vect
(
(∂θ1ψ)φ(x), (∂θ2ψ)φ(x)

)
and T⊥x (S) = Vect ((∂ϕ) (x))

The Riemannian metric on Sψ = R2) is given by

g1,1(θ) = 〈(∂θ1ψ)(θ), (∂θ1ψ)(θ)〉 = 1

g2,2(θ) = 〈(∂θ2ψ)(θ), (∂θ2ψ)(θ)〉 = sin2(θ1)

g1,2(θ) = g2,1(θ) = 〈(∂θ1ψ)(θ), (∂θ2ψ)(θ)〉 = 0

Up to the circle S ∩ {x1 = x2 = 0} (i.e. for θ1 ∈ {0, π}), we have

g−1(θ) =

(
1 0
0 sin−2(θ1)

)
Notice that

∂θ1,θ2ψ(θ) =

 − cos(θ1) sin(θ2)
cos(θ1) cos(θ2)

0

 = cos(θ1)
sin(θ1) × ∂θ2ψ(θ)

⇒ Γ1
1,2 = 0 = Γ1

2,1 and Γ2
1,2(θ) = Γ2

2,1(θ) = cos(θ1)
sin(θ1)

In much the same way, we have

∂θ1,θ1ψ(θ) =

 − sin(θ1) cos(θ2)
− sin(θ1) sin(θ2)
− cos(θ1)

 = −(∂ϕ)ψ(θ) ⇒ ∀k ∈ {1, 2} Γk1,1 = 0

∂θ2,θ2ψ(θ) =

 − sin(θ1) cos(θ2)
− sin(θ1) sin(θ2)

0

 = − sin(θ1)

 cos(θ2)
sin(θ2)

0


In addition, it is readily checked that

∂θ2,θ2ψ(θ) ⊥ ∂θ2ψ(θ)⇐⇒ 〈∂θ2,θ2ψ(θ), ∂θ2ψ(θ)〉 = 0 ⇒ Γ2
2,2 = 0

and
Γ1

2,2(θ) = 〈∂θ2,θ2ψ(θ), ∂θ1ψ(θ)〉 = − sin(θ1) cos(θ1)

Using (6.68), we conclude that

(∆φ1)ψ(θ) = −
∑

1≤i,j≤2

Γ1
i,j(θ) g

i,j(θ) = −
Γ1

2,2(θ)

sin2(θ1)
=

cos(θ1)

sin(θ1)
= cot (θ1)

(∆φ2)ψ(θ) = 0 (6.86)

and by (6.40) we have

(∇φ1)ψ(θ) =
∑

1≤j≤2

g1,j(θ)
(
∂θjψ

)
(θ) = (∂θ1ψ) (θ)

(∇φ2)ψ(θ) =
∑

1≤j≤2

g2,j(θ)
(
∂θjψ

)
(θ) =

1

sin2(θ1)
(∂θ2ψ) (θ) =

1

sin(θ1)

 − sin(θ2)
cos(θ2)

0

 (6.87)
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The geodesics cθ(t) := Expθ(tV ) =

(
c1
θ(t)
c2
θ(t)

)
, with V (θ) ∈ R2 satisfy the differential equations

{ ..
c

1
θ (t) = sin(c1

θ(t)) cos(c1
θ(t))

.
c

2
θ (t)

.
c

2
θ (t)

..
c

2
θ (t) = −2

cos(c1θ(t))

sin(c1θ(t))

.
c

1
θ (t)

.
c

2
θ (t)

with initial conditions
cθ(0) = θ and

.
cθ (0) = V (θ)

These equations cannot be solved explicitly, and we need to resort to some numerical approximation.
The second equation can be rewritten as follows

d

dt

(.
c

2
θ (t) sin2(c1

θ(t))
)

=
..
c

2
θ (t) sin2(c1

θ(t)) + 2 sin(c1
θ(t)) cos(c1

θ(t))
.
c

1
θ (t)

.
c

2
θ (t)

= −2
cos(c1

θ(t))

sin(c1
θ(t))

sin2(c1
θ(t))

.
c

1
θ (t)

.
c

2
θ (t) + +2 sin(c1

θ(t)) cos(c1
θ(t))

.
c

1
θ (t)

.
c

2
θ (t)

= 0

This shows that .
c

2
θ (t) sin2(c1

θ(t)) =
.
c

2
θ (0) sin2(c1

θ(0))

The geodesics Cx(t) := Expx(tW ) have a more explicit description given by the equations

Expx(tW ) = cos (t‖W (x)‖) x+ sin (t‖W (x)‖) W (x)

‖W (x)‖

We readily check that Cx(t) satisfies the required conditions

.
Cx (t) =

[
− sin (t‖W (x)‖) x+ cos (t‖W (x)‖) W (x)

‖W (x)‖)

]
‖W (x)‖ t=0

= W (x)

and
Cx(t) ∈ S2 =⇒

..
Cx (t) = −‖W (x)‖2 Cx(t) ∈ T⊥(S2)⇒ π

(..
Cx (t)

)
= 0

6.7.3 The Torus

The Torus T can be seen as a surface of revolution obtained by revolving a circle

C(R, r) =


 R

0
0

+

 r cos(θ1)
0

r sin(θ1)

 : θ1 ∈ R


of radius r and center x1 = R > r about the symmetry x3-axis. The Cartesian coordinates of the
Torus are parametrized by the function

ψ : θ =

(
θ1

θ2

)
∈ R2 7→ ψ (θ) =

 (R+ r cos(θ1)) cos(θ2)
(R+ r cos(θ1)) sin(θ2)

r sin(θ1)


Alternatively, T = ϕ−1(0) can be represented as the null level set of the function

ϕ : x =

 x1

x2

x3

 ∈ R3 7→ ϕ(x) =

(
R−

√
x2

1 + x2
2

)2

+ x2
3 − r2
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After some elementary manipulations, we find that

∂θ1ψ(θ) =

 −r sin(θ1) cos(θ2)
−r sin(θ1) sin(θ2)

r cos(θ1)

 and ∂θ2ψ (θ) =

 −(R+ r cos(θ1)) sin(θ2)
(R+ r cos(θ1)) cos(θ2)

0


and

R−
√
x2

1+x2
2√

x2
1+x2

2

x1
x=ψ(θ)

= −r cos(θ1)
(R+r cos(θ1)) (R+ r cos(θ1)) cos(θ2) = −r cos(θ1) cos(θ2)

=⇒ ∂ϕ(x) = 2


−x1

R−
√
x2

1+x2
2√

x2
1+x2

2

−x2
R−
√
x2

1+x2
2√

x2
1+x2

2

x3

 x=ψ(θ)
= 2r

 cos(θ1) cos(θ2)
cos(θ1) sin(θ2)

sin(θ1)


In addition, we have

∂θ1ψ(θ) ⊥ ∂θ2ψ(θ) (⇔ 〈∂θ1ψ(θ), ∂θ2ψ(θ)〉 = 0)

‖∂θ1ψ(θ)‖ = r2 and ‖∂θ2ψ(θ)‖ = (R+ r cos(θ1))2

and

∂θ2ψ(θ) ∧ ∂θ1ψ(θ) =

 −(R+ r cos(θ1)) sin(θ2)
(R+ r cos(θ1)) cos(θ2)

0

 ∧
 −r sin(θ1) cos(θ2)
−r sin(θ1) sin(θ2)

r cos(θ1)


= r(R+ r cos(θ1))

 cos(θ1) cos(θ2)
cos(θ1) sin(θ2)

sin(θ1)


This shows that

g(θ) =

(
r2 0
0 (R+ r cos(θ1))2

)
and g−1(θ) =

(
r−2 0
0 (R+ r cos(θ1))−2

)
=⇒

√
det(g(θ)) = r(R+ r cos(θ1))

Using (6.40) we have

(∇φ1)ψ(θ) = r−2 (∂θ1ψ)(θ)

(∇φ2)ψ(θ) = (R+ r cos(θ1))−2 (∂θ2ψ)(θ)

and 〈
(∇φ1)ψ(θ), (∇φ2)ψ(θ)

〉
= 0〈

(∇φ1)ψ(θ), (∇φ1)ψ(θ)
〉

= r−2 and
〈
(∇φ2)ψ(θ), (∇φ2)ψ(θ)

〉
= (R+ r cos(θ1))−2

By (6.65), we also find that

(∆φ1)ψ(θ) =
1

r(R+ r cos(θ1))
∂θ1
(
r(R+ r cos(θ1)) r−2

)
= − sin(θ1)

r(R+ r cos(θ1))

(∆φ2)ψ(θ) =
1

r(R+ r cos(θ1))
∂θ2
(
r(R+ r cos(θ1)) (R+ r cos(θ1))−2

)
= 0





Chapter 7

Markov Chain Monte Carlo models

7.1 Boltzmann-Gibbs target measures

Markov chain Monte Carlo algorithms are rather standard stochastic simulation methods
for sampling from a given target distribution, say π on some state space E. The prototype
of target measure is given by Boltzmann-Gibbs measures of the following form

π(dx) = ΨG(λ)(dx) =
1

λ(G)
G(x) λ(dx) (7.1)

where λ stands for some reference measure and G some potential function on some state
space E.

Boltzmann-Gibbs measures are one of the most central mathematical models of classical statistical
physics. In this context, the main problem is to deduce macroscopic equilibrium behaviors of thermo-
dynamic physical systems, from complex disordered microscopic interacting structures.

As their name indicates, Boltzmann-Gibbs measures were introduced independently in the
early 1900s by Ludwig Boltzmann and Josiah Willard Gibbs in their seminal studies on statisti-
cal entropy theory and micro-macro canonical ensemble theory [60, 287]. In the late 1960s, Roland
Lvovich Dobrushin [231] and Oscar E. Lanford and David Ruelle [396] and also developed a new
theory to design probability measures on finite product spaces, by specification systems of conditional
distributions w.r.t. the complement of finite volume measures, with prescribed boundary conditions.
The two prototypes of physical systems are particles in liquid-vapor models of real gases, interacting
via Van der Waals forces, and atoms’ configurations and their magnetic moments in crystal lattices
of ferromagnetic metals (iron, colbalt, nickel) in thermal equilibrium. In this context, adjacent atoms
and their electronic configurations tend to have the same angular moment (i.e., the same spins).

The central idea behind MCMC methodologies is to design a judicious Markov transition M(x, dy),
with nice stability properties, that has the target probability measure π = πM as its invariant measure.
After a rather large number of runs, and when the chain is sufficiently stable, the ergodic theorem
tells us that the occupation measures of the random states Xn of the chain with Markov transition M
approximate π.
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In computational physics as well as in stochastic optimization we are interested in computing
Boltzmann-Gibbs distributions associated with an inverse temperature parameter β. These
distributions have the following form

µβ(dx) =
1

Zβ
e−βV (x) λ(dx) (7.2)

where λ stands for some distribution on some state space S, and V some function on E. The
parameter β is interpreted as an inverse temperature parameter. It is also often important
to compute the normalizing constants (a.k.a. partition functions in physics) Zβ = λ

(
e−βV

)

Let us present an example of Boltzmann-Gibbs measure arising in Operation Research. We are
given a finite state space Em = {e1, . . . , em} equipped with some metric d. We can think of a a finite
number of cities and the distance between them. One typical problem known as the traveling salesman
problem, consists in finding a way to visit all the cities with a minimal travel distance. We can model
a given sequence of visits by a permutation σ on the index set {1, . . . ,m}. In this situation, the state
space E is given by the set of these permutations equipped with the uniform probability measure
λ(σ) = 1/m!, and the energy function V is defined by

V (σ) =

m∑
p=1

d(eσ(p), eσ(p+1))

It is not difficult to check that

lim
β→∞

µβ(σ) = µ∞(σ) :=
1

Card(V ?)
1V ?(σ) (7.3)

where Card(V ?) stands for the cardinal of the set V ? = {σ ∈ E : V (σ) = infE V } of the optimal
traveling strategies. Indeed, we have∑

σ∈E
e−β[V (σ)−V?] = Card (V?) +

∑
σ 63V?

e−β[V (σ)−V?] →n↑∞ Card (V?)

This implies that µβ converges to the uniform measure on the set V?; that is, we have that

µβ(σ) =
e−β[V (β)−V?]∑
τ∈E e

−β[V (τ)−V?]
→β↑∞ µ∞(σ) :=

1

Card (V?)
1V?(σ)

This result shows that at low temperature (i.e. β ↑ ∞), the sampling of the distribution µβ amounts
of choosing randomly an unknown optimal solution of the problem.

Boltzmann-Gibbs measures on manifolds arise in global optimization problems with nonlinear
constraints. In this situation, the state space E is given by the q-dimensional null level set S = ϕ−1(0) of
some smooth function ϕ : x ∈ Rr=p+q 7→ Rq s.t. rank(∂ϕ(x)) = q, for any x ∈ Rr. The corresponding
optimization problem is often expressed in the form

arg min {V (x) : x ∈ S} = arg min {V (x) : x ∈ Rr s.t. ϕ(x) = 0}

The manifold S can be equipped with a Riemannian structure associated with some chart φ : x ∈
S 7→ φ(x) ∈ Sφ (and some parametric description ψ = φ−1 : θ ∈ Sφ 7→ S).
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In Bayesian inference, Boltzmann-Gibbs measures represent the posterior distribution of
some unknown random parameter Θ = θ given some partial and noisy observations Y = y.
In this context, λ represents the prior distribution of Θ, and V the log-likelihood function
of the parameter w.r.t. a given observation; that is, for β = 1 we have that

λ(dθ) = P (Θ ∈ dθ) and V (θ) = − logPθ(y)

where Pθ(y) = p(y|θ) stands for the conditional density of Y = y w.r.t. some reference
measure λ′(dy) on the observation space. In this situation, we have the Bayes’ rule

µβ=1(dθ) =
1

Z1
e−V (θ) λ(dθ) ∝ p(y|θ) P (Θ ∈ dθ) ∝ P (Θ ∈ dθ | Y = y)

Directed polymer models arising in statistical physics are defined in much the same way. For
instance, the micro-state of a system consists of d particles xi = (pi, ri), with a momentum vector pi
and a position coordinate ri = (r1

i , r
2
i , r

3
i ), with 1 ≤ i ≤ d. The energy of the system is given by some

function

V (x) :=
d∑
i=1

(
1

2m
‖pi‖2 +mgr1

i

)
where m represents the mass of the particle, r1

i its height, and g the gravitation constant. The probabil-
ity distribution of the physical system at inverse temperature βn is again given by the Boltzmann-Gibbs
measures (7.2), with the Lebesgue measure λ. For a more thorough discussion on these models, we
refer the reader to [149, 213, 216], and references therein.

More generally, the r.v. X may represent the random paths X = (X0, . . . , Xn) of a given reference
Markov process Xn, taking values in some state spaces En. In this situation, the reference measure λ
in (7.1) is often given by the distribution of the random path

λ(dx) = λ(d(x0, . . . , xn)) = P ((X0, . . . , Xn) ∈ d(x0, . . . , xn))

where d(x0, . . . , xn) stands for an infinitesimal neighborhood f the path x = (x0, . . . , xn) ∈ S :=
(E0 × . . .× En). The potential weight functions G(x) are often given by a product formula

G(x) = G(x0, . . . , xn) =
∏

0≤k≤n
Gk(xk)

For instance, for indicator functions Gk = 1Ak of some measurable subset Ak ⊂ Ek, we have

π(dx) =
1

λ(G)
G(x) λ(dx) ∝ 1A0×...×An(x0, . . . , xn) P ((X0, . . . , Xn) ∈ d(x0, . . . , xn))

∝ P ((X0, . . . , Xn) ∈ d(x0, . . . , xn) | (X0, . . . , Xn) ∈ (A0 × . . .×An))

In probability theory and computational physics, these Boltzmann-Gibbs measures associated with
some Markov chain process are also termed Feynman-Kac measures. Their analysis and their particle
interpretations are discussed in section 9.1.4.

7.2 Metropolis and Hasting models

The Metropolis-Hastings algorithm is the most famous MCMC model of current use in practice.
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Firstly, we choose a Markov transition K to explore randomly the state S. We further assume that
K(x, dy) and the target measure π(dy) have a density with respect to some reference measure λ(dy);
that is, we have that

K(x, dy) = k(x, y) λ(dy) and π(dy) = h(y) λ(dy)

with some density functions k(x, y) and h(y) s.t.

h(y)k(y, x) = 0 =⇒ h(x)k(x, y) = 0

We set

G(x, y) :=
h(y)k(y, x)

h(x)k(x, y)

with the convention 0/0 = 0. For more general models, we take

G(x, y) =
π(dy)K(y, dx)

π(dx)K(x, dy)
(7.4)

For Boltzmann-Gibbs measures π of the form (7.1), it is readily checked that the function G doesn’t
depend on the normalizing constant λ(G), and it is given by the formula

G(x, y) =
G(y)

G(x)
× λ(dy)K(y, dx)

λ(dx)K(x, dy)

In addition, when the proposal transition K is reversible w.r.t. the measure λ, the function G takes
the simpler form

G(x, y) = G(y)/G(x) (7.5)

The Metropolis-Hastings model is a Markov chain with µ-reversible acceptance-rejection
style transitions of the following form

M(x, dy) = K(x, dy) a(x, y) + (1−
∫
K(x, dz) a(x, z)) δx(dy) (7.6)

To guarantee the reversibility property, we often chose one of the following acceptance rates

a = G/(1 +G) or a = 1 ∧G (7.7)

When the proposal transition K(x, .) = ν is given by some probability measure ν, that
doesn’t depends on the current state x, the resulting MCMC sampler is sometimes called
an independent Metropolis Hastings model.

The Metropolis-Hasting transition (7.6) associated with one of the acceptance rates a given
in (7.7) is reversible w.r.t. the target measure π; that is we have that

π(dx)M(x, dy) = π(dy)M(y, dx)

When a = 1 ∧G, for any x 6= y we have

π(dx)M(x, dy) = π(dx)K(x, dy) a(x, y)

= λ(dx) h(x) k(x, y)λ(dy)

{
1 ∧ (h(y)k(y, x))

(h(x)k(x, y))

}
= λ(dx)λ(dy) {(h(x)k(x, y)) ∧ (h(y)k(y, x))}
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This formula is clearly symmetric w.r.t. x and y.
When a = G/(1 +G), for any x 6= y we have

a(x, y) =

h(y)k(y,x)
h(x)k(x,y)

1 + h(y)k(y,x)
h(x)k(x,y)

=
h(y)k(y, x)

h(x)k(x, y) + h(y)k(y, x)

and

π(dx)M(x, dy) = π(dx)K(x, dy) a(x, y)

= λ(dx)λ(dy)
(h(y)k(y, x))(h(x)k(x, y))

h(x)k(x, y) + h(y)k(y, x)

This formula is again symmetric w.r.t. x and y.

For a detailed discussion on this model, we refer the reader to the pioneering article by N. Metropolis,
A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller [454], the more recent review article by N.
Metropolis [453], and the series of articles by P. Diaconis [223, 224, 226].

The mathematical analysis of this Markov chain model is also well developed. We refer the reader
to the series of seminal articles by P. Diaconis and his co-authors [218, 219, 220, 221, 225, 227]. These
works reveals fascinating connexions between the design and the performance analysis of MCMC
model with powerful pure and applied mathematical techniques, ranging from representation theory,
micro-local analysis, log-Sobolev inequalities, and spectral analysis.

Besides the fact that these techniques provide very sharp rates of convergence, it is clearly of course
out of the scope of this book to review these methods. In the end of this section, we content ourselves
with presenting one of the simplest way to analyze the convergence of an MCMC algorithm.

Suppose that K satisfies the minorization condition

Km(x, dy) ≥ ε ν(dy)

for some interger m ≥ 1, some ε ∈]0, 1] and some probability measure ν. In this situation, we clearly
have that

Mm(x, dy) ≥ ε′ ν(dy)

with

ε′ = ε inf
x0 ... xm

 ∏
0≤p<m

a(xp, xp+1)


The r.h.s. infimum is taken over all sequences (x0, . . . , xm) of states in S of length m and s.t.

k(xp, xp+1) > 0

Whenever ε > 0, the Dobrushin contraction coefficient of Mm is s.t. β(Mm) < 1. For a more detailed
discussion on MCMC models, and their stochastic analysis we refer the reader to the review articles
by P. Diaconis [217, 222, 227], and references therein.

Our next objective is to sample a centered Gaussian random variable Z with unit variance restricted
to some set A, say A =]a, b[, for some −∞ ≤ a < b ≤ ∞. We let λ be the distribution of Z, and we set

π(dz) :=
1

λ(A)
1A(x) λ(dx) = P (Z ∈ dz | Z ∈ A)

Of course, we can use the distribution function F (z) = P(Z ≤ z) of the Gaussian r.v. and set

Za,b = F−1 (F (a) + U (F (b)− F (a))) (7.8)
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It is an elementary exercise to check that Law(Za,b) = π. Nevertheless, the function F requires to
integrate the Gaussian density from −∞ up to any state z, using some kind of numerical approximation
scheme.

Another strategy is to use a rejection simulation technique. In this case, we sample a sequence of
independent copies of Z and we accept the ones that hit the desired set A.

Next, we describe an alternative approach based on Markov chain simulation.

We let Zn be a sequence of independent copies of Z. Next, we design a Markov chain Xn with
invariant measure π.

Suppose, the chain Xn ∈ A at some time step n ≥ 0. Starting from this point, we set

Yn+1 =
√

1− εn Xn +
√
εn Zn

If Yn+1 we accept the move and we set Xn+1. Otherwise, we stay in the same place Xn+1 = Xn. The
Markov transition of the chain Xn  Xn+1 is given by

M(x, dy) = K(x, dy) 1A(x) + (1−K(1A)(x)) δx(dy)

We prove that πM = π as follows. Recalling that the transition K(x, dy) is a reversible w.r.t. to the
Gaussian distribution λ, for any bounded functions f1, f2 on R we have that

πM(f) ∝ λ(1AM(f))

= λ(1AK(1A f)) + λ(1A(1−K(1A) f2)

= λ(K(1A)1A f2) + λ(1Af)− λ(1A K(1A) f2) = λ(1Af) ∝ π(f)

This clearly implies that π = πM .

7.3 Gibbs-Glauber dynamics

We let π be some target measure defined on some product state space S = (S1 × S2). We
assume that the following disintegration property is satisfied

π(d(x1, x2)) = π1(dx1)L1,2(x1, dx2) = π2(dx2)L2,1(x2, dx1)

with the first, and second marginals, π1 and π2, and the corresponding conditional proba-
bility measures L1,2 and L2,1.
The Gibbs sampler is the Markov chain with the elementary transition

M = K1K2

with the transitions Ki given for any i ∈ {1, 2} by

K1((x1, x2), d(y1, y2)) := δx1(dy1)L1,2(y1, dy2)

K2((x1, x2), d(y1, y2)) := δx2(dy2)L2,1(y2, dy1)

We can alternatively choose the Markov transitions

M = K2K1 or M =
1

2
K1 +

1

2
K2
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The transitions K1 and K2 are reversible w.r.t. the measure π. In addition, the Metropolis
Hasting transitions M1, and resp. M2, with proposal transition K1, and resp. K2, and
acceptance rate a = 1 ∧G with G given by (7.4) has unit acceptance rate.

Proof :
We check this claim using the fact that

π(d(y1, y2))×K1((y1, y2), d(x1, x2))

= π1(dy1)L1,2(y1, dy2)× δy1(dx1)L1,2(x1, dx2)

= π1(dy1)δy1(dx1)︸ ︷︷ ︸
=π1(dx1)δx1 (dy1)

× (L1,2(y1, dy2)L1,2(x1, dx2))

This formula is clearly symmetric w.r.t. x = (x1, x2) and y = (y1, y2). Thus, we have

G((x1, x2), (y1, y2)) =
π(d(y1, y2))×K1((y1, y2), d(x1, x2))

π(d(x1, x2))×K1((x1, x2), d(y1, y2))
= 1

The resulting Markov chain model is often called the Gibbs sampler or the Glauber dynamics.

Example 7.3.1 Suppose we want to select uniformly a point Z = (X,Y ) in the unit disk

D := {(x, y) ∈ [−1, 1]2 : x2 + y2 ≤ 1}

Here again, we can use a rejection simulation technique. We sample a sequence of independent
random variables on [−1, 1]2 and we accept the ones that hit the desired set D. Notice that the invariant
measure π on D is defined by

π(d(x, y)) ∝ 1D(x, y) dxdy

= 1[−1,1](x) dx 1[−
√

1−x2,+
√

1−x2](y) dy

= 1[−1,1](y) dy 1
[−
√

1−y2,+
√

1−y2]
(x) dx (7.9)

This implies that

P (Y ∈ dy | X = x) ∝ 1[−
√

1−x2,+
√

1−x2](y) dy

P (X ∈ dx | Y = y) ∝ 1
[−
√

1−y2,+
√

1−y2]
(x) dx

Pick any initial point (X0, Y0) in D. The next state of the chain (X1, Y1) is defined as follows.

Firstly, we choose uniformly a point X1 on
[
−
√

1− Y 2
0 ,+

√
1− Y 2

0

]
. Then, we choose uniformly a

state Y1 on
[
−
√

1−X2
1 ,+

√
1−X2

1

]
. Iterating these couple of transitions, we construct a Markov

chain evolving inside the the unit disk D

Zn :=

(
Xn

Yn

)
 

(
Xn+1

Yn

)
 Zn+1 =

(
Xn+1

Yn+1

)
(7.10)

After some elementary computations, we prove that π is the invariant measure of the chain Zn.

These constructions can be extended to product state spaces of any dimension. More formally, we
let π be some target measure on some state space S = EI , where I stands for some finite set.
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7.4 The Propp and Wilson sampler

In the further development of this section M(x, y) stands for an aperiodic and irreducible Markov
transition on some finite set S.

A random mapping F is said to be M -compatible as soon as we have for any (x, y) ∈ S2

P (F (x) = y) = M(x, y)

The existence of M -compatible mappings is proved as follows:

Up to some change of label, there is no loss of generality to assume that the state space S =
{1, . . . , d}, with d = Card(S). In this notation, a mapping F is characterized by a column random
vector F = (F (1), . . . , F (d))′

We let (Ui)1≤i≤d be a sequence of independent and uniform r.v. on [0, 1[, and we set

F (i) =
∑

1≤j≤d
j 1[

∑
1≤k<jM(i,k),

∑
1≤k≤jM(i,k)[(Ui) (7.11)

By construction, the random states (F (i))1≤i≤d are independent r.v. and we have

P (F (i) = j) = P

 ∑
1≤k<j

M(i, k) ≤ Ui ≤
∑

1≤k≤j
M(i, k)

 = M(i, j)

From the above construction, we notice that F is not necessarily a one to one mapping.

In this notation, the Markov chain with elementary transition M is defined for any n ≥ 0 by the
recursion

Xn+1 = Fn(Xn) = Fn(Fn−1(Xn−1)) = . . . = (Fn ◦ . . . ◦ F1 ◦ F0) (X0)

where Fn, with n ∈ N, stands for a sequence of independent copies of the mapping F .

Given a sequence of independent copies (Fn)n≥0 of the mapping F , we let

←−
Fn := F0 ◦ F1 ◦ . . . ◦ Fn

law
= Fn ◦ . . . ◦ F1 ◦ F0 :=

−→
Fn

We also let
←−
T and

−→
T be the forward and backward coalescent times

←−
T = inf

{
n : Card

( ←−
Fn(S)

)
= 1
}

−→
T = inf

{
n : Card

( −→
Fn(S)

)
= 1
}
law
=
←−
T

The backward mapping
←−
Fn is better interpreted as running the chain forward from some random

state X−n up to the state X1

X1 = F0(X0) = F0(F−1(X−1)) = . . . = (F0 ◦ F−1 ◦ . . . ◦ F−n) (X−n) (7.12)

where Fn, with n ∈ Z, stands for independent copies of F . In this situation, the initial condition is
X−n and X1 is the terminal state of the chain after (n+ 1) forward interactions.
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We further assume that the M -compatible mapping F is chosen so that

P
(←−
T <∞

)
= 1 = P

(−→
T <∞

)
(7.13)

In this situation, the value of
←−−
F←−
T

(x) := Y doesn’t depend on the state variable x and it is
distributed according to the invariant measure of the chain π = πM .

Proof :
By construction the value

←−−
F←−
T

, and a fortiori the one of
←−−
F←−
T

(x) := Y doesn’t depends on the variable
x. This implies that

T ≤ n

⇒ (F0 ◦ F1 ◦ . . . ◦ Fn) (x) = (F0 ◦ F1 ◦ . . . ◦ FT ) ◦ (FT+1 ◦ . . . ◦ Fn(x)) = Y

We conclude that

P(Y = y)
∞←n←− P ((F0 ◦ F1 ◦ . . . ◦ Fn) (x) = y)

= P ((Fn ◦ . . . ◦ F0) (x) = y)
n→∞−→ π(y)

This ends the proof of the theorem.

The coalescent condition is not satisfied for any M -compatible mappings. For instance when S =
{1, 2} and M(i, j) = 1/2 for any i, j ∈ S it is readily checked that the mapping F defined by

P ((F (1), F (2)) = (1, 2)) = 1/2 = P ((F (1), F (2)) = (2, 1))

is M -compatible but the above condition is not met. Indeed, we have that

P(F (1) = 1) = 1/2 = P(F (1) = 2) and P(F (2) = 1) = 1/2 = P(F (2) = 2)

but
←−
Fn and

−→
Fn are random permutations of the states {1, 2}.

Nevertheless the mappings defined in (7.11) satisfy the desired condition. To check this claim, we
notice that

P ((F (1), F (2)) = (1, 2)) = P ((F (1), F (2)) = (1, 1))

= P ((F (1), F (2)) = (2, 1))

= P ((F (1), F (2)) = (2, 2)) = 1/4

In this situation, we have

P(F (2) = 1) = P(F (1) = 1) = 1/4 + 1/4 = 1/2 = P(F (1) = 2) = P(F (1) = 2)

In addition, we have

P
(←−
T ≤ 1

)
≥ P (Card(F ({1, 2})) = 1) = 1/2 > 0⇒ P

(←−
T > 1

)
≤ 1/2 < 1
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Recalling that

P
(←−
T > n |

←−
T > (n− 1)

)
∝ E

(
P
(

Card
(←−−−
Fn−1 ◦ Fn(S)

)
> 1 |

←−−−
Fn−1

)
1Card

(←−−−
Fn−1(S)

)
>1

)

= E

P
(

Card
(←−
F1(S)

)
> 1 |

←−
F0

)
←−
F0=

←−−−
Fn−1︸ ︷︷ ︸

≤1/2

1Card
(←−−−
Fn−1(S)

)
>1


This implies that

P
(←−
T > n

)
= P

(←−
T > n |

←−
T > (n− 1)

)
× P

(←−
T > (n− 1)

)
≤ 1/2n

from which we conclude that P
(←−
T <∞

)
= 1.

Notice that the Propp and Wilson scheme requires to store all the values of the functions Fn. This
drawback reflects the main limitation of applying the Propp and Wilson sampler in large state spaces.

Nevertheless, we can overcome this difficulty when the state space S is equipped with a partial
order with a minimal and a maximal state, xmin ≤ x ≤ xmax, for any x ∈ S. In this case, the strategy
is to find a judicious monotone M -compatible mapping F . Combining the interpretation (7.12) with
the fact that

Card (F0 ◦ F−1 ◦ . . . ◦ F−n) (S) = 1
⇔
(F0 ◦ F−1 ◦ . . . ◦ F−n) (xmin) = (F0 ◦ F−1 ◦ . . . ◦ F−n) (xmax)

we only need to store the values of two chains starting at xmin and xmax. This also shows that the
coalescence property (7.13) of monotone mapping F is granted as soon as the chain is ergodic.

The drawback is that the desired coalescence may not appear after some initially chosen number
n steps. In this case, we need to restart the simulation with a larger number of steps. In practice we
often choose these numbers of the form 2k, with k ≥ 1.

For a more detailed discussion on this simulation technique, we refer the reader to the book of S.
Asmussen, P. W. Glynn [20]. The website of D.B. Wilson on perfect sampling with Markov chain also
contains a rather complete list of references on this subject.

We end this section with some examples of monotone M -compatible mappings.

Example 7.4.1 (The ladder chain) We consider the ladder Markov chain Xn defined by the fol-
lowing transition diagram

11/2 99

1/2
** 2

1/2
++

1/2

jj . . . . . .
1/2

kk (d− 1)

1/2
++ d 1/2ee

1/2

mm

We also consider the couple of monotone mappings

F+(x) =

{
x+ 1 for x ∈ {1, . . . , d− 1}

d for x = d

and

F−(x) =

{
1 for x = 1

x− 1 for x ∈ {2, . . . , d− 1}

http://research.microsoft.com/en-us/um/people/dbwilson/exact/
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Given some uniform r.v. U on [0, 1], we set

F = 1[0,1/2[(U) F− + 1[1/2,1](U) F+

It is a simple exercise to check that this random mapping is monotone and compatible w.r.t. the Markov
transition M of the ladder chain.

7.5 Multilevel annealing type models

7.5.1 Simulated annealing model

We suppose that we are given a sequence of target measures πn defined in terms of a sequence of
Boltzmann-Gibbs measures

πn(dx) = µβn(dx) =
1

Zβn
e−βnV (x) λ(dx) (7.14)

associated with some inverse temperature parameter βn ↑ ∞, some non negative potential function V
and some reference measure λ on some state space S. Several examples of Boltzmann-Gibbs measures
are discussed in section 7.1, including the Ising model and the traveling salesman problem.

For finite state spaces equipped with the counting measure λ, we have seen in (7.3) that these
measures converge to the uniform measure on the subset of all global minima of the potential function
V , as βn tends to ∞. This shows that the sampling of these measure at low temperature is equivalent
to that of sampling uniformly a state with minimal energy. Since most of the time these minimal
energy states are unknown, it is impossible to sample Boltzmann-Gibbs measures at low temperature.

One strategy is to consider a sequence of Metropolis-Hastings transition Mn such that for any time
n we have

µβnMn = µβn ⇐⇒ πnMn = πn

We recall that the Markov transition Mn associated with a λ-reversible proposition transition Kn is
given by

Mn(x, dy) = Kn(x, dy) an(x, y) +

[
1−

∫
Kn(x, dz) an(x, z)

]
δx(dy) (7.15)

with the acceptance rate

an(x, y) = 1 ∧ e−βn (V (y)−V (x)) = e−βn (V (y)−V (x))+

To simplify the presentation, with start with a null inverse temperature parameter β0 = 0, and a
r.v. X0 with distribution η0 = µβ0 = λ. We run a series of m1 MCMC moves with Markov transition
M1

X0

M
m1
1

−−−−−−−−−−−−→ Xm1

If m1 is sufficiently large, we expect Xm1 to be approximately distributed according to the invariant
measure π1 = µβ1 of the transitionM1. Nevertheless, when β1 is too large the acceptance rate a1(x, y) =
e−β1(V (y)−V (x)) is almost null for any V (x) < V (y). In other words, the the sequence of M1-MCMC
moves are almost equivalent to a series of gradient-descent-type transitions. Thus, for large values of
β1 we cannot expect to have Law(Xm1) ' π1 but for very large values of the parameter m1.
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Thus, the natural idea is to find a judicious schedule (βn,mn) such that the time inhomoge-
nous model

X0

M
m1
1

−−−−−→ Xm1

M
m2
2

−−−−−→ Xm1+m2

M
m3
3

−−−−−→ Xm1+m2+m3 −−−−−→ . . .

explores randomly the state space with

∀n ∈ N Law(Xm1+...+mn) ' πn

One natural idea is to introduce an intermediate acceptance-rejection mechanism every time we
change the temperature parameter. For instance, initially we set

X̂0 =

{
X0 with probability e−(β1−β0)V (X0)

c with probability 1− e−(β1−β0)V (X0)

where c stands for some auxiliary cemetery state. Notice that for any function f on S we have

E
(
f(X̂0) | X̂0 6= c

)
∝ E

(
E
(
f(X̂0) 1

X̂0 6=c | X0

))
= E

(
f(X0) e−(β1−β0)V (X0)

)
∝

∫
f(x) e−(β1−β0)V (x) e−β0V (x) λ(dx)

This implies that

E
(
f(X̂0) | X̂0 6= c

)
∝
∫

f(x) e−β1V (x) λ(dx) ∝ π1(f)

In much the same way, recalling that β0 = 0 we prove that

P(X̂0 6= c) = λ
(
e−β1V (x)

)
/λ
(
e−β0V (x)

)
= λ

(
e−β1V (x)

)
If X̂0 = c then the algorithm stops. Otherwise, starting from X̂0 = X0, as before we run m1

transitions M1 up to some random state Xm1 . Notice that

Law(X̂0 | X̂0 6= c) = π1 =⇒ ∀m1 ≥ 1 Law(Xm1) = π1

Then, we accept-reject this state as follows

X̂m1 =

{
Xm1 with probability e−(β2−β1)V (Xm1 )

c with probability 1− e−(β2−β1)V (Xm1 )

Arguing as above, we find that

Law(X̂m1 | X̂m1 6= c, X̂0 6= c) = π2

Similarly, we also prove that

P(X̂m1 6= c | X̂0 6= c) = λ
(
e−β2V (x)

)
/λ
(
e−β1V (x)

)
= π1

(
e−(β2−β1)V (x)

)
=⇒ P(X̂m1 6= c) = λ

(
e−β2V (x)

)
as well as

∀m2 ≥ 1 Law(Xm1+m2) = π2
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where Xm1+m2 stands for the random states of the model after m2 iterations of the transition M2,
starting from X̂m1 = Xm1(6= c). As before, when X̂m1 = c the algorithm is stopped. Iterating this
algorithm we obtain a sequence of perfect random samples w.r.t. the target measures πn, as soon as
the states are accepted at every acceptance-rejection transitions.

The sequential simulated annealing developed above is based on an acceptance-rejection interpre-
tation of the product formula

µβn(dx) ∝

 ∏
0≤k≤n

hk(x)

 λ(dx) = e−βnV (x) λ(dx) (7.16)

with the potential functions

hk(x) = e−(βk−βk−1)V (x) and the conventions β0 = 0 = β−1

The main drawback of this perfect sampling algorithm comes from the fact that the accep-
tance rate decreases exponentially fast to 0; that is, we have that

P(X̂m1+...+mn 6= c) = λ
(
e−βnV (x)

)
↓n↑∞ 0

In section 9.1.5, we design an alternative interpretation of the product representation (7.16)
in terms of recycling mechanisms.

7.5.2 Sequential multilevel model

We suppose that we are given a sequence of target measures πn defined in terms of a sequence of
Boltzmann-Gibbs measures

πn(dx) = µAn(dx) =
1

ZAn
1An(x) λ(dx) (7.17)

associated with sequence of non increasing subsets An, and some reference measure λ on some state
space S. We let K(x, dy) be some Markov transition such that

λ(dx)K(x, dy) ∼ λ(dy)K(y, dx)

We consider the acceptance-rejection Markov transition Mn(x, dy) defined by

∀x ∈ An Mn(x, dy) = K(x, dy) an(x, y) +

[
1−

∫
Kn(x, dz) an(x, z)

]
δx(dy) (7.18)

with the acceptance rate

∀x ∈ An an(x, y) = 1 ∧
(
λ(dy)K(y, dx)

λ(dx)K(x, dy)
1An(y)

)
= 1 ∧

(
πn(dy)K(y, dx)

πn(dx)K(x, dy)

)
When x 6∈ An, we set Mn(x, dy) = K(x, dy). By construction, Mn is πn-reversible so that πnMn = πn.
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7.6 Extended Markov chain Monte Carlo models

We let S = (S1×S2) be a product space, and we let π be the Boltzmann-Gibbs measure on S defined
by (7.1) with a reference measure λ on S of the following form

λ(d(u1, u2)) = λ1(du1) λ1,2(u1, du2) = λ2(du2) λ2,1(u2, du1) (7.19)

for some probability measures λi ∈ P(Si) and some Markov transitions λi,j from Si into Sj , with
i, j ∈ {1, 2}.

In this situation, we clearly have the disintegration formulae

π(d(u1, u2)) = π1(du1) π1,2(u1, du2) = π2(du2) π2,1(u2, du1) (7.20)

with the potential functions

G1(u1) =

∫
λ1,2(u1, du2) G(u1, u2) and G2(u2) =

∫
λ2,1(u2, du1) G(u1, u2)

and the marginal measures πi = ΨGi(λi) and the conditional distributions

π1,2(u1, du2) := G1(u1)−1 λ1,2(u1, du2) G(u1, u2)

π2,1(u2, du1) := G2(u2)−1 λ2,1(u2, du1) G(u1, u2)

When we know how to sample the conditional probability measures π1,2 and π2,1 we can use the
Gibbs-Glauber model to design an MCMC model with the invariant measure π (cf. section 7.3). In
other instance, the conditional probability measures can be sample using auxiliary MCMC models.

To describe these models, we consider a Markov transition from S into itself given by

M((u1, u2), d(v1, v2)) = Ku1,1(u2, dv2) Kv2,2(u1, dv1)

with a collection of MCMC transitions Kui,i from Sj into itself such that

π1,2(u1, du2) =

∫
π1,2(u1, dv2) Ku1,1(v2, du2) (7.21)

π2,1(u2, du1) =

∫
π2,1(u2, dv1) Ku2,2(v1, du1) (7.22)

Next, we check that π is an invariant measure of M .

By construction, we have∫
u1,u2

π1(du1) π1,2(u1, du2) Ku1,1(u2, dv2) Kv2,2(u1, dv1)

=

∫
u1

π1(du1) π1,2(u1, dv2) Kv2,2(u1, dv1) (by (7.21))

=

∫
u1

π2(dv2) π2,1(v2, du1) Kv2,2(u1, dv1) (by (7.20))

= π2(dv2)π2,1(v2, dv1) (by (7.21))
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7.7 Continuous time embeddings

We consider a time homogeneous jump process Xt with generator

L(f)(x) = λ(x)

∫
[f(y)− f(x)] M(x, dy)

with some bounded intensity function λ(x) ≤ λmax for some finite λmax < ∞, and some Markov
transition M . We set

Mλ(x, dy) =
λ(x)

λmax
M(x, dy) +

(
1− λ(x)

λmax

)
δx(dy)⇒ L = λmax [Mλ − Id]

By construction, the sg of Xt is given by

Pt(f)(x) = E (f(Xt) | X0 = x)

=
∑
n≥0

E (f(Xt) 1Nt=n | X0 = x)

= e−λmaxt
∑
n≥0

(tλmax)n

n!
Mn
λ (f)(x)

where Nt is a Poisson process with intensity λmax.

For the unit rate function λ(x) = 1, the Markov chain Xt is the continuous time embedding of
the Markov chain Xn with elementary transition M . These embedding techniques allow to define the
continuous time version of the Metropolis-Hasting model and the Gibbs-Glauber dynamics discussed
in section 7.2 and in section 7.3.

There are also several ways to transfer the stability properties of the embedded discrete generation
Markov chain Xλ

n with transition Mλ to the stability of the continuous time model Xt.

Next, we present three possible routes. The first one is expressed in terms of stands for the Do-
brushin ergodic coefficient β(K) of a Markov transition K introduced in section 4.4.1. The second
one is expressed in terms of the V -Dobrushin local contraction coefficient βV (Mλ) presented in defi-
nition 4.4.4. The third one is related to coupling techniques.
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Whenever they exist, the invariant measures π, resp. πλ, of the Markov transitions M , resp.
Mλ, and connected for any f ∈ B(S) by the formula

πλ(f) = π(f/λ) and πλL(f) = 0 (7.23)

1. We assume that there exists some m ≥ 1 s.t. β(Mm
λ ) < 1. In this situation, for any

t ≥ 0, we have the exponential estimate

β(Pt) ≤
1

β(Mm
λ )1−1/m

exp
[
−tλmax

(
1− β(Mm

λ )
1
m

)]
(7.24)

2. We assume that βV (Mm
λ ) < 1 for some m ≥ 1 and some function V ≥ 0. In this

situation, for any t ≥ 0, we have the exponential estimate

βV (Pt) ≤
1

βV (Mm
λ )1−1/m

exp
[
−tλmax

(
1− βV (Mm

λ )
1
m

)]
(7.25)

We further assume that 0 < λmin ≤ λ ≤ λmax, and M satisfies the Foster-Lyapunov
condition (4.40) for some ε ∈ [0, 1[, some finite c < ∞, and some function W ≥ 0. In
this situation, Mλ satisfies the Foster-Lyapunov condition (4.40) with

Mλ(W ) ≤
(

1− λmin
λmax

(1− ε)
)
W + c (7.26)

In addition, if Mλ satisfies the Dobrushin local contraction condition (4.39) then there
exists some function V s.t. βV (Mλ) < 1.

3. We let T λx,y be a coupling time of two copies Xλ
n and Y λ

n of the Markov chain with

Markov transition Mλ starting at Xλ
n = x and Y λ

n = y. We assume that

P
(
T λx,y ≥ n

)
≤ aλ(x, y) exp (−bλn)

for some finite function aλ(x, y) < ∞ and some positive constant bλ ∈]0, 1[. In this
situation, we have

‖Law(Xt | X0 = x)− Law(Xt | X0 = y)‖tv

≤ aλ(x, y) exp
(
−λmaxt(1− e−bλ)

) (7.27)

Proof :
The r.h.s. of (7.23) is immediate, and the l.s.d. come from the following observations:

πM = π ⇒ π

(
1

λ
(λM(f) + (1− λ)f)

)
= πM(f) + π(f/λ)− π(f)

= π(f/λ) = πλ(f)

and

πλMλ = πλ ⇒ πλ(λM(f)) = πλ(Mλ(f))− πλ((1− λ)(f))

= πλ(λf)

Now, we come to the proof of (7.24). For any function f s.t. osc(f) ≤ 1 using theorem ?? we have

osc
(
Mnm+p
λ (f)

)
≤ β(Mm

λ )nosc(Mp
λ(f)) ≤ β(Mm

λ )n
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osc (Pt(f)) ≤ e−λmaxt
∑
n≥0

(tλmax)n

n!
osc (Mn

λ (f))

= e−tλmax
∑
n≥0

∑
0≤p<m

(tλmax)nm+p

(nm+ p)!
osc
(
Mnm+p
λ (f)

)
≤ e−tλmax

∑
n≥0

∑
0≤p<m

(tλmax)nm+p

(nm+ p)!
β(Mm

λ )n

When β(Mm
λ ) = 0 the result is obvious, When β(Mm

λ ) > 0, we observe that

(tλmax)nm+p

(nm+ p)!
β(Mm

λ )n =
(tλmaxβ(Mm

λ )
1
m )nm+p

(nm+ p)!

1

β(Mm
λ )p/m

≤
(tλmaxβ(Mm

λ )
1
m )nm+p

(nm+ p)!

1

β(Mm
λ )1−1/m

This implies that

osc (Pt(f)) ≤ e−tλmax

β(Mm
λ )1−1/m

∑
n≥0

1

n!

(
tλmaxβ(Mm

λ )
1
m

)n
=

1

β(Mm
λ )1−1/m

exp
[
−tλmax

(
1− β(Mm

λ )
1
m

)]
This ends the proof of (7.24).

To prove (7.25) we use theorem 4.51 to check that

‖Pt(x, .)− Pt(y, .)‖V ≤ e−λmaxt
∑
n≥0

(tλmax)n

n!
‖Mn

λ (x, .)−Mn
λ (y, .)‖V

≤ e−λmaxt
∑
n≥0

(tλmax)n

n!
βV (Mn

λ ) ‖δx − δx‖V

= e−λmaxt
∑
n≥0

(tλmax)n

n!
βV (Mn

λ ) (1 + V (x) + V (y))

This implies that

βV (Pt) ≤ e−λmaxt
∑
n≥0

(tλmax)n

n!
βV (Mn

λ )

The end of the proof of (7.25) follows the same arguments as the ones we used in the proof of (7.24).
The proof of (7.26) comes from the fact that

Mλ(W ) =
λ

λmax
M(W ) +

(
1− λ

λmax

)
W

≤
[
ε

λ

λmax
+

(
1− λ

λmax

) ]
W +

λ

λmax
c

≤
[
1− λmin

λmax
(1− ε)

]
W + c

The last assertion is a consequence of theorem 4.51.
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The proof of (7.27) is a direct consequence of the fact that

‖Law(Xt | X0 = x)− Law(Xt | X0 = y)‖tv = sup
osc(f)≤1

|Pt(f)(x)− Pt(f)(y)|

and
|Pt(f)(x)− Pt(f)(y)|

≤ e−λmaxt
∑

n≥0
(tλmax)n

n! |Mn
λ (f)(x)−Mn

λ (f)(y)|

= e−λmaxt
∑

n≥0
(tλmax)n

n!

∥∥Law(Xλ
n | X0 = x)− Law(Y λ

n | Y0 = y)
∥∥
tv

The third result is now a direct consequence of the fact that∥∥∥Law(Xλ
n | X0 = x)− Law(Y λ

n | Y0 = y)
∥∥∥
tv
≤ P

(
Xλ
n 6= Y λ

n | X0 = x, Y0 = y
)

for any coupling of the chains Xλ
n and Y λ

n . This ends the proof of the theorem.

We illustrate the continuous coupling inequality (7.27) with the Markov transition M(x, y) = 1/d
on a finite and complete graph with d vertices S := {1, . . . , d}. In this context, the coupling time T of
two independent chains with transition M is a geometric random variable

P(T = n) =
(
1− 1

d

)n−1 1
d

This implies that

P (T > n) =

(
1− 1

d

)n ∑
p≥n

(
1− 1

d

)p−n 1

d
=

(
1− 1

d

)n
≤ e−n/d (7.28)

Next, we assume that λt = λmax = λ (so that Mλ = M). Combining (7.27) with (7.28), we readily
check that

‖Law(Xt | X0 = x)− Law(Xt | X0 = y)‖tv ≤ e
−λt(1−e−1/d) 'd↑∞ e−tλ/d

7.8 Gradient flow models

7.8.1 Steepest descent model

As their name indicates stochastic gradient flow models are the stochastic version of the well known
steepest descent dynamical systems. Suppose we are given some manifold S. The steepest descent
evolution equation in a chart φ : x ∈ S 7→ φ(x) ∈ Sφ ⊂ Rp is given by

.
θt= −(∇gV )(θt)

with the Riemannian vector field gradient defined in (6.49). For Euclidian state spaces S = Rp the
chart reduces to the identity mapping φ(x) = θ = x = φ−1(θ), and ∇gV = ∂V is the traditional
gradient.

We further assume that the manifold S = ϕ−1(0) is the null level set of some smooth function
ϕ : x ∈ Rr=p+q 7→ Rq s.t. rank(∂ϕ(x)) = q, for any x ∈ Rr. In this situation, for any 1 ≤ l ≤ q we
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have

d

dt
ϕl(ψ(θt)) =

∑
1≤i≤p

(∂θi(ϕl ◦ ψ)) (θt)
.
θ
i

t

= −
∑

1≤i,j≤p
gi,j(θt)

∑
1≤k≤r

(∂xkϕl) (ψ(θt))
(
∂θiψ

k
)

(θt)
(
∂θjV

)
(θt)

= −
∑

1≤i,j≤p
gi,j(θt) 〈(∂ϕl) (ψ(θt)), (∂θiψ) (θt)〉︸ ︷︷ ︸

=0

(
∂θjV

)
(θt)

This shows that the gradient flow keeps the state xt in the constraint manifold at any time t as soon
as we start in the desired manifold. More formally, we have

x0 = ψ(θ0) ∈ S ⇒ ∀t ≥ 0 xt = ψ(θt) ∈ S

We also notice that

d

dt
V (θt) = −

∑
1≤i≤p

gi,j(θt) (∂θiV ) (θt)
(
∂θjV

)
(θt)

= −〈(∇gV )(θt), (∇gV )(θt)〉g(θt) = −
〈.
θt,
.
θt

〉
g(θt)

= −
∥∥∥.θt∥∥∥

g(θt)
⇒ V (θt) ↓

7.8.2 Euclidian state spaces

We start with an elementary example. The distribution

π(dx) ∝ e−
x2

2σ2 dx

on R is reversible w.r.t. the Ornstein-Uhlenbeck semigroup Pt associated with the generator

L(f)(x) = − x

σ2
∂xf(x) + ∂2

xf(x)

A simple way to check this claim is to rewrite the generator as follows

L(f)(x) = e
x2

2σ2 ∂x

(
e−

x2

2σ2 ∂xf

)
(x)

By a simple integration by part, we have∫
e−

x2

2σ2 f(x) L(g)(x) dx =

∫
f(x) ∂x

(
e−

x2

2σ2 ∂xg

)
(x) dx

= −
∫

∂xf(x) e−
x2

2σ2 ∂xg(x) dx

=

∫
∂x

(
e−

x2

2σ2 ∂xf

)
(x) g(x) dx

=

∫
e−

x2

2σ2 L(f)(x) g(x) dx

More generally, we let S be a finite set,

V : x = (xi)i∈S ∈ E = RS 7→ V (x) ∈ [0,∞[

a sufficiently smooth function that tends to infinity sufficiently fast when one of the coordinates of x
tends to infinity, and α, β ∈]0,∞[ some given parameters.
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The Boltzmann Gibbs measure

π(dx) ∝ e−
2β

σ2 V (x) λ(dx)

where λ stands for the Lebesgue measure on E, is reversible w.r.t. the semigroup Pt associ-
ated with the generator

L = −β ∇V · ∇+
1

2
σ2 4 ⇐⇒ L(f)(x) =

1

2
σ2
∑
i∈S

∂2
xif(x)− β

∑
i∈S

∂xiV (x) ∂xif(x)

Here again, a natural way to check this claim is to rewrite the generator as follows

L(f)(x) =
1

2
σ2 e

2β

σ2 V (x)
∑
i∈S

∂xi

(
e−

2β

σ2 V (x) ∂xif
)

(x)

and use an integration by part to check the desired reversibility property. The stochastic
gradient diffusion with generator L is given by

dXt = −β ∇V (Xt) dt+ σ dBt

where Bt = (Bi
t)i∈S stands for a sequence of independent Brownian motions on R.

We consider a function a sufficiently smooth function of the form

W : z = (xi, yi)i∈S ∈ E = (R2)S 7→ V (z) = U(x) + V (y) ∈ [0,∞[

and we set

L1 :=
1

2
σ2

1

∑
i∈S

∂2
xi −

∑
i∈S

[
α(1,1)∂xiU(x) + α(1,2)∂yiV (y)

]
∂xi

L2 : =
1

2
σ2

2

∑
i∈S

∂2
yi −

∑
i∈S

[
α(2,1)∂xiU(x) + α(2,2)∂yiV (y)

]
∂yi

The Boltzmann Gibbs measure

π(d(x, y)) ∝ e−β1U(x)−β2V (y) λ(dx) λ(dy)

is an invariant measure of the semigroup associated with the generator L = L1 +L2 as soon
as the following conditions are met

∀i = 1, 2 α(i,i) =
1

2
σ2
i βi and β1 α(1,2) + β2 α(2,1) = 0

Proof:
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We check this claim using the fact that

I1(f)

:=

∫
e−β1U(x)

[
1

2
σ2

1 ∂
2
xi −

[
α(1,1)∂xiU(x) + α(1,2)∂yiV (y)

]
∂xi

]
(f)(x) dx

=

∫
f(x)

[
1

2
σ2

1 ∂
2
xi

(
e−β1U

)
(x) + α(1,1) ∂xi

(
∂xiU e−β1U

)
(x) + α(1,2) ∂yiV (y) ∂xi

(
e−β1U

)
(x)

]
dx

∂xi

(
e−β1U

)
(x) = −β1∂xiU e−β1U

∂xi

(
∂xiU e−β1U

)
= −β1 (∂xiU)2 e−β1U + ∂2

xiU e−β1U

∂2
xi

(
e−β1U

)
= −β1 ∂xi

(
∂xiU e−β1U

)
= β2

1 (∂xiU)2 e−β1U − β1 ∂
2
xiU e−β1U

This implies that

I1(f) :=

∫
e−β1U(x) f(x)

[
1

2
σ2

1

[
β2

1 (∂xiU)2 − β1 ∂
2
xiU
]

+α(1,1)

[
−β1 (∂xiU)2 + ∂2

xiU
]
− β1 α(1,2) ∂yiV (y)∂xiU

]
dx

=

∫
e−β1U(x) f(x)

[(
β1 (∂xiU)2 − ∂2

xiU
)(1

2
σ2

1β1 − α(1,1)

)
− β1 α(1,2) ∂yiV (y)∂xiU(x)

]

By symmetry arguments, we also have

I2(f)

:=

∫
e−β2V (y)

[
1

2
σ2

2 ∂
2
yi −

[
α(2,2)∂yiV (y) + α(2,1)∂xiU(x)

]
∂yi

]
(f)(y) dy

=

∫
e−β2V (y) f(y)

[(
β2 (∂yiV )2 − ∂2

yiV
)(1

2
σ2

2β2 − α(2,2)

)
− β2 α(2,1) ∂xiU(x)∂yiV (y)

]

The end of the proof is now clear. This completes the proof of the proposition.

7.8.3 Langevin diffusions on manifolds

We consider the projected diffusion model (6.30) associated with a gradient b = ∂V of some smooth
function V : Rr 7→ R.
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When σ = Id, we have Hσ = H and π(x)∂V (x) = ∇V (x) so that (6.30) can be interpreted
as the projection on the manifold of the Langevin diffusion; that is, we have that

dXt = π(Xt) (−∂V (Xt)dt+ dBt)−
1

2
H(Xt) dt

= −∇V (Xt) dt+

[
π(Xt) dBt −

1

2
H(Xt) dt

]
(7.29)

In this particular situation, the generator (6.31) of Xt is given by

L(F ) =
1

2
∆F − 〈∇V,∇F 〉

(
with ∆F = tr

(
∇2F

))
=

1

2
e2V div

(
e−2V ∇F

)

The divergence formulation given above is checked using the fact that

∇
[
e−2V ∇F

]
= ∇

[
e−2V

]
[∇F ]T + e−2V ∇ [∇F ]

and
∇
[
e−2V

]
= −2 e−2V ∇V

so that

div
(
e−2V ∇F

)
= tr

(
∇
[
e−2V ∇F

])
= −2 e−2V tr

(
∇V [∇F ]T

)
+ e−2V tr ( ∇ [∇F ])

= −2 e−2V 〈∇V,∇F 〉+ e−2V ∆F

The end of the proof is now clear.
For any smooth function F with compact support and any smooth vector field W ∈ T (S), we have∫

S
F div (W ) dµS = −

∫
S
〈W,∇F 〉 dµS

where µS stands for the volume measure on S. This integration by part divergence theorem (6.83) is
proved in section 6.6.3. We let η be the Bolzmann-Gibbs measure on S defined by

dη =
1

Z
e−2V dµS

where Z stands for some normalizing constant. Here we have implicitly assumed that e−2V dµS ∈]0,∞[.
In this notation, we have

2 Z
∫
S
F1 L(F2) dη =

∫
S
F1 e

2V div
(
e−2V ∇F2

)
e−2V dµS

=

∫
S
F1 div

(
e−2V ∇F2

)
dµS

= −
∫
S

〈
e−2V ∇F2,∇F1

〉
dµS = −

∫
S
〈∇F1,∇F2〉 e−2V dµS

This implies the reversibility property of L w.r.t. η. More precisely, we have the following
formula ∫

S
F1 L(F2) dη = −1

2

∫
S
〈∇F1,∇F2〉 dη =

∫
S
L(F1) F2 dη
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7.8.4 Riemannian Langevin diffusions

We consider the projected Langevin diffusion model (7.29), and we set φ(Xt) = Θt. In this situation,
we have

dXk
t = −(∇ χk)T (Xt)∂V (Xt) dt+

1

2
∆(χk)(Xt) dt+ (∇ χk)T (Xt) dBt

Arguing as in the proof of (6.80), using Ito formula we have

dφi(Xt) = −
∑

1≤k≤r

(
∂xkφ

i
)

(Xt)(∇ χk)T (Xt) ∂V (Xt) dt+
1

2

(
∆φi

)
(Xt)dt+

(
∇φi

)T
(Xt)dBt

= −
(
∇φi

)T
(Xt)(∂V )(Xt) dt+

1

2

(
∆φi

)
(Xt)dt+

(
∇φi

)T
(Xt) dBt (⇐ (6.79))

Using the fact that Xt = ψ(Θt), we arrive at the equation

∀1 ≤ i ≤ q dΘi
t =

[
−
(
∇φi

)T
ψ

(Θt) (∂V )ψ(Θt) +
1

2

(
∆φi

)
ψ

(Θt)

]
dt+

(
∇φi

)T
ψ

(Θt) dBt

Using (6.65) and (6.66) the expression of these Riemannian Langevin equation in terms of the
Riemannian inner product g is given by(

∆φi
)
ψ

=
∑

1≤j≤p

1√
det(g)

∂θj

(√
det(g) gi,j

)
(
∇φi

)T
ψ

(∂V )ψ =
∑

1≤j≤p
gi,j

〈(
∂θjψ

)
, (∂V )ψ

〉
dΘi

tdΘj
t =

(
∇φi

)T
ψ

(Θt) dBtdB
T
t

(
∇φj

)
ψ

(Θt) =
〈(
∇φi

)
ψ

(Θt),
(
∇φj

)
ψ

(Θt)
〉
dt

= gi,j(Θt) dt =

〈 ∑
1≤k≤p

√
g−1

i

k(Θt) dB
k
t ,
∑

1≤l≤p

√
g−1

j

l (Θt) dB
l
t

〉

with 〈(
∂θjψ

)
, (∂V )ψ(θ)

〉
=

∑
1≤k≤r

(
∂θjψ

k
)

(θ) (∂xkV )ψ(θ)

= ∂θj (V ◦ ψ) (θ) =
(
∂θjU

)
(θ) with U = V ◦ ψ

This yields

dΘi
t = −

∑
1≤j≤p

gi,j
(
∂θjU

)
(Θt) dt

+

 ∑
1≤k≤p

√
g−1

i

k(Θt) dB
k
t +

1

2

∑
1≤j≤p

1√
det(g(Θt))

∂θj

(√
det(g) gi,j

)
(Θt) dt


= − (∇gU)i (Θt) dt+ dB

i
t

with the d-dimensional Brownian motion Bt on the Riemannian manifold defined for any
1 ≤ i ≤ p by

dB
i
t =

∑
1≤k≤p

√
g−1

i

k(Θt) dB
k
t +

1

2

∑
1≤j≤p

1√
det(g(Θt))

∂θj

(√
det(g) gi,j

)
(Θt) dt
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Notice that
1
2

∑
1≤j≤p

1√
det(g)

∂θj

(√
det(g) gi,j

)
= 1

2

∑
1≤j≤p ∂θj

(
gi,j
)

+ 1
4

∑
1≤j≤p g

i,j tr
(
g−1∂θjg

)
This shows that

dΘt = − (∇gU) (Θt) dt+ dBt (7.30)

Alternatively, in terms of the potential function U ′ defined by

e−2U ′ := e−2U
√

det(g)⇐⇒ U ′ = U − 1

4
log det(g(θ))

we have

dΘt =

=−(∇gU ′)︷ ︸︸ ︷− (∇gU) +
1

4

∑
1≤j≤p

gi,j tr
(
g−1∂θjg

)(Θt)dt

+
1

2

∑
1≤j≤p

∂θj
(
gi,j
)

(Θt) dt+
∑

1≤k≤p

√
g−1

i

k(Θt) dB
k
t

(7.31)

Arguing as in (6.77), and recalling that

〈∂f,∇gU〉 = 〈∇gf,∇gU〉g

the infinitesimal generator L of Θt is given by

L(f) = −〈∇gf,∇gU〉g +
1

2
∆g(f)

= −〈∇gf,∇gU〉g +
1

2
divg (∇g(f))

= −〈∇gf,∇gU〉g +
1

2

∑
1≤i≤p

1√
det(g)

∂θi

(√
det(g) (∇gf)i

)
(⇐ (6.72))

=
1

2
e2U

∑
1≤i≤p

1√
det(g)

∂θi

(
e−2U

√
det(g) (∇gf)i

)

This formula can be rewritten in the more synthetic form

L(f) =
1

2
e2U divg

(
e−2U ∇g(f)

)

We consider the Riemannian volume measure µg and the Boltzmann-Gibbs measure η on Sψ
defined by

µg(dθ) =
√

det(g(θ)) dθ and η(dθ) =
1

Z
e−2U(θ) µg(dθ) =

1

Z
e−2U ′(θ) dθ

with the normalizing constant

Z =

∫
e−2U(θ) µg(dθ) =

∫
e−2U ′(θ) dθ



7.9. METROPOLIS-ADJUSTED LANGEVIN MODELS 201

For any smooth functions f1, f2 with compact support, using a simple integration by part we have∫
f1(θ) L(f2)(θ) e−2U(θ) µg(dθ) = −1

2

∑
1≤i≤p

∫
∂θi(f1)(θ) (∇gf2)i(θ) e−2U(θ) µg(dθ)

= −1

2

∑
1≤i≤p

∫
〈(∇gf1)(θ), (∇gf2)(θ)〉g(θ) e

−2U(θ) µg(dθ)

This shows that L is reversible w.r.t. η; that is we have that∫
f1(θ) L(f2)(θ) η(dθ) = −1

2

∑
1≤i≤p

∫
〈(∇gf1)(θ), (∇gf2)(θ)〉g(θ) η(dθ)

=

∫
L(f1)(θ) f2(θ) η(dθ)

7.9 Metropolis-adjusted Langevin models

The choice of the time discretization schemes is extremely important. For instance, a simple Euler
type discretization model may fail to transfer the desired regularity properties of the continuous model
to the discrete time one.

We illustrate this assertion with a discussion on an overdamped Langevin diffusion, on an energy
landscape associated with a given energy function V ∈ C2(Rd,R+) on E = Rd, for some d ≥ 1. This
model is defined by the following diffusion equation

dXt = −β ∇V (Xt) +
√

2 dWt (7.32)

where∇V denotes the gradient of V , β an inverse temperature parameter, andWt a standard Brownian
motion on Rd. The infinitesimal generator associated with this continuous time process is given by the
second order differential operator

Lβ = −β ∇V · ∇+4
Under some regularity conditions on V , the diffusion X ′t is geometrically ergodic with an invariant
measure given by

dπβ =
1

Zβ
e−βV dλ

where λ stands for the Lebesgue measure on Rd, and Zβ is a normalizing constant.
As usual, in the continuous time framework, to get some feasible solution we need to introduce a

time discretization scheme. To this end, we let Wn+1 be a sequence of centered and reduced Gaussian
variables on Rd.

Firstly, starting from some random state Xn, we propose a random state Yn+1 using
the Euler scheme

Yn+1 = Xn − β ∇V (Xn)/m+
√

2/m Wn+1 (7.33)

Then, we accept this state Xn+1 = Yn+1 with probability

1 ∧
(
e−β(V (Yn+1)−V (Xn)) × pm(Yn+1,Xn)

pm(Xn,Yn+1)

)
Otherwise, we stay in the same location Xn+1 = Xn.
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In the above display, the function pm stands for the probability density of the Euler scheme
proposition

pm(x, y) =
1

(4π/m)d/2
exp

(
−m

4
‖y − x+ β ∇V (x)/m‖2

)
The resulting Markov chain model Xn is often referred to as the Metropolis-adjusted Langevin al-
gorithm (abbreviated (MALA)). One of the main advantages of the above construction is that the
Markov chain Xn is reversible w.r.t. to πβ, and it has the same fixed point πβ as the continuous time
model. Without the acceptance-rejection rate, the Markov chain (7.33) reduces to the standard Euler
approximation of the Langevin diffusion model (7.32). In this situation, the Markov chain may even
fail to be ergodic, when the vector field ∇V is not globally Lipschitz [512, 438]. We refer the reader
to [72, 295, 512, 513, 590] for further details on the stochastic analysis of these Langevin diffusion
models. We also mention that the Euler scheme diverges in many situations, even for uniformly convex
functions V . At the cost of some additional computational effort, a better idea is to replace (7.33) by
the implicit backward Euler scheme given by

Yn+1 + β ∇V (Yn+1)/m = Xn +
√

2/m Wn+1



Chapter 8

Some illustrations

8.1 Bayesian inference

8.1.1 Disintegration formulae and Gibbs sampling

We consider a couple of random variables (Θ, X) on some state space S = (Ξ×E) with
some distribution of the form

π(d(θ, x)) = π1(dθ) L1,2(θ, dx) = π2(dx) L2,1(x, dθ) (8.1)

The first marginal measure π1 is called the prior distribution, and the distribution L2,1(p, dθ) is
called the posterior distribution of Θ given the observation X = x. Note that L1,2(θ, dx) coincides
with the conditional distribution of the r.v. X given Θ = θ.

When L1,2(θ, dx) has some density x 7→ lx(θ) ∝ Gx(θ) w.r.t. some reference measure
λ(dx) on E, the posterior distribution takes the form

L2,1(x, dθ) = ΨGx(π1)(dθ) (8.2)

for λ-almost every x ∈ E. The function Gx is called the likelihood function of the observation
variable X = x given the value of the parameter Θ = θ. In these settings, the Boltzmann-
Gibbs transformation is also called the Bayes’ rule.

In Bayesian literature the disintegration formula (8.1) and the Boltzmann-Gibbs transformation (8.2)
are often written with some abusive notation in the following form

p(θ, x) = p(x|θ) p(θ) = p(θ|x) p(x)

and

p(θ|x) =
1

p(x)
p(θ|x) p(θ) with the normalizing constant p(x) :=

∫
p(x|θ) p(θ) dθ

In this notation, we have

π1(dθ) = p(θ)dθ π2(dx) = p(x)dx L1,2(θ, dx) = p(x|θ)dx and L2,1(x, dθ) = p(θ|x)dθ

with some hypothetic reference measures dθ and dx, and of course for different functions p(.) and
p(. | .) depending on the arguments x and θ used in the formulae.

203
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The Gibbs sampler associated with the disintegration formulae (8.1) is defined by a
Markov chain Xk = (Θk, Xk) ∈ S = (Θ× E) with transitions

P ((Θk, Xk) ∈ d(θk, xk) | (Θk−1, Xk−1)) = L2,1(Xk−1, dθk) L1,2(θk, dXk) (8.3)

We illustrate these Bayesian models with an elementary example. We let π1 be the Beta distribution
with parameter (a, b) ∈ [1,∞[2 on Ξ := [0, 1], and L1,2 be the Binomial type Markov transition with
parameters (n, θ) from Ξ = [0, 1] into {0, . . . , n} ⊂ E = R; more formally, we have

π1(dθ) ∝ θa−1 (1− θ)b−1 1[0,1](θ) dθ and L1,2(θ, dx) =
∑

0≤p≤n

(
n
p

)
θp (1− θ)n−p δp(dx)

∝ θa−1 (1− θ)b−1 µ(dθ) = θx (1− θ)n−x λ(dx)
(8.4)

with the reference measures

µ(dθ) = 1[0,1](θ) dθ and λ(dx) =
∑

0≤k≤n

(
n
k

)
δk(dx)

By construction, we have that

π(d(θ, x)) ∝ θa+x−1 (1− θ)b+(n−x)−1 µ(dθ) λ(dx)

∝ θa+x−1 (1− θ)b+(n−x)−1 µ(dθ)× (π1L1,2)(dx)

This implies that π1L1,2 = π2 and L2,1 is the Beta type Markov transition given by

∀0 ≤ p ≤ n L2,1(p, dθ) ∝ θa+p−1 (1− θ)b+(n−p)−1 µ(dθ)

In other words, in terms of Bayes’ rule we have

L2,1(x, dθ) = ΨGx(π1)(dθ) with the likelihood function Gx(θ) := θx (1− θ)n−x

The prior Beta distribution with parameter (a, b) is sometimes written π1 = Beta(a, b), and the
Binomial conditional observation distribution L1,2(θ, .) = Binomial(n, θ). The Bayesian learning model
is often written in the more synthetic form{

Θ ∼ Beta(a, b)
X | Θ ∼ Binomial(n,Θ) =⇒ Θ | X ∼ Beta(a+X, b+ (n−X))

(8.5)

In some instances, the desired prior distributions Law(Θ | X) have an explicit form and the desired
estimator of Θ given the observation X, such as the E(Θ | X) for one dimensional problems, can be
computed directly. In more general situations, another level of approximation is needed. One natural
strategy is to use the MCMC methodologies.

For instance, in the elementary example discussed above, the Gibbs transition (8.3) reduces to
the sampling of a Beta r.v. Θk with paramaters ((a+Xk−1), b+ (n−Xk−1)) and a Binomial r.v. Xk

with parameters (n,Θk). It is important to notice that it is not essential to determine the marginal
distribution π2 = π1L1,2 of the random variable X to define and to run the Gibbs sampler.

Next, we discuss the parameter inference problem associated with this Bayesian model. For n = 1,
it is readily checked that L1,2 is the Bernoulli type Markov transition from Ξ ∈ [0, 1] into {0, 1} given
by

L
(1)
1,2(θ, dx) = (1− θ) δ0(dx) + θ δ1(dx) (8.6)
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and the corresponding posterior distribution L
(1)
2,1 is the Beta type Markov transition given by

∀ε ∈ {0, 1} L
(1)
2,1(ε, dθ) = Ψgε(π1)(dθ) with gε(θ) := θε (1− θ)1−ε

The learning process associated with a sequence of observations ε := (εk)1≤k≤n ∈ {0, 1}n is represented
by a successive application of the Bayes’ rule(

Ψgεn ◦ . . .Ψgε1

)
(π1) = ΨGpn(ε)

(π1)

with the potential function Gpn(ε) given by

pn(ε) =
∑

1≤k≤n
εk =⇒ Gpn(ε)(θ) =

∏
1≤k≤n

gεk(θ) = θpn(ε) (1− θ)n−pn(ε)

Given Θ = θ, we let B := (Bk)1≤k≤n be a sequence of conditionally independent Bernoulli r.v.
with common distribution (8.6). We have shown that

P (Θ ∈ dθ | B = ε) = ΨGpn(ε)
(π1)(dθ) = L2,1(pn(ε), dθ) = P (Θ ∈ dθ | X = pn(ε))

8.1.2 Conjugate priors, likelihood and posteriors

The examples discussed above show that the prior distribution π1(dθ) and the posterior distribution

L2,1(x, dθ) = ΨGx(π1)(dθ), resp. L
(1)
2,1(ε, dθ) = Ψgε(π1)(dθ), are in the same class of Beta distributions.

In Bayesian statistics, this property is interpreted as a conjugacy relation between distributions w.r.t.
some class of likelihood functions.

We often say that a class of prior distributions P is conjugate to a class of likelihood functions G
if we have

∀G ∈ G ΨG(P) ⊂ P (8.7)

To be more precise, we equip the set E with a reference measure λ, and we suppose we are
given a set of prior distributions of the following form

P = { νh ∈ P(Ξ) : h ∈ H}

where H stands for a set of indexes, and a class of likelihood functions

G =
{
G : (x, θ) 7→ Gx(θ) : ∀θ ∈ Ξ

∫
λ(dx) Gx(θ) = 1 and

∀h ∈ H L(h)(x, dθ) := ΨGx(νh)(dθ) is Markov operator from E into Ξ
}
(8.8)

The state H is often called the set of (prior) hyper-parameters to avoid confusions with the
parameters we want to make inference about.

We say that P is conjugate to the class of likelihood functions G if there exists some
conjugacy mapping

H : (h, x) ∈ (H× E) 7→ Hx(h) ∈ H s.t. ∀h ∈ H ∀G ∈ G ΨGx(νh) = νHx(h) (8.9)



206 CHAPTER 8. SOME ILLUSTRATIONS

In this notation, the disintegration formula (8.1) takes the form

πh(d(θ, x)) := νh(dθ)︸ ︷︷ ︸
=π1(dθ)

Gx(θ) λ(dx)︸ ︷︷ ︸
L1,2(θ,dx)

= νh(Gx) λ(dx)︸ ︷︷ ︸
=π2(dx)

ΨGx(νh)(dθ)︸ ︷︷ ︸
=L2,1(x,dθ)

For instance, the example discussed above show that the Beta distribution is conjugate to itself
w.r.t. the Binomial likelihood function Gx, resp. w.r.t. the Bernoulli function gε.

∀h = (a, b) ∈ H = [1,∞[2 νh(dθ) ∝ θa−1 (1− θ)b−1 1[0,1](θ) dθ ∈ P(Ξ) = P([0, 1])

and
∀x ∈ {0, . . . , n} ⊂ E = R Gx(θ) = θx (1− θ)n−x

In this situation, the conjugacy mapping is given by

Hx(a, b) = (a+ x, b+ (n− x)) = (a, b) + (x, n− x)

and (8.5) takes the following form{
Θ ∼ Beta(h)

X | Θ ∼ Binomial(n,Θ) =⇒ Θ | X ∼ Beta(HX(h))
(8.10)

The class of Gaussian prior distributions is also conjugate to itself w.r.t. Gaussian likelihood
functions with known covariance matrices.

To be more precise, we denote by N (m,R) the Gaussian distribution on a d-dimensional
space Rd with mean column vector m ∈ Rd and covariance matrix R ∈ Rd×d

N (m,R)(dx) = g(m,R)(x) dx (8.11)

with

g(m,R)(x) :=
1

(2π)d/2
√
|R|

exp [−2−1(x−m)′R−1(x−m)]

where |R| stands for the determinant of R.

We assume that R is in the set Σd of invertible covariance matrices. In the above display, dx stands
for the Lebesgue measure on Rd. In this notation, we have

Ψg(m0,R0)
(N (m1, R1)) = N (m2, R2)

with

m2 = R1(R0 +R1)−1m0 +R0(R0 +R1)−1m1

= (R−1
0 +R−1

1 )−1R−1
0 x+ (R−1

0 +R−1
1 )−1R−1

1 m1 and R−1
2 = R−1

0 +R−1
1

We check this claim using the fact that

(x−m0)′R−1
0 (x−m0) + (x−m1)′R−1

1 (x−m1)

= x′R−1
2 x− 2x′R−1

2

(
R2R

−1
0 m0 +R2R

−1
1 m1

)
+ some function of (mi, Ri)i=0,1

= (x−m2)′R−1
2 (x−m2) + some function of (mi, Ri)i=0,1
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The last assertion comes from the fact that

(R−1
0 +R−1

1 )−1R−1
0 = (R0(R−1

0 +R−1
1 ))−1 = (I +R0R

−1
1 )−1 = ((R0 +R1)R−1

1 )−1 = R1 (R0 +R1)−1

and by symmetry arguments we conclude that

R2R
−1
0 m0 +R2R

−1
1 m1 = R1(R0 +R1)−1m0 +R0(R0 +R1)−1m1

For any fixed precision matrix P0 = R−1
0 ∈ Σ0 the set of prior distributions is given by

∀h = (m1, R
−1
1 ) := (m1, P1) ∈ H = (Rd × Σd) νh := N (m1, R1) ∈ P(Ξ) = P(Rd)

and the likelihood functions are defined by the Gaussian densities

∀x ∈ E = Rd Gx(θ) = g(x,R0)(θ) (8.12)

In this notation, if we set N(m,R−1) = N (m,R), then we have

ΨGx(νh) = νHx(h) ⇐⇒ ΨGx(N(m1, P1)) = N(Hx(m1, P1))

with the conjugacy mapping (8.9) is given by

Hx(m1, P1) =
(
(P0 + P1)−1P0 x+ (P0 + P1)−1P1 m1, P0 + P1

)

The corresponding Bayesian learning model (8.5) is given by{
Θ ∼ N(m1, P1)

X | Θ ∼ N(Θ, P0) =⇒ Θ | X ∼ N(HX(m1, P1))
(8.13)

It is now readily check that

Hx2(Hx1(m1, P1)) =
(
(2P0 + P1)−1P0 (x1 + x2) + (2P0 + P1)−1P1 m1, 2P0 + P1

)
Iterating the argument, we find that(

ΨGxn ◦ . . . ◦ΨGx1

)
(N(m1, P1)) = N((Hxn ◦ . . . ◦Hx1)(m1, P1)) (8.14)

with the composition conjugacy mappings

(Hxn ◦ . . . ◦Hx1)(m1, P1) =

(nP0 + P1)−1P0

∑
1≤k≤n

xk + (nP0 + P1)−1P1 m1, nP0 + P1


In a more synthetic form, we have proved that{

Θ ∼ N (m1, P1)
(X1, . . . , Xn) conditional i.i.d. | Θ ∼ N (Θ, P0)

=⇒ Θ | (X1, . . . , Xn) ∼ N ((HXn ◦ . . . ◦HX1)(m1, P1))

The class of inverse Wishart distributions is conjugate to Gaussian likelihood functions with known
mean vector.
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We recall that the distribution of a (d×d)-Wishart random matrix A ∼ Wd(v, V ), with parameter
v > d and some (d× d) covariance matrix V , is given by

P(A ∈ da) ∝ |a|
(v−d)−1

2 exp

(
−1

2
tr
(
V −1 a

))
da

where da =
∏

1≤i≤j≤d dai,j stands for the infinitesimal neighborhood of a positive definite symmetric

matrix a = (ai,j)1≤i,j≤d. One can also show that A
law
=
∑

1≤k≤vXkX
′
k, with v independent Gaussian

random vectors Xk ∼ N (0, V ). Notice that for d = 1 and V = 1 the Wishart reduces to the Chi-square
distribution on ]0,∞[ given by

P(A ∈ da) ∝ a
v
2
−1 exp

(
−a

2

)
da

The inverse B = A−1 is distributed with the inverse Wishart distribution IWd(ν,W ) with W =
V −1, given by

P(B ∈ db) ∝ |b|−
(v+d+1)

2 exp

(
−1

2
tr
(
W b−1

))
db

where db =
∏

1≤i≤j≤d dbi,j stands for the infinitesimal neighborhood of a positive definite symmetric
matrix b = (bi,j)1≤i,j≤d. We check this claim, using the fact that the Jacobian of the transformation a 7→
b = a−1 is given by |∂b/∂a| = |a|−(d+1). Further details on these multivariate Gaussian distributions
can be found in [9]. Notice that for d = 1 and (α, β) = (v/2,W/2), the inverse Wishart reduces to the
inverse Gamma distribution on ]0,∞[ given by

P(B ∈ db) ∝ 1

bα+1
exp

(
−β
b

)
db

For any fixed mean vector m0 ∈ Rd the set of prior distributions is given by

∀h = (v,W ) ∈ H = (Nd × Σd) νh := IWd(ν,W ) ∈ P(Ξ) = P(Σd)

with Nd = {m ∈ N : m > d}. and the likelihood functions are defined by the centered Gaussian
densities

∀x ∈ E = Rd Gx(b) = g(0,b)(x) (8.15)

In this notation, we have
ΨGx (IWd(v,W )) = IWd(Hx(v,W )) (8.16)

with the conjugacy mapping (8.9) is given by

Hx(v,W ) =
(
v + 1,W + xx′

)
= (v,W ) + (1, xx′)

We check this claim using the fact that x′b−1x = tr
(
xx′ b−1

)
. The corresponding Bayesian learning

model (8.5) is now given by{
Θ ∼ IWd(v,W )

X | Θ ∼ N (m0,Θ) =⇒ Θ | X ∼ IWd(HX(v,W ))
(8.17)

Iterating the argument, we find that(
ΨGxn ◦ . . . ◦ΨGx1

)
(IWd(v,W )) = IWd ((Hxn ◦ . . . ◦Hx1)(v,W )) (8.18)

with the composition conjugacy mapping

(Hxn ◦ . . . ◦Hx1)(v,W ) = (v,W ) + (n,
∑

1≤k≤n
xkx

′
k)
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8.1.3 Exponential family of distributions

One natural way to design conjugate priors is to consider the exponential family of
distributions

L1,2(θ, dx) = exp
{
A(θ)′T (x)−B(θ)

}
λ(dx) (8.19)

with some given functions T : x ∈ E 7→ Rd, A : θ ∈ Ξ 7→ Rd, for some d ≥ 1,
B : θ ∈ Ξ 7→ [0,∞[, and some reference positive measure λ(dx).
The measure λ is sometimes called the base distribution (and it is usually not important), the
function A(θ) is termed the canonical parameter (often denoted by η(θ)) the function B(θ)
coincides with the logarithm of the normalizing constant (a.k.a. the log-partition function),
and the function T (x) which encapsulates the data in the conditional distribution is called
a sufficient statistic.

In this situation, there always exists conjugate priors w.r.t. the likelihood function Gx(θ) =
exp {A(θ)′ T (x)−B(θ)}.

To see this claim, it suffices to choose a prior distribution of the form

π1(dθ) ∝ exp
{
A(θ)′α− βB(θ)

}
µ(dθ) (8.20)

for some parameters (α, β) ∈ (Rd × R) and some reference measure µ on Ξ, s.t. the above
probability measure is well defined. This class of measures is often called the minimal con-
jugate family for the likelihood functions in (8.19).

In this situation, we have

π(d(θ, x)) ∝ exp
{
A(θ)′(T (x) + α)− (1 + β)B(θ)

}
µ(dθ) λ(dx)

∝ exp
{
A(θ)′(T (x) + α)− (1 + β)B(θ)

}
µ(dθ) (π1L1,2)(dx)

from which we conclude that

L2,1(x, dθ) ∝ exp
{
A(θ)′α(x)− β(x) B(θ)

}
µ(dθ)

with
α(x) = (T (x) + α) and β(x) = 1 + β

In the example (8.4) discussed above, we have

A(θ) = log (θ/(1− θ)) T (x) = x B(θ) = n log (1− θ) and λ(dx) =
∑

0≤k≤n

(
n
k

)
δk(dx)

and the prior distribution π1 defined in (8.4) has the form (8.20) with (α, β) = (a − 1,−(a + b)/n).
The single observation model (8.6) corresponds to the case n = 1.
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For multiple conditional observations with distribution (8.19), we have

(8.19) =⇒ L1,2(θ, dx) = exp

A(θ)′
∑

1≤k≤n
T (xk)− nB(θ)

 λ⊗n(dx)

where dx = dx1 × . . .× dxn stands for an infinitesimal neighborhood of the state x = (x1, . . . , xn). In
this situation, we have

(8.20) =⇒ π(d(θ, x)) = π2(dx) L2,1(x, dθ)

with the posterior distribution

L2,1(x, dθ) ∝ exp
{
A(θ)′αn(x)− βn(x) B(θ)

}
µ(dθ)

and the parameters

αn(x) =
∑

1≤k≤n
T (xk) + α and βn(x) = n+ β

Hierarchical Bayesian models consists with introducing another level of prior distributions on the
parameters (α, β).

8.2 Riemannian manifolds and Information theory

8.2.1 Nash embedding theorem

In differential geometry, a (smooth) Riemannian manifold (S, g) is a real state space S equipped with
a smooth inner product g on the tangent space T (S); that is, for any θ ∈ S, and any vector fields
θ 7→ Vi(θ) ∈ Tθ(S) the mapping

θ 7→ 〈V1(θ), V2(θ)〉g(θ)

is a smooth function. This geometric Riemannian structure allows to define various geometric notions
such as angles, lengths of curves, volumes, curvature, gradients of functions and divergence of vector
fields.

The Nash embedding theorem state that every Riemannian manifold with dimension p can be
(locally) isometrically embedded into some Euclidean ambient space with sufficiently high r-dimension
( but r ≤ 2p + 1). The isometric embedding problem amounts to find some some function ψ : θ ∈
S 7→ ψ(θ) ∈ Rr such that

gi,j(θ) :=
〈
∂θiψ, ∂θjψ

〉
=
∑

1≤k≤r
∂θiψ

k(θ)∂θjψ
k(θ)

8.2.2 Distribution manifolds

When S = Sψ = φ(S) is the parameter space of a given manifold S discussed in (6.36) the natural
Riemannian inner product is given by the matrix field (6.39).

The space of discrete distributions S := P(E) on a finite set E = {1, . . . , r} is represented by the
p = (r − 1)-dimensional simplex

Simplex(p) = {z = (zi)1≤i≤r ∈ Rr+ : ϕ(z) :=
∑

1≤i≤r
zi − 1}
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The tangent space Tz(S) at each point z is given by

∂ϕ =

 1
...
1

⇒ Tz(S) =
{
W (z) ∈ Rr : zk = 0⇒W k(z) = 0

and 〈W (z), ∂ϕ(z)〉 =
∑

1≤k≤rW
k(z) = 0

}

The Fisher information metric on Tz(S) is defined by the inner product

∀W1(z),W2(z) ∈ Tz(S) 〈W1(z),W2(z)〉h(z) =
∑

1≤k≤r

W k
1 (z)

zk

W k
2 (z)

zk
zk

For instance, for r = 3 we have

Tz(S) := Vect

e1(z) :=

 1
0
−1

 , e2(z) :=

 0
1
−1


In this case, for any z = (zk)1≤k≤3 s.t. zk > 0 for any k = 1, 2, 3, we have

h1,1(z) = 〈e1(z), e1(z)〉h(z) =
1

z1
+

1

z3
h1,2(z) = h2,1(z) = 〈e1(z), e2(z)〉h(z) =

1

z3

h2,2(z) = 〈e2(z), e2(z)〉h(z) =
1

z2
+

1

z3

More generally, let E be some measurable space equipped with some reference measure λ.
The tangent space Tµ

(
Pλ(E)

)
of the set of probability measures

Pλ(E) := {µ ∈ P(E) : µ� λ } 3 µ

given by

Tµ

(
Pλ(E)

)
=

{
ν ∈ P(E) : ν � µ s.t.

∫ (
dν

dµ

)2

dµ <∞ and ν(1) = 0

}

is equipped with the Fisher inner product

∀W1(µ),W2(µ) ∈ Tµ(Pλ(E)) 〈W1(µ),W2(µ)〉h(µ) :=

∫
dW1(µ)

dµ

dW2(µ)

dµ
dµ (8.21)

8.2.3 Bayesian statistical manifolds

Riemannian manifolds also arise in a natural way in Bayesian statistics and Information theory. To
describe with some precision these statistical models, we let

µθ(dy) := Pθ(y) λ(dy) (8.22)
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be a collection of distributions on some state space E, equipped with some reference measure λ(dy),
and indexed by some parameter θ on some space S ⊂ Rp of dimension p. We assume that S is equipped
with some probability measure of the form

µ′(dθ) = P ′(θ) λ′(dθ)

where λ′(dθ) stands for some reference measure on S. The probability measure µ′ can be seen as
the prior distribution of some unknown random parameter Θ. Given Θ = θ, µθ(dy) stands for the
distribution of some partial and noisy random observation Y of the parameter Θ. In this interpretation,
the function

P (θ, y) = P ′(θ) Pθ(y)

represents the density of the random variable (Θ, Y ) w.r.t. the reference measure λ⊗λ′ on S ×E. We
consider the parametrization mapping

ψ : θ ∈ S 7→ ψ(θ) = µθ ∈ PS(E) = {µθ ∈ P(E) : θ ∈ S } ⊂ Pλ(E)

and we equip PS(E) with the Fisher metric (8.21) induced by Pλ(E). Notice that for any 1 ≤ i ≤ p
we have

(∂θiψ)(θ) = ∂θiµθ

with the signed measure
∂θiµθ(dy) := ∂θiPθ(y) λ(dy)

on E with null mass ∫
Pθ(y) λ(dy) = 1⇒ ∀1 ≤ i ≤ p

∫
∂θiPθ(y) λ(dy) = 0

The tangent space

Tθ (S) = Vect (ei, i = 1, . . . , p) with ei =



0
...
0
1
0
...
0


←− i− th coordinate

is mapped on the tangent space Tµθ (PS(E)) using the push forward mapping

(dψ)θ : V (θ) =
∑

1≤i≤p
V i(θ) ei(θ) ∈ Tθ (S) 7→ (dψ)θ (V (θ)) =

∑
1≤i≤p

V i(θ) (∂θiψ)(θ) ∈ Tµθ (PS(E))

The Fisher information metric g on the parameter space S induced by the metric h on
PS(E) is defined for any 1 ≤ i, j ≤ p by

gi,j(θ) :=
〈
(∂θiψ)(θ), (∂θjψ)(θ)

〉
h(µθ)

=

∫
∂θiPθ(y)

Pθ(y)

∂θjPθ(y)

Pθ(y)
Pθ(y) λ(dy)

=

∫
∂θi logPθ(y) ∂θj logPθ(y) Pθ(y) λ(dy)

= E
(
∂θi logPΘ(Y ) ∂θj logPΘ(Y ) | Θ = θ

)
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The Fisher metric can alternatively be defined by∫
Pθ(y) λ(dy) = 1 ⇒

∫
∂θi logPθ(y) Pθ(y) λ(dy) = 0

⇒ gi,j(θ) =

∫
∂θi logPθ(y) ∂θj logPθ(y) Pθ(y) λ(dy)

= −
∫ (

∂θj ,θi logPθ(y)
)
Pθ(y) λ(dy)

= −E
(
∂θj ,θi logPΘ(Y ) | Θ = θ

)
We end this section with a connection between the Fisher metric and the relative Boltzmann

entropy. We fix some parameter θ? ∈ S and we consider the Boltzmann entropy

Bθ?(θ) = Ent (µθ? | µθ) = −
∫

log
Pθ(y)

Pθ?(y)
Pθ?(y) λ(dy)

We have

∂θi logPθ(y) =
1

Pθ(y)
∂θiPθ(y)

∂θj ,θi logPθ(y) = − 1

Pθ(y)2
∂θjPθ(y)∂θiPθ(y) +

1

Pθ(y)
∂θj ,θiPθ(y)

from which we conclude that

(∂θiBθ?) (θ?) = −
∫

1

Pθ?(y)
∂θiPθ?(y) Pθ?(y) λ(dy) = −

∫
∂θiPθ?(y) λ(dy) = 0

and (
∂θj ,θiBθ?

)
(θ?) =

∫
1

Pθ?(y)2
∂θjPθ?(y)∂θiPθ?(y) Pθ?(y)λ(dy)−

∫
∂θj ,θiPθ?(y)λ(dy)

=

∫
∂θjPθ?(y)

Pθ?(y)

∂θjPθ?(y)

Pθ?(y)
Pθ?(y)λ(dy) = gi,j(θ

?)

This shows that

Ent (µθ? | µθ) =
1

2

∑
1≤i,j≤p

gi,j(θ
?) (θi − θ?i )(θj − θ?j ) + O(‖(θ − θ?)‖3)

=
1

2
(θ − θ?)T g(θ?)(θ − θ?) + O(‖(θ − θ?)‖3)

The above formula shows that the Fisher matrix g(θ) encapsulate the infinitesimal changes
of the model distribution µθ w.r.t. an infinitesimal fluctuation of the model parameter θ.

8.2.4 The Cramer-Rao lower bound

Suppose we are given an unbias estimate Θ̂ = (ϕi(Y ))1≤i≤p of the parameter θ = (θi)1≤i≤p associated
with an observation r.v. Y with distribution (8.22); that is we have that

∀1 ≤ i ≤ p E
(
ϕi(Y )

)
= θi
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The score function is defined by the gradient function

Score
i
θ(Y ) := ∂θi logPθ(Y )

Recalling that

E
(
Score

i
θ(Y )

)
= 0

using Cauchy-Schwartz inequality, we find that

E
([

Scoreiθ(Y )
]2)1/2

×Var(ϕj(Y ))1/2 ≥ E
([

Scoreiθ(Y )− E
(
Scoreiθ(Y )

)] [
ϕj(Y )− E

(
ϕj(Y )

)])
= E

(
Scoreiθ(Y )ϕj(Y )

)
=

∫
ϕj(y) ∂θi logPθ(y) Pθ(y) λ(dy)

=
∫
ϕj(y) ∂θiPθ(y) λ(dy) = ∂θiE(ϕj(Y )) = ∂θiθ

j = 1i=j

This implies that

Var(ϕj(Y )) ≥ 1/gj,j(θ)

8.2.5 Some illustrations

Boltzmann-Gibbs measures

We consider a collection of Boltzmann-Gibbs measures associated with some potential function V on
some state space E, and indexed by some real valued parameter θ:

µθ(dy) =
1

Zθ
e−θV (y) λ(dy)

In this situation, we have

∂θPθ(y) = − 1

Z2
θ

∂θ(Zθ) e−θV (y) +
1

Zθ
∂θ(e

−θV (y))

= (µθ(V )− V (y)) Pθ(y) =⇒ ∂θ logPθ = µθ(V )− V )

from which we conclude that

g(θ) = g1,1(θ) =

∫
[µθ(V )− V (y)]2 µθ(dy) = µθ(V

2)− µθ(V )2

Multivariate normal distributions

We consider the collection of distributions µθ index by some parameter θ ∈ S ⊂ Rp and given by

µθ(dy) =
1

√
2π

dY √
det(C(θ))

exp

(
−1

2
(y −m(θ))TC(θ)−1(y −m(θ))

)
dy

where dy =
∏

1≤i≤dY dyi stands for an infinitesimal neighborhood of the point y = (yi)1≤i≤dY ∈ RdY .
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In this situation, we have

gi,j(θ
?)

θ=θ?
= ∂θi,θjEnt (µθ? | µθ)
θ=θ?
= ∂θim(θ?)TC(θ?)−1∂θjm(θ?) +

1

2
tr
(
∂θjC(θ?) C(θ?)−1 (∂θiC(θ?))C(θ?)−1

)
(8.23)

In particular, for dY = 1, and p = 2 with m(θ) = θ1 ∈ R and C(θ) = θ2 ∈]0,∞[ we have

g1,1(θ) =
1

θ2

g1,2(θ) = g2,1(θ) = 0 and g2,2(θ) =
1

2θ2
2

The corresponding Riemannian gradient compensates the fact that a infinitesimal change of parameter
in a Gaussian model µθ with small variance θ2 has more pronounced effects:

(∇gf)(θ) = θ2 ∂θ1f + 2θ2
2 ∂θ2f

To check (8.23), we observe that

Ent (µθ? | µθ) =
1

2

[
log det

(
C(θ?)−1C(θ)

)
+

∫ {(
(y −m(θ))TC(θ)−1(y −m(θ))

)
− (y −m(θ?))TC(θ?)−1(y −m(θ?))

}
µθ?(dy)

]
= 1

2

[
log det

(
C(θ?)−1C(θ)

)
+E

{(
(Y −m(θ))TC(θ)−1(Y −m(θ))

)
− (Y −m(θ?))TC(θ?)−1(Y −m(θ?))

}]
with

Y = m(θ?) + C(θ?)1/2 Z where Z ∼ N(0, IddY ×dY )

E
(
ZAZT

)
=

∑
1≤i,j≤dY

E(ZiAi,j Z
j) =

∑
1≤i,j≤dY

Ai,i = tr(A)

We recall that for any invertible symmetric positive definite matrix A, the square root A1/2 =(
U
√
DUT , for some orthonormal diagonalizing matrix U s.t. A = UDUT with D diagonal

)
is sym-

metric and invertible, and we have

A−1/2A1/2 = Id AA1/2 = A1/2A and A1/2A−1A1/2 = Id

We also recall that for any couple of matrices A and B, we have

tr(AB) = tr(BA)

so that
tr(A1/2(BA1/2)) = tr(BA) = tr(AB)

Using these formula, it is readily checked that

E
(
(Y −m(θ?))TC(θ?)−1(Y −m(θ?))

)
= E

(
ZT C(θ?)1/2 C(θ?)−1C(θ?)1/2 Z

)
= E

(
ZTZ

)
= dY
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and
E
(
(Y −m(θ))TC(θ)−1(Y −m(θ))

)
= E

([
(m(θ?)−m(θ)) + C(θ?)1/2Z

]T
C(θ)−1

[
(m(θ?)−m(θ)) + C(θ?)1/2Z

])

= (m(θ?)−m(θ))TC(θ)−1(m(θ?)−m(θ)) + E
(
ZTC(θ?)1/2C(θ)−1C(θ?)1/2Z

)
= (m(θ?)−m(θ))TC(θ)−1(m(θ?)−m(θ)) + tr

(
C(θ?)1/2C(θ)−1C(θ?)1/2

)
= (m(θ?)−m(θ))TC(θ)−1(m(θ?)−m(θ)) + tr

(
C(θ?)C(θ)−1

)
We conclude that

2 Ent (µθ? | µθ)

= log det
(
C(θ?)−1C(θ)

)
+ (m(θ?)−m(θ))TC(θ)−1(m(θ?)−m(θ)) +

[
tr
(
C(θ?)C(θ)−1

)
− dY

]
For any index 1 ≤ i ≤ p, we have

∂θi log det
(
C(θ?)−1C(θ)

)
=

1

det (C(θ?)−1C(θ))
∂θi log det

(
C(θ?)−1C(θ)

)
= tr

((
C(θ?)−1C(θ)

)−1
∂θiC(θ?)−1C(θ)

)
= tr

(
C(θ)−1∂θiC(θ)

)
so that

∂θi
(
log det

(
C(θ?)−1C(θ)

)
+
[
tr
(
C(θ?)C(θ)−1

)
− dY

])
= tr

(
C(θ)−1∂θiC(θ)− C(θ?)C(θ)−1 (∂θiC(θ))C(θ)−1

) θ=θ?
= 0

The second term in the trace formula comes from the fact that

∂εA(ε)−1 = −A(ε)−1 (∂εA(ε)) A(ε)−1

for any smooth functional ε 7→ A(ε) in the space of invertible matrices. We check this claim using the
fact that

∂ε
∑
j

Ai,j(ε)A
j,k(ε) = 0 ⇒

∑
j

Ai,j(ε)∂εA
j,k(ε) = −

∑
j

∂εAi,j(ε)A
j,k(ε)

=
∑
i,j

Al,i(ε)Ai,j(ε)∂εA
j,k(ε) = −

∑
i,j

Al,i(ε)∂εAi,j(ε)A
j,k(ε)

where A(ε)−1 =
(
Ai,j(ε)

)
i,j

and A(ε) = (Ai,j(ε))i,j .
We also have that

∂θi,θj
(
log det

(
C(θ?)−1C(θ)

)
+
[
tr
(
C(θ?)C(θ)−1

)
− dY

])
= tr

{[(
∂θjC(θ)−1

)
∂θiC(θ) + C(θ)−1∂θi,θjC(θ)

]
−C(θ?)

[(
∂θjC(θ)−1

)
(∂θiC(θ))C(θ)−1 + C(θ)−1

(
∂θi,θjC(θ)

)
C(θ)−1 + C(θ)−1 (∂θiC(θ)) ∂θjC(θ)−1

]}
θ=θ?
= −tr

(
C(θ?)

(
∂θjC(θ?)−1

)
(∂θiC(θ?))C(θ?)−1

)
= tr

(
∂θjC(θ?) C(θ?)−1 (∂θiC(θ?))C(θ?)−1

)
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In much the same way, we have

∂θi
(
(m(θ?)−m(θ))TC(θ)−1(m(θ?)−m(θ))

)
= −2∂θim(θ)TC(θ)−1(m(θ?)−m(θ)) +

(
(m(θ?)−m(θ))T∂θiC(θ)−1(m(θ?)−m(θ))

) θ=θ?
= 0

and therefore

∂θi,θj
(
(m(θ?)−m(θ))TC(θ)−1(m(θ?)−m(θ))

)
= 2 ∂θim(θ)TC(θ)−1∂θjm(θ)

−2
[(
∂θiθjm(θ)

)T
C(θ)−1 + (∂θim(θ))T ∂θjC(θ)−1 + ∂θjm(θ)T∂θiC(θ)−1

−1

2
(m(θ?)−m(θ))T∂θi,θjC(θ)−1

]
(m(θ?)−m(θ))

θ=θ?
= 2 ∂θim(θ?)TC(θ?)−1∂θjm(θ?)

We conclude that

∂θjEnt (µθ? | µθ)
θ=θ?
= 0

This ends the proof of the desired formula.

8.3 Signal processing and filtering

This section is dedicated to linear-Gaussian filtering models and the derivation of the traditional
forward-backward Kalman filters. The origins of these optimal filters starts with the seminal article
by R. E. Kalman [370] and the earlier pioneering works by R. L. Startonovich [554, 555, 556, 557].

The first historical application of the Kalman filter was developed by S. F. Schmidt [528], in
the Apollo program of NASA Ames Research Center, to solve nonlinear navigation equations of the
manned lunar mission. The Kalman filter has been applied in the design of a variety of defense
navigation and guidance systems, including ballistic submarines and the U.S. Navy’s Tomahawk as
well as in the U.S. Air Force’s air launched cruise missiles. It is also used in the NASA Space Shuttle,
as well as in the attitude control systems of the International Space Station.

Originally developed for spacecraft navigation systems, the Kalman filter and its extended version
are one of the most commonly and routinely used tools to remove noise from partially observed
sequences of random variables. Its range of application has been extended to almost every scientific
discipline, including in financial mathematics, econometrics, and computational biology, as well as in
Bayesian statistics and in various branches of engineering sciences.

8.3.1 Forward Kalman filters

We consider a Rp+q-valued Markov chain (Xn, Yn) defined by the recursive relations{
Xn = An Xn−1 + an +BnWn , n ≥ 1
Yn = Cn Xn + cn +Dn Vn , n ≥ 0

(8.24)

for some Rdw and Rdv -valued independent random sequences Wn and Vn, independent of X0, some
matrices An, Bn, Cn, Dn with appropriate dimensions and finally some (p + q)-dimensional vector
(an, cn). We further assume that Wn and Vn centered Gaussian random sequences with covariance
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matrices Rvn, Rwn and X0 is a Gaussian random variable in Rp with a mean and covariance matrix
denoted by

X̂−0 = E(X0) and P̂−0 = E((X0 − E(X0)) (X0 − E(X0))′)

The one-step predictors and the optimal filters are given by

ηn = Law(Xn | (Y0, . . . , Yn−1)) = N (X̂−n , P
−
n )

η̂n = Law(Xn | (Y0, . . . , Yn−1, Yn)) = N (X̂n, Pn) (8.25)

In the above display, N (., .) stands for the Gaussian distributions discussed in (8.11).

For the linear-Gaussian models discussed above, the synthesis of the conditional mean and
covariance matrices is carried out using the traditional Kalman-Bucy recursive updating-
prediction equations(

X̂−n , P
−
n

) updating
−−−−−−−−→

(
X̂n, Pn

) prediction
−−−−−−−→

(
X̂−n+1, P

−
n+1

)
(8.26)

To derive with some precision these recursions, we let Mn be the Gaussian transition on Rp
defined by

Mn(x, dx′) = g(mXn (x),Rn)(x
′) dx′ with mX

n (x) = An x+ an and Rn := BnR
w
nB
′
n

(8.27)
We also consider the likelihood functions

g(Yn−cn,Qn)(Cnx) = g(mYn (x),Qn)(Yn) with mY
n (x) = Cn x+ cn and Qn := DnR

v
nD
′
n

(8.28)
with the Gaussian densities g(m,R)(x) associated with a mean and covariance matrix (m,R)
introduced in (8.11).

To find the prediction step we simply observe that

X̂−n = E(AnXn−1 + an +BnWn | (Y0, . . . , Yn−1)) = An X̂n−1 + an

P−n = E
((

An(Xn−1 − X̂n−1) +BnWn

)(
An(Xn−1 − X̂n−1) +BnWn

)′)
= AnPn−1A

′
n +Rn

This yields

X̂−n = mX
n

(
X̂n−1

)
= An X̂n−1 + an

P−n = AnPn−1A
′
n +Rn
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The updating step is partly based on the fact that the Y-martingale difference (X̂n− X̂−n ) has the
representation property with respect to the innovation process; that is, we have

X̂n − X̂−n = Gainn (Yn − Ŷ −n ) with Ŷ −n = E(Yn|Y0, . . . , Yn−1) = mY
n

(
X̂−n

)
for some gain matrix Gainn. Since we have E((Xn − X̂n)(Yn − Ŷ −n )′) = 0, and

(Yn − Ŷ −n ) = Cn(Xn − X̂−n ) +DnVn

we find that
E((Xn − X̂−n )(Yn − Ŷ −n )′) = Gainn E((Yn − Ŷ −n )(Yn − Ŷ −n )′)

We conclude that
Gainn = P−n C

′
n(CnP

−
n C

′
n +Qn)−1

Finally, using the decomposition

Xn − X̂n = (Xn − X̂−n ) + (X̂−n − X̂n)

and by symmetry argument, we conclude that

Pn = P−n − E((X̂−n − X̂n)(X̂−n − X̂n)′)

= P−n −Gainn E((Yn − Ŷ −n )(Yn − Ŷ −n )′)Gain′n = P−n −GainnCnP
−
n

In summary, we have proved the following updating formula.

For any (r,R) ∈ (Rp×Rp×p) and n ≥ 0 the updating transition is given by the Boltzmann-
Gibbs transformation

Ψg(Yn−cn,Qn)(Cn.)(N (r,R)) = N
(
m̂Yn,n(r,R), Σ̂n(R)

)
(8.29)

with the functionals

m̂Yn,n(r,R) = r +RC ′nΣn(R)−1 (Yn − (Cnr + cn))

Σ̂n(R) = (I −RC ′nΣn(R)−1Cn)R and Σn(R) := CnRC
′
n +Qn

It is also useful to observe that

Law(Yn | Y0, . . . , Yn−1) = N
(
CnX̂

−
n + cn,Σn(P−n )

)
We prove this claim using the fact that, given (Y0, . . . , Yn−1), the current observation takes the form

Yn = CnX̃n +DnVn with Law
(
X̃n | Y0, . . . , Yn−1

)
:= N (X̂−n , P

−
n )

The density pn(y0, . . . , yn) of the sequence of observation (Y0, . . . , Yn) evaluated at the ran-
dom observation path (Y0, . . . , Yn) is given by

pn(Y0, . . . , Yn) =

n∏
k=0

g
(CkX̂

−
k +ck,Σk(P−k ))

(Yk) (8.30)
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In Bayesian inference literature, this formula is sometimes written in the following form

pn(Y0, . . . , Yn) = pn−1,n(Yn |Y0, . . . , Yn−1)× pn−1(Y0, . . . , Yn−1)

=

n∏
k=0

pk−1,k(Yk |Y0, . . . , Yk−1)

where pn−1,n(yn |y0, . . . , yn−1) stands for the density (w.r.t. the Lebesgue measure dyn on Rq) of the
conditional distribution of the random variable Yn given the observations Yp = yp, for 0 ≤ p < n.

8.3.2 Backward Kalman smoother

With a slight abuse of the notation, we denote by

p((x0, . . . , xn) | (y0, . . . , yn−1))

the density (w.r.t. the Lebesgue measure dx0 × . . .× dxn on (Rp)n+1) of the conditional distribution
of the random variable (X0, . . . , Xn) given the observations Yp = yp, for 0 ≤ p < n. We also denote by

p(xk | xk+1, (y0, . . . , yk))

the density (w.r.t. the Lebesgue measure dxk on Rp) of the conditional distribution of the random
variable Xk given the observations Yp = yp, for 0 ≤ p ≤ k, and the random state Xk+1 = xk+1.

In these Bayesian notation, we have the conditional density formulae

p((x0, . . . , xn) | (y0, . . . , yn−1))

= p(xn | (y0, . . . , yn−1)) p(xn−1 | xn, (y0, . . . , yn−1))

×p(xn−2 | xn−1, (y0, . . . , yn−2)) . . . p(x1 | x2, (y0, y1)) p(x0 | x1, y0)

(8.31)

This shows that

P ((X0, . . . , Xn) ∈ d(x0, . . . , xn) | Yp = yp, p < n) = ηn(dxn)
∏

1≤k≤n
Mk,ηk−1

(xk, dxk−1)

(8.32)
with the Markov transitions

Mk,ηk−1
(xk, dxk−1) = p(xk−1 | xk, (y0, . . . , yk−1)) dxk−1

Our next objective is to provide an analytic expression of these Markov transitions. To this end, we
observe that

p(xk−1 | xk, (y0, . . . , yk−1)) ∝ p(xk | xk−1) p(xk−1 | (y0, . . . , yk−1))

and
ηk−1(dxk−1) = p(xk−1 | (y0, . . . , yk−1)) dxk−1

In terms of Boltzmann-Gibbs transformation, we have the Bayes’ formula

Mk,ηk−1
(xk, dxk−1) = ΨGxk,k

(η̂k) (dxk−1) with Gxk,k(xk−1) = p(xk | xk−1)

with the optimal filter distribution η̂k introduced in (8.25). We recall that

p(xk | xk−1) dxk = N (Akxk−1 + ak, Rk) (dxk) = g(mXk (xk−1),Rk)(xk) dxk
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Using the Gaussian-updating formula (8.29) we have

Mk,ηk−1
(xk, .) = Ψg(xk−ak,Rk)(Ak.)

(
N
(
X̂k−1, Pk−1

))
= N

(
m̂xk,k

(
X̂k−1, Pk−1

)
, Σ̂k(Pk−1)

)
with the parameters

m̂xk,k (xk−1, Pk−1) = xk−1 + Pk−1A
′
k(P

−
k )−1 (xk − (Akxk−1 + ak))

Σ̂k(Pk−1) = (I − Pk−1A
′
k(P

−
k )−1Ak)Pk−1

This shows that (8.32) is the distribution of the backward random trajectories

X̃(n)
n → X̃

(n)
n−1 → . . .→ X̃

(n)
1 → X̃

(n)
0

defined by the equations
X̃

(n)
p = m̂

X̃p+1,p+1

(
X̂p

)
+ W̃p

= X̂p + PpA
′
p+1

(
P−p+1

)−1 (
X̃

(n)
p+1 − [Ap+1X̂p + ap+1]

)
+ W̃p

X̃
(n)
n ∼ N

(
X̂−n , P

−
n

) (8.33)

with a sequence W̃p of i.i.d. centered Gaussian variables with covariance matrices

Σp :=

(
I − PpA′p+1

(
P−p+1

)−1
Ap+1

)
Pp

The conditional mean and covariance matrices of this Gaussian linear model

X
(n)
p = E

(
X̃(n)
p | (Y0, . . . , Yn−1)

)
Σ(n)
p = E

((
X̃(n)
p −X(n)

p

)(
X̃(n)
p −X(n)

p

)′
| (Y0, . . . , Yn−1)

)
satisfy the backward recursive formula X

(n)
p = m̂Xp+1,p+1

(
X̂p

)
Σ

(n)
p = Pp + PpA

′
p+1

(
P−p+1

)−1 (
Σ

(n)
p+1 − P

−
p+1

)(
P−p+1

)−1
Ap+1Pp

with final time horizon condition
(
X

(n)
n ,Σ

(n)
n

)
=
(
X̂−n , P

−
n

)
.

8.4 Hidden Markov chain models

8.4.1 Boltzmann posterior and Metropolis-Hastings models

Suppose we are given a signal-observation model (8.24) with kinetic parameters

(an, An, Bn, cn, Cn, Dn) = (an(Θ), An(Θ), Bn(Θ), cn(Θ), Cn(Θ), Dn(Θ))
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that depend on some random variable Θ with a given distribution ν on some state space Ξ.

The posterior distributions of the signal trajectories given the observation sequence and the pa-
rameter Θ can be computed using the forward Kalman filter and the backward smoother presented in
section 8.3.1 and in section 8.3.2.

In addition, using (8.30) we have

P ((Y0, . . . , Yn) ∈ d(y0, . . . , yn) | Θ = θ) = pn(y0, . . . , yn | θ) dy0 . . . dyn

=

{
n∏
k=0

g
(Ck(θ)X̂−θ,k+ck(θ),Σk(P−θ,k))

(yk)

}
dy0 . . . dyn

where (X̂−θ,k, P
−
θ,k) stands for the conditional expectation and the conditional covariance

matrix

Law(Xk | (Y0, . . . , Yk−1) = (y0, . . . , yk−1), Θ = θ) = N
(
X̂−θ,k, P

−
θ,k

)
computed using the Kalman recursions.

Using Bayes’ rule, we prove that the posterior distribution of Θ given a fixed sequence
of observations Yn = (Y0, . . . , Yn) = (y0, . . . , yn) = yn is given by the Boltzmann-Gibbs
measure

P (Θ ∈ dθ | Yn = yn) ∝

{
n∏
k=0

hk(θ)

}
ν(dθ)

with the likelihood potential functions

hk(θ) := g
(Ck(θ)X̂−θ,k+ck(θ),Σk(P−θ,k))

(yk)

The sampling of these target measures can be performed using the Metropolis-Hasting al-
gorithms developed in section 7.2. An alternative and more powerful particle simulation
technique based on Metropolis-Hasting sampling schemes equipped with recycling mecha-
nisms is provided in section 9.1.5.

8.4.2 Conjugate priors and Gibbs samplers

We start with a simple calibration model in which the parameters an in the linear Gaussian model
(8.24) is a fixed and unknown parameters in Rp. To simplify the presentation, we further assume
that (Bn, Dn) = (Id, Id) and (Wn, Vn) are centered independent Gaussian random variables with time
homogeneous covariance matrices (Rvn, R

w
n ) = (Q,R). In this situation, given some random variable Θ

with distribution ν on Rd the signal model (8.24) is now given by

Xn = An Xn−1 + Θ +Wn (8.34)
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We fix a final time horizon n and a random path X := (X0, . . . , Xn) = x . Using Bayes’
rule, the conditional distribution of Θ given is given by the formula

P (Θ ∈ dθ | X = x) ∝

 ∏
1≤k≤n

hk(θ)

 ν(dθ) ∝ (Ψhn ◦ . . . ◦Ψh1) (ν)(dθ)

with the collection of likelihood functions hk defined by

hk(θ) := g(xk−Akxk−1,R)(θ)

(
cf.(8.12)

= G∆xk(θ) with ∆xk = xk −Akxk−1 and R0 = R

)
In the above displayed formula, we recall that g(m,R) are the Gaussian density functions
defined in (8.11).

We further assume that the prior distribution ν = N (m1, P1) this model has the same form
as the one discussed in (8.14). We let π be the conditional distribution

π = Law ((Θ, X) | Y = y)

By construction, we have

π(d(θ, x)) = π1(dθ) L1,2(θ, dx) = π2(dx) L1,2(x, dθ)

with the marginal measures (π1, π2) = (Law (Θ|Y = y) ,Law (X|Y = y)), and the condi-
tional distributions

L1,2(θ, dx) = P (X ∈ dx | Θ = θ, Y = y)

L2,1(x, dθ) = P (Θ ∈ dθ | X = x, Y = y) = P (Θ ∈ dθ | X = x)

The Gibbs sampler (8.3) associated with these disintegration models is based on sampling
sequentially the conditional distributions (L1,2, L2,1):
• The sampling of L1,2 can be performed using the backward Kalman smoothers devel-

oped in section 8.3.2.

• The transition L2,1 can be sampled using the conjugate mappings presented in (8.14).

The same analysis can be developed when the parameters an are known and the covariance matrix
parameter Θ = θ of the signal Gaussian perturbation Wn = W θ

n ∼ N (0, θ) are unknown. In this
situation, given Θ, the signal model (8.24) is given by

Xn = An Xn−1 + an +WΘ
n

Arguing as above, we have

P (Θ ∈ dθ | X = x) ∝

 ∏
1≤k≤n

G∆k(x)(θ)

 ν(dθ) ∝
(

ΨG∆n(x)
◦ . . . ◦ΨG∆1(x)

)
(ν)(dθ)
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with the collection of likelihood functions

g(Akxk−1+ak,θ)(xk) := g(0,θ)(∆k(x))
cf.(8.12)

= G∆k(x)(θ)

with
∆k(x) = xk −Akxk−1 − ak and R0 = θ

Assuming that the prior distribution ν = IWd(v,W ) this model has the same form as the one discussed
in (8.16) and (8.18).

In more general situations, the pair signal-observation model Xn = (Xn, Yn) depend on some un-
known parameter. These hidden Markov chain problems are better described in an abstract framework.
We fix the time horizon n ∈ N, and we let E = (E0 × . . . × En) be the state space of the random
trajectories X = (X0, . . . ,Xn) of some conditional Markov chain Xk evolving in some state spaces Ek
w.r.t. some random parameter Θ with some distribution π1(dθ) on some state space Ξ.

We further assume that given Θ = θ the elementary Markov transitions Mθ,k(xk−1, dxk), and the
initial distribution ηθ,0(dx0), have some density mθ,k(xk−1, xk), and mθ,0(x0), w.r.t. some reference
distributions λk(dxk) on the state spaces Ek. We consider the likelihood functions

G0,x0(θ) = mθ,0(x0) and ∀1 ≤ k ≤ n Gk,x(θ) = mθ,k(xk−1, xk)

For instance, let us suppose that the parameters (an, cn) = (a, c) = θ = (θ(1), θ(2)) ∈ Rp+q in
the signal observation model Xn = (Xn, Yn) discussed above are unknown. In this situation, given
Θ = (Θ(1),Θ(2)) the Markov transition of the chain X are given by the equations{

Xn = An Xn−1 + Θ(1) +Wn

Yn = Cn Xn + Θ(2) + Vn

To describe with some precision the elementary transitions of this chain, we observe that

g(r,R)(θ
(1)) g(q,Q)(θ

(2)) = g(s,S) (θ)

with the parameters

s =

(
r
q

)
θ =

(
θ(1)

θ(2)

)
and S :=

(
R 0
0 Q

)
In this notation, we have

P ((Xn, Yn) ∈ d(xn, yn) | (Xn−1, Yn−1) ,Θ)

= g(AnXn−1+Θ(1),R)(xn)× g(yn−Θ(2),Q)(Cnxn)︸ ︷︷ ︸
mΘ,n((Xn−1,Yn−1),(xn,yn))

dxn dyn

Recalling that with

g(yk−θ(2),Q)(Ckxk) = g(yk−Ckxk,Q)(θ
(2)) and g(Akxk−1+θ(1),R)(xk) = g(xk−Akxk−1,R)(θ

(1))

we find that

Gk,(x,y)(θ) = g(∆k(x,y),S)(θ) with ∆k(x, y) =

(
xk −Akxk−1

yk − Ckxk

)
To get one step further in our discussion, we fix the time parameter n, and we let π be a target

distribution on S = (Θ× E) of the form

π(d(θ, x)) = π1(dθ) L1,2(θ, dx) = π2(dx) L2,1(x, dθ)
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with

L2,1(x, dθ) ∝

 ∏
0≤k≤n

Gk,x(θ)

 π1(dθ) ∝ ΨGn,x ◦ΨGn−1,x ◦ . . . ◦ΨG0,x(π1)(dθ)

We further assume that π1 = νh ∈ P belongs to some class of prior distributions P indexed by
some (prior) hyper-parameter set H 3 h, which are conjugate to some classes of likelihood functions
Gk 3 Gk : (x, θ) 7→ Gk,x(θ). In this case, there exists some conjugacy mapping

Hk : (h, x) ∈ (H× E) 7→ Hk,x(h) ∈ H

such that

ΨG0,x(νh) = νH0,x(h) ⇒ ΨG1,x

(
ΨG0,x(νh)

)
= νH1,x(H0,x(h)) ⇒ L2,1(x, dθ) = νH0,n,x(h)

with the composition semigroup

H0,n,x = Hn,x ◦ . . . ◦H0,x

8.5 Computational physics

8.5.1 Molecular dynamics

Molecular dynamics simulation is concerned with the analysis of the fluctuations, and the conformal
changes of proteins and nucleic acids in biological molecules. The central problem is to understand
the macroscopic properties of a molecule through the simulation of a microscopic system of atomic
interacting particles in a given force field model. More formally, we consider the microscopic evolution
of a many-body system formed by k atomic particles in the Euclidian space E = R3 with possibly k
different masses m = (mi)1≤i≤k. Their spatial positions, and their velocities are denoted by the letters
q = (qi)1≤i≤k, and p = (pi)1≤i≤k. These particles moves under the influence of some external forces
Fi(q) according to the Newton’s second law

mi
d2qi
dt2

= Fi(q) (8.35)

The velocity vector

pi =

 p1
i

p2
i

p3
i

 = mi
dqi
dt

= mi


dq1
i

dt
dq2
i

dt
dq3
i

dt


is called the particle momenta of the system, and the couple x = (q, p) is called the phase vector.

We further assume that the force field is conservative, in the sense that

F (q) = −∇qV (q) =

(
−∂V
∂qi

(q)

)
1≤i≤k

for some interparticle potential function V : Ek → R.
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In this situation, we can reformulate the evolution equations (8.35) in terms of the
Hamiltonian or energy functional

H(q, p) =

k∑
i=1

‖pi‖2

2mi
+ V (q1, . . . , qk) (8.36)

with the following equations
dqi
dt

=
pi
mi

=
∂H

∂pi
(q, p)

dpi
dt

= Fi(q) = −∂V
∂qi

(q) = −∂H
∂qi

(q, p)
(8.37)

We notice that these evolution equations are time reversible, in the sense that they have the same
form if we consider the time transformation τ(t) = −t. In other words, the microscopic physics doesn’t
depends on the time flow direction. We also notice the conservation property

d

dt
H(q, p) =

k∑
i=1

[
∂H

∂qi
(q, p)

dqi
dt

+
∂H

∂pi
(q, p)

dpi
dt

]
= 0 (8.38)

In the above display we have used the conventions

∂H

∂qi
=

(
∂H

∂q1
i

,
∂H

∂q2
i

,
∂H

∂q3
i

)
and

dqi
dt

=


dq1
i

dt
dq2
i

dt
dq3
i

dt

 (8.39)

and

∂H

∂pi
=

(
∂H

∂p1
i

,
∂H

∂p2
i

,
∂H

∂p3
i

)
and

dpi
dt

=


dp1

i

dt
dp2

i

dt
dp3

i

dt

 (8.40)

We also mention that for k = 1 and V (q) = k
2 q

2, for some k ≥ 0, the system (8.37) reduces to the
linearized pendulum

dq

dt
=: q′ =

p

m
dp

dt
=: p′ = −kq

⇒ d2q

dt2
+ ω2q = 0 with ω =

√
k

m

The solution of this system takes the form

q(t) = q(0) cos (ωt) +
q′(0)

ω
sin (ωt)

Solid and liquid states of rare-gas elements with closed shell configurations only involves particle
interacting with weak van de Waals bonds in terms of the pair-potential function

V (q1, . . . , qk) =
∑

1≤i<j≤k
VLJ(‖qj − qi‖)
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with the Lennard Jones potential functions

VLJ(r) = 4ε

[(τ
r

)12
−
(τ
r

)6
]

(8.41)

The parameter ε represents the depth of the potential well, and τ the finite distance at which the
interaction potential becomes null. Notice that

inf
r
VLJ(r) = VLJ(21/6τ) = −ε

This shows that for r ≥ 21/6τ the potential is attractive, and repulsive for r ≤ 21/6τ .

The term (τ/r)12 describes the short range Pauli repulsion forces due to overlapping electron
orbitals, while the term (τ/r)6 represents the attraction and the van der Waals dispersion forces at
long range distances.

The repulsion term has no real theoretical foundations, it is sometimes replaced by the Buckingham
exponential-6 potential exp (−r/τ). To avoid the degeneracy of the Lennard Jones potential at short
range distances, we often use cut-off techniques. For instance, we can replace VLJ(r) by

V LJ(r) = (VLJ(r)− VLJ(rc)) 1r<rc

or by

V LJ(r) =
(
VLJ(r)− VLJ(rc)− V ′LJ(rc)(r − rc)

)
1r<rc

for some well chosen cut-off radius rc. For instance, the Wayne-Chandler-Anderson potential is given
by

rc = 21/6τ =⇒ V WCA(r) = V LJ(r) = (VLJ(r) + ε) 1r<21/6τ

We associate with the Hamiltonian function (8.36), the canonical measures on the phase
space

µβ(dx) =
1

Zβ
e−βH(x) dx (8.42)

where Zβ is a normalizing constant, and dx = d(q, p) = dq × dp stands for the Lebesgue
measure on R3k+3k, and x = (q, p) stands for a given point in the phase space.

We also consider the q-marginal measures

µβ(dq) =
1

Zβ
e−βV (q) dq (8.43)

where Zβ is a normalizing constant, and dq stands for the the Lebesgue measure on the
position space R3k.

In this notation, the measure µβ is given by the product formula

µβ(d(q, p)) =

 ∏
1≤i≤k

1√
2πmi/β

e
−β p2i

2mi dpi

 µβ(dq)
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The Boltzmann-Gibbs measures µβ, and respectively µβ, can be interpreted as the invariant
measure of the Langevin type stochastic dynamics

dqi = β

pi/mi︷ ︸︸ ︷
∂H

∂pi
(q, p) dt

dpi = − β
[
∂H

∂qi
(q, p) + σ2∂H

∂pi
(q, p)

]
︸ ︷︷ ︸

= ∂V
∂qi

(q)+σ2 pi/mi

dt+ σ
√

2 dW i
t

(8.44)

and respectively

dqi = −β∂V
∂qi

(q) dt+
√

2 dW i
t (8.45)

where (W i
t )1≤i≤k stands for k independent Brownian motions W i

t =
(
W i,j
t

)
1≤j≤3

on R3.

The additional external Brownian forces represent the fluctuations of the many-body system,
balanced by dissipative and viscous damping forces. In both cases, one can show that the Markov
evolution semigroups of these diffusions have a density w.r.t. the Lebesgue measure on R3k or on
R3k+3k. The fact that these density are smooth relies on more sophisticated stochastic analysis tools,
including Malliavin Calculus and differential geometry [150, 330, 372].

We check that µβ, and µβ are the invariant measures of these diffusion models using the infinitesimal
generators of the diffusion processes (8.44) and (8.45), given respectively on the set of smooth function
f on R3k+3k by the formulae

Lβ(f) = β

k∑
i=1

[
∂H

∂pi

∂f

∂qi
−
(
∂H

∂qi
+ σ2∂H

∂pi

)
∂f

∂pi

]
+ σ2

k∑
i=1

∂2f

∂p2
i

and for any smooth function g on R3k by

Lβ(g) = −β
k∑
i=1

∂V

∂qi

∂g

∂qi
+

k∑
i=1

∂2g

∂q2
i

= eβV
k∑
i=1

∂

∂qi

(
e−βV

∂g

∂qi

)

In the above display we slightly abuse the notation dropping the transposition operator (.)′ in the
differential of the functions f and g. For instance, using the conventions (8.39) and (8.40), we have
that

∂H

∂pi

∂f

∂qi
:=

∂H

∂pi

(
∂f

∂qi

)′
=
∂H

∂p1
i

∂f

∂q1
i

+
∂H

∂p2
i

∂f

∂q2
i

+
∂H

∂p3
i

∂f

∂q3
i

To simplify the presentation, we have also denoted by ∂2

∂p2
i

the Laplacian operator on R3; that is, we

have that
∂2f

∂p2
i

=
∂2f

∂(p1
i )

2
+

∂2f

∂(p2
i )

2
+

∂2f

∂(p3
i )

2

and
∂

∂qi

(
e−βV

∂g

∂qi

)
:=

∂

∂q1
i

(
e−βV

∂g

∂q1
i

)
+

∂

∂q2
i

(
e−βV

∂g

∂q2
i

)
+

∂

∂q3
i

(
e−βV

∂g

∂q3
i

)
In this stochastic framework, the conservation properties (8.38) takes the following form.
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For any β ∈ R, we have

µβLβ = 0 and µβLβ = 0

In addition µβ is Lβ-reversible, in the sense that for any smooth couple of functions (g, h)

with compact support on R3k we have

µβ
(
g Lβ(h)

)
) = µβ

(
Lβ(g) h

)

Proof :
By a simple integration by part formula, for any smooth function f with compact support on R3k+3k

we check that ∫
e−βH(x) Lβ(f)(x) dx

= −β
∑k

i=1

∫
f(x) ∂

∂qi

(
e−βH ∂H

∂pi

)
(x) dx

+β
∑k

i=1

∫
f(x) ∂

∂pi

(
e−βH

(
∂H
∂qi

+ σ2 ∂H
∂pi

))
(x) dx

+σ2
∑k

i=1

∫
f(x) ∂

2

∂p2
i

(
e−βH

)
(x) dx

This implies that

µβ (Lβ(f))

=
∑k

i=1 µβ

{
f
[(
β2 ∂H

∂pi
∂H
∂qi
− β ∂2H

∂qi∂pi

)
− β2 ∂H

∂pi

(
∂H
∂qi

+ σ2 ∂H
∂pi

)]}
+
∑k

i=1 µβ

{
f

[
β
(

∂2H
∂qi∂pi

+ σ2 ∂2H
∂p2
i

)
− σ2β ∂

2H
∂p2
i

+ σ2β2
(
∂H
∂pi

)2
]}

= 0

In much the same way, for any smooth functions (g, h) with compact support on R3k we find that

∫
e−βV (q)g(q) Lβ(h)(q) dq =

k∑
i=1

∫
g(q)

∂

∂qi

(
e−βV

∂h

∂qi

)
(q) dq

= −
k∑
i=1

∫
e−βV (q) ∂g

∂qi
(q)

∂h

∂qi
(q) dq

=
k∑
i=1

∫
h(q)

∂

∂qi

(
e−βV

∂g

∂qi

)
(q) dq

This clearly ends the proof of the lemma.

The stability properties of the Langevin models (8.44) and (8.45) can be analyzed using the tools
developped in section 5.7, section 5.8. More precisely, we first check that the semigroup Pt of these
diffusion models have a smooth density w.r.t. the Lebesgue measure. This will ensure that Pt satisfies
the Dobrushin local contraction condition (4.39) for any t > 0. The second step is to find a judicious
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Lyapunov function satisfying the condition (5.45). By (5.46), these two properties ensure that the law
of the random states of the Langevin models (8.44) and (8.45) converge exponentially fast, as the
time parameter tends to infinity, to the invariant measures (8.42) and (8.43). Nevertheless, up to our
knowledge most of the Lyapunov functions developed in the literature on Langevin diffusions require
that the potential functions behave as polynomials at infinity. These techniques cannot be used to
analyze the Lennard-Jones potential functions presented in (8.41). The only work in this direction
seems to be the article by B. Cooke, J.C. Mattingly, S.A. McKinley, and S.C. Schmidler [150] on a
reduced two-dimensional Langevin diffusion model.

8.5.2 The Schrödinger equation

A physical derivation

The Schrödinger equation is the quantum mechanics version of the Newton’s second law of motion of
classical mechanics (the mass times the acceleration is the sum of the forces). This equation represent
the wave function (a.k.a. the quantum state) evolution of some physical system, including molecular,
atomic of subatomic systems, as well as macroscopic systems like the universe [532].

In 1924 de Broglie made the hypothesis that if light waves of frequency ω behave as a population
of particles of energy E = ~ω, then massive particles with energy E can also behave like waves of
frequency ω = E/~. More precisely, the wave function of a free particle of momentum p = ~k and
energy

E =
p2

2m
= ~ω ⇒ E =

k2~2

2m
=

p2

2m
has the following form

ψ(t, x) = ψ0 e
i(kx−ωt)

This wave function is the result of two traveling waves in the x and t directions.
An elementary computation shows that

∂ψ

∂x
= ik ψ ⇒ − ~2

2m

∂2ψ

∂x
= k2 ~2

2m
ψ =

p2

2m
ψ = E ψ

and

i~
∂ψ

∂t
= ~ω ψ = E ψ

from which we conclude that

− ~2

2m

∂2ψ

∂x
= E ψ = i~

∂ψ

∂t
and

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x

Extending these wave functions to particles motions in a potential energy V (x) the energy E is
the sum of the kinetic and the potential energies

E =
p2

2m
+ V (x)

Assuming that the above equations are valid in this case, we obtain the time dependent Schrödinger
wave equation

i~
∂ψ

∂t
= E ψ = − p2

2m
ψ + V ψ = − ~2

2m

∂2ψ

∂x
+ V ψ

Rewritten in a slightly different form, the Schrödinger wave equation equation takes the following
form

i~
∂ψ

∂t
= −LV (ψ) with the Schrödinger operator LV =

~2

2m

∂2

∂x
− V
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A formal change of time coordinate t = −iτ~ and u(τ, x) = ψ(−iτ~, x) transforms the above
equation into a the heat type equation

∂u

∂τ
= LV (u) (8.46)

In physics, this change of coordinate is sometimes called a Wick rotation of the time axis,
and the resulting equation is often referred as the Schrödinger equation in imaginary time.

Notice that the formal change of time coordinate t = −iτ and

v(τ, x) := ψ(−iτ, x) = u(τ/~, x)

transforms the above equation into

∂v

∂τ
(τ, x) =

~
2m

∂2v

∂x2
(τ, x)− 1

~
V (x)v(τ, x) (8.47)

Feynman-Kac formulae

We consider a time homogeneous stochastic process Xτ on some state space S with infinitesimal
generator L acting on some domain of functions D(L).

We denote by Qτ the integral operator defined for any bounded function f on S by the
formula

Qτ (f)(x) := E
(
f(Xτ ) exp

{
−
∫ τ

0
V (Xs)ds

}
| X0 = x

)
(8.48)

We also consider the Feynman-Kac measures γt and ηt defined by

ηt(f) = γt(f)/γt(1) and γt(f) = E
(
f(Xτ ) exp

{
−
∫ τ

0
V (Xs)ds

})
(8.49)

In the further development of this section we implicitly assume that Qτ (D(L)) and L(D(L)) are
subsets of D(L). This condition depends on the regularity property of the generator L. For jump type
infinitesimal generators this condition holds for any bounded potential function with D(L) = B(S).
For diffusion type infinitesimal generators on S = Rd, this condition holds for twice differentiable
functions D(L) = C2

b (S) and bounded smooth potential functions.
We have the sg property

∀s, t ≥ 0 Qs+t = QsQt and Q0 = Id (8.50)

In addition, the following evolution are satisfied for any f ∈ D(L)

∂

∂τ
Qτ (f) := Qτ (LV (f)) = LV (Qτ (f)) (8.51)

In particular, the function u(τ, x) := Qτ (f)(x) satisfies the equation

∂u

∂τ
= LV (u) with LV = L− V (8.52)
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These properties of Feynman-Kac semigroups have been proved in section 5.5. Next, we provide an
alternative formal derivation of the evolution equations (8.51) and (8.52). For any s ≤ τ , using the
Markov property, we prove that

Qτ (f)(x) = E

E
(
f(Xτ ) e−

∫ τ
s V (Xr)dr | Xs

)
︸ ︷︷ ︸

=Qτ−s(f)(Xs)

e−
∫ s
0 V (Xr)dr| X0 = x


This yields the sg property (8.50). Now we come to the proof of (8.51). We use the decomposition

Qτ+dτ (f)(x)−Qτ (f)(x)

= E
(
f(Xτ+dτ )

(
e−
∫ τ+dτ
0 V (Xs)ds − e−

∫ τ
0 V (Xs)ds

)
| X0 = x

)
+E

(
(f(Xτ+dτ )− f(Xτ )) e−

∫ τ
0 V (Xs)ds | X0 = x

)
The first term is given by

E
(
f(Xτ+dτ )

(
e−
∫ τ+dτ
0 V (Xs)ds − e−

∫ τ
0 V (Xs)ds

)
| X0 = x

)
= E

(
f(Xτ+dτ ) e−

∫ τ
0 V (Xs)ds

(
e−
∫ τ+dτ
τ V (Xs)ds − 1

)
| X0 = x

)
' E

(
(−V )(Xτ ) f(Xτ ) e−

∫ τ
0 V (Xs)ds | X0 = x

)
dτ = Qτ ((−V )f) dτ

and the second one is given by

E
(

(f(Xτ+dτ )− f(Xτ )) e−
∫ τ
0 V (Xs)ds

)
= E

(
(E (f(Xτ+dτ ) | Xτ )− f(Xτ )) e−

∫ τ
0 V (Xs)ds

)
= E

(
L(f)(Xτ ) e−

∫ τ
0 V (Xs)ds

)
dτ = Qτ (L(f)) dτ

This ends the proof of the first assertion. The r.h.s. of formula (8.51) comes from the fact that

Qτ+dτ = QdτQτ =⇒ Qτ+dτ −Qτ = [Qdτ − Id]︸ ︷︷ ︸
' LV dτ

Qτ

This ends the proof of the desired evolution equations.
The integral operators Qτ can be made more explicit using the following formulae

E
(
f(Xτ ) e−

∫ τ
0 V (Xs)ds | X0 = x

)
= E

(
E
(
e−
∫ τ
0 V (Xs)ds | X0, Xτ

)
f(Xτ ) | X0 = x

)
=

∫
E
(
e−
∫ τ
0 V (Xs)ds | X0 = x, Xτ = y

)
P (Xτ ∈ dy | X0 = x)︸ ︷︷ ︸

:=Qτ (x,dy)

f(y)
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Using the sg property (8.50), the function u(t, x) := Qt(f)(x) satisfies the transport equation

u(s+ t, x) :=

∫
Qs(x, dy) u(t, y)

In physics, the Feynman-Kac sg is also called the Green function, or the Feynman-Kac
propagator.

Notice that

(8.51)⇒ ∂2

∂t2
Qt(f) = LV

(
∂

∂t
Qt(f)

)
= (LV )2(Qt(f))⇒ ∀n ≥ 1

∂n

∂tn
Qτ (f)

t=0
= (LV )nf

Thus, formally we can write the evolution semigroup

Qt = e−tH with the Hamiltonian operator H = −LV = −L+ V (8.53)

in the sense that

Qt(f) = etL
V
f =

∑
n≥0

tn

n!
(LV )n(f) = e−tHf

8.5.3 The Ising model

The Ising model currently used in electromagnetism, statistical mechanics, as well as image process-
ing is associated with the state space

S = {−1,+1}E E = {1, . . . , L} × {1, . . . , L}.

equipped with the uniform measure λ(x) = 2−L
2
. The lattice E is equipped with the following graph

structure

j1 = (i1, i2 + 1) , j2 = (i1 + 1, i2) , j3 = (i1, i2 − 1) , j4 = (i1 − 1, i2)

around some state (i1, i2) ∈ E. Two neighbors i, j ∈ E are denoted by i ∼ i′.

The energy of a configuration x ∈ S is given by the Hamiltonian function

V (x) = h
∑
i∈E

x(i)− J
∑
i∼j

x(i)x(j), (8.54)

The parameter h ∈ R represents the strength of an external magnetic field, and J ∈ R
reflects the interaction degree between the sites.

In the Sherrington-Kirkpatrick model introduced in 1975 in their seminal article [535], the potential
function is given by

V (θ, x) :=
∑

1≤i≤j≤d
θi,j x(i) x(j) + h

d∑
i=1

x(i)

where Θi,j are assumed to be i.i.d. centered gaussian random variables. More general disordered models
can be defined in terms of random mappings Θ : (i, j) ∈ {1, . . . , d}2 7→ Θi,j .

http://www.ph.biu.ac.il/~rapaport/java-apps/ising.html
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Another way to extend the Ising model is to replace the spin state {−1,+1} by some finite set of
colors C := {c1, . . . , cq}, for some q ≥ 1. In this situation, the energy of a configuration x ∈ S := CE

is given by the Hamiltonian function

V (x) = h
∑
i∈E

x(i)− J
∑
i∼j

1x(i)=x(j), (8.55)

This model was introduced by Renfrey Potts in his 1951 PhD thesis [498]. A more physical model is
given by the planar Potts model, also called the clock model suggested to him by his advisor Cyril
Domb. In this model, the spins are replaced by angles

∀1 ≤ k ≤ q θk = 2πq/k

and the energy of a configuration x ∈ S := {1, . . . , q}E is given by

V (x) = −J
∑
i∼j

cos
(
θx(i) − θx(j)

)
,

The four-state clock model is sometimes termed the Ashkin-Teller model was introduced by in 1943
by Julius Ashkin and Edward Teller in [16]. The Boltzmann-Gibbs measures associated with these
models are defined by

π(x) =
1

Zβ
e−βV (x) λ(x)

where β stands for some inverse temperature parameter, and Zβ some normalizing constant.
In the Gibbs model, for any fixed i ∈ I we have

π(x) ∝ e−βh x(i)−βJ x(i)
∑
j∼i x(j)

× e−βh
∑
j∈I−i x(j)−βJ

∑
j∼k, j,k∈I−i x(j)x(k)

This yields the disintegration formulae

∀i ∈ I π(x) := πi(xi) LI−i,i(xI−i;xi)

with the i-th marginal of πi of π, and the conditional distribution

LI−i,i(xI−i;xi) ∝ exp

−βh xi − βJ xi
∑
j∼i

xj



More precisely, we have the following spin-site updates

LI−i,i(xI−i; {1}) = 1− LI−i,i(xI−i; {−1})

=
e−βh−βJ

∑
j∼i xj

e−βh−βJ
∑
j∼i xj + e+βh +βJ

∑
j∼i xj

= 1/
(

1 + e2β[h+J
∑
j∼i xj]

)
We associate with these models the Markov transitions Ki given for any i ∈ I by

Ki(x, dy) := δxI−i(dyI−i) LI−i,i(yI−i, dyi) (8.56)
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The corresponding Gibbs sampler is the Markov chain with the elementary transition

M =
∏
i∈I

Ki in any order (8.57)

We can alternatively choose the Markov transitions

M =
1

Card(I)

∑
i∈I

Ki

Arguing as in section 7.3, one checks that M is reversible w.r.t. π, so that πM = π.

To sample the transition x  y w.r.t. the Markov transition Ki given in (8.56), we sample a
uniform r.v. U on [0, 1] and we set

y = F (i)(x)

with the random function F (i) : x ∈ S → F (i)(x) ∈ S defined by

∀j ∈ I − i F (i)(x)(j) = x(j)

and

F (i)(x)(i) := 1[0,pi(x)[(U)− 1[pi(x),1](U) (8.58)

with

pi(x) := 1/
(

1 + e2β[h+J
∑
j∼i x(j)]

)
(8.59)

When J < 0, the chance to pick the spin +1 increases as the number j ∼ i have the spin +1. This
model is called an attractive spin system.

We equip the state space S = {−1,+1}I , with I = {1, . . . , L}2 with the partial order

x ≤ y =⇒ ∀i ∈ I x(i) ≤ y(i)

The minimal and maximal states xmin and xmax are clearly given by

∀i ∈ I xmin(i) = −1 and xmax(i) = +1

We also observe that

x ≤ y ⇒ ∀i ∈ I
∑
j∼i

x(j) ≤
∑
j∼i

y(j)

Thus, when J < 0 the functions F (i) and pi(x) defined in (8.58) and (8.59) are such that

x ≤ y ⇒ ∀i ∈ I pi(x) := 1/
(

1 + e2β[h−|J |
∑
j∼i x(j)]

)
≤ pi(y)

⇒ ∀i ∈ I F (i)(x) ≤ F (i)(y)

Given a sequence of independent functions F (i), with i ∈ I, the functions

F = ◦i∈IF (i) (in any order) and F =
1

Card(I)

∑
i∈I

F (i)

and monotone and compatible w.r.t. the Gibbs Markov transitions. These functions can be used to
sample the Ising model using the Propp and Wilson technique.



236 CHAPTER 8. SOME ILLUSTRATIONS

8.5.4 Graph coloring models

We let E = {1, . . . , d} can be the set of colors on the vertices of some graph I = (V, E). When
E = {0, 1} the color 0 can be interpreted as an empty site, and the color 1 as an occupied site. In this
situation, a given configuration x = (x(i))i∈I can be interpreted as a collection of particles placed on
the vertices i ∈ I s.t. x(i) = 1.

We let X = (Xi)i∈I be some r.v. with distribution π on EI . For any fixed i ∈ I, and any x ∈ EI
we set

xI−i = (xj)j∈I−{i} with I − i := {j ∈ I : j 6= i}

We assume that the following desintegration property is satisfied

π(dx) = πI−i(dxI−i)LI−i,i(xI−i, dxi)

with the i-th marginals πi of π and the conditional probability measure

LI−i,i(xI−i, dxi) = P (Xi ∈ dxi | XI−i = xI−i)

In the above displayed formula, dx, resp. dxi and dxI−i, stand for an infinitesimal neighborhood of
the point x ∈ EI , resp. xi ∈ E and xI−i ∈ EI−i.

In the graph coloring model discussed above, we let A be the set of graph coloring such that two
neighbor vertices have different colors.

When E = {0, 1} the set A can be chosen so that to represent the configurations where no two
occupied sites are adjacent (that is i ∼ j ⇒ x(i)x(j) 6= 1). In statistical physics, this model is often
referred as the hard-core model.

In this context, I − i represents the set of all vertices that differs from the vertex i ∈ I. Given
some coloring xI−i of these vertices I − i, the set Ai(xI−i) coincides with the set of colors k ∈ E not
appearing in the neighborhood of the vertex i.

When the reference measure λ is given by the product counting measure on the set of colors,
the Markov transition LI−i,i(xI−i, dxi) amounts in choosing uniformly at random some color k that
doesn’t appear in the neighborhood of the vertex i and set xi = k.

The Gibbs sampler associated with the Markov transition (8.57) is defined by a Markov chain
Xn = (Xn(i))i∈I ∈ S = EI : At time n, we choose randomly a vertex i ∈ I and we set Xn+1(j) = Xn(j)
for any j ∈ I − i. Finally Xn(i) is an uniform r.v. on the set E −Xn(N(i)), where N(i) stands for the
set of all neighbors j of i (that is the vertices j s.t. (i, j) ∈ E).

8.5.5 Subset sampling

We let λ be a reference probability measure on the set S = EI discussed in section 8.5.4. We assume
that λ satisfies the desintegration property

λ(dx) = λI−i(dxI−i) PI−i,i(xI−i, dxi)

for some Markov transitions PI−i,i from EI−i into E. For finite state spaces E, we can consider the
product counting measures

λ(x) =
∏
i∈I

λi(xi) with λi(xi) =
1

Card(E)

In this situation, we have

λI−i(dxI−i) =
∏
j∈I

λj(xj) and PI−i,i(xI−i, dxi) = λi(xi)
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We let π be the Boltzmann-Gibbs measure associated with some subset A ⊂ S = EI and defined
by

π(dx) =
1

λ(A)
1A(x) λ(dx)

For each i ∈ I, we let AI−i be the projection of the set A into the set EI−i defined by the set of
mappings xI−i ∈ EI−i that can be extended to some mapping x ∈ A by choosing some k ∈ E and
setting x(i) = k. In this slightly abusive notation, we let

Ai(xI−i) = {k ∈ E : x ∈ A}

By construction, we have

1A(x) = 1AI−i(xI−i)× 1AI−i(xI−i)(xi)

and therefore

π(dx) ∝ 1AI−i(xI−i) λI−i(dxI−i)︸ ︷︷ ︸
∝ πI−i(dxI−i)

×PI−i,i(xI−i, dxi) 1AI−i(xI−i)(xi)︸ ︷︷ ︸
∝ LI−i,i(xI−i,dxi)

The Gibbs sampler associated with the Markov transition (8.57) is defined by a Markov chain
Xn = (Xn(i))i∈I ∈ S = EI .

At time n, we choose randomly a vertex i ∈ I and we set Xn+1(j) = Xn(j) for any j ∈ I − i.
Finally Xn(i) is a r.v. with the distribution PI−i,i(xI−i, dxi) restricted to the set AI−i(xI−i).





Part III

Nonlinear Monte Carlo methods
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Chapter 9

Nonlinear Markov processes

9.1 Discrete time models

9.1.1 Markov-McKean models

In Section 4 and Section 5, we have presented a class of Markov chain models, with a linear evolution
of the distributions of the random states. In more general situations, the law of the random states
ηn = Law(Xn) of the stochastic process satisfies a nonlinear evolution equation of the following form

ηn = Φn(ηn−1) (9.1)

for some nonnecessarily linear one step mapping Φn from P(En−1) into P(En). Notice that the Markov
chain model discussed in (4.14) is associated with the linear mapping

Φn : η ∈ P(En−1) 7→ Φn(η) = ηKn ∈ P(En)

Inversely, any evolution equation of the form (9.1) can be interpreted as the evolution of the
distributions of the random states of a Markov chain taking values in some state spaces En. More
precisely, there always exists some (non unique) collection of Markov transition Kn,η indexed by the
time parameter n ∈ N, and the set of probability measures η on En−1, such that

ηn = ηn−1Kn,ηn−1 (9.2)

For instance, we can take Kn,η(xn−1, .) = Φn(η). In this situation, the random states Xn form
a sequence of independent random variables with distributions ηn satisfying the evolution Equation
(9.1). We refer the reader to Section 11.2.3, for applications of these models in the context of linear
Gaussian filtering models, and their mean field ensemble Kalman filters.

By construction, the random states Xn of the system can again be interpreted as the distribution
of “memoryless” Markov processes with elementary transitions

Kn,ηn−1(xn−1, dxn) = P (Xn ∈ dxn | Xn−1 = xn−1)

that depend on the distribution ηn−1 = Law(Xn−1) of the current state Xn−1 of the system. These
stochastic processes are called the McKean interpretations of the nonlinear equation in distribution
space (9.1). The distributions of the random trajectories (Xp)0≤p≤n of the chain are given by the
McKean distributions

P ((X0, . . . , Xn) ∈ d(x0, . . . , xn)) = η0(dx0)
∏

1≤p≤n
Kp,ηp−1(xp−1, dxp) (9.3)

The existence of an overall distribution P on the set of trajectories Ω :=
∏
n≥0En of the McKean-

Markov chain is granted by the Ionescu-Tulcea’s theorem (cf. for instance the theorem on page 249,
in the textbook by A. Shiryaev [539]).

241
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In computational physics, and more particularly in fluid mechanics, nonlinear stochastic processes
of the form (9.3) represent the evolution of complex stochastic systems with so many particles that they
can be treated as a continuum. In this interpretation, a single particle interacts with the distribution
of the whole population of individuals.

Another central idea, commonly used in this stochastic modeling, is to express the evolution of
macroscopic quantities in terms of averages w.r.t. the distribution of microscopic variables. In kinetic
theory, these stochastic models are used to represent the evolutions of various physical systems, such
as gases, macroscopic fluid models, and molecular chaotic systems.

The foundations of kinetic theory were laid down by J.C. Maxwell [440, 441, 442]. Further details
on these models can be found in the series of articles [119, 120, 121, 136, 308, 419, 576] and in the
more probabilistic treatments [309, 445, 446, 447, 559, 566].

More recently, these Vlasov type equations have also come to play an important role in mathe-
matical biology, as well as in socio-economics and stochastic games theory.

In biology, they are used to model animal competitions as well as bacteria dynamics with group
interactions, or complex cell motions [46, 47, 459, 494]. In stochastic games theory, McKean-Vlasov
models represent competing multiple class agents weakly coupled w.r.t. their dynamics and their
performance [85, 157, 301, 325, 346, 443, 418, 398, 399, 400, 401].

We quote recent applications of Markov-McKean models in filtering problems arising in turbulent
fluid mechanics and weather forecasting prediction developed by Ch. Baehr and his co-authors in a
series of articles [27, 28, 30, 31, 407, 505, 558].

The time evolution of these stochastic kinetic models can be defined in terms of discrete generation
nonlinear Markov chains discussed in Section 9.1, or in terms of the integro-differential equations
presented in Section 9.2. In this connection, we also quote the series of articles [14, 64, 65, 66, 389]
in the late 1990s on the rate of convergence of some time discretization schemes of McKean-Vlasov
diffusions.

9.1.2 McKean-Vlasov type models

Prototypes of discrete generation and nonlinear Markov-McKean models are given by McKean-Vlasov-
Fokker-Planck diffusion type models arising in fluid mechanics, as well as in mean field game theory.
These models are also used in advanced signal processing, and more particularly in forecasting data
assimilation problems. We refer the reader to Section 11.2.3, dedicated to a McKean diffusion type
interpretation of the Kalman filter, and their mean field ensemble Kalman filters.

In dimension d = 1, these nonhomogeneous Markov models are given by an R-valued stochastic
process defined by the recursive equation

Xn −Xn−1 = an(Xn−1, ηn−1) + σn(Xn−1, ηn−1) Wn (9.4)

with ηn−1 := Law(Xn−1). In the above displayed formula, X0 is a r.v. (Wn)n≥0 is a collection of
i.i.d. centered Gaussian random variables with unit variance, and the drift and diffusion functions are
defined by

an(Xn−1, ηn−1) =

∫
an(Xn−1, xn−1) ηn−1(dxn−1)

σn(Xn−1, ηn−1) =

∫
σn(Xn−1, xn−1) ηn−1(dxn−1) (9.5)

for some regular mappings an and σn. Whenever σn(x, y) ≥ ε, for some ε > 0, the laws of the random
states ηn = Law(Xn) satisfy the evolution Equation (9.2), with the McKean transitions given by

Kn,η(x, dy) =
1√

2πσ2
n(x, η)

exp

{
−1

2

(
(y − x)− an(x, η)

σn(x, η)

)2
}
dy
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9.1.3 Nonlinear state space models

A more general class of McKean-Markov chain models on some measurable state spaces En are given
by the recursive formulae

Xn = Fn(Xn−1, ηn−1,Wn) with ηn−1 := Law(Xn−1) (9.6)

In the above display, Wn is a collection of independent, (and independent of (Xp)0≤p<n) r.v. taking
values in some state space Wn, and Fn is some measurable mapping from (En−1 × P(En−1) ×Wn)
into En.

Here again, we easily check that the laws of the random states ηn = Law(Xn) satisfy the evolution
Equation (9.2), with the McKean transitions

Kn,η(f)(x) = E [f(Fn(x, η,Wn))]

More general discrete time generation Markov-McKean models of the form (9.6) are discussed in the
series of articles [153, 158, 161, 177, 170, 208].

9.1.4 Feynman-Kac models

We consider the Feynman-Kac measures (γn, ηn) discussed in section 4.2.1 and for any fn ∈ Bb(En)
defined by

ηn(fn) = γn(fn)/γn(1) with γn(fn) := E

fn(Xn)
∏

0≤p<n
Gp(Xp)

 (9.7)

We recall that

γn+1(fn+1) = γn(GnMn+1(fn+1))⇒ ηn+1(fn+1) = γn(GnMn+1(fn+1))
γn(Gn) = γn(GnMn+1(fn+1))/γn(1)

γn(Gn)/γn(1)

= ηn(GnMn+1(fn+1))
ηn(Gn) = ΨGn(ηn) (Mn+1(fn+1))

This shows that the flow of measures ηn satisfies a nonlinear evolution equation of the form (9.1), with
the one step mappings

Φn+1(η) = ΨGn(η)Mn+1 (9.8)

In the above displayed formula, ΨGn(η) stands for the Boltzmann-Gibbs measures defined in (7). We
recall from (8) that ΨGn(η) can be interpreted as a nonlinear Markov transport model

ΨGn(η) = ηSη,Gn (9.9)

for some Markov transitions Sµ,Gn from En into itself. In this situation, the one step mapping Φn+1

can be rewritten as follows

Φn+1(η) = ΨGn(η)Mn+1 = ηKn+1,η with Kn+1,η := Sη,GnMn+1

For instance, for [0, 1]-valued potential functions Gn, and any ε ∈ [0, 1], we can choose

Sη,Gn(x, dy) := ε G(x) δx(dy) + (1− ε G(x)) ΨGn(η)(dy)

In this situation, Kn+1,η takes the form

Kn+1,η(x, dy) = εGn(x) Mn+1(x, dy) + (1− εGn(x)) ΨGn(η)Mn+1(dy) (9.10)
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In continuation to the remarks we made in the beginning of Section 5, discrete time Feynman-Kac
models also encapsulate without further work continuous time models. More precisely, let us consider
a continuous time Markov process (X ′t)t≥0 taking values in some Polish state space E, and a sequence
of measurable and bounded functions

V : (t, x) ∈ (R+ × E) 7→ Vt(x) ∈ R

As in Section 5, we consider a time mesh (tn)n≥0, with t0 = 0, and we let En = D([tn, tn+1], E) be
the set of càdlàg paths from the interval [tn, tn+1] into E. We consider the Feynman-Kac model (4.17)
associated with the sequence of random variables Xn, and the potential functions Gn on En, defined
by

Xn = (X ′t)tn≤t≤tn+1 and Gn(Xn) = exp

(∫ tn+1

tn

Vt(X
′
t) dt

)
(9.11)

By construction, it is readily checked that

Qn(dx) =
1

Zn
exp

{∫ tn

0
Vt(xs) ds

}
P′tn+1

(dx)

where P′tn+1
is the distribution of (X ′t)0≤t≤tn+1 on D([0, tn+1], E). In the above display, dx = d(xs)s≤t

stands for an infinitesimal neighborhood of the path x = (xs)s≤tn ∈ D([0, tn+1], E).

9.1.5 Markov chain Monte Carlo with recycling

We consider a collection of Boltzmann-Gibbs measures µn are defined in terms of some reference
measure λ on some abstract measurable state space, say E, weighted by some product of potential
functions hp : E 7→ [0,∞[, with p ≤ n. More formally, these measures are defined, up to some
normalizing constant Zn, by the following formulae

µn(dx) =
1

Zn

 ∏
0≤p≤n

hp(x)

 λ(dx) (9.12)

for some normalizing constant Zn > 0.
For instance, let us consider a nondecreasing sequence of inverse temperature parameters βn, with

β0 = 0 = β−1, and a given energy type function V , on some state space E, equipped with some
reference distribution λ.

hn(x) = exp (− (βn − βn−1)V (x))

in (9.12), then we find that

µn(dx) =
1

Zn
exp (−βnV (x)) λ(dx) with Zn =

∫
λ(dx) exp (−βnV (x))

If we choose the indicator functions hn := 1An , with nonincreasing sequence of subsets An ⊂ E,
take the following simple form

µn(dx) =
1

Zn
1An(x) λ(dx) and Zn := λ(An) (9.13)

These measure restriction models arise in a variety of application domains, including in rare event
simulation and stochastic optimization models. In this section, we illustrate these models in the con-
text of calibration problems and uncertainty propagations in complex numerical codes (or in numerical
meta-models). These problems are often formulated in terms of a classical input-output transformation
I 7→ O = C(I). The inputs I have some distribution λ. They represent the sources of randomness, some
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tuning parameters, or unknown kinetic parameters of the code. The output variable O can be inter-
preted as the outputs of a numerical approximation of some partial differential equation representing
a given physical, chemical, or some biological phenomenon.

The prototype of questions arising in practice is the following: We are given a decreasing sequence
of unlikely critical domains, say On, in the space of the outputs, and we want to estimate both the
probability that the outputs fall into these sets, as well as the distribution of the inputs leading to
these critical events. More formally, if we set An := C−1(On) these probabilistic objects coincide with
the normalizing constants Zn, and the conditional distributions µn introduced in (9.13).

We further assume that we have a dedicated MCMC elementary transition Mn, with the target
measure µn = µnMn, at any time n ≥ 0.

For instance, In the example (9.13) discussed above, we can choose in (9.14) the MCMC transition

Mn(x, dy) = K(x, dy) 1An(y) + (1−K(x,An)) δx(dy)

for any λ-reversible Markov transition K. In engineering and scientific computing literature, the mean
field models associated with these restriction models are also called subset simulation algorithms [22,
23, 24, 413, 416].

By construction, it is now readily checked that

µn = µnMn

µn = Ψhn(µn−1)

}
=⇒ µn = µnMn = Ψhn(µn−1)Mn (9.14)

In other words, if we set Gn = hn+1, in the Feynman-Kac model (4.17), then we have µn = ηn. In
other words, the Boltzmann-Gibbs measures µn can also be interpreted as the n-th time marginals
of the Feynman-Kac measures Qn, with the potential functions Gn = hn+1 and the reference Markov
chain Xn, associated with the Markov chain Monte Carlo elementary transition Mn. It is also easily
checked that

Zn = µn−1(hn)×Zn−1 ⇒ Zn/Z0 = E

 ∏
0≤p≤n

Gp(Xp)

 (9.15)

In the above display, Xn stands for a reference Markov chain with initial distribution µ0 and elementary
transition probabilities Mn.

9.2 Continuous time models

To underline the role of mean field simulation in the numerical solving of nonlinear integro-differential
equations, we provide a description of some continuous time versions of the Markov transport Equation
(9.2). The discrete time approximation of these models are presented in section 9.2.5.

9.2.1 Nonlinear jump-diffusion models

We consider the general jump-diffusion processes (5.3) discussed in the end of Section 4. Continuous
time McKean processes X ′t are defined as in (5.1) and (5.3) by replacing the parameters (a′t, σ

′
t, λ
′
t, P
′
t)

by some collection of functional parameters

(a′t(., η′t), σ′t(., η′t), λ′t,,η′t , P
′
t,η′t

)

that depend on the distribution flow η′t = Law(X ′t) of the random states X ′t. To avoid unnecessary
technical discussion, it is implicitly assumed that the model parameters are sufficiently regular, so
that the corresponding nonlinear jump diffusion process is well defined on the real line R+.
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In this situation, the corresponding integro-differential Equation (5.43) takes the following form

d

dt
η′t(f) = η′t

(
Lt,η′t(f)

)
(9.16)

with the collection of integro-differential operators, indexed by the time parameter t, and the set of
probability distributions η on Rd, given by

Lt,η(f)(x) = L′t,η(f)(x) + λ′t;η(x)

∫
[f(y)− f(x)] P ′t,η(x, dy)

L′t,η :=
d∑
i=1

a′t,i(x, η) ∂i +
1

2

d∑
i,j=1

(
σ′t(x, η)(σ′t(x, η))T

)
i,j

∂i,j

(9.17)

We notice that the second order differential operator L′t,η defined in (9.17) is the infinitesimal generator
of the nonlinear diffusion process

dX ′t = a′t(X
′
t, η
′
t) dt+ σ′t(X

′
t, η
′
t) dWt (9.18)

The corresponding nonlinear diffusion jump process X ′t evolves between jumps times Tn as in
(9.18). As in (5.3), the jump times Tn are defined by the recursion

Tn = inf

{
t ≥ Tn−1 :

∫ t

Tn−1

λ′u,η′u(X ′u) du ≥ en

}
(9.19)

At jump times Tn, the process at X ′Tn− jumps to a new location X ′Tn randomly chosen with a distri-
bution P ′Tn−,η′Tn−

(X ′Tn−, dy) that depends on the distribution η′Tn− of the random state X ′Tn− of the

process before the jump.

9.2.2 Nonlinear integro-differential equations

We further assume that the jump transition P ′t,η′t
(x, dy) = qt,η′t(x, y) dy and the law of the random

states η′t(dy) = pt(y) dy of the jump-diffusion process (9.18) have a smooth density qt,η′t(x, y), and pt(y)

w.r.t. the Lebesgue measure dy on Rd. To simplify the presentation, with a slight abuse of notation

we set
(
a′t(., pt), σ′t(., pt), qt,pt , λ′t,pt , L′t,pt

)
instead of

(
a′t(., η′t), σ′t(., η′t), qt,η′t , λ

′
t,η′t
, L′t,η′t

)
.

In this notation, the equation (9.16) takes the form

∂

∂t
η′t(f) =

∫
f(x)

∂pt
∂t

(x) dx

=

∫
pt(x) L′t,pt(f)(x) dx

+

∫
pt(x) λ′t,pt(x) qt,pt(x, y) (f(y)− f(x)) dxdy

from which we conclude that

∂pt
∂t

(x) = L′?t,pt(pt)(x) +

(∫
pt(y) λ′t,pt(y) qt,pt(y, x) dy

)
− pt(x) λ′t(x) (9.20)

with the dual differential operator

L′?t,pt(pt)

= −
∑d

i=1 ∂i

(
a′t,i(., pt) pt

)
+ 1

2

∑d
i,j=1 ∂i,j

((
σ′t(., pt)(σ′t(., pt))T

)
i,j

pt

)
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Inversely, any equation of the form (9.20) can be interpreted as the probability densities of the
random states of a jump diffusion model of the form (9.19).

The mean field particle methods developped in Section 9.3.2, and in Section 9.3 allow to reduce
the numerical solving of nonlinear integro-differential equations of the form (9.20) to the stochastic
simulation of the jump-diffusion process (9.18). The nonlinear equations (9.16) and (9.20), and their
probabilistic interpretations where introduced in the early 1950s in [368] by M. Kac to analyze the
Vlasov kinetic equation of plasma [395]. These lines of ideas were further developed by H. P. McKean
in [445].

For a more thorough and rigorous discussion on these nonlinear models, and their mean field
particle interpretations we refer the reader to the series of articles by C. Graham [316, 317, 318], and
the ones by C. Graham and S. Méléard [309, 311, 313, 314, 315].

9.2.3 Normalized Feynman-Kac flows

When the functions a′t,i(x, η) = a′t,i(x) and σ′t(x, η) = σ′t(x) doesn’t depend on the parameter η, the
operator L′t,η = L′t defined in (9.17) coincides with the infinitesimal generator of the diffusion process
defined in (5.1). We also consider the parameters

λ′t;η := Vt(x) and P ′t,η(x, dy) := η(dy) (9.21)

In this situation, the Equation (9.16) is given by the following quadratic evolution model

∂tη
′
t(f) = η′t

(
L′t(f)

)
+ η′t(Vt)η

′
t(f)− η′t(fVt) = η′t

(
LVt,η′t

(f)
)

(9.22)

with the “normalized” Schrödinger operator

LVt,η := L′t − (Vt − ηt(V ))

Using (5.40) the solution of this equation is given by

η′t(f) = γ′t(f)/γ′t(1)

where γ′t is the unnormalized Feynman-Kac measure defined by

γ′t(f) = E
[
f(X ′t) exp

(
−
∫ t

0
Vu(X ′u)du

)]
=

∫
η′0(dx0) E

[
f(X ′t) exp

(
−
∫ t

s
Vu(X ′u)du

)
| X ′0 = x0

]
=

∫
η′0(dx0) P V0,t(f)(x0) =

∫
γ′s(dxs) P

V
s,t(f)(xs)

with the Feynman-Kac semigroup defined in (5.33) given by

P Vs,t(f)(xs) = E
[
f(X ′t) exp

(
−
∫ t

s
Vu(X ′u)du

)
| X ′s = xs

]
In the above displayed formulae, X ′t stands for the diffusion process defined in (5.1) with infinitesimal
generator L′t.

These continuous time models are discussed in [170, 185, 187, 188, 194], as well as in [309, 445,
446, 447, 448].

Returning to the McKean interpretation models discussed in Section 9.2.1, the flow of measures
η′t = Law(Xt) can be interpreted as the distributions of the random states Xt of a jump type Markov
process.

Between the jumps, Xt follows the diffusion Equation (5.1). At jump times Tn, occurring with the
stochastic rate Vt(Xt), the process XTn−  XTn jumps to a new location, randomly chosen with the
distribution P ′Tn−,ηTn−

(x, dy) := η′Tn−(dy).
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9.2.4 A jump type Langevin model

We consider an non homogeneous overdamped Langevin diffusion, on an energy landscape associated
with a given energy function V ∈ C2(Rd,R+) on E = Rd, for some d ≥ 1. This model is defined by
the following diffusion equation

dX ′t = −βt ∇V (X ′t) +
√

2 dBt

where ∇V denotes the gradient of V , β an inverse temperature parameter, and Bt a standard Brow-
nian motion on Rd (also called a Wiener process). The infinitesimal generator associated with this
continuous time process is given by the second order differential operator

L′βt = −βt ∇V · ∇+4

Under some regularity conditions on V , for any fixed βt = β the diffusion X ′t is geometrically ergodic
with an invariant measure given by

dπβ =
1

Zβ
e−βV dλ (9.23)

where λ stands for the Lebesgue measure on Rd, and Zβ is a normalizing constant. When the inverse
temperature parameter βt depends on the time parameter t, the time inhomogeneous diffusion X ′t has
a time inhomogeneous generator L′βt .

We further assume that πβ0 = Law(X ′0), and we set β′t := dβt
dt . By construction, we have

d

dt
πβt(f) = β′t (πβt(V )πβt(f)− πβt(fV )) and πβtL

′
βt = 0

Using these observations, we readily check that πβt satisfies the Feynman-Kac evolution equation
defined as in (9.22) by replacing Vt by β′tV . More formally, we have that

d

dt
πβt(f) = πβt

(
L′βt(f)

)
+ β′t (πβt(V )πβt(f)− πβt(fV ))

from which we conclude that

πβt(f) = γt(f)/γt(1) with γt(f) := E
(
f(X ′t) exp

(
−
∫ t

0
β′s V (X ′s)ds

))
It is also easily checked that

γt(1) := E
(

exp

(
−
∫ t

0
β′s V (X ′s)ds

))
= exp

(
−
∫ t

0
β′s ηs(V )ds

)
= Zβt/Zβ0

This formula is known as the Jarzinsky equality [137, 138, 359, 360]. In statistical physics, the weight
functions

Vt(X ′) =

∫ t

0
β′s V (X ′s) ds

represent the out of equilibrium virtual work of the system on the time horizon t.
In summary, we have described a McKean interpretation of Boltzmann-Gibbs measures (9.23)

associated with some nondecreasing inverse cooling schedule. Returning to the McKean interpretations
of the Feynman-Kac models discussed in Section 9.2.3, the flow of measures

ηt := πβt = Law(Xt)

can be interpreted as the distributions of the random states Xt of a jump type Markov process.
Between the jumps, Xt follows the Langevin diffusion Equation (7.32). At jump times Tn, with the
stochastic rate β′tVt(Xt), the process XTn−  XTn jumps to a new site randomly chosen with the
distribution ηTn−(dy).
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9.2.5 Time discretization schemes

Using the same reasoning as in the end of Section 5, a discrete time approximation on a time mesh tn
of the jump-diffusion model discussed in Section 9.2.1 is given by a Markov chain Xn with elementary
transitions

Kn+1,ηn(x, dz) =

∫
Mn+1,ηn(x, dy) Jn+1,ηn(y, dz) (9.24)

with the probability measures ηn given by

ηn = ηn or ηn := ηnMn+1,ηn

In the above displayed integral formula, Mn+1,ηn stands for the transition of the Markov chain

Xn+1 = Xn + an+1 (Xn, ηn) ∆ + σn+1 (Xn, ηn)
(
Wtn+1 −Wtn

)
with (an+1,σn+1) =

(
a′tn , σ

′
tn

)
, and ηn = Law(Xn), The geometric jump type Markov transition Jn+1,η

is now defined in terms of the parameters

(Gn+1,η, Pn+1,η) =
(

exp
(
−∆λtn+1,η

)
, P ′tn+1,η

)
by the following equation

Jn+1,η(y, dz) = Gn+1,η(y) δy(dz) + (1−Gn+1,η(y)) Pn+1,η(y, dz)

In this situation, the discrete generation model (9.2), associated with the Markov transitions (9.24),
can be seen as an approximation of the jump type Markov process with infinitesimal generator (9.16).
Therefore, using the same line of arguments as the ones given in Section 5.6, the distribution flow ηn
of the random states of the discrete generation process given in (9.2) approximates the solution η′tn
of the continuous time integro-differential Equation (9.16). More precisely, taking ∆ ' 0 in (9.24), we
have the approximation

Jn+1,ηn − Id =
(
1− exp

(
−∆λtn+1,ηn

))
(P ′tn+1,ηn

− Id)

' λtn+1,ηn (P ′tn+1,ηn
− Id) ' λtn+1,ηn (P ′tn+1,ηn − Id) ∆

and for any smooth functions f we also have that

(Mn+1,ηn − Id)(f)(x)

' E
(
f
(
x+ a′tn (x, ηn) ∆ + σ′tn (x, ηn)

(
Wtn+1 −Wtn

))
− f(x)

)
' L′tn,ηn(f)(x) ∆

with the second order differential operator L′t,η defined in (9.17). As in (5.14), we conclude that

Kn+1,ηn ' Id+ Ltn,ηn ∆ ' Id+ Ltn,η′tn
(9.25)

with the infinitesimal generator Lt,η defined in (9.17).
If we choose ηn = ηnMn+1,ηn in (9.24), then the elementary transitions of the McKean-Markov

chain Xn  Xn+1 are decomposed into two steps

Xn

Mn+1,ηn

−−−−−−−−−−−−−−→ Xn

Jn+1,ηn

−−−−−−−−−−−−−−→ Xn+1 with Law
(
Xn

)
= ηn

If we set Xn+1/2 := Xn, and ηn+1/2 := ηn, then the corresponding discrete generation McKean model
is defined in terms of the slightly different equations

ηn  ηn+1/2 = ηnKn+1/2,ηn  ηn+1 = ηn+1/2Kn+1,ηn+1/2
(9.26)
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with the McKean transitions (
Kn+1/2,η,Kn+1,η

)
= (Mn+1,η, Jn+1,η)

Up to a change of time, the discrete evolution model described above has exactly the same form as the
one discussed in (9.2). To the best of our knowledge, the refined analysis of the couple of discrete time
approximation schemes discussed above has not been covered in the literature of McKean diffusions
with jumps.

9.3 Mean field particle methods

9.3.1 Discrete time models

With the exception of some very special cases, the evolution Equations (9.1) and their continuous time
versions (9.16) cannot be solved explicitly. For instance, in the context of the Feynman-Kac models
presented in (9.8), it can be shown that the measures ηn, or their continuous time versions (5.34)
discussed in section 5.5, cannot be represented in a closed form on some finite dimensional state-
space. A proof of this result can be found in the article by M. Chaleyat-Maurel and D. Michel [135],
in the context of nonlinear filtering problems. In addition, conventional harmonic type approximation
schemes, or related linearization style techniques, such as the extended Kalman filter, often provide
poor estimation results for highly nonlinear models.

On the other hand, more traditional numerical techniques for solving evolution equations of the
form (9.2) using deterministic type grid approximations require extensive calculations, and they rarely
cope with nonlinear distribution flows with strongly varying probability masses, or with high dimen-
sional problems. In contrast with these conventional numerical techniques, the mean field IPS tech-
nology presented in this section provides an accurate stochastic grid approximation scheme, equipped
with an interacting mechanism tracking the probability mass variations of the distribution flow. In
other words, these advanced Monte Carlo methods take advantage of the nonlinearities of the model,
to drive the particle populations in regions with high probability mass.

To design a mean field IPS model associated with a given collection of McKean transitions Kn,η,
we further assume that we have a dedicated Monte Carlo simulation tool to draw independent random
samples of the elementary transitions

Kn,m(y)(xn−1, dxn) (9.27)

for any empirical measure associated with N given states (yi)1≤i≤N ∈ ENn−1 given by the formula

m(y) :=
1

N

∑
1≤i≤N

δyi

When the transitions (9.27) are easy to simulate, we design an N -particle approximation model
by evolving a Markov chain ξn :=

(
ξin
)

1≤i≤N ∈ E
N
n with elementary transitions

P
(
ξ

(N)
n+1 ∈ dxn+1 | ξn

)
:=

∏
1≤i≤N

Kn+1,ηNn
(ξ(N,i)
n , dxin+1) (9.28)

where dxn+1 = dx1
n+1 × . . . × dxNn+1 stands for an infinitesimal neighborhood of a point xn+1 =

(xin+1)1≤i≤N ∈ ENn+1, and ηNn stands fo the empirical measures defined by

ηNn := m
(
ξ(N)
n

)
=

1

N

N∑
i=1

δ
ξ
(N,i)
n
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The initial system ξ0 = (ξ
(N,i)
0 )1≤i≤N consists of N i.i.d. random variables with common law η0.

To simplify the presentation, with a slight abuse of notation, when there is no possible confusion

we often suppress the index parameter (.)(N) so that we write ξn and ξin instead of ξ
(N,i)
n and ξ

(N,i)
n .

The N -particle model ξn approximates the target probability distributions ηn by the occupation
measures ηNn of a large cloud of interacting particles; that is, we have that

ηNn −→N→∞ ηn

More is true, we can also prove that the occupation measure of the random trajectories of the particles
converges, as N →∞, to the McKean measures defined in (9.3); that is, we have that

1

N

N∑
i=1

δ(ξi0,...,ξ
i
n)(d(x0, . . . , xn)) −→N→∞ η0(dx0)

∏
1≤p≤n

Kp,ηp−1(xp−1, dxp) (9.29)

In the context of Feynman-Kac models, the analysis of the McKean particle measures described
above is discussed in some detail in the book [172]. To our knowledge, their analysis for general discrete
generation mean field models is still an open research subject.

The local sampling errors induced by the mean field particle model are expressed in terms of the
empirical random field sequence V N

n defined by

V N
n+1 =

√
N
[
ηNn+1 − Φn+1

(
ηNn
)]

Notice that V N
n+1 is alternatively defined by the following stochastic perturbation formulae

ηNn+1 = Φn+1

(
ηNn
)

+
1√
N

V N
n+1 (9.30)

For n = 0, we also set

V N
0 =

√
N
[
ηN0 − η0

]
⇔ ηN0 = η0 +

1√
N

V N
0

In this interpretation, the N -particle model can also be interpreted as a stochastic perturbation of
the limiting system

ηn+1 = Φn+1 (ηn)

It is rather elementary to check that

E
(
V N
n+1(f) | ξn

)
= 0

E
(
V N
n+1(f)2 | ξn

)
=

∫
ηNn (dx) Kn+1,ηNn

([
f −Kn+1,ηNn

(f)(x)
]2
)

(x) ≤ osc(f)2

9.3.2 Continuous time models

The continuous time mean field particle model associated with the integro-differential equations dis-

cussed in Section 9.2.1, Section 9.2.2, and Section 9.2.3, is a Markov chain ξ
(N)
t := (ξ

(N,i)
t )1≤i≤N on

the product state space (Rd)N , with infinitesimal generator defined, for sufficiently regular functions
F on (Rd)N , by the following formulae

Lt(F )(x1, . . . , xN ) :=
∑

1≤i≤N
L

(i)
t,m(x)(F )(x1, . . . , xi, . . . , xN ) (9.31)

In the above display, m(x) := 1
N

∑
1≤i≤N δxi stands for the occupation measure of the population

x = (xi)1≤i≤N ∈ EN ; and for any η ∈ P(Rd) L(i)
t,η stands for the operator Lt,η defined in (9.16),
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acting on the function xi 7→ F (x1, . . . , xi, . . . , xN ). In other words, every individual ξ
(N,i)
t is a jump-

diffusion model defined as in (9.18) and (9.19) by replacing the unknown measures η′t by their particle
approximations η′Nt = 1

N

∑N
j=1 δξ(N,j)

t
.

For instance, using (9.21), the generator of the Feynman-Kac model (9.17) is given for any suffi-
ciently regular function F by the formula

L
(i)
t,m(x)(F )(x1, . . . , xN )

:=
∑

1≤i≤N
L
′(i)
t (F )(x1, . . . , xi, . . . , xN ) +

∑
1≤i≤N

V (xi)

×
∫ [

F (x1, . . . , xi−1, y, xi+1, . . . , xN )− F (x1, . . . , xi, . . . , xN )
]
m(x)(dy)

Between jumps, the particles evolve independently as the diffusion process defined in (5.1). At rate
V , the particles jump to a new location randomly selected in the current population.

Using Ito’s formula we have that

dF (ξt) = Lt(F )(ξt) dt+ dMt(F )

for some martingale Mt(F ) with predictable increasing process defined by

〈M(F )〉t :=

∫ t

0
ΓLs (F, F ) (ξs) ds

We recall that the “carré du champ” operator ΓLs associated to Ls is defined by

ΓLs (F, F ) (x) := Ls
[
(F − F (x))2

]
(x) = Ls(F 2)(x)− 2F (x)Ls(F )(x)

For empirical test functions of the following form

F (x) = m(x)(f) =
1

N

N∑
i=1

f(xi)

with f ∈ D(L), we find that

Ls(F )(x) = m(x)(Ls,m(x)(f))

ΓLs (F, F ) (x) =
1

N
m(x)

(
ΓLs,m(x)

(f, f)
)

(9.32)

From this discussion, it should be clear that

ηNt :=
1

N

∑
1≤i≤N

δξit =⇒ dηNt (f) = ηNt (Lt,ηNt (f)) dt+
1√
N

dMN
t (f) (9.33)

with the martingale

MN
t (f) =

√
N Mt(F ) (9.34)

The predictable angle bracket is given by

〈MN (f)〉t :=

∫ t

0
ηNs

(
ΓL

s,ηNs
(f, f)

)
ds
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From the r.h.s. perturbation formulae (9.33), we conclude that ηNt “almost solve,” as N ↑ ∞, the
nonlinear evolution Equation (9.16). For a more thorough discussion on these continuous time models,
we refer the reader to the review article [182], and the references therein.

As for the linear type jump-diffusion models, continuous time mean field models are far from being
related to a concrete Monte Carlo simulation technique, since most of the time the resulting interacting
jump diffusion processes cannot be sampled perfectly. One natural way to solve this problem is to
consider the time discretization schemes presented in Section 9.2.5, and the discrete generation mean
field models discussed in Section 9.3.

We end this section with a discussion on the connections between these discrete generation mean
field models and their continuous time version discussed in Section 9.3.2. For time homogeneous state
spaces En = E = Rd, the Markov transition Mn+1 of the discrete generation mean field model (9.28)
on EN is defined for any sufficiently regular function F on EN by

Mn+1(F )(x) :=

∫
EN

 ∏
1≤i≤N

Kn+1,m(x)(x, dy
i)

 F (y1, . . . , yN )

When the collection of transitions Kn+1,η are given by (9.24), using the approximation formula (9.25)
with ∆ ' 0 we find that

[Mn+1 − Id] (F )(x) '
∏

1≤i≤N
(
Id+ ∆ Ltn,m(x)

)(i)
F (x1, . . . , xi, . . . , xN )− F (x)

'
∑

1≤i≤N L
(i)
tn,m(x)(F )(x1, . . . , xi, . . . , xN ) ∆ = Ltn(F )(x) ∆

In the above display, Lt and Lt,η stands for the generators defined in (9.31) and (9.16); and(
Id+ ∆ Ltn,m(x)

)(i)
stands for the operator

(
Id+ Ltn,m(x) ∆

)
acting on the function xi 7→

F (x1, . . . , xi, . . . , xN ). This shows that the discrete generation mean field model can be interpreted as
an Euler type approximation on a time mesh tn of the continuous time particle model introduced in
Section 9.3.2.

9.4 Some illustrations

9.4.1 McKean-Vlasov diffusion models

The effective sampling condition stated in (9.27) is clearly satisfied for the McKean-Vlasov models
(1.24) introduced in Section 1.4.1.1. In this case (9.27) is the distribution of the random variable

xn−1 +
1

N

∑
1≤i≤N

an(xn−1, y
i) +

1

N

∑
1≤i≤N

σn(xn−1, y
i) Wn (9.35)

In this situation, using the formula (9.35) we find that the N -particle model defined in (9.28) can be
rewritten in the following form

ξin+1 := ξin + an+1(ξin, η
N
n ) + σn+1(ξin, η

N
n ) W i

n+1

= ξin +
1

N

∑
1≤j≤N

an+1(ξin, ξ
j
n) +

1

N

∑
1≤j≤N

σn+1(ξin, ξ
j
n) W i

n+1

In the above displayed formulae, ηNn = 1
N

∑N
i=1 δξin is the occupation measure of the population at time

n; and (W i
n+1)1≤i≤N stands for N independent copies of the random variables Wn+1. Illustrations of

these Gaussian mean field models in the context of filtering problems are discussed in some detail in
Section 11.2.3, dedicated to ensemble Kalman filters.
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9.4.2 General state space models

The effective sampling condition (9.27) is also met for the general state space models presented
in (9.6), as soon as we have a dedicated Monte Carlo technique to sample the random variables
Fn(xn−1,m(y),Wn). In this case (9.27) is given by

Kn,m(y)(xn−1, dxn) = P (Fn(xn−1,m(y),Wn) ∈ dxn)

In this situation, we find that the N -particle model defined in (9.28) can be rewritten in the following
form

ξin+1 = Fn+1(ξin, η
N
n ,W

i
n+1) with ηNn =

1

N

N∑
i=1

δξin (9.36)

where (W i
n+1)1≤i≤N stands for N independent copies of the r.v. Wn+1.

9.4.3 Interacting jump-diffusion models

We return to the Euler type approximation models discussed in Section 9.2.5. In this context, if we
choose ηn = ηn in (9.24), then the mean field IPS model ξn = (ξin)1≤i≤N is defined by sampling N
random transitions

ξin  ξin+1 ∼
(
Mn+1,ηNn

Jn+1,ηNn

)
(ξin, .) with ηNn =

1

N

N∑
i=1

δξin

If we choose ηn := ηnMn+1,ηn in (9.24), then the mean field IPS model ξn = (ξin)1≤i≤N associated
with the distribution flow (9.26) is now defined in terms of the two step transitions

ξin  ξin+1/2 ∼ Mn+1,ηNn
(ξin, .) ξin+1 ∼ Jn+1,ηN

n+1/2
(ξin+1/2, .)

with the occupation measures at the intermediate time steps defined by

ηNn =
1

N

N∑
i=1

δξin and ηNn+1/2 =
1

N

N∑
i=1

δξi
n+1/2

9.4.4 Feynman-Kac particle models

Condition (9.27) is also met for the Feynman-Kac model discussed in (9.10), as soon as the potential
functions Gn(x) can be evaluated at any state x, and as soon as we can draw independent random
samples of the elementary transitions Mn. In this situation, the McKean transitions (9.27) are given
by the following formulae

Kn,m(y)(xn−1, dxn)

= εGn−1(xn−1) Mn(xn−1, dxn) + (1− εGn−1(xn−1)) ΨGn−1 (m(y))Mn(dxn)
(9.37)

with the weighted empirical measure

ΨGn−1 (m(y))Mn :=
∑

1≤i≤N

Gn−1(yi)∑
1≤j≤N Gn−1(yj)

Mn(yi, .)

In the above display, ΨGn−1 stands for the Boltzmann-Gibbs transformations defined in (7).
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In this situation, we use formula (9.37) to check that the N -particle model defined in (9.28) can
be interpreted in terms of an interacting jump type genetic type particle model with a two step
selection-mutation transition.

During the selection stage, each particle ξin−1 evaluates its potential value Gn−1(ξjn−1). With a
probability εGn−1(ξin−1) it remains in the same location. Otherwise, it jumps to a fresh new location

ξjn−1 randomly chosen with a probability proportional to Gn−1(ξjn−1). During the mutation stage, each
particle evolves randomly according to the Markov transition Mn.

From the statistical, or from the stochastic, point of view, these interacting particle systems can be
interpreted as a sophisticated acceptance-rejection sampling technique, equipped with an interacting
recycling mechanism.

This mean field stochastic algorithm can also be interpreted as a population of individuals mim-
icking natural evolution mechanisms. During a mutation stage, the particles evolve independently of
one another, according to the same probability transitions Mn. During the selection stage, particles
with small relative values are killed, while the ones with high relative values are multiplied.

9.5 Flows of positive measures

We consider a sequence of measurable state spaces En and some (nonnecessarily linear) one step
mapping Ξn from M+(En−1) into M+(En). We associate with these objects the evolution equations

γn = Ξn(γn−1)

starting from some initial nonnegative measure γ0 ∈ M+(E0). These abstract models are natural
extensions of the P(En)-valued equations discussed in Section 9.1, to evolutions equations in the
space of nonnegative measures. We observe that these evolutions equations can always be rewritten
in the following form

γn = γn−1Qn,γn−1 (9.38)

for some collection of bounded integral operators Qn,γ from Bb(En) into Bb(En−1), indexed by the
time parameter n ≥ 1 and the set of measures γ ∈M+(En). As in (9.2), the choice of these operators
is not unique; for instance, we can take Qn,γn−1(x, .) ∝ Ξn(γn−1).

As usual, we let ηn ∈ P(En) be the normalized distributions given by

ηn(f) = γn(f)/γn(1) and we set Gn,γn := Qn+1,γn(1)

for any f ∈ Bb(En). In Section 12.2.1, we shall see that the mass-probability process (γn(1), ηn) satisfies
the following measure valued equations

γn+1(1) = ηn(Gn,γn) γn(1)

ηn+1 = ΨGn,γn (ηn)Mn+1,γn

(9.39)

with the Markov transitions Mn,γ defined for any f ∈ Bb(En) and γ ∈ M+(En−1) by the following
equation

Mn,γ(f) := Qn,γ(f)/Qn,γ(1)

In the above displayed formula, ΨG stands for the Boltzmann-Gibbs transformations associated with
a given potential function G defined in (7).

To describe with some precision the mean field particle interpretation of these models, we consider
a collection of Markov transitions Sn,ηn satisfying the compatibility condition

ηnSn,γn = ΨGn,γn (ηn)
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Several examples of such transitions are provided in (8). In this situation, we can rewrite the evolution
equation of the normalized measures as follows:

ηn+1 = ηnKn+1,γn with Kn+1,γn = Sn,γnMn+1,γn

The mean field particle interpretation of the evolution Equations (9.38) is the Markov chain
(γNn (1), ξn) ∈

(
R+ × ENn

)
defined by

γNn+1(1) = γNn (1) ηNn (Gn,γNn (1)ηNn
)

P
(
ξn+1 ∈ dx

∣∣∣ ξn,γNn (1)

)
=

N∏
i=1

Kn+1,γNn (1)ηNn
(ξin, dx

i)

(9.40)



Chapter 10

Feynman-Kac path integration

10.1 Particle unnormalized measures

We return to the Feynman-Kac models discussed in section 4.2 and in section 9.1.4. We letKn,η be some
McKean interpretation of the flow of Feynman-Kac measures (9.8). We denote by ηNn the empirical
measures of the mean field N -particle model ξn associated with the transitions Kn,η. Mimicking the
product formula (4.18), the normalizing constants and the unnormalized distributions (5.37) in the
Feynman-Kac model (4.17) can be computed using the following unbias estimates

ZNn :=
∏

0≤p<n
ηNp (Gp) −→N→∞ Zn =

∏
0≤p<n

ηp(Gp) (10.1)

as well as

γNn (fn) := ηNn (fn)×
∏

0≤p<n
ηNp (Gp) (10.2)

Next, we give a simple proof of the unbiasedness properties of these particle models.

By construction, we have

E
(
γNn (fn) | ξ0, . . . , ξn−1

)
= Φn

(
ηNn−1

)
(fn)

∏
0≤p<n

ηNp (Gp)

Notice that

Φn

(
ηNn−1

)
(fn) = Ψn

(
ηNn−1

)
(Mn(fn))

=
ηNn−1(Gn−1Mn(fn))

ηNn−1(Gn−1)
=

1

ηNn−1(Gn−1)
ηNn−1(Qn(fn))

with the integral operator Qn defined in (4.15) and given by

Qn(fn) = Gn−1Mn(fn)

This shows that

E
(
γNn (fn) | ξ0, . . . , ξn−1

)
= ηNn−1(Qn(fn))

∏
0≤p<(n−1)

ηNp (Gp) = γNn−1(Qn(fn)) (10.3)

Iterating the argument, we find that

∀p ≤ n E
(
γNn (fn) | ξ0, . . . , ξp

)
= γNp (Qp,n(fn))⇒ E

(
γNn (fn)

)
= γn(fn) (10.4)

257
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10.2 Genealogical tree occupation measures

The mean field particle interpretation (ξin)1≤i≤N of the Feynman-Kac models in path space discussed
in (4.16) coincides with the genealogical tree evolution of the particle model discussed above.

More precisely, if we interpret the updating-selection transition as a birth and death process,
then arises the important notion of the ancestral line of an individual. More precisely, when a particle
ξ̂in−1 −→ ξin evolves to a new location ξin, we can interpret ξ̂in−1 as the parent of ξin. Looking backwards

in time and recalling that the particle ξ̂in−1 has selected a site ξjn−1 in the configuration at time (n−1),

we can interpret this site ξjn−1 as the parent of ξ̂in−1 and therefore as the ancestor denoted ξin−1,n at

level (n− 1) of ξin. Running backwards in time we may trace the whole ancestral line

ξi0,n ←− ξi1,n ←− . . .←− ξin−1,n ←− ξin,n = ξin (10.5)

An illustration of the genealogical tree model associated with N = 3 particles and a time horizon
n = 5 is given below

ξ2
0,5 ξ2

1,5 ξ2
2,5 • • •

• • • ξ2
3,5 ξ2

4,5 ξ2
5,5

• • • • • •

Each parent node has a certain random number of children or offspring.

The ancestral line of the i-th individual in the mean field Feynman-Kac population at time n is
given by a path-valued particle

ξin :=
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

)
∈ En := (E0 × . . .× En)

and the occupation measure of the genealogical tree is the empirical measure on path space given by

ηNn :=
1

N

N∑
i=1

δξin −→N↑∞ ηn (10.6)

with the Feynman-Kac measures ηn = Qn in path space discussed in (4.16)

In contrast to the genealogical tree models discussed above, the complete ancestral tree incorpo-
rates all the ancestral lineages of the individuals during their evolutions. More formally, the complete
ancestral tree model is defined by the set of all the population of individuals ξp = (ξip)1≤i≤N , from the
origin p = 0 up to a given final time horizon p = n.

An illustration of the complete ancestral tree model associated with N = 3 particles, and a time
horizon n = 4, is given by the following diagram.
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(n = 0) (n = 1) (n = 2) (n = 3) (n = 4)

ξ1
0

// ξ1
1

// ξ1
2

//

%%

��

ξ1
3

// ξ1
4

ξ2
0

//

%%

ξ2
1 ξ2

2 ξ2
3

//

%%

ξ2
4

ξ3
0

��

ξ3
1

99

//

��

ξ3
2

��

ξ3
3

��

ξ3
4

��
ηN0

N→∞
��

ηN1

N→∞
��

ηN2

N→∞
��

ηN3

N→∞
��

ηN4

N→∞
��

η0 η1 η2 η3 η4

10.3 Backward particle measures

Mimicking the backward Markov chain formula (4.20), the measure Qn can alternatively be approxi-
mated (under the assumption (4.19)) using the backward particle measures

QN
n (d(x0, . . . , xn)) = ηNn (dxn)

n∏
q=1

Mq,ηNq−1
(xq, dxq−1) (10.7)

with the collection of Markov transitions

Mn+1,ηNn
(xn+1, dxn) =

ηNn (dxn) Hn+1(xn, xn+1)

ηNn (Hn+1(., xn+1))

=
∑

1≤i≤N

Hn+1(ξin, xn+1)∑
1≤j≤N Hn+1(ξjn, xn+1)

δξin(dxn) (10.8)

For any function Fn on En we have the unbias property

E

QN
n (Fn)

∏
0≤p<n

ηNp (Gp)

 = E

Fn(X0, . . . , Xn)
∏

0≤p<n
Gp(Xp)

 := Γn(Fn)

We set
ΓNn (Fn) := QN

n (Fn)
∏

0≤p<n
ηNp (Gp) (10.9)

Arguing as in the proof of (10.3), we have

E
(
ΓNn (Fn) | ξ0, . . . , ξn−1

)
= γNn (1)

∫
Φn

(
ηNn−1

)
(dxn)


n∏
q=1

Mq,ηNq−1
(xq, dxq−1)

 Fn(x0, . . . , xn)

= γNn−1(1)

∫
(ηNn−1Qn)(dxn)Mn,ηNn−1

(xn, dxn−1)


n−1∏
q=1

Mq,ηNq−1
(xq, dxq−1)

 Fn(x0, . . . , xn)
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Notice that

(ηNn−1Qn)(dxn) = ηNn−1(Hn(., xn)) λn(dxn)

⇒ (ηNn−1Qn)(dxn)Mn,ηNn−1
(xn, dxn−1) = ηNn−1(dxn−1)Qn(xn−1, dxn)

This implies that

E
(
ΓNn (Fn) | ξ0, . . . , ξn−1

)
= γNn (1)

∫
Φn

(
ηNn−1

)
(dxn)


n∏
q=1

Mq,ηNq−1
(xq, dxq−1)

 Fn(x0, . . . , xn)

= γNn−1(1)

∫
ηNn−1(dxn−1)


n−1∏
q=1

Mq,ηNq−1
(xq, dxq−1)

 Fn−1,n(x0, . . . , xn−1) = ΓNn−1(Fn−1,n)

with

Fn−1,n(x0, . . . , xn−1) =

∫
En

Qn(xn−1, dxn) Fn(x0, . . . , xn)

Iterating the argument, we prove that

∀p ≤ n E
(
ΓNn (Fn) | ξ0, . . . , ξp

)
= ΓNp (Fp,n) =⇒ E(ΓNn (Fn)) = Γn(Fn)

with the collection of functions

Fp,n(x0, . . . , xp) =

∫
Ep+1×...×En

Qp+1(xp, dxp+1) . . . Qn(xn−1, dxn) Fn(x0, . . . , xn)

10.4 A random particle matrix model

The computation of integrals w.r.t. the particle measures QN
n are reduced to summations over the

particle locations ξin. It is therefore natural to identify a population of individuals (ξ1
n, . . . , ξ

N
n ) at

time n to the ordered set of indexes {1, . . . , N}. In this framework, the occupation measures and the
functions are identified with the following line and column vectors

ηNn :=

[
1

N
, . . . ,

1

N

]
and fn :=

 fn(ξ1
n)

...
fn(ξNn )


and the matricesMn,ηNn−1

by the (N ×N) matrices

Mn,ηNn−1
:=


Mn,ηNn−1

(ξ1
n, ξ

1
n−1) · · · Mn,ηNn−1

(ξ1
n, ξ

N
n−1)

...
...

...
Mn,ηNn−1

(ξNn , ξ
1
n−1) · · · Mn,ηNn−1

(ξNn , ξ
N
n−1)

 (10.10)

with the (i, j)-entries

Mn,ηNn−1
(ξin, ξ

j
n−1) =

Gn−1(ξjn−1)Hn(ξjn−1, ξ
i
n)∑N

k=1Gn−1(ξkn−1)Hn(ξkn−1, ξ
i
n)
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For instance, the Qn-integration of normalized additive linear functionals of the form

fn(x0, . . . , xn) =
1

n+ 1

∑
0≤p≤n

fp(xp) (10.11)

is given by the particle matrix approximation model

QN
n (fn) =

1

n+ 1

∑
0≤p≤n

ηNnMn,ηNn−1
Mn−1,ηNn−2

. . .Mp+1,ηNp
(fp)

This Markov interpretation allows computing complex Feynman-Kac path integrals using sim-
ple random matrix operations on finite sets. Roughly speaking, this methodology allows reducing
Feynman-Kac path integration problems on general state spaces to Markov path integration on finite
state spaces, with cardinality N .

Nevertheless, the computational cost N2 of these particle random matrix models can be prohibitive
in some applications. In this case, we can replace the full matrix averaging technique on the finite sets
of N individuals, by some judicious sampling approximation scheme. In this connection, we quote a
rejection sampling method, recently proposed in [232].

10.5 Many-body Feynman-Kac models

10.5.1 Feynman-Kac particle models

We writeMn for the Markov transitions of the particle model χn:= ξn viewed now as a Markov chain
on En := ENn , and introduce the potential functions

Gn(χn) = m(χn)(Gn)

In the further development of this section we use calligraphic letters such as xn and yn = (yin)1≤i≤N
to denote states in the product spaces En, and slanted roman letters such as xn, yn, zn to denote
states in En. The path sequences in the product spaces En :=

∏
0≤p≤n Ep and En :=

∏
0≤p≤nEp are

denoted by bold letters such as xn = (xp)0≤p≤n ∈ Sn and xn = (xp)0≤p≤n ∈ Sn. Finally, we also
denote by dxn = d(x1

n, . . . , x
N
n ), resp. dxn = d(x0, . . . , xn), the infinitesimal neighborhoods of a point

xn = (xin)1≤i≤N ∈ En, resp. xn = (xp)0≤p≤n ∈ En =
∏

0≤p≤n Ep.
We let (Πn,Λn) be the Feynman-Kac measures on En defined for any Fn ∈ B(En) by

Πn(Fn) := Λn(Fn)/Γn(1) with Λn(Fn) = E

Fn(χn)
∏

0≤p<n
Gp(χp)

 (10.12)

Notice that the unbiasedness properties of unnormalized particle measures ensures that Λn(1) = γn(1).
It is also readily checked that

Λn+1 = ΛnQn+1 and Πn+1 := ΨGn(Πn)Mn+1 (10.13)

with the integral operators

Qn+1(xn, dxn+1) = Gn(xn) Mn+1(xn, dxn+1)

We denote by (Πn,Λn) the Feynman-Kac measures associated with the historical process

χn= (χ0, . . . , χn)
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and the potential functions Gn(χn) := Gn(χn) on the path space En = (E0 × . . .× En). More formally,
these measures are defined for any Fn ∈ B(En) by

Πn(Fn) := Λn(Fn)/Λn(1) with Λn(Fn) = E

Fn(χn)
∏

0≤p<n
Gp(χp)

 (10.14)

Whenever the integral operators Qn have some densities Hn w.r.t. some reference distributions λn
on En, given χn we let Xn := (Xp)0≤p≤n be a random path with conditional distribution

Kn(χn,dxn) := m(χn)(dxn)
∏

1≤k≤n
Mk,m(χk−1)(xk, dxk−1) (10.15)

In the above displayed formula dxn stands for an infinitesimal neighborhood of the path xn =
(xp)0≤p≤n ∈ En, andMk,m(xk−1) are the Markov transitions defined in (10.8).

The unbiasedness properties of unnormalized particle measures are equivalent to the fact that for
any (fn, fn) ∈ (B(En)× B(En)), we have

E

fn(Xn)
∏

0≤p<n
Gp(χp)

 = E

fn(Xn)
∏

0≤p<n
Gp(Xp)


E

fn(Xn)
∏

0≤p<n
Gp(χp)

 = E

fn(Xn)
∏

0≤p<n
Gp(Xp)

 (10.16)

We emphasize that (10.16) holds true for general Feynman-Kac models (i.e. without any regularity on
Qn). In this setting, (10.16) is satisfied with a r.v. Xn with conditional distribution given χn defined
by

Kn(χn, dxn) = m(χn)(dxn) (10.17)

The measures (Πn,Λn) and their path space versions (Πn,Λn) are called the many body Feynman-
Kac measures associated with the mean field N -particle interpretation of the measures (ηn, γn). As
the name “many-body” suggests, these Feynman-Kac models encode properly the collective motion
under mean field constraints of the system of particles associated to a standard Feynman-Kac particle
system.

From an abstract point of view, all of these measures are of course essentially equivalent to the
abstract Feynman-Kac model introduced in section 4.2.1.

10.5.2 Conditional particle Markov chains

We return to the Feynman-Kac models and their many-body versions discussed in section 4.2 and in
section 10.5. We only consider the mean field particle model (9.37) with ε = 0.

We start the section with a pivotal duality formula between the Feynman-Kac integral operators
(Qn,Qn).

Lemma 10.5.1 We have the duality formula between integral operators on En × En

Qn(xn−1, dxn) m(xn)(dxn) = (m(xn−1)Qn)(dxn) Mxn,n(xn−1, dxn) (10.18)

and

η⊗N0 (dx0) m(x0)(dx0) = η0(dx0) µx0(dx0)
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with the collection of Markov transitions

Mxn,n(xn−1, dxn) =
1

N

[
N−1∑
i=0

Φn(m(xn−1))⊗(i) ⊗ δxn ⊗ Φn(m(xn−1))⊗(N−i−1)

]
(dxn)

and the distribution

µx0 :=
1

N

N−1∑
i=0

(
η
⊗(i)
0 ⊗ δx0 ⊗ η

⊗(N−i−1)
0

)
Proof :
To check (10.18) we use the symmetry properties of the Markov transitionsMn to check that for any
function Hn ∈ B(En × En), we have∫

Qn(xn−1, dxn) m(xn)(dzn) Hn(zn, xn)

= Gn−1(xn−1)
∫

Φn(m(xn−1))⊗N (dxn) Hn(x1
n, xn)

= m(xn−1)(Gn−1)
∫

Φn(m(xn−1))(dx1
n)
[
δx1
n
⊗ Φn(m(xn−1))⊗(N−1)

]
(dyn) Hn(x1

n, yn)

The end of the proof comes from the fact that

m(xn−1)(Gn−1) Φn(m(xn−1))(dx1
n) = (m(xn−1)Qn)(dx1

n)

The proof of the lemma is now completed.

Definition 10.5.2 Given a random path X = (Xn)n≥0 we let X ?n = (X ?,in )i=1,...,N ∈ Sn be the Markov
chain with the transitions MXn,n, and the initial distribution µX0 introduced in lemma 10.5.1. We
denote by M?

n(Xn,dxn) the conditional distributions of the random path X ?n =
(
X ?p
)

0≤p≤n on En.

The process X ?n is called the dual mean field model associated with the Feynman-Kac particle model
χn and the frozen path X.

The justification of the ”duality” terminology between the processes X ?n and χn is discussed in
the end of the section. The Feynman-Kac measures (γn,ηn) and their many body version (Λn,Πn)
are connected by the following duality theorem which can be seen as an extended version of the
unbiasedness properties (10.16).

Theorem 10.5.3 For any Fn ∈ B(En) by the following equations

E

Fn(χn)
∏

0≤p<n
Gp(χp)

 = E

Fn(X ?n)
∏

0≤p<n
Gp(Xp)

 (10.19)

When the integral operators Qn have some densities Hn w.r.t. some reference distributions λn, for
any Fn ∈ B(En × En) by the duality formula

E

Fn(Xn,χn)
∏

0≤p<n
Gp(χp)

 = E

Fn(Xn,X ?n)
∏

0≤p<n
Gp(Xp)

 (10.20)
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Proof :
The proof of (10.19) is a direct consequence of (10.18). Indeed, using this formula, we find that

Qn(xn−1, dxn) =

∫
[m(xn−1)Qn] (dzn) Mzn,n(xn−1, dxn)

=

∫
m(xn−1)(dzn−1) Qn(zn−1, dzn) Mzn,n(xn−1, dxn)

and therefore

Qn−1(xn−2, dxn−1)Qn(xn−1, dxn)

=

∫
m(xn−2)(dzn−2) Qn−1(zn−2, dzn−1) Qn(zn−1, dzn)

×Mzn−1,n−1(xn−2, dxn−1)Mzn,n(xn−1, dxn)

Iterating backward in time we prove (10.19). This ends the proof of the first assertion.
The proof of (10.20) is a also direct consequence of (10.18). To check this claim, first we notice

that

(10.18) ⇔ m(xn−1)(Gn−1)Mn(xn−1, dxn) m(xn)(dxn) = (m(xn−1)Qn)(dxn) Mxn,n(xn−1, dxn)

⇔ Mn(xn−1, dxn) m(xn)(dxn) = Φn (m(xn−1)) (dxn) Mxn,n(xn−1, dxn)

Using this formula, we find that

Λn(dxn)
∏

0≤p≤nm(xp)(dxp)

=
{∏

0≤p<nm(xp)(Gp)
}
η⊗N0 (dx0) m(x0)(dx0)

{∏
1≤p≤nMp(xp−1, dxp) m(xp)(dxp)

}
=
{∏

0≤p<nm(xp)(Gp)
} {

η0(dx0)
∏

1≤p≤n Φp(m(xp−1))(dxp)
}
M

?
n(xn,dxn)

=
{
η0(dx0)

∏
1≤p≤nm(xp−1)(Hp(., xp)) λp(dxp)

}
M

?
n(xn,dxn)

The last assertion comes from the fact that

m(xp−1)(Gp−1) Φp(m(xp−1))(dxp) = m(xp−1)(Hp(., zp)) λp(dxp)

On the other hand, we have we have

Kn(xn,dxn) := m(xn)(dxn)
∏

1≤p≤n

m(xp−1)(dxp−1) Hp(xp−1, xp)

m(xp−1)(Hp(., xp))

where dxn stands for an infinitesimal neighborhood of the path xn = (xp)0≤p≤n ∈ En. Recalling that

Qp(xp−1, dxp) = Gp(xp−1) Mp(xp−1, dxp) = Hp(xp−1, xp) λp(dxp)

This implies that

Λn(dxn) Kn(xn,dxn)

=
{
η0(dx0)

∏
1≤p≤nQp(xp−1, dxp)

}
M

?
n(xn,dxn) = γn(dxn)M?

n(xn,dxn)
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The proof of (10.20) is now completed. This ends the proof of the Theorem.

The following Corollary is a direct consequence of (10.16) and (10.20). It provides a interpretation
of the conditional distribution of the dual process Xn w.r.t. a given frozen trajectory as a conditional
many body Feynman-Kac model w.r.t. a random path Xn sampled with the backward distribution
(10.15).

Corollary 10.5.4 For any Fn ∈ B(En), and for ηn-almost every path xn we have

E
(
Fn(X ?n) | Xn = xn

)
=

E
(
Fn(χn)

∏
0≤p<n Gp(χp) | Xn = xn

)
E
(∏

0≤p<n Gp(χp) | Xn = xn

) (10.21)

We end this section with an analytic description of the duality formulae (10.19) and (10.20) in
terms of the conditional distributionsM?

n andKn introduced in definition 10.5.2 and in (10.15). Using
(10.19) we have

∀xn ∈ En M
?
n(xn, .)� ηnM

?
n = Πn

Thus, we can define the dual operator M?
n,ηn

of M?
n from L1(ηn) into L1(Πn) given for any fn ∈

L1(ηn) by

M
?
n,ηn

(fn) =
d
(
ηn,fnM

?
n

)
d
(
ηnM

?
n

) =
d
(
ηn,fnM

?
n

)
dΠn

with ηn,fn(dxn) := ηn(dxn) fn(xn)

In addition, for any conjugate integers 1
p + 1

q = 1, with 1 ≤ p, q ≤ ∞, and any pair of functions
(fn,Fn) ∈ (Lp(ηn)× Lq (Πn)) we have

Πn

(
Fn M

?
n,ηn

(fn)
)

= ηn
(
M

?
n(Fn) fn

)
(10.22)

These constructions shows that formula (10.20) holds true for general models (i.e. even if the integral
operators Qn don’t have a density) where Xn stands for a random path with conditional distribution
M

?
n,ηn

(χn, .) given the historical process χn. In the reverse angle, we have

∀xn ∈ En Kn(xn, .)� ΠnKn = ηn

Thus (10.20) also implies thatM?
n coincides with the dual operator K?n,Πn of Kn from L1(Πn) into

L1(ηn); that is, we have that

(10.20) =⇒ ΠnKn = ηn =⇒ ηn

(
fn K?n,Πn(Fn)

)
= Πn (Fn Kn(fn))

with

K?n,Πn(zn,dxn) = Πn(dxn)
dKn(xn, .)
dΠnKn

(zn) =M?
n (zn,dxn) (10.23)

These formulations underline the duality between the random paths X ?n and Xn under the Feynman-
Kac measures ηn and their many-body version Πn.

10.5.3 Historical processes

Let us suppose that (ηn, γn, ξn) is the historical version of an auxiliary Feynman-Kac model (γ′n, η
′
n, ξ
′
n)

associated with some potential functions G′n and some Markov chain X ′n transitions M ′n on some state
spaces E′n. In this situation, the reference Markov chain of the Feynman-Kac models (ηn, γn) coincides
with the historical process Xn = (X ′0, . . . , X

′
n) of the chain X ′n. We also recall that the particle model
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χn:= ξn represents the evolution of the genealogical tree model associated with the particle model
χ′
n:= ξ′n.

The same property holds true at the level of the dual processes. More precisely, the dual mean field
model X ?n associated with pair (ξn, Xn) represents the evolution of the genealogical tree model of the

dual particle model X
?,′
n associated with the pair (ξ′n, X

′
n). To be more precise, we observe that the

i-th path space particle

X in =
(
X ′i0,n,X ′i1,n, . . . ,X ′in,n

)
∈ En := (E′0 × . . .× E′n)

of the particle model X ?n can be interpreted as the line of ancestors X ?,′ip,n of the i-th individual X ?,′in,n

at time n, at every level 0 ≤ p ≤ n, with 1 ≤ i ≤ N . This shows that the particle model X ?,′n =(
X ?,′in

)
1≤i≤N

coincides with the evolution of the individuals X ?,′n,n =
(
X ?,′in,n

)
1≤i≤N

.

It is also important to observe that the dual process Xn is defined in terms of frozen historical paths
Xn = (X ′0, . . . , X

′
n). Therefore, for any function Fn ∈ B(En), we have the ηn-almost sure conditional

expectation formula

E
(
Fn(X ?n) | Xn

)
= E

(
Fn(X ?n) | Xn

)
:=M?

n(Fn)(Xn) (10.24)

In the further development of this section, we denote by G′n the potential function of the many-
body model associated with the Feynman-Kac model (γ′n, η

′
n, ξ
′
n); that is, we have that G′n(χ′n) =

m(χ′n)(G′n). In this notation, formula (10.19) takes the form

E

Fn(χn)
∏

0≤p<n
G′p(χ′p)

 = E

Fn(X ?n)
∏

0≤p<n
G′p(X

′
p)

 (10.25)

Choosing a function Fn that only depends on the marginal populations we find that

Fn(χ0, . . . , χn) := Fn(χ′0, . . . , χ
′
n)

⇒ E

Fn(χ′n)
∏

0≤p<n
G′p(χ′p)

 = E

Fn(X ′n)
∏

0≤p<n
G′p(X

′
p)


Notice that χ′n and X ?,′n are E ′n =

∏
0≤p≤n E ′p valued random paths with E ′n := E′,Nn , for any n ≥ 0.

In much the same way, when the integral operators Q′n have some densities H ′n w.r.t. some reference
distributions λ′n on E′n, the formula (10.20) takes the following form

E

Fn(X′n,χ
′
n)

∏
0≤p<n

G′p(χ′p)

 = E

Fn(Xn,X ?,′n )
∏

0≤p<n
G′p(X

′
p)

 (10.26)

where X′n := (X′p)0≤p≤n stands for a random path in En with distribution

K′n(χ′n, dxn) := m(χ′n)(dx′n)
∏

1≤k≤n
M

k,m(χ′k−1)
(x′k, dx

′
k−1)

The following Corollary shows that the transport equations imply an interpretation of mean field
particle models with frozen trajectories as conditional many body Feynman-Kac models w.r.t. an
random ancestral path Xn of the process χ′n.

Corollary 10.5.5 For any n ≥ 0, Fn ∈ B(En × En) we have
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E

Fn(χn−1,Xn)
∏

0≤p<n
G′p(χ′p)

 = E

Fn(X ?n−1, Xn)
∏

0≤p<n
G′p(X

′
p)

 (10.27)

where Xn stands for a random path with conditional distribution m(χn), given χn. In addition,
for any Fn ∈ B(En) and ηn-almost every xn ∈ En we have that

E
(
Fn(χn−1)

∏
0≤p<n G′p(χ′p) | Xn = xn

)
E
(∏

0≤p<n G′p(χ′p) | Xn = xn

) = E
(
Fn(X ?n−1) | Xn = xn

)

Proof :
Using (10.20), for any function Fn ∈ B(En−1 × En) we check that

E
(∫

m(χn)(dxn) Fn(χn−1, xn)
∏

0≤p<n Gp(χp)
)

= E
(∫

Φn−1(m(χn−1))(dxn) Fn(χn−1, xn)
∏

0≤p<n Gp(χp)
)

= E
(∫

Φn−1(m(X ?n−1))(dxn) Fn(X ?n−1, xn)
∏

0≤p<nGp(Xp)
)

= E
(∫

m(X ?n)(dxn) Fn(X ?n−1, xn)
∏

0≤p<nGp(Xp)
)

On the other hand, we have

E
(∫

m(X ?n)(dxn) Fn(X ?n−1, xn)
∏

0≤p<nGp(Xp)
)

= 1
N E

(
Fn(X ?n−1, Xn)

∏
0≤p<nGp(Xp)

)
+
(
1− 1

N

)
E
(∫

Φn(m(X ?n−1))(dxn) Fn(X ?n−1, xn)
∏

0≤p<nGp(Xp)
)

This implies that

E

∫ m(χn)(dxn) Fn(χn−1, xn)
∏

0≤p<n
Gp(χp)

 = E

Fn(X ?n−1, Xn)
∏

0≤p<n
Gp(Xp)


The end of the proof of (10.27) is now clear.

The next result provides a new interpretation of the backward Markov transition K′n in terms of
the conditional distribution of a genealogical line given the complete ancestral tree.

Corollary 10.5.6 When the integral operators Q′n have some densities H ′n w.r.t. some reference dis-
tributions υ′n on S′n, we have

E
(
Fn(χ′n−1,Xn)

)
= E

(
Fn(χ′n−1,X

′
n)
)

(10.28)
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with the random paths Xn and X′n on En defined in (10.27) and (10.26). In particular, for any
fn ∈ B(En) this implies that

E
(
m(χn)(fn) | χ′n−1

)

=

∫
Φn(m(χ′n−1))(dx′n)

 ∏
1≤k≤n

M
k,m(χ′k−1)

(x′k, dx
′
k−1)

 fn(x′0, . . . , x
′
n)

Proof :
Using (10.27) we have

E
(∫

m(χn)(dxn) Fn(χ′n−1, xn)

)
= E

Fn(X ?,′n−1, Xn)
∏

0≤p<n
(Gp(Xp)/G′p(X ?,′p ))


On the other hand, using (10.26) we also have that

E
(
Fn(χ′n−1,X

′
n)
)

= E

Fn(X ?,′n−1, Xn)
∏

0≤p<n
(Gp(Xp)/G′p(X ?,′p ))


This clearly ends the proof of the Corollary.

10.5.4 Genealogy and backward sampling models

Definition 10.5.7 When the integral operators Qn have some densities Hn w.r.t. some distributions
λn, we consider the Markov transition from Sn into itself defined by Kn :=M?

nKn, with the couple
of operators (M?

n,Kn) introduced in definition 10.5.2 and in (10.15).
When (ηn, γn) is the historical version of an auxiliary Feynman-Kac model (γ′n, η

′
n), we consider the

Markov transition from Sn into itself defined by Kn :=M?
nKn, with the couple of operators (M?

n,Kn)
introduced in (10.24) and in (10.17).

Proposition 10.5.8 The Markov transitions Kn, resp. Kn are reversible w.r.t. the probability mea-
sures ηn, resp. ηn

Three elementary proofs of these regularity properties can be underlined:

• Using (10.20), for any couple of functions f1, f2 ∈ B(En) we have

E
(
Kn(f1)(χn) Kn(f2)(χn)

∏
0≤p<n Gp(χp)

)
= E

(
f1(Xn) Kn(f2)(χn)

∏
0≤p<n Gp(χp)

)
= E

(
f1(Xn) Kn(f2)(X ?n)

∏
0≤p<nGp(Xp)

)
∝ E

(
f1(Xn) Kn(f2)(Xn)

∏
0≤p<nGp(Xp)

)
Recalling that Kn(xn, .) and Kn(xn, .) are the En-marginal of the measures Kn(xn, .) and
Kn(xn, .), (for any ηn-p.s., trajectory xn = (xp)0≤p≤n ∈ En), for any (f1, f2) ∈ B(En)2 the
above result implies that

E
(
m(χn)(f1) m(χn)(f2)

∏
0≤p<n G′p(χ′p)

)
∝ E

(
f1(Xn) Kn(f2)(Xn)

∏
0≤p<nGp(Xp)

)
By symmetry arguments the reversibility follows.
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• Combining the unbiasedness properties of the unnormalized particle measures with the transport
equation (10.19) we have(

ηn = ΠnKn and Πn = ηnM
?
n

)
=⇒ ηn = ηnM

?
nKn = ηnKn

In much the same way, using the unbiasedness properties of the unnormalized particle measures
we check that

(ηn = ΠnKn and Πn = ηnM
?
n) =⇒ ηn = ηnM

?
nKn = ηnKn

• The reversibility of Kn = K?n,ΠnKn is also a direct consequence of the the duality formula

(10.22). Indeed, for any (f1,f2) ∈ L2
2(ηn) we have that

(10.23)⇒ ηn ( f1 Kn(f2)) = Πn ( Kn(f1) Kn(f2) ) = ηn ( Kn(f1) f2 ) (10.29)

Since Kn(xn, .) is the Sn-marginal of the measures Kn(xn, .), we also have

(10.29) =⇒ ∀ (f1, f2) ∈ L2
2(ηn) ηn ( Kn(f1) f2 ) = ηn ( f1 Kn(f2) )

Next, we present an elementary proof of the ergodicity of the couple of conditional PMCMC
transitions discussed above.

Proposition 10.5.9 The measure ηn and ηn are the unique invariant measures of the Markov tran-
sitions Kn and Kn. In addition, we have the estimates

β (Kn) ∨ β (Kn) ≤ 1− τn
(

1− 1

N

)n+1

(10.30)

for some

τn ≥
∏

0≤p<n
gp with gn := sup

x,y
(Gn(x)/Gn(y))

The estimates (10.30) are direct consequence of the following rather crude uniform estimate

Kn(fn)(xn) ≥ τn
(

1− 1

N

)n+1

ηn(fn)

for any non negative function fn on En, and any path sequence zn = (zp)0≤p≤n. These lower bounds
are easily checked by using the fact that

τ−1
n Kn(fn)(xn)

≥ E
({∏

0≤p<nm(X ?p )(Gp/ηp(Gp))
}
Kn(fn)(X ?n) |Xn = xn

)
≥
(
1− 1

N

)n+1
ηn(fn)

For a more thorough discussion on these particle Markov chain Monte Carlo methodologies, we refer
the reader to the recent article [197].
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10.6 Structural stability properties

10.6.1 Change of reference process

We consider a Feynman-Kac model on the set of paths En = (E0×. . .×En) defined for any measurable
function fn on En by

γn(fn) = E

fn(Xn)
∏

0≤p<n
Gp(Xp)

 and ηn(fn) = γn(fn)/γn(1)

In the above display, Xn stands for the random paths

Xn = (X0, . . . , Xn)

of some Markov chain Xn evolving in the state spaces En. We further assume that Xn = (X ′n, X
′
n+1)

is the Markov chain in transition space of an auxiliary Markov chain model X ′n evolving in some state
spaces E′n with Markov transitions

M ′n(x′n−1, dx
′
n) = P

(
X ′n ∈ dx′n | X ′n−1 = x′n−1

)
and some initial condition η′0.

We let K ′n be the Markov transitions of some Markov chain Y ′n on E′n

K ′n(x′n−1, dx
′
n) = P

(
Y ′n ∈ dx′n | Y ′n−1 = x′n−1

)
with initial condition µ′0. We further assume that η′0 � ν ′0 and for any n ≥ 1

M ′n(xn−1, .)� K ′n(xn−1, .)

and we set
Yn = (Y ′n, Y

′
n+1) and Yn = (Y0, . . . , Yn)

In this situation, we have

E

fn(Xn)
∏

0≤p<n
Gn(Xn)

 = E

fn(Yn)
∏

0≤p<n
Hn(Yn)


with the initial potential functions

∀x0 ∈ E0 = E0 = E′0 × E′1 H0(x0) = G0(x0)× dη0

dη′0
(x0)

and for any 1 ≤ p < n and any path sequence

xp = (x0, . . . , xp) ∈ Ep := (E0× . . .×Ep) with ∀0 ≤ k ≤ p xk = (x′k, x
′
k+1) ∈ Ek = (E′k×E′k+1)

the potential functions

Hp(xp) = Gp(xp)×
dM ′p+1(x′p, .)
dK ′p+1(x′p, .)

(x′p+1)

This change of probability Feynman-Kac formula shows that there exists an infinite number of ways
to describe a given Feynman-Kac model in terms of a reference Markov chain model. The choice of
the reference Markov chain model depends on the problem at hand. We emphasize that the mean
field particle model associated with a given Feynman-Kac model strongly depends on the choice of
reference exploration Markov chain model.
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10.6.2 Quenched and annealed models

We consider a Markov chain model (Θn, Xn) on some state spaces (Ξn×En) with Markov transitions
of the form

P ((Θn, Xn) ∈ d(θn, xn) | (Θn−1, Xn−1) = (θn−1, xn−1)) = Kn(θn−1, dθn) Mθn,n(xn−1, dxn) (10.31)

and an initial condition of the form µ0(dθ0)ηθ0(dx0). By construction, Θn is a Markov chain on Ξn with
transitions Kn and initial distribution µ0. In addition, given some path sequence Θ = θ = (θn)n≥0,
the stochastic process Xn is a Markov chain with transitions Mθn,n and initial condition ηθ0 .

We consider the Feynman-Kac model on the set of paths

(Ξn ×En) = (Ξ0 × . . .× Ξn)× (E0 × . . .× En)

defined for any measurable function Fn on (Ξn ×En) by

Γn(Fn) = E

Fn(Θn, Xn)
∏

0≤p<n
Gp(Θp, Xp)

 and Qn(Fn) = Γn(Fn)/Γn(1) (10.32)

In the above display, Θn and Xn stands for the random paths

Θn = (Θ0, . . . ,Θn) and Xn = (X0, . . . , Xn)

and Gn is a collection of non negative potential functions on (Ξn ×En). We denote by ΓXn , resp. ΓΘ
n

the marginal of Γn w.r.t the variable Xn, resp. Θn. We also let QXn , resp. QΘ
n , the marginal of Qn

w.r.t the variable Xn, resp. Θn.
We consider the quenched Feynman-Kac model on the set of paths En = (E0 × . . .× En) defined

for any measurable function fn on En, and for any Θn = θn ∈ Ξn by

γθn,n(fn) = E

fn(Xn)
∏

p≤q<n
Gθn,n(Xn) | Θn = θn

 and ηθn,n(fn) = γθn,n(fn)/γθn,n(1)

(10.33)
In the above display, Gθn,n stands for the potential functions defined for any θn ∈ Ξn by

Gθn,n(Xn) = Gn(θn, Xn)

We recall that

E

 ∏
0≤p<n

Gθp,p(Xp) | Θn = θn

 =
∏

0≤p<n
ηθp,p

(
Gθp,p

)
:=

∏
0≤p<n

hp(θp)

with the potential functions
hp(θp) := ηθp,p

(
Gθp,p

)
When, the potential functions only depend on the terminal state of the historical process;

Gn(θn, Xn) = Gθn,n(Xn) = Gn(θn, Xn) = Gθn,n(Xn) (10.34)

the measures (10.32) reduce to

Γn(Fn) = E

Fn(Θn, Xn)
∏

0≤p<n
Gp(Θp, Xp)

 (10.35)
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but the potential functions hp(θp) still depend on the full historical process θp = (θq)0≤q≤p with the
formula

hp(θp) := ηθp,p
(
Gθp,p

)
We let (νn,µn) be the Feynman-Kac measures on Ξn defined for any Fn ∈ B(Ξn) by

νn(Fn) = E

Fn(Θn)
∏

0≤p<n
hp(Θp)

 and µn(Fn) = νn(Fn)/νn(1) (10.36)

For any Fn ∈ B(Ξn) we have that

E

Fn(Θn)
∏

0≤p<n
Gp(Θp, Xp)

 = E

Fn(Θn) E

 ∏
0≤p<n

Gp(Θp, Xp) | Θn


= E

Fn(Θn)
∏

0≤p<n
hp(Θp)


In the same vein, for any fn ∈ B(En), we have that

E
(
fn(Xn)

∏
0≤p<nGp(Θp, Xp)

)

= E

E
(
fn(Xn)

∏
0≤p<nGp(Θp, Xp) | Θn

)
E
(∏

0≤p<nGp(Θp, Xp) | Θn

) × E

 ∏
0≤p<n

Gp(Θp, Xp) | Θn



= E

ηΘn,n(fn)
∏

0≤p<n
hp(Θp)

 = E

Ffn(Θn)
∏

0≤p<n
hp(Θp)


(10.37)

with the function

Ffn(θn) := ηθn,n(fn)

In summary, the annealed measures ΓXn , resp. ΓΘ
n can be expressed in terms of the νn with the

formulae

ΓΘ
n = νn QΘ

n = µn and ΓXn (fn) = νn(Ffn) QXn (fn) = µn(Ffn) (10.38)

We further assume that the potential functions Gθn,n only depend on the terminal state of the
historical process; that is, we have that

Gθn,n(Xn) = Gθn,n(Xn) (10.39)

for some functions Gθn,n on En. In this situation, using (10.37) we have

fn(x0, . . . , xn) = fn(xn)⇒ E

fn(Xn)
∏

0≤k<n
GΘk,k(Xk)

 = E

Ffn(Θn)
∏

0≤p<n
hp(Θp)

 (10.40)

with the function

Ffn(θn) := ηθn,n(fn)

where ηθn,n stands for the n-th time marginal of ηθn,n.
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We further assume that Markov transitions Mθn,n are absolutely continuous with respect to some
measures λn on En, and for any (xn−1, xn) ∈ (En−1 × En) we have

Gθn−1,n−1(xn−1) Mθn,n(xn−1, dxn) = Hθn,n(xn−1, xn) λn(dxn)

for some density function Hθn,n. In this situation, by (4.20) we have

Qθn,n(d(x0, . . . , xn)) = ηθn,n(d(x0, . . . , xn)) = ηθn,n(dxn)

n∏
q=1

Mq,ηθq−1,q−1
(xq, dxq−1) (10.41)

with the collection of Markov transitions

Mn+1,ηθn,n
(xn+1, dxn) =

ηθn,n(dxn) Hθn+1,n+1(xn, xn+1)

ηθn,n
(
θn+1,n+1(., xn+1)

) (10.42)

In this situation, we conclude that

E

fn(Xn)
∏

0≤p<n
Gp(Θp, Xp)

 = E

Ffn(Θn)
∏

0≤p<n
hp(Θp)

 =⇒ ΓXn (fn) = νn(F#
fn

)

with the function

F#
fn

(θn) := Qθn,n(fn)

10.6.3 Particle quenched and annealed models

Given Θn, we let ξn be an N -mean field particle interpretation of the conditional Feynman-Kac
measures ηθn,n on ENn defined in (10.33). We set

Θn := (Θn,χn) ∈ Ξn :=

Ξn ×
∏

0≤p≤n
ENp

 with χn:= (ξ0, . . . , ξn)

We let (νn,µn) be the Feynman-Kac measures on Ξn defined for any Fn ∈ B(Ξn) by

νn(Fn) = E

Fn(Θn)
∏

0≤p<n
hp(Θp)

 and µn(Fn) = νn(Fn)/νn(1) (10.43)

with

hp(Θp) = ηNΘp,p
(
GΘp,p

)
=

1

N

∑
1≤i≤N

GΘp,p(ξip)

Using the unbiasedness property of the unnormalized particle measures (10.2), for any θn ∈ Ξn
(so that θp = (θ0, . . . , θp) for any p ≤ n) and any fn ∈ B(En), we have

E
(
ηNΘn,n(fn)

∏
0≤p<n η

N
Θp,p

(
GΘp,p

)
| Θn = θn

)
= ηθn,n(fn)

∏
0≤p<n ηθp,p

(
Gθp,p

)
= E

(
fn(Xn)

∏
0≤p<nGΘp,p(Xp) | Θn = θn

)
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In much the same way, for any Fn ∈ B(Ξn) and fn ∈ B(En) we find that

E

Fn(Θn)
∏

0≤p<n
Gp(Θp, Xp)

 = E

Fn(Θn)
∏

0≤p<n
hp(Θp)

 (10.44)

and

E

fn(Xn)
∏

0≤p<n
Gp(Θp, Xp)

 = E

F fn(Θn)
∏

0≤p<n
hp(Θp)


with the function

F fn(θn) := ηNθn,n(fn)

In summary, the annealed measures ΓXn , resp. ΓΘ
n can be expressed in terms of the νn with the

formulae
Fn(Θn) = Fn(Θn)⇒ ΓΘ

n (Fn) = νn(Fn) and QΘ
n (Fn) = µn(Fn) (10.45)

as well as

F fn(Θn) := ηNΘn,n(fn)⇒ ΓXn (fn) = νn(F fn) and QX(fn) = µn(F fn)

We further assume that the potential functions Gθn,n only depend on the terminal state of the
historical process; that is, we have that

Gθn,n(Xn) = Gθn,n(Xn) (10.46)

for some functions Gθn,n on En. In this situation, we recall that the measures (10.32) reduce to (10.35)
but the potential functions hp(θp) still depend on the full historical process θp = (θq)0≤q≤p with the
formula

hp(θp) := ηθp,p
(
Gθp,p

)
Nevertheless, in this case we have

fn(x0, . . . , xn) = fn(xn)

⇒ E
(
fn(Xn)

∏
0≤k<nGΘk,k(Xk)

)
= E

(
Ffn(Θn)

∏
0≤p<n hp(Θp)

)
= E

(
F fn(Θn)

∏
0≤p<n hp(Θp)

) (10.47)

with the functions
Ffn(Θn) := ηΘn,n(fn) and F fn(Θn) := ηNΘn,n(fn)

where ηθn,n stands for the n-th time marginal of ηθn,n.
In much the same way, under the assumptions (10.39) and (4.19) using the unbiasedness property

of the unnormalized version of the backward particle measures

QN
θn,n(d(x0, . . . , xn)) = ηNθn,n(d(x0, . . . , xn)) = ηNθn,n(dxn)

n∏
q=1

Mq,ηNθq−1,q−1
(xq, dxq−1)

(with the backward transitionsMq,ηθq−1,q−1
defined in (10.42)) we have

E
(
QN

Θn,n
(fn)

∏
0≤p<n η

N
Θp,p

(
GΘp,p

)
| Θn = θn

)
= Qθn,n(fn)

∏
0≤p<n ηθp,p

(
Gθp,p

)
= E

(
fn(Xn)

∏
0≤p<nGΘp,p(Xp) | Θn = θn

)
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We conclude that

ΓXn (fn) = νn(F fn) and QX(fn) = µn(F
#
fn

) with F
#
fn

(θn) := QN
θn,n(fn)

10.6.4 Noncommutative models

We consider a Markov chain Xn taking values in some measurable state spaces En. We equip the
space Rd with some norm ‖.‖, and we let Sd−1 ⊂ Rd be the unit sphere associated with this norm.
We consider a collection of potential functions taking values in the space of matrices

Gn : x ∈ En 7→ Gn(x) ∈ Rd×d such that ‖Gn(x).u‖ > 0

for any u ∈ Sd−1, and any x ∈ En. We let Bb(En,Rd) be Banach space of all bounded measurable
function fn from En into Rd. We consider the d-dimensional vector Feynman-Kac measures γn defined
for any fn ∈ Bb(En,Rd), and any u0 ∈ Sd−1 by

γn(fn).u0 := E

fn(Xn).

 ∏
0≤p<n

Gp(Xp)

 .u0


with the directed product of noncommutative matrices∏

0≤p<n
Gp(Xp) := Gn−1(Xn−1) . . . G1(X1)G0(X0)

One natural way to turn these vector measure models into the Feynman-Kac models presented in (9.7)
is to consider the random walk on the sphere Sd−1 defined by the recursion

Un+1 := Gn(Xn).Un/‖Gn(Xn).Un‖

with the initial condition U0 = u0. In this situation, we have∥∥∥∥∥∥
 ∏

0≤p<n
Gp(Xp)

 .u0

∥∥∥∥∥∥ =
∏

0≤p<n
Gp(Xp)

with the Markov chain Xn, and the potential functions Gn defined by

Xn := (Xn, Un) ∈ En := (En × Sd−1) and Gn(Xn) := ‖Gn(Xn).Un‖

In this notation, we readily check that

γn(fn).u0 := E

fn(Xn)
∏

0≤p<n
Gp(Xp)

 := γn(fn)

with the function fn ∈ Bb(En) defined by fn(Xn) := fn(Xn).Un.

10.7 Feynman-Kac sensitivity measures

This section is dedicated to the design of Feynman-Kac sensitivity measures. The analysis of these
quantities arises in a variety of application domains. To name a few, in nonlinear filtering, they are
used to estimate filter derivatives, as well as the gradient of log-likelihood functions in hidden Markov
chain models [203, 204, 205, 232]. In financial mathematics, they are also used to compute option
price type sensitivities [82, 102, 103, 274]. In this context, sensitivity measures allow the traders to



276 CHAPTER 10. FEYNMAN-KAC PATH INTEGRATION

determine how sensitive the values of options are to small changes in the set of parameters on which
they depend. These parameters include the initial price of assets, the volatility parameter, or the risk
free rates.

In financial mathematics literature, these risk measures are often named “Greeks” mainly because
they are denoted by Greek letters: the delta is the first derivative of the option value w.r.t. to the un-
derlying price. This quantity can be computed using the mean field simulation schemes associated with
the Feynman-Kac representations of the gradients of Markov semigroups developed in Section 10.7.2.

10.7.1 Parametric models

We let θ ∈ Rd be some parameter that may represent some kinetic type parameters related to the
free evolution model or to adaptive potential functions. We also consider a collection of functions Gθ,n
that depend on θ.

We assume that the free evolution model X
(θ)
n associated to some value of the parameter θ is given

by a one-step probability transition Mθ,n(x, dx′) so that

Qθ,n(x, dx′) := Gθ,n−1(x) Mθ,n(x, dx′) = Hθ,n(x, x′) λn(dx′)

for some positive density functions Hθ,n and some reference probability measures λn. To simplify the
presentation, we assume that the initial distribution η0 = λ0.

We also assume that the gradient, and the Hessian of the logarithms of these functions, w.r.t. the
parameter θ, are well defined.

We let (Γθ,n,Qθ,n) be the Feynman-Kac measure associated with a given value of θ, and defined
for any bounded measurable function fn on the path space En = (E0 × . . . × En) by Qθ,n(fn) =
Γθ,n(fn)/Γθ,n(1), with

Γθ,n(fn) = E

fn(X
(θ)
0 , . . . , X(θ)

n )
∏

0≤p<n
Gθ,p

(
X(θ)
p

) (10.48)

We also denote by (γθ,n, ηθ,n), the n-th time marginal measures of (Γθ,n,Qθ,n).

We observe that

Γθ,n(fn) = λn (fn exp (Lθ,n) ) with λn = ⊗0≤p≤nλp

and the additive functional

Lθ,n(x0, . . . , xn) :=
n∑
p=1

log (Hθ,p(xp−1, xp)) (10.49)

By using simple derivation calculations, we prove that the first order derivative of the option value
w.r.t. θ is given by

∇Γθ,n(fn) = Γθ,n(fnΛθ,n) with Λθ,n := ∇Lθ,n (10.50)

∇2Γθ,n(fn) = Γθ,n
[
fn(Λθ,n)Λ′θ,n + fn∇2Lθ,n

]
(10.51)

Next, we illustrate the above discussion with the sensitivity to changes in the diffusion coefficient of

the stochastic Equation (5.2), with d = 1. We consider a Markov chain X
(θ)
n that satisfies the following

equation

X(θ)
n −X

(θ)
n−1 = b

(
X

(θ)
n−1

)
∆ +

[
σ
(
X

(θ)
n−1

)
+ θ σ′

(
X

(θ)
n−1

)] (
Wtn −Wtn−1

)
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for some σ′ s.t. σ + θ σ′ > 0 for any θ ∈ [0, 1]. In this situation, we have

∂θ

n∑
p=1

log (Hθ,p(xp−1, xp))

=
n∑
p=1

σ′(xp−1)

σ(xp−1) + θσ′(xp−1)

( (xp − xp−1)− b(xp−1)∆

(σ(xp−1) + θσ′(xp−1))
√

∆

)2

− 1


(10.52)

To consider sensitivity to changes in the drift of the stochastic Equation (5.2), with d = 1, we assume

that X
(θ)
n satisfies equation

X(θ)
n −X

(θ)
n−1 =

[
b
(
X

(θ)
n−1

)
+ θb′

(
X

(θ)
n−1

)]
∆ + σ

(
X

(θ)
n−1

) (
Wtn −Wtn−1

)
for some function b′. In this situation, we have

∂θ

n∑
p=1

log (Hθ,p(xp−1, xp))

=

n∑
p=1

[
(xp − xp−1)−

[
b(xp−1) + θb′(xp−1)

]
∆
]
× b′(xp−1)/σ2(xp−1)

Now, suppose that changes in potential energy functions are given by logGn = [Vn + θV ′n], for
some nonnegative functions Vn and V ′n. In this situation, we have that

∂θ
∑

0≤p<n
log (Gθ,p(xp)) = −

∑
0≤p<n

V ′p(xp) (10.53)

We illustrate these models with a Feynman-Kac model associated with a reference Markov chain

X
(θ)
n = Xn, whose values do not depend on θ

γθ,n(fn) = E

fn(Xn) exp

− ∑
0≤q<n

Vθ,q(Xq)




for some smooth functions θ 7→ Vθ,n. Then, using the backward Markov chain model we have

∇γθ,n(fn) = −
∑

0≤p<n
γθ,n

(
fn Mn,ηθ,n−1

. . .Mp+1,ηθ,p (∇Vθ,p)
)

10.7.2 Gradient of semigroups

We consider a Markov chain model given by an iterated Rd-valued random process

Xn+1 := Fn(Xn) = (Fn ◦ Fn−1 ◦ · · · ◦ F0)(X0) (10.54)

starting at some random state X0, with a sequence of random smooth functions of the form

Fn(x) = Fn(x,Wn) (10.55)

In the above display, Wn is a collection of independent r.v. taking values in Rd′ , for some d′ ≥ 1; and
Fn are some smooth functions, from Rd+d′ into Rd.
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The semigroup of the Markov chain Xn is the expectation operator defined for any regular function
fn and any state x by

Pn+1(fn+1)(x) := E (fn+1(Xn+1) | X0 = x) = E (f(Xn+1(x)))

with the random flows (Xn(x))n≥0 defined for any n ≥ 0 by the following equation

Xn+1(x) = Fn(Xn(x)) with the initial condition X0(x) = x

By construction, for any 1 ≤ i, j ≤ d we have the first variational equation

∂Xi
n+1

∂xj
(x) =

∑
1≤k≤d

∂F in
∂xk

(Xn(x))
∂Xk

n

∂xj
(x) (10.56)

On the other hand, we have that

∂Pn+1(f)

∂xj
(x) = E

 ∑
1≤i≤d

∂f

∂xi
(Xn+1(x))

∂Xi
n+1

∂xj
(x)

 (10.57)

We denote by Vn = (V
(i,j)
n )1≤i,j≤d and An = (A

(i,j)
n )1≤i,j≤d the random (d × d)-matrices with the

i-th line and j-th column entries

V (i,j)
n (x) =

∂Xi
n

∂xj
(x)

A(i,j)
n (x) =

∂F in
∂xj

(x) =
∂F in(.,Wn)

∂xj
(x) := A(i,j)

n (x,Wn)

We mention that the matrix Vn coincides with the Jacobian matrix J(Xn)(x) = ∂Xn
∂x (x) of the function

Xn : x ∈ Rd 7→ Xn(x) ∈ Rd.
In this notation, the Equation (10.56) can be rewritten in terms of the following random matrix

formulae

Vn+1(x) = An(Xn(x)) Vn(x) :=
n∏
p=0

Ap(Xp(x)) (10.58)

In the above display,
∏n
p=0Ap stands for the noncommutative product of the random matrices Ap,

taken in the order An, An−1,. . . , A0.

In the same way, the Equation (10.57) can be rewritten as

∇Pn+1(fn+1)(x) = E (∇fn+1(Xn+1) Vn+1 | X0 = x) (10.59)

with Vn+1 :=
∏

0≤p≤nAp(Xp). For instance, for one dimensional models of the form

Xn+1 = Fn(Xn,Wn) = Xn + b (Xn) ∆ + σ (Xn)
√

∆ Wn , (10.60)

with some ∆ > 0, and some sequence of independent and centered Gaussian random variables Wn, it
is readily checked that

An(x) = An(x,Wn) =

(
1 +

∂b

∂x
(x) ∆ +

∂σ

∂x
(x)
√

∆ Wn

)
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and therefore

Vn+1(x) =
n∏
p=0

(
1 +

∂b

∂x
(Xp) ∆ +

∂σ

∂x
(Xp)

√
∆ Wp

)
'∆↓0 exp

∑
0≤p≤n

(
∂b

∂x
(Xp) ∆ +

∂σ

∂x
(Xp)

√
∆ Wp

)
In this context (10.59) has the same form as the Feynman-Kac models (9.7).
In the multidimensional case, we proceed as follows. We equip the space Rd with some norm ‖.‖.

We assume that for any state U0 in the unit sphere Sd−1 ⊂ Rd, we have

‖Vn+1 U0‖ > 0

In this situation, we have the multiplicative formulae

∇fn+1(Xn+1) Vn+1 U0 = [∇fn+1(Xn+1) Un+1]
∏

0≤p≤n
‖Ap(Xp) Up‖

with the well defined Sd−1-valued Markov chain defined by

Un+1 = An(Xn)Un/‖An(Xn)Un‖ (⇐⇒ Un+1 = Vn+1 U0 / ‖Vn+1 U0‖ )

If we choose U0 = u0, then we obtain the following Feynman-Kac interpretation of the gradient of a
semigroup

∇Pn+1(fn+1)(x) u0 = E

Fn+1(Xn+1)
∏

0≤p≤n
Gp (Xp)

 (10.61)

In the above display, Xn is the Markov chain sequence Xn := (Xn, Un,Wn), starting at (x, u0,W0);
and the functions Fn+1 and Gn are defined by

Fn+1(x, u, w) := ∇fn+1(x) u and Gn (x, u, w) := ‖An(x,w) u‖

We quote the interpolation formula

Pn+1(f)(y)− Pn+1(f)(x) =

∫ 1

0
∇Pn+1(fn+1)(ty + (1− t)x) (y − x)′ dt

= E

∇f(X
(x,y)
n+1 )

 ∏
0≤p≤n

Ap(X
(x,y)
p )

 (y − x)′


where X

(x,y)
n stands for Markov chain (10.54) starting at some random state X

(x,y)
0 uniformly chosen

in the line segment between x and y.
We end this section with some rather crude upper bound that can be estimated, uniformly w.r.t.

the time parameter, under appropriate regularity conditions on the reduced Markov chain model
(Xn,Wn). To this end, firstly we notice that

Gn (x, u, w) := ‖An(x,w) u‖ ≤ Gn(x,w) := ‖An(x,w)‖
:= supu∈Sd−1 ‖An(x,w) u‖

This implies that

‖∇Pn+1(fn+1)(x)‖ := sup
1≤i≤d

∣∣∣∣ ∂∂xi Pn+1(fn+1)(x)

∣∣∣∣
≤ ‖Fn+1‖ × E

 ∏
0≤p≤n

Gp (Xp,Wp)


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We end this section with a Feynman-Kac model associated with extremal Lyapunov trajectories.
Firstly, in terms of the Jacobian matrices Jn(Xn), we notice that∏

0≤p≤n
Gp (Xp) =

∏
0≤p≤n

‖Ap(Xp) Up‖ =
∏

0≤p≤n

‖J(Xp+1) u0‖
‖J(Xp) u0‖

= ‖J(Xn+1) u0‖

Replacing vector norms ‖J(Xn) u0‖ by matrix norms ‖J(Xn)‖, and setting

Xn = (Xn, Xn+1) and Gn(Xn) = ‖Jac (Xn+1)‖α/‖Jac (Xn)‖α

for some α ∈ R, the Feynman-Kac model described above reduces to the Lyapunov weighted dynamics
model

dQn =
1

Zn
‖Jac (Xn)‖α dPn

where Pn stands for the law of the random trajectories (X0, . . . ,Xn). When α < 0, the measure Qn
favors low Lyapunov trajectories, while for α > 0, the Qn favors high Lyapunov trajectories. This
Feynman-Kac model coincides with the rare event stochastic models developed in [180], and presented
in Section 11.4.1. The mean field particle models associated with these Feynman-Kac formula have
been used in the series of articles [394, 561, 562, 567] to sample atypical rare event trajectories in
nonlinear stochastic processes.

We notice that all these Feynman-Kac models we have discussed have exactly the same form as
the matrix models discussed in Section 10.6.4. In addition, using the same analysis as above, we easily
design mean field estimates of E (‖Yn‖q), for any reasonably large q ≥ 0, just replacing the potential
functions ‖Au‖ by the functions ‖Au‖q. We also mention that in physics literature, the mean field IPS
simulation models are sometimes called “Resampled Monte Carlo methods” [578].

10.7.3 Malliavin derivatives

We return to the one dimensional model (10.60). For nonsmooth functions fn+1 we can use the
following Gaussian regularization kernel

Pn+1,ε(fn+1)(x) := E (fn+1(Xn+1(x) + εY )) (10.62)

for some auxiliary Gaussian variable, independent of the process Xn. From the statistical viewpoint,
this approximation procedure is interpreted as a Gaussian kernel density estimation of the distribution
of Xn+1(x). Combining (10.59) with (10.62), we end up with the following approximation formula

∂
∂xPn+1,ε(fn+1)(x)

= E
(
ε−1 [fn+1(Xn+1(x) + εY )− fn+1(Xn+1(x))] Y Vn+1(x)

)
From a more probabilistic point of view, the Gaussian regularization formula (10.62) can also be

interpreted as the addition of an additional Gaussian move in the evolution of the chain Xn+1(x).
This suggests that we can alternatively use the last transition to regularize the semigroup

Pn+1(fn+1)(x) = E
(
E
(
fn+1

(
Xn+1(x)

)∣∣Xn(x)
))

= E
[∫

fn+1

(
xn+1

)
P (Xn+1(x) ∈ dxn+1 |Xn(x))

]
Letting Hn+1(xn, xn+1) be the density of the Markov transition Xn  Xn+1 w.r.t. the Lebesgue
measure, we find that

Pn+1(fn+1)(x) = E
[∫

fn+1

(
xn+1

)
Hn+1(Xn(x), xn+1) dxn+1

]
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Arguing as above we find that

∂

∂x
Pn+1(fn+1)(x) = E (fn+1(Xn+1(x)) dHn+1(Xn(x), Xn+1(x)) Vn(x))

with the weight function

dHn+1(xn, xn+1) =
∂

∂xn
logHn+1(xn, xn+1)

=

((
(xn+1 − xn)− b(xn)∆

σ(xn)
√

∆

)2

− 1

)
∂

∂x
log σ(xn)

+

(
(xn+1 − xn)− b(xn)∆

σ(xn)
√

∆

)
1 + ∂b

∂x(xn)∆

σ(xn)
√

∆

In the context of financial mathematics, these formulae, and the corresponding weighted conven-
tional Monte Carlo approximations, have been recently proposed by N. Chen and P. Glasserman [139].
This framework is an alternative to the Malliavin Greeks derivative calculus introduced in the pio-
neering articles by E. Fournié, J.M. Lasry, J. Lebuchoux, P.L. Lions, and N. Touzi [274, 275].

In this connection, we briefly recall some foundations of Malliavin derivatives. We let Ps,t be the
semigroup associated with the diffusion stochastic equation (5.1), with d = 1; that is, we have that

Ps,t(f)(Xs) = E (f(Xt) | Xs)

Using elementary backward calculations, for any 0 ≤ s ≤ t we find that

Ps,t(f)(Xs) = P0,t(f)(X0) +

∫ s

0

∂Pr,t(f)

∂x
(Xr) σ(Xr) dWr

If we set s = t in the above equation, then we find that

E
[
f(Xt(x))

∫ t

0

∂Xs

∂x
(x) σ−1(Xs(x))) dWs

]

= E
[∫ t

0

∂Ps,t(f)

∂x
(Xs(x))

∂Xs

∂x
(x) ds

] (10.63)

as soon as σ is a regular positive function. Recalling that

∂

∂x
P0,t(f)(x) =

∂

∂x
E [Ps,t(f)(Xs(x))] = E

[
∂Ps,t(f)

∂x
(Xs(x))

∂Xs

∂x
(x)

]
and using (10.63) we find that

E
[
f(Xt(x))

∫ t

0

∂Xs

∂x
(x) σ−1(Xs(x))) dWs

]
= t

∂

∂x
P0,t(f)(x)

This yields the Malliavin formulation of the semigroup derivatives

∂

∂x
P0,t(f)(x) = E

[
f(Xt(x))

1

t

∫ t

0
σ−1(Xs(x))

∂Xs

∂x
(x) dWs

]
A more rigorous derivation of the above equations is provided in [274, 275].

Using an Euler type time discretization model

X(n+1)∆ −Xn∆ = b (Xn∆) ∆ + σ (Xn∆)
√

∆ Yn (10.64)
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with a sequence of independent and centered Gaussian random variables Yn, we have the Feynman-Kac
approximation model

∂
∂xP0,(n+1)∆(f)(x) '∆↓0

1

(n+ 1)
√

∆

∑
0≤p≤n

E
(
f(X(n+1)∆(x))Zp(x)

)
(10.65)

with the random weight function

Zp(x) := ϕ (Xp∆(x), Yp)
∏

0≤q<p
Gq(Xq∆(x), Yq)

ϕ (x, y) = σ−1(x) y and Gq(x, y) = 1 +
∂b

∂x
(x) ∆ +

∂σ

∂x
(x)
√

∆ y

The ratio 1/
√

∆ in the r.h.s. of (10.65) may induce degenerative numerical estimates. One way to
remove this term in the numerical scheme is to use the following formula

E
(
f(X(n+1)∆(x))Zp(x)

)
= E (Υp+1,n+1(f) [Xp∆(x), Yp]×Zp(x))

with the function

Υp+1,n+1(f)[x, y] = P(p+1)∆,(n+1)∆(f)
(
x+ b(x)∆ + σ(x)

√
∆y
)

−P(p+1)∆,(n+1)∆ (f) (x+ b (x) ∆)

Under some appropriate regularity conditions, we notice that

Υp+1,n+1(f)[x, y]

'∆↓0 Pp∆,(n+1)∆(f)
(
x+ b(x)∆ + σ(x)

√
∆y
)
− Pp∆,(n+1)∆(f) (x+ b(x)∆)

'∆↓0
∂Pp∆,(n+1)∆(f)

∂x
(x) σ(x)

√
∆ y

This implies that the gradient of the Markov semigroup is approximated by

∂

∂x
P0,(n+1)∆(f)(x) '∆↓0

1

(n+ 1)

∑
0≤p≤n

Up,n(f)(x)

with the Feynman-Kac formulae

Up,n(f)(x) := E

∂Pp∆,(n+1)∆(f)

∂x
(Xp∆(x)) Y 2

p

∏
0≤q<p

Gq(Xq∆(x), Yq)





Chapter 11

Some illustrations

11.1 Ground states of quantum systems

This section is concerned with applications of nonlinear Monte Carlo methods in computational
physics. We return to the Feynman-Kac models discussed in section 8.5.2.

11.1.1 Spectral decompositions

We further assume that the infinitesimal generator L of the reference process Xt in (8.48) is a self
adjoint operator on L2(Rd) (equipped with the scalar product 〈f, g〉 =

∫
f(x)g(x)dx) defined on some

proper domain of functions D(L); that is, we have that

〈f, L(g)〉 = 〈L(f), g〉

for any f, g ∈ D(L). In this situation, the Schrödinger operator LV sometimes written in terms of the
Hamiltonian operator

H := −LV = −L+ V

is again a self adjoint operator on L2(Rd) (under appropriate regularity conditions on V ).

An important consequence of the self-adjoint property of H is that there exists a sequence
of non negative eigenvalues 0 ≤ E0 ≤ E1 ≤ . . . and a corresponding set of orthonormal
eigenfunctions ϕi, i ≥ 0 (with ϕ0 ≥ 0) such that the integral Feynman-Kac operator Qt =
e−tH introduced in (8.48) and (8.53) has the following spectral representation

Qt(x, dy) =
∑
i≥0

e−tEi ϕi(x)ϕi(y) dy

Therefore, we find that

Qt(f)(x) =
∑
i≥0

e−tEi 〈f, ϕi〉 ϕi(x)

By (8.51), we also have that

∂

∂t
Qt(f) = −

∑
i≥0

Ei e
−tEi 〈f, ϕi〉 ϕi

=
∑
i≥0

e−tEi 〈f, ϕi〉 LV (ϕi) = LV (Qt(f))

283
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Choosing f = ϕi, we conclude that for any i ≥ 0

H(ϕi) = Ei ϕ⇔ LV (ϕi) = −Ei ϕi ⇒ 〈ϕi, LV (ϕi)〉 = −Ei

For simplicity, we further assume that E0 < E1. In this case we have

Qt(f) 't↑∞ e−tE0 〈f, ϕ0〉 ϕ0

This implies that for any starting point x we have

− 1

t
logQt(1)(x) −→t↑∞ E0 and

Qt(f)(x)

Qt(1)(x)
't↑∞

〈f, ϕ0〉
〈1, ϕ0〉

(11.1)

Notice that∑
i≥0 e−tEi 〈f, ϕi〉 ϕi(x)∑
i≥0 e−tEi 〈1, ϕi〉 ϕi(x)

=
〈f, ϕ0〉 ϕ0(x) +

∑
i≥1 e−t(Ei−E0) 〈f, ϕi〉 ϕi(x)

〈1, ϕ0〉 ϕ0(x)
∑

i≥1 e−t(Ei−E0) 〈1, ϕi〉 ϕi(x)

This implies that

Qt(f)(x)

Qt(1)(x)
− 〈f, ϕ0〉
〈1, ϕ0〉

= e−t(E1−E0)
∑
i≥1

e−t(Ei−E1) 〈1, ϕi〉 ϕi(x)

〈1, ϕ0〉 ϕ0(x) +
∑

i≥1 e−t(Ei−E0) 〈1, ϕi〉 ϕi(x)

[
〈f, ϕi〉
〈1, ϕi〉

− 〈f, ϕ0〉
〈1, ϕ0〉

]
We conclude that

Qt(f)(x)

Qt(1)(x)
− 〈f, ϕ0〉
〈1, ϕ0〉

= O
(
e−t(E1−E0)

)
11.1.2 The harmonic oscillator

The harmonic oscillator is defined by choosing the quadratic energy function

V (x) = k x2/2⇒ LV = ~2

2m
∂2

∂x − k x
2/2

= ~2

2m
∂2

∂x −
1
2 mω

2 x2 with ω =
√

k
m

Whenever they exist, we let ϕn be an eigenfunction of LV associated with the eigenvalue

En = ~
(
n+

1

2

)
ω ⇐⇒ 2mEn

~2

(
~2

mk

)1/2

=
2En
~ω

= (2n+ 1)

LV (ϕn) = −Enϕn ⇐⇒ ϕ′′n(x) =

(
mk

~2
x2 − 2mEn

~2

)
ϕn(x)

Notice that (
mk

~2

)1/4

=
1√
~

(
m

(
k

m

)1/2
)1/2

=

√
mω

~
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We set

ψn(x) := ϕn

((
mk

~2

)−1/4

x

)
⇐⇒ ϕn(x) = ψn

(√
mω

~
x

)

We have

ψ′n(x) =

(
mk

~2

)−1/4

ϕ′n

((
mk

~2

)−1/4

x

)

ψ′′n(x) =

(
mk

~2

)−1/2

ϕ′′n

((
mk

~2

)−1/4

x

)

=

(
~2

mk

)1/2
mk

~2

((
mk

~2

)−1/4

x

)2

− 2mEn
~2

 ψn(x)

This shows that

ψ′′n(x) = (x2 − (2n+ 1)) ψn(x)

Our next objective is to express these eigenfunctions in terms of the Hermite polynomials.

We recall that the Hermite polynomials can be defined using the Rodrigues’ formula

Hn(x) = (−1)n ex
2 dn

dxn
e−x

2

Notice that

H′n(x) :=
dHn

dx
(x) = 2x(−1)n ex

2 dn

dxn
e−x

2
+ (−1)n ex

2 dn+1

dxn+1
e−x

2

= 2xHn(x)−Hn+1(x)⇔ Hn+1(x) = 2xHn(x)−H′n(x) (11.2)

This formula shows that Hnis a polynomial of degree n with a leading coefficient 2n so that dnHn
dxn (x) =

2n n!. In addition, combining (3.24) with an integration by part we find that

∀m < n

∫
e−x

2
Hm(x)Hn(x) dx = (−1)n

∫
Hm(x)

dn

dxn
e−x

2
dx =

∫
dn

dxn
Hm(x)︸ ︷︷ ︸
=0

e−x
2
dx = 0

and for m = n ∫
e−x

2
H2
n(x) dx =

∫
dn

dxn
Hn(x)︸ ︷︷ ︸

=2nn!

e−x
2
dx = 2nn!

∫
e−x

2
dx = 2nn!

√
π
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Working a little more, one deduces that the set of functions

H̃n(x) := (2nn!
√
π)−1/2 e−x

2/2Hn(x)

forms an orthonormal basis of L2(R).

We recall the Leibniz’ formula

dn

dxn
(fg) := (fg)(n) =

∑
0≤k≤n

(
n
k

)
f (k)g(n−k)

This formula is proved by induction w.r.t. the parameter n.

(fg)(n+1) =
∑

0≤k≤n

(
n
k

)
f (k+1)g((n+1)−(k+1)) +

∑
0≤l≤n

(
n
l

)
f (l)g(n+1−l)

=
∑

1≤l≤n

[(
n

l − 1

)
+

(
n
l

)]
︸ ︷︷ ︸

=

 n+ 1
l


f (l)g(n+1−l) +

(
n
n

)
f (n+1) +

(
n
0

)
g(n+1)

Applying this formula to f(x) = −2x and g(x) = e−x
2

we find that

dn+1

dxn+1
e−x

2
=

dn

dxn
(−2xe−x

2
)

=

(
n
0

)
(−2x)

dn

dxn
e−x

2
+

(
n
1

)
(−2)

dn−1

dxn−1
e−x

2

= −2x
dn

dxn
e−x

2 − 2n
dn−1

dxn−1
e−x

2 ⇒ Hn+1(x) = 2xHn(x)− 2nHn−1(x) (11.3)

Combining (11.2) and (11.3), we have

2xHn(x)− 2nHn−1(x) = 2xHn(x)−H′n(x)⇒ H′n = 2nHn−1 ⇒ H′′n = 2nH′n−1

and therefore

H′n(x) = 2xHn(x)−Hn+1(x)⇒ H′′n(x) = 2Hn(x) + 2xH′n(x)−H′n+1(x)
= 2Hn(x) + 2xH′n(x)− 2(n+ 1)Hn(x)
= 2xH′n(x)− 2nHn(x)

(11.4)

We set
Hn(x) := e−x

2/2Hn(x) ⇐⇒ Hn(x) = ex
2/2 Hn(x)

Using the fact that

H′n(x) = ex
2/2

[
xHn(x) + H′n(x)

]
H′′n(x) = ex

2/2
([

Hn(x) + xH′n(x) + H′′n(x)
]

+ x
[
xHn(x) + H′n(x)

])
= ex

2/2
[
(1 + x2)Hn(x) + 2xH′n(x) + H′′n(x)

]
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we check that

(11.4)⇔ 0 = H′′n(x)− 2xH′n(x) + 2nHn(x)

= ex
2/2

[[
(1 + x2)Hn(x) + 2xH′n(x) + H′′n(x)

]
− 2x

[
xHn(x) + H′n(x)

]
+ 2nHn(x)

]
= ex

2/2
[
H′′n(x) + ((2n+ 1)− x2)Hn(x)

]
and

H′′n(x) = (x2 − (2n+ 1)) Hn(x)

This shows that ψn(x) = Hn(x) and therefore

ϕn(x) ∝ ψn
(√

mω

~
x

)
= Hn

(√
mω

~
x

)
= e−

x2

2
mω
~ Hn

(√
mω

~
x

)

Finally, we obtain the orthornormal basis of eigenfunctions by setting

ϕn(x) :=

√
1

2nn!
√
π

(mω
~

)1/4
exp

[
−x

2

2

mω

~

]
Hn

(√
mω

~
x

)

11.1.3 Trial ground state energies

We notice that

LV (ϕ0) = L(ϕ0)− V ϕ0 = E0ϕ0 ⇒ V = ϕ−1
0 L(ϕ0)− E0

Using the exponential change of probability measures discussed in section 5.3.3, this implies that

γt(f) := E
(
f(Xt) e

−
∫ t
0 V (Xs)ds

)
= eE0t E

(
f(Xt) e

−
∫ t
0 [ϕ−1

0 L(ϕ0)](Xs)ds
)

= eE0t E
(
ϕ0(X0)

ϕ0(Xt)
f(Xt)

ϕ0(Xt)

ϕ0(X0)
e−
∫ t
0 [ϕ−1

0 L(ϕ0)](Xs)ds
)

= eE0t η0(ϕ0) E
(
ϕ−1

0 (Xϕ0
t ) f(Xϕ0

t )
)

and

ηt(f) :=
γt(f)

γt(1)
=

E
(
ϕ−1

0 (Xϕ0
t ) f(Xϕ0

t )
)

E
(
ϕ−1

0 (Xϕ0
t )
)

where η0 = Law(X0), and Xϕ0
t stands for the Markov process with initial distribution η

[ϕ0]
0 = Ψϕ0(η0)

and infinitesimal generator

L[ϕ0](f) = L(f) + ϕ−1
0 ΓL(ϕ0, f)

These stochastic models are the continuous time version of the discrete time Doob h-processes discussed
in section 4.3.2. We also refer the reader to the end of section 5.3.3 for some work out examples of
jump-diffusion processes with generator L[ϕ0].

The ground state ϕ0 is usually unknown and we often use the ϕT -process XϕT
t associated with a

trial energy function (a.k.a. guiding wave function) denoted by ϕT . In this case, we have

γt(f) := E
(
f(Xt) e

−
∫ t
0 V (Xs)ds

)
= E

(
f(Xt) e

−
∫ t
0 (V−[ϕ−1

T L(ϕT )])(Xs)dse−
∫ t
0 [ϕ−1
T L(ϕT )](Xs)ds

)
= η0(ϕT ) E

(
ϕ−1
T (XϕT

t ) f(XϕT
t ) e−

∫ t
0 (V−[ϕ−1

T L(ϕT )])(X
ϕT
s )ds

)
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The above formula is sometimes written as follows

γt(f) = η0(ϕT ) E
(
ϕ−1
T (XϕT

t ) f(XϕT
t ) e−

∫ t
0 VT (X

ϕT
s )ds

)
with the trial ground state energy (a.k.a. local energy) VT given by

VT (x) := V (x)−
[
ϕ−1
T L(ϕT )

]
(x) =

[
ϕ−1
T H(ϕT )

]
(x)

In the above display, XϕT
t stands for the ϕT -twisted process with initial distribution η

[ϕT ]
0 =

ΨϕT (η0) and infinitesimal generator

L[ϕT ](f) = L(f) + ϕ−1
T ΓL(ϕT , f)

11.2 Signal Processing

11.2.1 Nonlinear filtering models

Suppose that at every time step the state of the Markov chain Xn taking values in some state spaces
EXn is partially observed according to the following schematic picture

X0 −→ X1 −→ X2 −→ . . .
↓ ↓ ↓
Y0 Y1 Y2 . . .

The typical model is given by a reference Markov chain model Xn and some partial and noisy obser-
vation Yn. We denote by Mn the elementary Markov transitions of the Markov chain Xn. The pair
process (Xn, Yn) usually forms a Markov chain on some product measurable state space

(
EXn × EYn

)
with elementary transitions given

P ((Xn, Yn) ∈ d(x, y) | (Xn−1, Yn−1)) = Mn(Xn−1, dx) gn(x, y) λn(dy) (11.5)

for some positive likelihood function gn, and some reference probability measure λn on EYn . In the
further development of this section, we fix the observation sequence Yn = yn, for n ≥ 0. As traditional
in nonlinear filtering literature, when there is no possible confusion, we slightly abuse the notation
and we suppress as much as we can the dependence on the observation sequence. For any n ≥ 0, we
set

Gn(xn) = gn(xn, yn) (11.6)

With a slight abuse of notation, sometimes we denote by p(yn) := p(y0, . . . , yn) the density of the
historical observation sequence

Yn := (Y0, . . . , Yn) w.r.t. the product measure λn(dyn) := ⊗0≤p≤nλp(dyp)

that is, we have that
P (Yn ∈ dyn) = p(yn) λn(dyn)

By construction, the conditional distribution of the historical process of the signal

Xn := (X0, . . . , Xn)

given the sequence of observations Yn−1 := (Y0, . . . , Yn−1) coincides with the Feynman-Kac measures
(4.17) associated with the pair (Gn,Mn); that is, we have that

ηn = Law(Xn | Yn−1) (11.7)
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In addition, the normalizing constants defined in (4.17) take the following form

Zn+1 = p(yn) = E

 ∏
0≤k≤n

Gk(xk)


To underline the dependence on the observation sequence, sometimes we write Zn+1(y), the normal-
izing constants associated with a given sequence of observations y = (yp)0≤p≤n.

In this context, the optimal one step predictor ηn and the optimal filter η̂n are given by the n-th
time marginal distribution defined by

ηn = Law (Xn | Yn−1) η̂n = ΨGn(ηn) = Law (Xn | Yn−1) (11.8)

11.2.2 Regulation problems

This section is concerned with the estimation of the conditional distributions of the signal-noise given
the observations in terms of a genealogical tree based model. These mathematical objects are closely
related to optimal regulation problems. In this situation, we have a dedicated controlled complex
system and a given reference trajectory. The problem is to compute the optimal sequence of controls
that minimizes some energy cost function and drives the system as close as possible to some reference
trajectory.

These regulation problems can be interpreted in terms of the maximum likelihood of a dual filtering
problem. Inversely, the logarithm of the conditional distributions of a filtering model in path space can
be interpreted in terms of the cost associated with a given optimal regulation model. In this context
the mean field IPS genealogical tree model can be interpreted as a genealogical tree based decision
tree algorithm.

For a detailed discussion on these models, we refer the reader to the appendix of the book [390].
Several real-world application of these decision tree models to optimal thermal processing, w.r.t.
specified temperature trajectories, and robotic optimal control problems, can be found in the series of
articles [354, 355, 464].

We further assume the signal process given by recursive equations on some spaces En of the
following form

Xn := Fn(Xn−1, Un) (11.9)

In the above display, Un stands for a sequence of independent, and independent of X0, random variables
with distribution νn on some state spaces Un. We also assume that Fn is a measurable function from
(En−1 × Un) into En. For n = 0, we set X0 = U0 ∈ E0 = U0.

We denote by

Xn := ψn(U0, . . . , Un)

the stochastic semigroup associated with the random system (11.9).

We let Qn be the Feynman-Kac model (4.17) associated with the reference Markov chain Xn and
the potential functions Gn

Xn := (U0, . . . , Un) and Gn := Gn ◦ ψn

By construction, we have

Qn = Law ((U0, (U0, U1), . . . , (U0, . . . , Un)) | ∀0 ≤ p < n Yp = yp )

Thus, the n-th time marginal measures ηn are given by

ηn = Law ((U0, . . . , Un) | ∀0 ≤ p < n Yp = yp )
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These conditional distributions can be estimated using the genealogical tree based particle measures

ηNn :=
1

N

N∑
i=1

δξin with ξin := (ξi0,n, ξ
i
1,n, . . . , ξ

i
n,n)

discussed in Section 10.2. The occupation measures of these ancestral trees are illustrated below for
(N,n) = (4, 5), for any i0 ∈ {1, 2, 3, 4}, i2 ∈ {2, 3, 4}, i3 ∈ {2, 3}, and any i4 ∈ {2, 3}:

ξ1
2,5

// ξ1
3,5

// ξ1
4,5

// ξ1
5,5

ξi00,5
// ξi11,5

��

>>

ξi33,5
// ξi44,5

!!

// ξ2
5,5

ξi22,5

>>

// ξ4
3,5

// ξ4
4,5

!!

ξ3
5,5

ξ4
5,5

The ancestral lines represent the conditional distribution of the sequence (U0, U1, U2, U3, U4, U5)
w.r.t. the sequence of observations (Y0, Y1, Y2, Y3, Y4), in terms of a likely initial condition ξi00,5, and 4

likely signal-noise sequences (ξi1,5, ξ
i
2,5, ξ

i
3,5, ξ

i
4,5, ξ

i
5,5)i=1,2,3,4.

We further assume the random variables Un have a density hn(u) w.r.t. to some reference distri-
bution µn on Un, and we set µn = ⊗0≤p≤nµp. By construction, we have ηn � µn and

dηn
dµn

(u0, . . . , un) ∝

 ∏
0≤p≤n

hp(up)

×
 ∏

0≤p<n
gp(ψp(u0, . . . , up), yp)


The log-likelihood function

Vn(u0, . . . , un) := − log

(
dηn
dµn

(u0, . . . , un)

)
can be rewritten as follows

Vn(u0, . . . , un) =
∑

0≤p≤n
cp(up) +

∑
0≤p<n

Cp (ψp(u0, . . . , up), yp)

with the local logarithmic cost functions (cn, Cn) = (− log hn,− log gn). The function −cn can be
interpreted as an energy type function on the control sequence un, and the energy function −Cn mea-
sures the difference between the controlled semigroup of the system ψn(u0, . . . , un) and the reference
observation state yn.

The optimal sequence of control that maximizes the log-likelihood function can be computed using
the genealogical tree occupation measure. The estimate is defined by

ηNn − ess inf Vn := min
1≤i≤N

Vn(ξi0,n, ξ
i
1,n, . . . , ξ

i
n,n) −→N→∞ ηn − ess inf Vn (in probability)

11.2.3 Ensemble Kalman filters

We return to the linear Gaussian signal-observation model (8.24) discussed in section 8.3.1.
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Given some probability measure η on Rd, whenever they exist, we denote by mη and Pη the mean
value and the covariance matrix defined by

mη =

∫
ϕ(x) η(dx) and Pη := η

(
[ϕ− η(ϕ)] [ϕ− η(ϕ)]′

)
with the column identity vector ϕ(x) = x ∈ Rp. Using (8.27) and (8.28), and using the Gaussian-
updating formula (8.29), the Kalman recursion (8.26) can alternatively be written as follows

ηn
e-updating
−−−−−−−−−−→ η̃n := Ψ̃(ηn)

prediction
−−−−−−−−−→ ηn+1 = η̃nMn+1 (11.10)

where Ψ̃(ηn) = η̃n stands for the distribution of the random variable

X̃n := Xn + Gainn,ηn(yn − CnXn − cn −DnVn)

with
Gainn,ηn = PηnC

′
n(CnPηnC

′
n +DnR

v
nD
′
n)−1 and Law(Xn) = ηn .

In the above display formulae, Vn stands for a sequence of independent centered Gaussian random
sequences with covariance matrices Rvn. In other words, we have that

Ψ̃(ηn)(f) =

∫
f [x+ Gainn,ηn(yn − Cnx−Dnv)] ηn(dx) N (0, Rvn)(dv)

For linear-Gaussian models, the evolution equations (11.10) and (8.26) are equivalent. Indeed, using
the Gaussian-updating formula (8.29), if we consider the Gaussian likelihood functions

Gn(x) := g(Cnx+cn,DnRvnD
′
n)(yn)

discussed in (8.28), then we have

ηn = N (mηn , Pηn) =⇒ ΨGn (ηn) = N (mη̃n , Pη̃n) = Ψ̃(ηn)

with mη̃n = mηn + Gainn,ηn (yn − Cnmηn − cn) and Pη̃n = (Id−Gainn,ηnCn)Pηn .

Clearly for non Gaussian models, the e-updating transition is not equivalent to the Bayes’ rule.
We consider the two step Markov chain model on Rp defined by the following synthetic diagram

Xn → X̃n = Xn + Gainn,ηn(yn − CnXn − cn −DnVn)→ Xn+1 = An+1X̃n + an +Bn+1Wn+1

with the initial condition X0 = X0, and the same Gaussian r.v. (X0, Vn,Wn) as the ones defined in
(8.24). The elementary transition Xn → X̃n is given by

S̃n,ηn(xn, dx̃n) = P
(
X̃n ∈ dx̃n | Xn = xn

)
so that

η̃n = Ψ̃(ηn) = ηnS̃n,ηn

This yields the McKean interpretation of the Kalman filter

ηn+1 = ηnKn+1,ηn with Kn+1,ηn := S̃n,ηnMn+1

These discrete generation McKean models are discussed in Section 9.1. The mean field particle model
(9.28) associated with this McKean model is defined by evolving an (Rp)N -valued and two step Markov
chain model

ξn :=
(
ξin
)

1≤i≤N

S̃
n,ηNn

−−−−−−−−−−→ ξ̃n :=
(
ξ̃in

)
1≤i≤N

Mn+1

−−−−−−−−−→ ξn+1 :=
(
ξin+1

)
1≤i≤N
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with ηNn := 1
N

∑
1≤i≤N δξin . More formally, the elementary transitions (9.28) are decomposed into the

following steps

ξin → ξ̃in = ξin + Gainn,ηNn (yn − Cnξin − cn −DnV
i
n)→ ξin+1 = An+1ξ̃

i
n + an +Bn+1W

i
n+1

for any i ∈ {1, . . . , N}, with i.i.d. copies (V i
n,W

i
n)1≤i≤N of (Vn,Wn), and the empirical approximation

of the covariance function

PηNn := ηNn

([
ϕ− ηNn (ϕ)

] [
ϕ− ηNn (ϕ)

]′)
The main advantage of this mean field formulation of the Kalman filter comes from the fact that

for large dimension signals intractable covariance prediction error matrices P−n are now computed
using the sampled mean field particle empirical matrices PηNn .

Mimicking (8.30), the density pn(y0, . . . , yn) of the sequence of observation (Y0, . . . , Yn) evaluated
at the random observation path (Y0, . . . , Yn) can be approximated by

pNn (Y0, . . . , Yn) =
n∏
k=0

g(
CkX̂

N,−
k +ck, Σk

(
P
ηN
k

))(Yk) with X̂N,−
k =

1

N

∑
1≤i≤N

ξik (11.11)

These mean field approximations are widely used in meteorological forecasting problems, where
the signal process comes from a grid type approximation of Navier-Stokes’ partial different equations
arising in fluid mechanics.

Further details of these mean field particle filters, and their performance analysis, can be found
in the recent articles by F. Le Gland, V. Monbet, and V. D. Tran [405, 406], as well as in the Ph.D.
thesis of V. D. Tran [573] in 2009, and the one by Ch. Baehr [29] in 2008. We also refer the reader
to the pioneering work by G. Evensen on ensemble Kalman filters [259, 260, 261], and a series of
articles [11, 91, 341] on the numerical performance of these models in forecasting data assimilation
problems.

11.2.4 Approximate Bayesian computation

As their name indicates, Approximate Bayesian Computation (abbreviated ABC) are Bayesian infer-
ence methods used to evaluate posterior distributions without having to calculate likelihoods. For
instance, in biology applications and more particularly in predictive bacteriology and food risk analy-
sis, the observations of a kinetic biological complex system are given by counting bacteria individuals
after successive dilutions of a food sample coming from an in vitro culture [256, 257, 281, 282]. Of
course, this experimental observation process is often modeled by a series of Poisson type dependent
random variables but the computation of the likelihood function often requires successive summations
over the set of all the integers. In this situation likelihood functions are computationally intractable,
or too costly to estimate in a reasonable time.

One of the central ideas of ABC methods is to replace the evaluation of the likelihood function
by a simulation-based procedure of the observation process coupled with a numerical comparison
between the observed and simulated data. This strategy is rather well known in particle filtering
literature; see for instance [163, 164, 165]. In the same vein, these additional levels of simulation-based
approximations can also be extended to compute the posterior distribution of fixed parameters in
hidden Markov chain models. In signal processing literature, these ABC type mean field IPS models
are sometimes called convolution particle filters; see for instance [95, 96, 515, 580].

More formally, in some instance the likelihood functions xn 7→ gn(xn, yn) in (11.6) are computa-
tionally intractable, or too expensive to evaluate in a reasonable computational time. To solve this
problem, a natural solution is to sample pseudo-observations. The central idea is to sample the signal-
observation Markov chain Xn = (Xn, Yn) ∈ EXn = (EXn ×EYn ), and compare the values of the sampled
observations with the real observations sequence.
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To describe with some conciseness these approximate filtering models, we notice that the transitions
of Xn are given by

Mn(Xn−1, d(xn, yn)) = Mn(Xn−1, dxn) gn(xn, yn) λn(dyn)

To simplify the presentation, we further assume that EYn = Rd, for some d ≥ 1, and we let g be a
Borel bounded nonnegative function on Rd such that∫

g(u) du = 1

∫
u g(u) du = 0 and

∫
|u|3 g(u) du <∞

Then, we set for any ε > 0, any x = (x, y) ∈ EXn , and z ∈ Rd

gε,n(x, z) = gε,n((x, y), z) = ε−d g ((y − z)/ε)

Finally, we consider a Markov chain (Xn, Y
ε
n) on the augmented state space

(
EXn × EYn

)
with

transitions given

P
(
(Xn, Y

ε
n) ∈ d(xn, yn) | (Xn−1, Y

ε
n−1)

)
= Mn(Xn−1, dxn) gε,n(xn, yn) dyn (11.12)

This approximated filtering problem has exactly the same form as the one introduced in (11.5). In
this situation, the mean field particle model is defined in terms of signal-observation valued particles,
and the selection potential function is given by the pseudo-likelihood functions gε,n(., yn), where yn
stands for the value of the observation sequence at time n.

11.2.5 Quenched and annealed filters

Suppose that at every time step the state of a Markov chain with two coordinates (Θn, Xn) is partially
observed according to the following schematic picture

Θ0 −→ Θ1 −→ Θ2 −→ . . .
↓ ↓ ↓
X0 −→ X1 −→ X2 −→ . . .
↓ ↓ ↓
Y0 Y1 Y2 . . .

(11.13)

We assume that the Markov chain model (Θn, Xn) evolves on some state spaces (Ξn×En) with Markov
transitions of the form (10.31). Given a realization of the Markov chain Θn = θn, and the random
state Xn = xn, the observation Yn is a random variable taking values on some finite state space EYn ,
with distribution

P (Yn ∈ dyn | Xn = xn,Θn = θn ) := gθn,n(xn, yn) λn(dyn) (11.14)

for some reference positive measure λn on EYn . We fix a sequence of observations y = (yn)n≥0, and for
any realization θ = (θn)n≥0 of the chain Θ = (Θn)n≥0 we set

Gθn,n(xn) = gθn,n(xn, yn) (11.15)

This model coincides with the quenched and annealed Feynman-Kac models (10.34) discussed in
section 10.6.2.

More precisely, the normalized version Qn of the measure Γn defined in (10.35) coincides with the
conditional distribution of the historical process of the signal Xn := (X0, . . . , Xn) given the sequence
of observations Yn−1. More formally, we have that

ηn = Qn = Law(Xn | Yn−1 = yn−1)



294 CHAPTER 11. SOME ILLUSTRATIONS

In addition, for any realization of the historical process

Θn = (Θp)0≤p≤n = (θp)0≤p≤n = θn ∈ Ξn =
∏

0≤p≤n
Ξp

the quenched Feynman-Kac distributions (10.33) coincide with the quenched conditional distributions

Qθn,n = Law(Xn | Yn−1 = yn−1, Θn = θn)

ηθn,n = Law(Xn | Yn−1 = yn−1, Θn = θn)

η̂θn,n = ΨGθn,n
(ηθn,n) = Law(Xn | Yn = yn, Θn = θn) (11.16)

In this situation, the normalizing constants of the Feynman-Kac measures Qθn,n are given by

p(yn | θn) =
∏

0≤k≤n
hk(θk) with hk(θk) := ηθk,k (Gθk,k) (11.17)

where p(yn | θn) stands for the conditional density of the historical observation sequence Yn w.r.t.
the product measure λn, given a realization of the historical process Θn = θn. Finally, using Bayes’
rule we show that the posterior distribution of Θn given Yn−1 = yn−1 coincides with the annealed
measure µn defined in (10.36); that is, we have that

µn = Law(Θn | Yn−1 = yn−1) (11.18)

By (10.40), we also have that

Fn(θn) := ηθn,n(fn)⇒ µn(Fn) = E(fn(Xn) | Yn−1 = yn−1)

Finally, when the Markov transitions Mθn,n are absolutely continuous with respect to some measures
λn on En, we have

F#
fn

(θn) := Qθn,n(fn) = ηθn,n(fn)⇒ µn(Fn) = E(f(Xn) | Yn−1 = yn−1)

In the above displayed formula, Qθn,n stands for the backward Markov chain measure (10.41)
We illustrate the abstract models presented in (11.13) with a class of mean field type interacting

Kalman filter. In signal processing literature, and Bayesian inference, these particle approximations
are often referred to as particle methods in path space, or as Rao-Blackwellized particle filters (see for
instance [172, 186, 234], and references therein).

We consider a Markov chain Θn taking values in some measurable state space Ξn, and a collection
of matrices

An(θ), Bn(θ), Cn(θ), Dn(θ) (11.19)

and vectors an(θ), bn(θ), indexed by θ ∈ Ξn, of the same dimension as the matrices (An, Bn, Cn, Dn)
and the vectors (an, bn) introduced in (8.24). We let (Θn, Xn, Yn) be the (E × Rp+q)-valued Markov
chain defined by the same recursive relations as in (8.24) by replacing (An, Bn, Cn, Dn) and (an, cn)
by (An(Θn), Bn(Θn), Cn(Θn), Dn(Θn)) and (an(Θn), cn(Θn)).

We let g(m,R)(x), be the Gaussian densities associated with a mean and covariance matrix (m,R)
introduced in (8.11). In this notation, the likelihood functions given in (11.15) and (11.14) are given
by

Gn,θn(x) = g(mθn,n(x),Rθn,n)(yn)

with
mθn,n(x) := Cn(θn) x+ cn(θn) and Rθn,n := Dn(θn)RvnD

′
n(θn)

In addition, given a realization of the historical process Θ = (Θn)n≥0 we have

ηθn,n = N (X̂θn,−
n , P θn,−n ) and ΨGθn,n

(ηθn,n) = N (X̂θn
n , P θnn )
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with some parameters (X̂θn,−
n , P θn,−n ) and (X̂θn

n , P θnn ) that can be computed using the same Kalman
recursions (8.26) by replacing (An, an, Bn, Cn, cn, Dn) by (An(θn), an(θn), Bn(θn), Cn(θn), cn(θn), Dn(θn)).

Using (8.30), we also easily check the following multiplicative formula

p(yn| θn) =
n∏
k=0

g(
mθk,k

(
X̂
θk,−
k

)
,Σθk,k

(
P
θk,−
k

))(yk) (11.20)

with
Σθk,k(P

θk,−
k ) := Ck(θk)P

θk,−
k C ′k(θk) +Dk(θk)R

v
kD
′
k(θk)

In a more synthetic form, we have

p(yn| θn) =
n∏
k=0

hk(θk)

with the functions
hk(θk) := g

(mθk,k(X̂
θk,−
k ),Σθk,k(P

θk,−
k ))

(yk) ∈ R+ (11.21)

Using (11.18), the posterior distribution of Θn given Yn−1 = yn−1 is given for any Fn ∈ B(Ξn) by
the Feynman-Kac formula

µn(Fn) = E(Fn(Θn) | Yn−1 = yn−1) ∝ E

Fn(Θn)
∏

0≤p<n
hp(Θp)


By (10.40), we also have that

Fn(θn) := ηθn,n(fn)⇒ µn(Fn) = E(fn(Xn) | Yn−1 = yn−1)

The mean field particle approximation of these Feynman-Kac measures can be interpreted as
a sequence of interacting Kalman filters. The model obtained by replacing the Kalman integration
by particle filter integration coincides with the particle quenched and annealed models discussed in
section 10.6.3.

11.3 Bayesian statistical inference

11.3.1 Hidden Markov chain models

We return to the quenched and annealed filtering models (11.13) discussed in section 11.2.5. We
further assume that Θn = Θ, for any n ≥ 0, where Θ stands for a r.v. with distribution λ on some
measurable state space Ξ. In this situation, the measures Qθn,n, and ηθn,n defined in (11.16) reduce
to

Qθ,n = Law(Xn | Yn−1 = yn−1, Θ = θ) and ηθ,n = Law(Xn | Yn−1 = yn−1, Θ = θ) (11.22)

In addition, the normalizing constants of the Feynman-Kac measures Qθ,n are now given by

p(yn | θ) =
∏

0≤k≤n
hk(θ) with hk(θ) := ηθ,k (Gθ,k)

so that

µn(dθ) := P(Θ ∈ dθ | Yn−1 = yn−1) ∝

 ∏
0≤k≤n

hk(θ)

 λ(dθ) := νn(dθ) (11.23)

For the linear Gaussian models discussed in (11.19), the functions hk(θ) coincides with the functions
(11.21) and they are computed using the Kalman recursions associated with a given parameter θ.
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11.3.2 Extended posterior distributions

For nonlinear models, we use the particle quenched and annealed models developed in section 10.6.3.
To be more precise, we let

Θn = (Θ, χn) ∈ Ξn :=

Ξ×
∏

0≤p≤n
ENp

 with χn = (ξ0, . . . , ξn)

where ξn stands for the conditional N -mean field particle model given the parameter Θ. We denote
by P(n)(θ, dxn) the conditional distribution of the N -particle model χn given a realization Θ = θ of
the parameter; that is

P(n)(θ, dxn) := P (χn ∈ dxn | Θ = θ)

We also set
hn(Θn) = ηNΘ,n(Gθ,n)

In this notation, the formula (10.44) reduces to

E

F (Θ)
∏

0≤k<n
GΘ,k(Xk)

 = E

F (Θ)
∏

0≤k<n
hk(Θk)

 = νn(F ⊗ 1)

for any F ∈ B(Ξ), with the measures νn on Ξn defined for any Fn ∈ B(Ξn) by

νn(Fn) = E

Fn(Θn)
∏

0≤k<n
hk(Θk)

 and µn(Fn) = νn(Fn)/νn(1) (11.24)

Using Bayes’ rule we conclude that

νn(F ⊗ 1) = E (F (Θ) | Yn−1 = yn−1)

In other words, the Θ-marginal of νn coincides with the posterior distribution of Θ given the sequence
of observations Yn−1 = yn−1 (also given by (11.23)).

In much the same way, equation (10.47) takes the form

E
(
fn(Xn)

∏
0≤k<nGΘ,k(Xk)

)
= E

(
Ffn(Θ)

∏
0≤k<n hk(Θ)

)
= E

(
F fn(Θn)

∏
0≤p<n hp(Θp)

)
= νn(F fn)

(11.25)

with the functions
Ffn(θ) := ηθ,n(fn) and F fn(Θn) := ηNΘ,n(fn)

11.3.3 Particle Metropolis-Hasting model

We fix a time horizon n and we set

∀0 ≤ k ≤ n h
(n)
k (Θ, χn) = ηNΘ,k(Gθ,k)

In this notation, for any 0 ≤ k ≤ n we have

F
(n)
k (Θ, χn) = F k(Θ, χk) ⇒ νk(F k) = E

F (n)
k (Θ, χn)

∏
0≤l<k

h
(n)
k (Θ, χn)

 = ν
(n)
k (F

(n)
k )
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with the product measures ν
(n)
k defined by

ν
(n)
k (dθ) =

 ∏
0≤l<k

h
(n)
k (θ)

 λ
(n)

(dθ) with the reference measure λ
(n)

= Law (Θ, χn)

We consider a Markov transition P (θ, dθ′) on the parameter space s.t.

λ(dθ)P (θ, dθ′) ∼ λ(dθ′)P (θ′, dθ)

We associate with this exploration model the collection Markov chain transitions K
(n)
k , 1 ≤ k ≤ n, on

Ξn defined by

∀θ = (θ, xn) , θ
′
=
(
θ′, x′n

)
∈∈ Ξn K

(n)
k (θ, dθ

′
) := P (θ, dθ′) P(n)(θ′, dx′n)

By construction, we have

ν
(n)
k (dθ

′
) K

(n)
k (θ

′
, dθ) ∼ ν

(n)
k (dθ) K

(n)
k (θ, dθ

′
)

with the Radon Nikodym derivatives

ν
(n)
k (dθ

′
) K

(n)
k (θ

′
, dθ)

ν
(n)
k (dθ) K

(n)
k (θ, dθ

′
)

=

{∏
0≤l<k h

(n)
k (θ

′
)
}
λ

(n)
(dθ
′
) P (θ′, dθ) P(n)(θ, dxn){∏

0≤l<k h
(n)
k (θ)

}
λ

(n)
(dθ) P (θ, dθ′) P(n)(θ′, dx′n)

=

 ∏
0≤l<k

h
(n)
k (θ

′
)

h
(n)
k (θ)

× λ(dθ′) P (θ′, dθ)

λ(dθ) P (θ, dθ′)

The last assertion comes from the fact that

λ
(n)

(dθ) = λ(dθ) P(n)(θ, dxn)

⇒ λ
(n)

(dθ) P (θ, dθ′) P(n)(θ′, dx′n) = λ(dθ) P (θ, dθ′)
[
P(n)(θ, dxn) P(n)(θ′, dx′n)

]
11.3.4 Particle Gibbs samplers

We return to the HMM model discussed in section 11.3.1. We fix the time horizon n. In view of (11.22)
and (11.23) we have

π(d(θ,x)) := P ((Θ,Xn) ∈ d(θ,x) | Yn−1 = yn−1) = µn(dθ)×Qθ,n(dxn)

This disintegration property can be rewritten as follows

π(d(θ,x)) = π1(dθ) π1,2(θ,dx)

with

π1(dθ) := µn(dθ) = P (Θ ∈ dθ | Yn−1 = yn−1)

π1,2(θ,dx) := Qθ,n(dx) = P (Xn ∈ dx | Yn−1 = yn−1, Θ = θ)

We further assume that
∀(θ, θ′) ∈ Ξ2 Qθ,n ∼ Qθ′,n

This rather weak condition is satisfied as soon as ηθ,0 ∼ ηθ′,0 and Mθ,n(xn−1, .) ∼ Mθ′,n(xn−1, .),
for any (θ, θ′) ∈ Ξ2 and any xn−1 ∈ En−1.
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In this situation, we have the dual disintegration property

π(d(θ,x)) = π2(dx) π2,1(x, dθ)

with

π2 := µnQθ,n = Law(Xn | Yn−1 = yn−1)

π2,1(x, dθ) := µn(dθ)
dQθ,n

dµnQθ,n
(x) = P (Θ ∈ dθ | Xn = x,Yn−1 = yn−1)

The design of MCMC samplers of these models have been discussed in section 7.6. For instance, let
us choose a couple of Markov transitions

Kθ,1(x,dx′) and Kx′,2(θ, dθ′)

such that

π1,2(θ,dx) =

∫
π1,2(θ,dx′) Kθ,1(x′,dx) (11.26)

π2,1(x, dθ) =

∫
π2,1(x, dθ′) Kx,2(θ′, dθ) (11.27)

In this situation, π is an invariant distribution of the Markov transition

K((θ,x), d(θ′,x′))) := Kθ,1(x,dx′) Kx′,2(θ, dθ′)

For filtering problems with conjugate priors, the target measure π2,1(x, dθ) can be sampled directly
using the conditional formulae developed in section 8.1.2. On the other hand, we can use the particle
MCMC transition Kθ,1(x,dx′) with frozen trajectory x developed in section 10.5.2.

11.3.5 Expected maximization models

We consider some parameter θ ∈ Rd a Markov chain Xn, with elementary transitions Mn,θ on some
measurable state spaces En with initial distribution η0,θ. We also consider a sequence of positive and
bounded potential functions Gn,θ on the set En. We denote by Qn,θ the Feynman-Kac path measures
(4.17) associated with the pairs (Mn,θ, Gn,θ).

We further assume that η0,θ � λ0, and Mn,θ(x, .)� λn, for some λn ∈M+(En) and we have

H0,θ = G0 × dη0,θ/dλ0 > 0 and Hn,θ(x, .) := Gn−1(x)× dMn,θ(x, .)/dλn > 0

By construction, we have Qn,θ � λn := ⊗0≤p≤nλp and the Radon-Nikodym derivates are given by
the multiplicative formula

dQn,θ

dλn
(x0, . . . , xn) := Hn,θ(x0, . . . , xn) =

1

Zn,θ

∏
0≤p≤n

Hθ,p(xp−1, xp)

for some normalizing constant Zn,θ, with the convention H0,θ(x−1, x0) = H0,θ(x0), for n = 0.
These models arise in various scientific disciplines. The prototype of model we have in mind is the

parameter estimation in Hidden Markov chain problem discussed in Section 11.3.1. In this situation,
we are given a pair of signal-observation processes that depend on some random parameter Θ. The
distributions Qn,θ represent the conditional distribution of the random states, given a realization of
the parameter Θ = θ, and their normalizing constants Zn,θ coincide with the distribution of the
observations given Θ = θ. In this context, we are given a series of observation data related to some
unknown θ and we want to maximize the mapping θ 7→ Zn,θ so that to find the parameter θ that
“explains” these data.
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One way to solve this problem is to use the celebrated expected maximization model. This sta-
tistical search model is a recursive gradient type algorithm that improves sequentially its solution
computing the parameter that maximizes the expected log-likelihood function.

We briefly recall the principle of this gradient based approach. For any pair of parameters (θ, θ′)
we find that

Ent (Qn,θ|Qn,θ′ ) ≥ 0⇒ Qn,θ (logHn,θ) ≥ Qn,θ

(
logHn,θ′

)
Also observe that

logHn,θ = − logZn,θ + Ln,θ

with the additive functional

Ln,θ(x0, . . . , xn) :=
n∑
p=0

logHθ,p(xp−1, xp)

One concludes that for any pair of parameters (θ, θ′)

Qn,θ

(
logHθ′,n

)
= − logZn,θ′ + Qn,θ

(
Ln,θ′

)
≤ − logZn,θ + Qn,θ (Ln,θ)

and therefore

Qn,θ (Ln,θ)−Qn,θ

(
Ln,θ′

)
≥ log

(
Zn,θ/Zn,θ′

)
In other words, we have

Qn,θ (Ln,θ) ≤ Qn,θ

(
Ln,θ′

)
⇒ Zn,θ ≤ Zn,θ′

We denote by (θk)k≥0 a sequence of parameters starting at some state θ0 and defined by the
following recursion

θk := max
θ′

Qn,θk−1

(
Ln,θ′

)
=⇒ Zn,θk ≥ Zn,θk−1

If Qn,θ is in the exponential family, then the maximization step is usually straightforward. More

precisely, there exists a collection of functions (f
(i)
n,θ)i∈I , indexed by some finite set I, on En and some

Fn,θ : RI 7→ Rd such that

θk = Fn,θk−1

([
Qn,θk−1

(
f

(i)
n,θk−1

)]
i∈I

)
(11.28)

The set of functions (f
(i,θ)
n )i∈I is sometimes referred to as sufficient statistics in the literature.

As shown in [204], one way to approximate the recursive Equation (11.28) consists of replacing the
measures Qn,θn−1 by the backward particle measures QN

n,θn−1
, or by the genealogical tree occupation

measures ηNn,θn−1
defined in (10.6). The corresponding mean field IPS approximation models are

defined by

θNk = Fn,θNk−1

([
QN
n,θk−1

(
f

(i)

n,θNk−1

)]
i∈I

)
or by

θNk = Fn,θNk−1

([
ηNn,θn−1

(
f

(i)

n,θNk−1

)]
i∈I

)
For a more thorough discussion on these stochastic algorithms and their convergence analysis, we refer
the reader to the article [204].
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11.3.6 Stochastic gradient algorithms

We come back to parametrized models presented in Section 11.3.5. One alternative way of computing
the maximum value of the mapping θ 7→ Zn,θ is to introduce a more conventional gradient type
steepest descent model

θk = θk−1 + τk ∇ logZn,θk−1

with a positive real sequence of parameters τn such that
∑

k τk =∞ and
∑

k τ
2
k <∞. Using (10.50),

we have
∇ logZn,θ = Qn,θ(Λn,θ)

with the additive functional

Λn,θ(x0, . . . , xn) :=
n∑
p=0

∇ logHθ,p(xp−1, xp)

We can approximate these equations using the following equations

θNk = θNk−1 + τk ∇N logZn,θk−1
= θNk−1 + τk QN

n,θk−1
(Λn,θNk−1

)

with the particle derivatives associated with the backward particle measures QN
n,θn−1

. We can alterna-
tively use the recursion

θNk = θNk−1 + τk ∇N logZn,θk−1
= θNk−1 + τk η

N
n,θk−1

(Λn,θNk−1
)

with the genealogical tree occupation measures ηNn,θn−1
defined in (10.6). For a more thorough discus-

sion on these particle steepest descent algorithms and their connections with filter derivative models,
we refer the reader to the article [205]. The convergence analysis of these models can be developed
using the stochastic analysis techniques presented in the textbook [39].
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11.4 Risk analysis and rare event simulation

The analysis of rare events arises in various scientific areas including physics, biology, engineering
science, and financial mathematics.

For instance, in nuclear physics, we might be interested in computing the probability that some
radiation escapes from some containment before being absorbed by some obstacle. In biology, these
rare events may be related to extinction probabilities of some population evolution model. In en-
gineering sciences, these critical events are often related to a catastrophic failure, such as a buffer
overflows in communication networks. Finally, in financial mathematics, they arise in the analysis
of portfolio credit risk models. In this context, the critical events represent ruin processes, or credit
payment default probabilities. Importance sampling techniques are perhaps one of the most widely
used alternative to crude Monte Carlo simulation of unlikely events. The idea is to generate samples
from a different judiciously chosen distribution, rather than from the distribution of interest. These
statistical techniques have two main drawbacks. Very often, the twisted distribution cannot be cho-
sen as we would like, since we need to have a dedicated technique to sample random variables w.r.t.
these measures. On the other hand, these importance sampling techniques are intrusive in the sense
that we need to twist the reference random process, so that to produce unphysical trajectories. In
Section 11.4.1, we present a nonintrusive mean field IPS technique for the simulation of importance
sampling distributions without altering the nature of the reference process. Further details on these
models, including applications in fiber optics communication and financial risk analysis, can also be
found in a couple of articles [104, 180, 181].

Section 11.4.2 is dedicated to mean field multilevel simulation. These techniques are often termed
multilevel splitting particle methods or sequential Monte Carlo samplers in the literature on rare event
simulation, Further detail on these IPS models can be found in the review article [193], as well as in
the series of articles [132, 133, 363].

The final section, Section 11.4.3, is concerned with the mean field IPS computation of Dirichlet
problems with boundary conditions. These problems arise in a variety of application areas of physics,
including fluid mechnanics and plasma dynamics, as well as in optics and traffic engineering. For a
detailed discussion on these problems in the context of elliptic-hypebolic equations of Keldysh type
we refer the reader to the monograph [473].

11.4.1 Importance sampling and twisted measures

Computing the probability of some events of the form {Vn(Xn) ≥ a}, for some energy like function
Vn and some threshold a, is often performed using the importance sampling distribution of the state
variable Xn with some multiplicative Boltzmann weight function exp (βVn(Xn)), associated with some
inverse temperature parameter β. These twisted measures can be described by a Feynman-Kac model
in transition space by setting

Gn(Xn−1, Xn) = exp {β[Vn(Xn)− Vn−1(Xn−1)]}

For instance, it is easily checked that

P (Vn(Xn) ≥ a) = E

fn(Xn)
∏

0≤p<n
Gp(Xp)


with the function fn(Xn) = 1Vn(Xn)≥a e

−βVn(Xn), and the potential function and the reference Markov
chain

Xn = (Xn, Xn+1) and Gn(Xn) = exp {β(Vn+1(Xn+1)− Vn(Xn))}
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We let Qn be the Feynman-Kac model (4.17) associated with the reference Markov chain Xn and the
potential function Gn. In the same vein, we have the Feynman-Kac formulae

E (ϕn(X0, . . . , Xn) | Vn(Xn) ≥ a) = Qn(Fn,ϕn)/Qn(Fn,1)

with the function Fn,ϕn(X0, . . . , Xn) = ϕn(X0, . . . , Xn) 1Vn(Xn)≥a e−βVn(Xn). The mean field IPS
simulation of these Feynman-Kac distributions is defined in Section 9.3.

11.4.2 Multilevel splitting simulation

We consider some Markov chain (X ′n)n≥0 taking values in some finite state space E′. We assume that
the chain X ′n starts in some given subset X ′0 ∈ A ⊂ E′ with a given distribution ν0. We also let (B,C)
be a pair of subsets (B,C) such that A ∩ C = ∅ = B ∩ C. We also assume that the triplet (A,B,C)
is chosen so that for any initial state x ∈ A the chain X ′n hits one of the sets B, or C in finite time.

We let TA be the entrance time of X ′ into a given subset A. One would like to estimate the
probability that the chain hits B before C

P(TB∪C < TC) = P(X ′TB∪C ∈ B) = E(1B(X ′TB∪C ))

and the law of the excursions given the fact that it reached B before C

Law(X ′t ; 0 ≤ t ≤ TB∪C | TB∪C < TC)

Of course we have implicitly assumed that P(TB∪C < TC) > 0 so that the conditional distributions
are well defined. During its excursion from A to B, the process eventually visits a decreasing sequence
of level sets (Bn)n=0,...,m

A = B0 ⊃ B1 ⊃ . . . ⊃ Bm = B (11.29)

This decomposition reflects the successive gateways the stochastic process needs to cross before enter-
ing into the relevant rare event.

To simplify the presentation, we slightly abuse the notation, and we write Tn instead of TBn∪C .
In this simplified notation, to capture the behavior of X between the different levels we introduce the
excursion-valued Markov chain

Xn = (Tn, (X
′
t ; Tn−1 ≤ t ≤ Tn)) ∈ E = ∪p≤q({q} × (E′)(q−p+1)) (11.30)

Under our assumptions, these entrance times are finite and

(TB∪C < TC) = (Tm < TC) =
⋂

1≤p≤m
(Tp < TC)

To check whether or not the n-th excursion has reached the desired n-th level, we consider the potential
functions on E defined for each n ∈ {0, . . . ,m} and x = (xq)p≤q≤r ∈ (E′)(r−p+1), by Gn(r, x) =
1Bn(xr). In this notation we have for each n ≤ m

(Tn < TC) =
⋂

1≤p≤n(Tp < TC) =
⋂

1≤p≤n(Gp(Xp) = 1)

(X0, . . . , Xn)

= ((0, X ′0), (T1, (X
′
t ; 0 ≤ t ≤ T1)), . . . , (Tn, (X

′
t ; Tn−1 ≤ t ≤ Tn)))

If we write [X ′t ; 0 ≤ t ≤ Tn] instead of (X0, . . . , Xn), the sequence of excursions of X ′ between the
levels, then for any n ≤ m and any function fn on the product space En+1 we have the Feynman-Kac
formulae

Eν0

fn(X0, . . . , Xn)

n∏
p=1

Gp(Xp)

 = Eν0 (fn([X ′t ; 0 ≤ t ≤ Tn]) 1Tn<TC ) (11.31)

The mean field IPS simulation of these Feynman-Kac distributions is defined in Section 9.3.
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11.4.3 Dirichlet problems with hard boundary conditions

We consider the same excursion model discussed in Section 11.4.2 but we replace the potential function
by the function Gn on E defined for any n ∈ {0, . . . ,m}, 0 ≤ p ≤ r, and x = (xq)p≤q≤r ∈ (E′)(r−p+1)

by

Gn(r, x) = 1Bn(xr)
∏

p<q≤r
G′(xq) (11.32)

with some nonnegative functions G′ on the finite set E′. In this situation, the r.h.s. expectation in
(11.31) is given by

Eν0

fn([X ′t ; 0 ≤ t ≤ Tn]) 1Bn(X ′Tn)

Tn∏
p=1

G′(X ′p)


We recall that these Feynman-Kac formulae can be computed using mean field IPS simulation. Next,
we examine the excursion-valued models (11.29 ) when A = E′ − C, and (Bn ∩ C) = ∅. For ν0 = δx,
with x ∈ A, n = m, and any function f on E′, the above expectations are given by the following
function

h(x) = Ex

f(X ′T )1B(X ′T )

T∏
p=1

G′(X ′p)


with the first time T (= Tm) the process X ′ hits the domain D := (B ∪ C). Using the fact that
x ∈ D ⇒ T = 0, we extend the function h on C by setting h(x) = f(x)1B(x). By a conditioning
argument, for any x 6∈ D, we have

h(x) = Ex

G′(X ′1) EX′1

f(X ′T )1B(X ′T )
T∏
p=1

G′p(X
′
p)

 = Ex
(
G′(X ′1)h(X ′1)

)
From the above discussion, if M ′(x, y) is the Markov transition of the chain X ′, then we see that the
function h satisfies the following Dirichlet problem with hard boundary conditions{

M ′(G′h)(x) = h(x) for x 6∈ D
h(x) = f(x)1B(x) for x ∈ D

For a more thorough discussion on the Dirichlet problem for more general models, we refer the reader
to the book [172].





Chapter 12

Nonlinear evolutions of intensity
measures

12.1 Intensity of spatial branching processes

The Feynman-Kac models presented in section 9.1.4 were defined in terms of Markov chain distribu-
tions, weighted by some potential functions. This description is particularly useful to model conditional
distributions of Markov chains w.r.t. a collection of conditioning events. In this section, we present a
natural and alternative interpretation of these models in terms of spatial branching processes. We also
extend the Feynman-Kac methodology to branching models, equipped with spontaneous birth rates.

For a more detailed discussion on spatial branching processes, and their connections with Feynman-
Kac models, we also refer the reader to [21, 335, 358]. Section 12.3 and the more recent studies [110, 172]
also provide applications of these models to multiple object nonlinear filtering problems.

12.1.1 Spatial branching processes

Assume that, at a given time n, there are Nn individuals (Xi
n)1≤i≤Nn , taking values in some measurable

state space En, enlarged with an auxiliary cemetery point c. As usual, we extend the measures γn on
En and the bounded measurable functions fn on En by setting γn({c}) = 0 and fn(c) = 0.

We emphasize that the state space En depends on the problem at hand. It may vary with the
time parameter, and it can include all the characteristics of an individual, such as its type, its kinetic
parameters as well as its complete path from the origin.

Each individual Xi
n has a survival probability, say en(Xi

n) ∈ [0, 1]. When it dies, it goes instantly
to the cemetery point c. We also use the convention en(c) = 0, so that a dead particle can only stay
in the cemetery state.

Survival particles give birth to a random strictly positive number of individuals hin(Xi
n) where(

hin(xn)
)

1≤i≤Nn stands for a collection of independent random variables such that

E
(
hin(xn)

)
= Hn(xn)

for any xn ∈ En, where Hn is a given collection of bounded nonnegative functions.

Notice that Hn (xn) ≥ 1 for any xn ∈ En, since hin(xn) ≥ 1. This branching transition is sometimes
called spawning in signal processing and multi-target tracking literature.

After this branching transition, the system consists of a random number N̂n of individuals
(X̂i

n)
1≤i≤N̂n . Each of them evolves randomly, and independently, from state space to the next

X̂i
n = xn ∈ En  Xi

n+1 = xn+1 ∈ En+1

305
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according to a Markov transition Mn+1(xn, dxn+1) from En into En+1. Here again, we use the con-
vention Mn+1(c, {c}) = 1, so that any dead particle remains in the cemetery state.

At the same time, an independent collection of new individuals is added to the current configura-
tion.

We further assume that this additional spatial point process is modeled by a spatial Poisson process,
with a prescribed intensity measure µn+1 on En+1. It is used to model new particles entering the state
space.

At the end of this transition, we obtain

Nn+1 = N̂n +N ′n+1

individuals (Xi
n+1)1≤i≤Nn+1 , where N ′n+1 is a Poisson random variable with parameters given by the

total mass µn+1(1) of the positive measure µn+1, and (XN̂n+i
n+1 )1≤i≤N ′n+1

are independent and identically
distributed random variables with common distribution

µn+1 = µn+1/µn+1(1) where µn+1(1) :=

∫
En+1

µn+1(dx) = E
(
N ′n+1

)
(12.1)

For a more thorough discussion on spatial Poisson point processes, we refer the reader to Sec-
tion 12.3.3.

We end this section with some definitions, some conventions, and a few regularity conditions that
will implicitly be assumed in the further development of this chapter.

Firstly, to simplify the presentation, we shall further assume that the initial configuration of the
spatial branching process (Xi

0)1≤i≤N0 is given by a spatial Poisson process, with a prescribed intensity
measure µ0 on E0.

We denote by Gn the potential functions defined by

xn ∈ En 7→ Gn(xn) = en(xn)Hn(xn)

To avoid unnecessary technical details, we further assume that the potential functions Gn are chosen
so that for any x ∈ En

0 < gn,− ≤ Gn(x) ≤ gn,+ <∞ (12.2)

for any time parameter n ≥ 0.
Note that this assumption is satisfied in most realistic spatial branching scenarios. Indeed, as

Hn (x) ≥ 1, the condition gn,− ≤ Gn(x) essentially states that there exists en,− > 0 such that
en (x) ≥ en,− for any x ∈ En. Loosely speaking, this condition ensures that every particle always has
a small chance to survive.

On the other hand, the condition Gn(x) ≤ gn,+ states that there exists Hn,+ < ∞ such that
Hn (x) ≤ Hn,+ for any x ∈ En. Loosely speaking, this condition allows controlling the total size of the
branching process by some rather crude, but bounded finite constants.

In the unlikely scenario where (12.2) is not satisfied, the forthcoming analysis can be extended to
more general models with general nonnegative potential functions, using the techniques developed in
Section 4.4 in the monograph [172].

12.1.2 Intensity distribution flows

In this section we discuss the evolution equation of the intensity measures associated with the spatial
branching model presented in Section 12.1.1.

Definition 12.1.1 We denote by Xn the occupation measure of the branching particle model

Xn :=

Nn∑
i=1

δXi
n
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The intensity measure γn associated with this point process is given for any bounded measurable func-
tion fn on En,c = En ∪ {c} by the following formula:

γn(fn) := E (Xn(f)) with Xn(fn) :=

∫
Xn(dxn) fn(xn)

To simplify the presentation, we suppose that the initial configuration of the particles is a spatial
Poisson process with intensity measure µ0 on the state space E0.

Given the construction defined in Section 12.1.1, it follows almost straightforwardly that the in-
tensity measures γn on En satisfy the following recursive equation.

Lemma 12.1.2 For any n ≥ 0, we have

γn+1 = γnQn+1 + µn+1 (12.3)

with the initial condition γ0 = µ0. In the above displayed formulae, µn+1 is the intensity measure of
the spatial point process associated to the birth of new individuals at time n + 1, while Qn+1 is the
bounded and positive integral operator from En into En+1

Qn+1(xn, dxn+1) := Gn(xn) Mn+1(xn, dxn+1) (12.4)

Proof:
For any bounded measurable function f on En+1 ∪ {c}, we have

γn+1 (f) = E

 N̂n∑
i=1

f
(
Xi
n+1

)+ E

N̂n+N ′n+1∑
i=N̂n+1

f
(
Xi
n+1

)
Thanks to the Poisson assumption, we have

E

N̂n+N ′n+1∑
i=N̂n+1

f
(
Xi
n+1

) = µn+1 (1)µn+1 (f) = µn+1(f)

with the normalized measures µn+1 defined in (12.1).

We let F̂n be the σ-field generated by (X̂i
n)

1≤i≤N̂n and Fn the σ-field generated by
(
Xi
n

)
1≤i≤Nn .

In this notation, we have that

E

 N̂n∑
i=1

f
(
Xi
n+1

) = E

E

 N̂n∑
i=1

f
(
Xi
n+1

) ∣∣∣ F̂n


= E

E

 N̂n∑
i=1

Mn+1 (f)
(
X̂i
n

)
| Fn


= E

(
Nn∑
i=1

en
(
Xi
n

)
Hn(Xi

n)Mn+1 (f)
(
Xi
n

))

from which we conclude that

E

 N̂n∑
i=1

f
(
Xi
n+1

) = γn (enHnMn+1 (f)) = γn (GnMn+1 (f))
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and therefore

γn+1 (f) = γn (Qn+1 (f)) + µn+1(f)

This ends the proof of the lemma.

The flow of intensity measures γn is clearly more complex that the Feynman-Kac distribution flows
(9.7) discussed in Section 9.1.4. Thus, we typically do not expect to find any closed-form expression to
solve these equations. A natural way to approximate them numerically is to use a mean field particle
interpretation of the associated sequence of normalized probability distributions.

Definition 12.1.3 The normalized probability distributions associated with the intensity distributions
γn are the probability measures ηn ∈ P(En) defined for any fn ∈ Bb(En) by

ηn(fn) := γn(fn)/γn(1)

We end this section, with a couple of remarks. When µn = 0, the distributions (γn, ηn) coincide
with the Feynman-Kac models (9.7) discussed in Section 9.1.4. On the other hand, we notice that

E (Nn) = γn(1) and ηn(fn) =
1

E (Nn)
E

(
Nn∑
i=1

fn(Xi
n)

)

12.1.3 Nonlinear evolution equations

In this section, we discuss the evolution equations of the normalized probability measures ηn, intro-
duced in Definition 12.1.3. In contrast with conventional Feynman-Kac models, these extended models
are expressed in terms of updating-prediction transitions that depend on the total mass γn(1) of the
intensity measures γn.

To describe with some conciseness these models, we need another round of notation. In subsequent
pages of this section, we identify the measures γn with a couple of parameters (γn(1), ηn). The first
component γn(1) represents the total mass of γn, and ηn the normalized probability measure.

Definition 12.1.4 We consider the collection of Markov transitionsMn+1,(m,η) indexed by the param-
eters m ∈ R+ and the probability measures η ∈ P(En) defined by

Mn+1,(m,η)(x, dy) := αn (m, η)Mn+1(x, dy) + (1− αn (m, η)) µn+1(dy) (12.5)

with the collection of [0, 1]-valued functions

αn : (m, η) ∈ (R+ × P(En)) 7→ αn (m, η) =
mη(Gn)

mη(Gn) + µn+1(1)

Definition 12.1.5 We let Λn+1 be the mapping from R+ × P(En) into R+ × P(En+1) given by

Λn+1(m, η) =
(
Λ1
n+1(m, η),Λ2

n+1(m, η)
)

(12.6)

with the pair of transformations:

Λ1
n+1(m, η) = m η(Gn) + µn+1(1)

Λ2
n+1(m, η) = ΨGn(η)Mn+1,(m,η)

In the above display, ΨGn stands for the Boltzmann-Gibbs transformation associated with a potential
function Gn, defined in (0.2).
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The semigroup of the flow γn, or equivalently (γn(1), ηn), is now expressed in terms of the mathe-
matical objects defined above.

Proposition 12.1.6 For any n ≥ 0, we have the evolution equations

(γn(1), ηn) = Λn(γn−1(1), ηn−1) (12.7)

Proof:
Observe that for any function f ∈ B(En+1), we have that

ηn+1(f) =
γn(GnMn+1(f)) + µn+1(f)

γn(Gn) + µn+1(1)
=
γn(1) ηn(GnMn+1(f)) + µn+1(f)

γn(1) ηn(Gn) + µn+1(1)

from which we find that

ηn+1 = αn (γn(1), ηn) ΨGn(ηn)Mn+1 + (1− αn (γn(1), ηn)) µn+1

From these observations, we prove (12.7). This ends the proof of the proposition.

12.1.4 McKean interpretations

In this section, we design a McKean interpretation of the measure valued process (γn(1), ηn) ∈ (R+×
P(En)) introduced in Section 12.1.3.

In Proposition 12.1.6, we have shown that the evolution Equation (12.7) of the sequence of prob-
ability measures ηn  ηn+1 is a combination of an updating type transition ηn  ΨGn(ηn), and an
integral transformation w.r.t. a Markov transition Mn+1,(γn(1),ηn) that depends on the current total
mass γn(1), as well as on the current probability distribution ηn.

The integral operator Mn+1,(γn(1),ηn) defined in (12.5) is a mixture of the Markov transition Mn+1

and the spontaneous birth normalized measure µn+1. Notice that for null spontaneous birth measures,
this Markov transition reduces to the one of the free exploration of the particles; that is, we have that

µn+1 = 0 =⇒ Mn+1,(γn(1),ηn) = Mn+1

We let Sn,ηn be any Markov transition from En into itself satisfying the following compatibility
condition

ΨGn(ηn) = ηnSn,ηn

Several examples of transitions Sn,ηn are discussed in (8).
By construction, we have the recursive formula

ηn+1 = ηnKn+1,(γn(1),ηn) (12.8)

with the Markov transitions

Kn+1,(γn(1),ηn) = Sn,ηnMn+1,(γn(1),ηn)

The sequence of probability distributions ηn can be interpreted as the distributions of the random
states Xn of a process defined, conditional upon (γn(1), ηn), by the elementary transitions

P
(
Xn+1 ∈ dx | Xn

)
= Kn,(γn(1),ηn)

(
Xn, dx

)
with ηn = Law(Xn)

and the auxiliary total mass evolution equation

γn+1(1) = γn(1) ηn(Gn) + µn+1(1) (12.9)

The transport formula presented in (12.8) provides a natural interpretation of the probability
distributions ηn as the laws of a process Xn whose elementary transitions Xn  Xn+1 depend on the
distribution ηn = Law(Xn) as well as on the current mass γn(1).

In contrast to the more traditional McKean type nonlinear Markov chains discussed in Section 9,
the dependency on the mass process induces a dependency on the whole sequence of measures ηp, from
the origin p = 0 up to the current time p = n.



310 CHAPTER 12. NONLINEAR EVOLUTIONS OF INTENSITY MEASURES

12.1.5 Mean field particle interpretation

In this section, we design a mean field interpretation of the McKean models developed in Section 12.1.4.
From now on, we will always assume that the mappings(

m,
(
xi
)

1≤i≤N

)
∈
(
R+ × ENn

)
7→ Kn+1,(m, 1

N

∑N
j=1 δxj )

(
xi, An+1

)
are measurable w.r.t. the product σ-fields on (R+ × ENn ), for any n ≥ 0, N ≥ 1, and 1 ≤ i ≤ N , and
any measurable subset An+1 ⊂ En+1.

In this situation, the mean field particle interpretation of (12.8) and (12.9) is the Markov chain

(γNn (1), ξn) ∈ (R+ × ENn ) with ξn =
(
ξin
)

1≤i≤N ∈ E
N
n

and with elementary transitions
P
(
ξn+1 ∈ dx

∣∣ (γNn (1), ξn)
)

=
∏N
i=1 Kn+1,(γNn (1),ηNn )(ξ

i
n, dx

i)

γNn+1(1) = γNn (1) ηNn (Gn) + µn+1(1)

(12.10)

with the infinitesimal neighborhood dx = dx1 × . . . × dxN of a point x = (x1, . . . , xN ) ∈ ENn+1. In
the above displayed formula,

(
γNn , η

N
n

)
stand for the couple of occupation measures defined for any

fn ∈ Bb(En) by

ηNn :=
1

N

N∑
i=1

δξin and γNn (fn) := γNn (1) ηNn (fn)

The initial system ξ0 consists of N independent and identically distributed random variables with
common law η0, and we assume that the initial mass γN0 (1) = γ0(1) = µ0(1) is explicitly known. In
this connection, we mention that the particle total mass model is also given by the following formula

γNn (1) =
n∑
p=0

µp(1)
∏

p≤q<n
ηNq (Gq)

By definition of the two step McKean transitions (12.8), the mean particle evolution described by
(12.10) is a “simple” combination of a selection and a mutation genetic type transition

ξn ∈ ENn  ξ̂n = (ξ̂in)1≤i≤N ∈ ENn  ξn+1 ∈ ENn+1

During the selection transitions ξn  ξ̂n, each particle ξin  ξ̂in evolves according to the selection
type transition Sn,ηNn (ξin, dx). During the mutation stage, each of the selected particles ξ̂in  ξin+1

evolves according to the transition

Mn+1,(γNn (1),ηNn )(x, dy) := αn
(
γNn (1), ηNn

)
Mn+1(x, dy) +

(
1− αn

(
γNn (1), ηNn

))
µn+1(dy)

12.2 Nonlinear equations of positive measures

12.2.1 Measure valued evolution equations

We consider a general class of measure-valued processes γn ∈ M+(En) defined by the following
nonlinear equations

γn = Ξn(γn−1) := γn−1Qn,γn−1 (12.11)

with initial measure γ0 ∈ M+(E0). In the above display, Qn,γ stands for a collection of positive and
bounded integral operators from En−1 into En, indexed by the time parameter n ≥ 1, and the set of
measures γ ∈M+(En−1).
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One natural way to solve the nonlinear integral Equation (12.11) is to use a judicious probabilistic
interpretation of the normalized distributions flow given for any fn ∈ Bb(En) by

ηn(fn) := γn(fn)/γn(1)

To describe with some conciseness these stochastic models, it is important to observe that the pair
process (γn(1), ηn) ∈ (R+ × P(En)) satisfies an evolution equation of the following form

(γn(1), ηn) = Λn(γn−1(1), ηn−1) (12.12)

for some mapping

Λn : (m, η) ∈ (R+ × P(En−1)) 7→ Λn(m, η) ∈ (R+ × P(En))

We also denote by
(
Λ1
n,Λ

2
n

)
, the first, and second, component mappings of the one step transfor-

mation Λn given by

Λ1
n : (R+ × P(En)) → R+ and Λ2

n : (R+ × P(En)) → P(En)

By construction, we notice that the total mass process can be computed using the recursive formula

γn+1(1) = γn(Gn,γn) = ηn(Gn,γn) γn(1) with Gn,γn := Qn+1,γn(1) (12.13)

On the other hand, for any f ∈ Bb(En+1) we have that

ηn+1 = ΨGn,γn (ηn)Mn+1,γn with Mn+1,γn(f) :=
Qn+1,γn(f)

Qn+1,γn(1)

and the Boltzmann-Gibbs transformation ΨG associated with the potential function G = Gn,γn and
defined in (0.2). This implies that

Λ1
n+1(m, η) = m η(Gn,mη) and Λ2

n+1(m, η) = ΨGn,mη (ηn)Mn+1,mη (12.14)

We end this section with some comments on the applications and the stability analysis of these
rather abstract models. We also provide some reference pointers to the sections of the book discussing
in more detail these questions.

Illustrations in the context of multiple target tracking problems are presented in Section 12.3.2.

12.2.2 Mean field particle models

The mean field particle model associated with the Equation (12.12) relies on the fact that the one
step mappings Λ2

n+1 given in (12.14) can be rewritten in terms of the nonlinear Markov transport
equations

ΨGn,γ (η)Mn,γ = ηKn+1,γ with Kn+1,γ := Sn,γMn+1,γ (12.15)

for any γ = mη ∈ M+(En). In the above displayed formula, Sn,γ stands for any collection of Markov
transitions, from En into itself, and index by γ ∈ M+(En), satisfying the following compatibility
condition

ΨGn,γ (η) = ηSn,γ

Several examples of transitions Sn,mη are discussed in (8).
These models provide a natural interpretation of the distribution laws ηn as the laws of a non-

linear Markov chain Xn whose elementary transitions Xn  Xn+1 depend on the distribution
ηn = Law(Xn), as well as on the current mass process γn(1). In contrast to the traditional McK-
ean model, the dependency on the mass process induces a dependency of all the flow of measures ηp,
for 0 ≤ p ≤ n.
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The mean field particle interpretation of this nonlinear measure-valued model is the Markov chain

(γNn (1), ξn) ∈ (R+ × ENn ) with ξn =
(
ξin
)

1≤i≤N ∈ E
N
n

with elementary transitions

P
(
ξn+1 ∈ dx

∣∣ (γNn (1), ξn)
)

=
N∏
i=1

Kn+1,γNn
(ξin, dx

i) (12.16)

γNn+1(1) = γNn (1) ηNn (Gn,γNn ) (12.17)

with the infinitesimal neighborhood dx = dx1 × . . .× dxN of a point x = (x1, . . . , xN ) ∈ ENn+1. In the
above display,

(
γNn , η

N
n

)
stands for the pair of measures defined for any fn ∈ Bb(En) by

ηNn :=
1

N

N∑
j=1

δ
ξjn

and γNn (fn) := γNn (1)× ηNn (fn)

The initial system ξ0 consists of N independent and identically distributed random variables with
common law η0. We also assume that γN0 (1) = γ0(1) = µ0(1) is explicitly known.

12.3 Multiple-object nonlinear filtering equations

In this section we discuss in more detail the multiple-objects nonlinear filtering problems. These non-
linear evolution models in distribution spaces are particular examples of the measure valued evolution
equations discussed in Section 12.2.1.

12.3.1 A partially observed branching model

A signal branching model

Suppose that at a given time n there are NX
n targets (Xi

n)1≤i≤NX
n

, each taking values in some mea-
surable state space En.

A target Xi
n, at time n, survives to the next time step with probability sn(Xi

n) ∈ [0, 1], and it
evolves to a new random state according to a given elementary Markov transition M ′n+1, from En into
En+1.

In addition, any target Xi
n can spawn new targets at the next time, usually modeled by a spatial

Poisson process with a given intensity measure Bn+1(Xi
n, ·), on the state space En+1. At the same

time, an independent collection of new targets is added to the scene. This additional and spontaneous
branching process is often modeled by a spatial Poisson process with a prescribed intensity measure
µn+1 on En+1.

For any n ≥ 0, and any xn ∈ En, we set

µn(dxn) = µn(dxn)/µn(1)

bn(xn) = Bn+1(1)(xn) and Bn+1(xn, dxn+1) =
Bn+1(xn, dxn+1)

Bn+1(1)(xn)

The signal process can be interpreted as a branching process of the same form as the one discussed
in Section 12.1.1. The occupation measures of the branching process are given by

Xn :=
∑

1≤i≤NX
n

δXi
n
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Using the same arguments as in the proof of Lemma 12.1.2, for any fn ∈ Bb(En) we prove that

E (Xn(fn) | Xn−1) = Xn−1Qn(fn) + µn(fn)

with the nonnegative integral operator

Qn(fn) = sn−1 M
′
n(fn) + bn−1 Bn(fn)

We notice that the operators Qn+1 can be rewritten in terms of the Feynman-Kac integral operator

Qn+1(xn, dxn+1) = Gn(xn) Mn+1(xn, dxn+1) (12.18)

with the potential function
Gn(xn) = sn(xn) + bn(xn)

and the Markov transition

Mn+1(xn, dxn+1)

:=
sn(xn)

sn(xn) + bn(xn)
M ′n+1(xn, dxn+1) +

bn(xn)

sn(xn) + bn(xn)
Bn+1(xn, dxn+1)

This shows that we can use the mean field particle techniques developed in Section 12.1 to compute
the intensity distribution flows associated with the signal branching process.

A partial observation model

Given a realization of the branching process Xn defined in Section 12.3.1, with a probability dn(x)
every random target Xi

n = x generates an observation Y i
n, on some possibly different state space EYn ,

with distribution Ln(x, dy), where Ln(x, dy) stands for some Markov transition from En into EYn .
Otherwise, with a probability (1 − dn(x)), the target disappears from the scene, and goes into an
auxiliary cemetery or coffin state c. The [0, 1]-valued function dn is called the detection probability of
the targets.

More formally, a given state x generates a random observation in the augmented state space
EYn,c := EYn ∪ {c}, with distribution

Ln,c(x, dy) := dn(x) Ln(x, dy) + (1− dn(x)) δc(dy) (12.19)

The resulting observation point process is the random measure

Yn =
∑

1≤i≤NY
n,c

δY in

with NY
n,c = NX

n , on the augmented state space EYn,c.
In addition to this partial observation process, we also observe an additional, and independent of

(Xp)p≤n, Poisson point process

Y ′n :=
∑

1≤i≤N ′n

δY ′in

with intensity measure νn on EYn .
We further assume that νn � λn and Ln(x, .) � λn, for any x ∈ En, for some reference measure

λn ∈M(EYn ). We also assume that the Radon-Nikodym derivatives given by

gn(x, y) =
dLn(x, .)
dλn

(y) and hn(y) :=
dνn
dλn

(y) (12.20)
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are such that

hn(y) + dn(x)gn(x, y) > 0

for any (x, y) ∈
(
En × EYn

)
.

The full observation process on EYn,c is now given by the random measure

Y ′′n = Yn + Y ′n

The coffin state c being unobservable, the “real world” observation point process Yo
n is the random

measure on the state space EYn , given by the trace (Y ′′n)|EYn of the measure Y ′′n on the set EYn . More
precisely, the observed random measure is given by the following formula

Yo
n :=

(
Y ′′n
)
|EYn

= (Yn)|EYn + Y ′n with (Yn)|EYn :=
∑

1≤i≤NY
n,c

1EYn (Y i
n) δY in (12.21)

Multi-target tracking problems are concerned with the sequential estimation of the random mea-
sures

Xn =
∑

1≤i≤NX
n

δXi
n

given the noisy and partial observation occupation measures

Yop =
∑

1≤i≤NY
p

δY ip with 0 ≤ p ≤ n

12.3.2 Probability hypothesis density equations

From the pure probabilistic viewpoint, multi-target tracking problems consist in estimating the con-
ditional distributions of the occupation measures of spatial branching processes, given some noisy and
partial observation random fields.

Besides the fact that the underlying signal is a well defined and an easy to sample Markov chain
model Xn, the computation of the likelihood of the observation process Yon, given the random state Xn,
involves intractable combinatorial calculations. In this section, we present a Poisson approximation
model that simplifies drastically the analysis.

The equations associated with these approximated filters are expressed in terms of nonlinear evo-
lution equations of intensity measures, of the same type as the one discussed in Section 12.2. For a
single target filtering problem, these equations reduce to the traditional single target optimal filter
equations.

We emphasize that the multiple-object filtering equations developed in this section are not opti-
mal, in the sense that they only represent an “approximation” of the conditional distributions. The
connections between these Poisson approximation models and the optimal filter are still an important,
but difficult open research question.

Poisson approximation models

Further on in this section, we assume that the initial random measure X0 is a Poisson point process,
with intensity measure γ0 = µ0 ∈M+(E0), on the initial state space E0. We also consider the sequence
of integral operators Qn defined in (12.18).

Given a realization of X0, the corresponding observation process Yo
0 on EY0 is defined as in (12.21)

with some detection functions d0 on E0, some clutter intensity measures ν0, and some Markov transi-
tions (Lc,0, L0) defined as in (12.19). We also assume that the regularity condition (12.20) is satisfied,
for some reference measures λ0 and some clutter intensity functions h0.
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For any function f ∈ B(E0), we have the

γ̂0(f) := E (X0(f) | Yo
0 )

= γ0((1− α0)f) +

∫
Yo

0 (dy) (1− β0,γ0(y)) Ψα0g0(y,.)(γ0)(f)

with the [0, 1]-valued function βγ on E2 defined by

β0,γ0(y) := h0(y)/ [h0(y) + γ0(d0g0(., y))]

A detailed proof of this conditional formula relies on Poisson point process conditioning principles,
and it is provided in Section 12.3.3 (cf. Corollary 12.3.12).

Suppose we have defined the measure valued process (γ̂p, γp) and the random signal-observation
process (Xp,Yo

p ), from the origin p = 0, up to a given time horizon p = n.
Given these values, we define the pair of random measures (Xn+1,Yo

n+1) as follows:

• Firstly, we let Xn+1 be a spatial Poisson point process with intensity measure γn+1 defined by
the following recursions

γn+1 := γ̂nQn + µn (12.22)

γ̂n(f) := γn((1− dn)f) +

∫
Yo
n(dy) (1− βγn(y)) Ψdngn(y,.)(γn)(f)

for any function f ∈ B(En), with the [0, 1]-valued parameters

βn,γn(y) :=
hn(y)

[hn(y) + γn(dngn(., y))]

• Given a realization of Xn+1, the corresponding observation process Yo
n+1 is defined as in (12.21),

for some detection [0, 1]-valued functions dn+1 on En+1, some clutter intensity measures νn+1,
and some Markov transitions (Lc,(n+1), Ln+1) defined as in (12.19); and satisfying (12.20), for
some reference measures λn+1 and some functions hn+1.

We let FYn = σ
(
Yo
p , 0 ≤ p ≤ n

)
be the filtration generated by the observation point processes Yo

p ,
from the origin p = 0, up to the current time p = n. By construction, for any function f ∈ B(En+1),
we clearly have that

E
(
Xn+1(f) | FYn

)
= γn+1(f)

In addition, using the same arguments as the ones we used at the initial time n = 0, we have the
updating formulae

γ̂n+1(f)

:= E
(
Xn+1(f) | FYn+1

)
= γn+1((1− dn+1)f) +

∫
Yo
n+1(dy)

(
1− βγn+1(y)

)
Ψdn+1gn+1(y,.)(γn+1)(f)

In summary, we have proved that the solution of the (PHD) Equations (12.22) coincides at any
time step, with the desired conditional distributions

γ̂n(f) = E
(
Xn(f) | FYn

)
and E

(
Xn(f) | FYn−1

)
= γn(f)

We end this section with a more synthetic description of the PHD equations. More precisely, using
the decomposition (12.18), we can rewrite the PHD Equation (12.22) in terms of a nonlinear model
of the form (12.11), combining in a single step the updating γn  γ̂n and the prediction transition
γ̂n  γn+1.



316 CHAPTER 12. NONLINEAR EVOLUTIONS OF INTENSITY MEASURES

Proposition 12.3.1 The PHD filter satisfies the integral Equation (12.11), with the integral operator
given by

Qn+1,γn(xn, dxn+1) = gn,γn(xn)Mn+1(xn, dxn+1) + γn(1)−1 µn+1(dxn+1) (12.23)

The likelihood function gn,γn is given by

gn,γn := rn × ĝn,γn with rn := (sn + bn) (12.24)

and

ĝn,γn(xn) := (1− dn(xn)) + dn(xn)

∫
Yo
n(dy)

gn(xn, yn)

hn(yn) + γn(dngn(., yn))

An updating-prediction formulation

In this section, we present a more traditional updating-prediction formulation of the PHD equations
presented in (12.22). These updating-prediction models are often used in the literature of multiple
target tracking.

We extend the observation state space EYn by adding a virtual but cemetery type state {c}, and
we consider the following likelihood functions on EYn,c = EYn ∪ {c}

ĝcn,γ(., y) =

 (1− dn) if y = c
dngn(., yn)

hn(y) + γ(dngn(., y))
if y 6= c

In this interpretation, the state y = c is considered as a virtual observable state, with a likelihood
function ĝcn,γ(x, c) = (1 − dn(x)) that measures the undetectability properties of the site x. The
likelihood function is high in regions with low detectability conditions.

In this notation, we have

γn+1 = γ̂nQn+1 + µn+1 with Qn+1(f) := rn Mn+1(f)

with the updated measures defined below

γ̂n(f) := γn(g̃cn,γnf) with g̃cn,γn =

∫
Ycn(dy) ĝcn,γn(., y)

and Ycn = Yo
n + δc. Notice that

γ̂n(1) = γn(g̃cn,γn) and η̂n(dx) := γ̂n(dx)/γ̂n(1) = Ψg̃cγn,n
(ηn)(dx)

from which we find the recursive formulae(
γn(1)
ηn

)
updating

−−−−−−−−−−−−−→
(
γ̂n(1)
η̂n

)
prediction

−−−−−−−−−−−−−→
(
γn+1(1)
ηn+1

)
The updating transition is defined by

γ̂n(1) = γn(1) ηn(g̃cn,γn) and η̂n = Ψg̃cγn,n
(ηn)

It is instructive to observe that for fully detectable target models without clutter, we have

(dn, hn) = (1, 0)⇒ ĝcn,γn(x, y) = 1EYn (y)
gn(x, yn)

γn(gn(., y))
⇒ γ̂n(1) = γn(1)

The prediction transitions are given by

γn+1(1) = γ̂n(rn) + µn+1(1) and ηn+1 = Ψrn (η̂n)M ′n+1,γ̂n
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In the above displayed formula, M ′n+1,γ is the collection of Markov transitions defined by

M ′n+1,γ(x, .) = α′n(γ) Mn+1(x, .) +
(
1− α′n(γ)

)
µn+1

with the collection of [0, 1]-valued parameters

α′n(γ) = γ(rn)/(γ(rn) + µn+1(1))

It is important to mention that the updating, as well as the prediction transitions, can be rewritten
in terms of a measure valued equation of the same form as the one presented in Section 12.2.1. For
instance, we can decompose the two step updating-prediction discussed above with intermediate time
steps between integers

γn −→ γn+1/2 := γ̂n −→ γn+1

In this notation, we have a couple of one step transformations

γn+1/2 = Ξn+1/2(γn) and γn+1 = Ξn+1(γn+1/2)

with the one step transformations, defined for any γ ∈M+(En) by

Ξn+1/2(γ) = γ(g̃cn,γ) Ψg̃cn,γ
(γ)

Ξn+1(γ) = [γ(rn) + µn+1(1)] Ψrn (γ)M ′n+1,γ

Now, it should be clear that the updating and the prediction transitions can be approximated
using mean field particle models presented in Section 12.2.2. Therefore, the performances of these
updating-prediction mean field algorithms are direct consequences of the convergence analysis of the
general particle model discussed in Section 12.2.2.

12.3.3 Spatial Poisson processes

In this short section, we recall some more or less well known results on spatial Poisson point processes,
including restriction techniques and conditioning principles for partially observed models.

Preliminary results

We consider a measure γ ∈ M(E) on some measurable state space E s.t. γ(1) > 0. We let N be
a integer valued Poisson random variable with parameter γ(1). We also denote by X = (Xi)i≥1

a sequence of independent and identically distributed random variables with common distribution
η(dx) := γ(dx)/γ(1). We assume that N and X are independent.

Definition 12.3.2 The Poisson point process X with intensity measure γ is the random measure
defined below

X := mN (X) =
∑

1≤i≤N
δXi ∈ P(E)

One of the main simplifications of Poisson point processes comes from the fact that their expecta-
tion measure coincides with their intensity measures:

E (X (f)) = E (E (X (f) | N)) = E (Nη(f)) = γ(1)η(f) = γ(f)

Definition 12.3.3 For every sequence of point x = (xi)i≥1 in E, any A ∈ E, and every p ≥ 0, we
denote by mp,A(x) the restriction of the occupation measure mp(x) to the set A.

mp,A(x)(dy) = mp(x)(dy)1A(y) =
∑

1≤i≤p
1A(xi)δxi(dy)

.
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Notice that

mp(x)(A) =
∑

1≤i≤p
1Ai(x

i) > 0 =⇒ mp,A(x) = mp(x)(A) Ψ1A(m(x))

with the Boltzmann-Gibbs transformation ΨG associated with the indicator function G = 1A, defined
in (4.31).

Lemma 12.3.4 Let (Xj)j≥1 be a sequence of independent Poisson point processes with intensity mea-
sure (γi)i≥1 on some common measurable state space E. For any d ≥ 1, X is a Poisson point pro-
cess with intensity measure

∑
1≤i≤d γi if, and only if, X is equal in law to the Poisson point process∑

1≤i≤dXi.

Proof:
By symmetry arguments, we have for any F ∈ B(M(E)) and any d ≥ 1

E
(
F
(∑

1≤i≤dXi
))

=

e−
∑

1≤i≤d γi(1)∑
p1,...,pd≥0

1
p1!...pd!

∫
F

 ∑
1≤i≤d

mpi(xi)

 ∏
1≤i≤d

γ⊗pii (dxi)

This implies that

E
(
F
(∑

1≤i≤dXi
))

=

= e−
∑

1≤i≤d γi(1)∑
s≥0

1
s!

∑
p1+...+pd=s

s!
p1!...pd!

∫
F (ms(x))

(
γ⊗p1

1 ⊗ . . .⊗ γ⊗pdd

)
(dx)

In the above displayed integral dx = dx1 × . . . × dxs stands for an infinitesimal neighborhood of the
point x = (xi)1≤i≤s. This implies that

E

F
 ∑

1≤i≤d
Xi

 = e−
∑

1≤i≤d γi(1)
∑
s≥0

1

s!

∫
F (ms(x))

(
d∑
i=1

γi

)⊗s
(dx) (12.25)

This shows that
∑

1≤i≤dXi is a Poisson point process with intensity measure
∑

1≤i≤d γi. In addition,
by (12.25), any Poisson point process with such an intensity measure has the same law as

∑
1≤i≤dXi.

The next result is a direct consequence of Lemma 12.3.4.

Lemma 12.3.5 Let X :=
∑

1≤i≤N δXi be a Poisson point process with intensity measure γ that is
the random measure on E. We consider a measurable subset A ⊂ E, such that γ(A) > 0. Then, the
restriction, or the trace, XA = mN,A(X) of X on the set A is again a Poisson point process with
intensity measure γA(dx) := 1A(x)γ(dx).

In addition, the conditional distribution of X given XA is given for any F ∈ B(M(E)) by the
following formula

E (F (X ) |XA ) = e−γ(Ac)
∑
p≥0

1

p!

∫
F (XA +mp(x)) γ⊗pAc (dx)

In the above, displayed integral dx = dx1 × . . . × dxp stands for an infinitesimal neighborhood of the
point x = (xi)1≤i≤p.
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Proof:
Using the decomposition

γ(dx) = 1A(x)γ(dx) + 1Ac(x)γ(dx) ⇒ γ = γA + γAc

for any F ∈ B(M(E)) we find that

E (F (XA)) = e−γ(1)
∑
s≥0

1

s!

∫
F (ms,A(x)) (γA + γAc)

⊗s (dx)

By symmetry arguments, this implies that

E (F (XA)) = e−γ(1)
∑
s≥0

1

s!

∑
p+q=s

s!

p!q!

∫
F (ms,A(x))

[
γ⊗pA ⊗ γ

⊗(s−p)
Ac

]
(dx)

from which we find that

E (F (XA)) = e−γ(1)
∑
p≥0

1

p!

∑
s≥p

γ(Ac)s−p

(s− p)!

∫ F (mp(x)) γ⊗pA (dx)

= e−(γ(E)−γ(Ac))
∑
p≥0

1

p!

∫
F (mp(x)) γ⊗pA (dx)

The last assertion is a direct consequence of Lemma 12.3.4, applied to d = 2, replacing (X1,X2) by
(XA,XAc). This ends the proof of the lemma.

Some conditioning principles

We consider a measure γ ∈M(E1) on some measurable space (E1, E1) and a bounded positive integral
operator Q from (E1, E1) into an auxiliary measurable space (E2, E2).

We further assume that Q(1) > 0, γ-a.e., and we let

X := mN (X1, X2) =
∑

1≤i≤N
δ(Xi

1,X
i
2) (12.26)

be the Poisson point process on some product space (E1 × E2, E1 ⊗ E2) with intensity measure Γ of
the following form

Γ(d(x1, x2)) := γ(dx1) Q(x1, dx2)

It is immediate to check that the marginal random measures Xj := mN (Xj) are Poisson point processes
on Ej , j = 1, 2, with intensity measures

γ1(dx) := Q(1)(x) γ(dx) and γ2 := γQ

Our next objective is to describe the conditional distributions of the random measures Xi w.r.t.
Xj , with i 6= j.

Lemma 12.3.6 For any f ∈ B(E1) we set γf (dx) := f(x) γ(dx). The integral operators

Q(x1, dx2) =
Q(x1, dx2)

Q(x1, E2)
and f ∈ B(E1) 7→ Qγ(f) :=

dγfQ

dγQ

are well defined Markov transitions from E1 into E2, resp. from E2 into E1. In addition, if we have
Q(x1, .)� γQ, for every x1 ∈ E1, then we have the following explicit formula

Qγ(x2, dx1) := γ(dx1)
dQ(x1, .)
dγQ

(x2)
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Proof:

The fact that Q is a well defined Markov transition is immediate. To check the second assertion,
we use the fact that

γf (dx) := f(x) γ(dx)� γ(dx) =⇒ γfQ� γQ

for any f ∈ B(E1). The r.h.s. assertion comes from the following series of implications

γQ(A) = 0 ⇒ Q(1A) = 0 γ − almost everywhere

⇒ Q(1A) = 0 γf − almost everywhere⇒ γfQ(A) = 0

Using this property, we define the following operator from B(E1) into B(E2):

∀f ∈ B(E1) ∀x ∈ E2 Qγ(f)(x2) :=
dγfQ

dγQ
(x2)

Notice that Qγ(1)(x2) = 1, and for any (f, g) ∈ B(E1)2, we have

γf+g = γf + γg ⇒ Qγ(f + g) = Qγ(f) +Qγ(g)

Using the fact that limn→∞ γ1An = 0 for every decreasing sequence of subsets An ∈ E1 s.t.
limn→∞An = ∅, we prove that limn→∞Qγ(1An)(x2) = 0, γQ-a.e. This implies that A ∈ E1 7→
Qγ(1A)(x2) is a well defined probability measure Qγ(x2, dx1) on the set (E1, E1), and we have the
following γQ-a.e. Lebesgue integral representation

Qγ(f)(x2) =

∫
Qγ(x2, dx1)f(x1)

This ends the proof of the lemma.

By construction, we have the equivalent time reversal formulae

γ(dx1) Q(x1, dx2) = (γQ) (dx2) Qγ(x2, dx1) (12.27)

Notice that
γ(dx1) Q(x1, dx2) = γ(G) ΨG(η)(dx1) Q(x1, dx2)

with
η(dx1) = γ(dx1)/γ(1) and G := Q(1)

In the same vein, we also have that

(γQ) (dx2) Qγ(x2, dx1) = γ(G) (ΨG(η)Q)(dx2) Qγ(x2, dx1)

This implies that
ΨG(η)(dx1) Q(x1, dx2) = (ΨG(η)Q)(dx2) Qγ(x2, dx1)

from which we conclude that Qγ = QΨG(η), where Qγ is defined as Qγ by replacing Q by Q.
Using rather elementary manipulations, we prove the following lemma.

Lemma 12.3.7 For any functions Fj ∈ B(M(Ej)), with j = 1, 2, we have the almost sure formulae:

E (F1(X1) | X2 ) =

∫
F1 (mN (x1))

∏
1≤i≤N

Qγ(Xi
2, dx

i
1)

and

E (F2(X2) | X1 ) =

∫
F2 (mN (x2))

∏
1≤i≤N

Q(Xi
1, dx

i
2)

In the above displayed formula Q and Qγ stand for the pair of Markov transitions introduced in
Lemma 12.3.6.
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Proof:
To prove the second assertion, we recall that X1 := mN (X1) =

∑
1≤i≤N δXi

1
is a Poisson point process

on E1, with intensity measure γ1(dx) := Q(1)(x) γ(dx). From this result, we find that

E

F1(X1)


∫
F2 (mN (x2))

∏
1≤i≤N

Q(Xi
1, dx

i
2)




= e−γQ(1)
∑

p≥0
1
p!

×
∫
F1 (mp(x1)) F2 (mp(x2))

∏
1≤i≤p

[
Q(xi1, dx

i
2) Q(1)(xi1) γ(dxi1)

]

= e−γQ(1)
∑

p≥0
1
p!

∫
F1 (mp(x1)) F2 (mp(x2))

∏
1≤i≤p

[
γ(dxi1)Q(xi1, dx

i
2)
]

= E (F1(X1)F2(X2))

This ends the proof of the second assertion. Using the time reversal decomposition formula (12.27),
and recalling that Qγ is a Markov transition, the first assertion is a direct consequence of the second
one. This ends the proof of the lemma.

Partially observed models

We consider a spatial branching signal model defined by a Poisson point process X :=
∑

1≤i≤N δXi ,
with intensity measure γ on some measurable state space (E1, E1), and we set η(f) := γ(f)/γ(1), for
any f ∈ B(E1).

The random variable X is partially observed, on some possibly different measurable state space E2.
The observation is defined by a spatial point process. It consists in a collection of random observation
variables, directly generated by some random points in the support of X , plus some random observa-
tions unrelated to X , sometimes called the clutter. We use the partial observation model presented in
Section 12.3.1.

For the convenience of the reader, we briefly recall the description of this model in this static
framework. Given a realization of X , every random state Xi = x generates an observation Y i on
E2 ∪ {c} with distribution

Lc(x, dy) := d(x) L(x, dy) + (1− d(x)) δc(dy)

The function d represents the detectability degree of the states, and L(x, .) stands for the distribution
of the random observations on E2 generated by the point x in E1. The resulting observation process
is the random measure Y =

∑
1≤i≤N δY i on the augmented state space E2 ∪ {c}.

In addition to this partial observation model, we also observe an additional, and independent of
X , clutter Poisson point process Y ′ :=

∑
1≤i≤N ′ δY ′i , with intensity measure ν on E2. As in (12.19),

we further assume that ν and L(x, .)� λ, for some λ ∈M(E2), and we set

g(x, y) =
dL(x, .)
dλ

(y) and h := dν/dλ (12.28)

We also suppose that h(y) + γ(dg(., y)) > 0, for any y ∈ E2.
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The full observation process on E2 ∪ {c} is given by the random measure Y ′′ = Y + Y ′, while the
“real world” observation Yo is given the random measure

Yo := Y ′′|E2
= Y|E2

+ Y ′ =⇒ Y + Y ′ = Yo +Nc δc with Nc := Y({c}) (12.29)

The following proposition results from the construction of the observation process Y ′′ on E2 ∪{c}.

Proposition 12.3.8 A version of the conditional distribution of the random measure Y ′′ given X :=∑
1≤i≤N δXi is given for any function F ∈ B (M(E2 ∪ {c})) by

E (F (Y ′′) |X )

= e−ν(1)
∑

p≥0
1
p!

∫
F (mp(y

′) +mN (y)) ν⊗p(dy′)
∏

1≤i≤N Lc(X
i, dyi)

Our next objective is to compute the conditional distribution of X , given the observation process
Yo.

Definition 12.3.9 We let Z be the spatial point process defined by

Z :=
∑

1≤i≤N
δ(Xi,Y i) +

∑
1≤i≤N ′

δ(c,Y ′i) :=
∑

1≤i≤N ′′
δ(Zi1,Z

i
2) (12.30)

For any i ∈ {1, 2}, we denote by Bb(Ei ∪{c}) the set of functions f ∈ Bb(Ei), extended to Ei ∪{c}, by
setting f(c) = 0.

We observe that

Z1 =
∑

1≤i≤N ′′
δZi1

= X +N ′δc

Z2 =
∑

1≤i≤N ′′
δZi2

= (Z2)|E2
+ (Z2)|{c} = Yo +Ncδc

By construction, the random measure Z is a Poisson point process taking values in the state space

Ec = [(E1 ∪ {c})× (E2 ∪ {c})]

with intensity distribution given by the factorization formulae

γ(dx)Lc(x, dy) + δc(dx)ν(dy)

=

γ(dx) 1E1(x) + ν(1) δc(dx)︸ ︷︷ ︸
=γc(dx)


1E1(x) Lc(x, dy) + 1c(x)

ν(dy)

ν(1)︸ ︷︷ ︸
Mc(x,dy)


The marginal of the above distribution w.r.t. the second component is given by

γcMc(dy) = (γLc + ν)(dy)

= [γ(dg(., y)) + h(y)] λ(dy) + γ(1− d) δc(dy)

On the other hand we have the decomposition

γc(dx) Mc(x, dy)

= [γ(dx) d(x) g(x, y) + δc(dx)h(y)] λ(dy) + γ(dx)(1− d(x)) δc(dy)
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This yields the Bayes’ type formula

γc(dx) Mc(x, dy) = γcMc(dy) Mc,γc(y, dx)

with the Markov transition

Mc,γc(y, dx)

:= 1E2(y)
[γ(dx) d(x) g(x, y) + δc(dx)h(y)]

[γ(dg(., y)) + h(y)]
+ 1c(dy)

γ(dx)(1− d(x))

γ(1− d)

This implies that
Mc,γc(y, dx) = 1E2(y) Qγc(y, dx) + 1c(dy) Ψ1−d(η)(dx) (12.31)

with the [0, 1]-valued function βγ on E2 defined by

βγ(y) := h(y)/ [h(y) + γ(dg(., y))] (12.32)

and the Markov transition Qγc from E2 into E1 ∪ {c} defined by the following formula

Qγc(y, dx) = (1− βγ(y)) Ψdg(y,.)(η)(dx) + βγ(y) δc(dx) (12.33)

We summarize the above discussion with the following proposition.

Proposition 12.3.10 A version of the conditional distribution of the random measure Z1 given Z2

is given for any function F ∈ B (M(E1 ∪ {c})) by

E (F (Z1) | Z2) =

∫
F
(
mZ2(1)(x)

) ∏
1≤i≤Z2(1)

Mc,γc(Z i2, dxi)

with the Markov Mc,γc transition, from E2 ∪ {c} into E1 ∪ {c}, defined in (12.31).

Using the fact that
Z2 = (Z2)|E2

+ (Z2)|{c} = Yo +Ncδc

for any function F ∈ B(M(E2 ∪ {c})), we also prove the following equation

E (F (Z2) | Yo ) = e−γ(1−d)
∑
p≥0

γ(1− d)p

p!
F (pδc + Yo)

If we set
Yo :=

∑
1≤i≤N1

δY i1
=

∑
1≤i≤N

1E2(Y i) δY i + Y ′

then we find that

E
(
F (Z1) | (Z2)|E2

)
= E

(
E (F (Z1) | Z2) | (Z2)|E2

)
= e−γ(1−d)

∑
p≥0

γ(1− d)p

p!

×
∫
F
(
mp(x

′) +mYo(1)(x)
)

Ψ(1−d)(η)⊗p
(
dx′
) Yo(1)∏

i=1

Qγc
(
Y i

1 , dx
i
)

We summarize the above discussion with the following theorem.
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Theorem 12.3.11 A version of the conditional distribution of

Xc := X +N ′δc

w.r.t. the observation process Yo =
∑

1≤i≤N1
δY i1

is given for any function F ∈ B (M(E1 ∪ {c})) by

E (F (Xc) |Yo )

= e−γ(1−d)
∑
p≥0

γ(1− d)p

p!

∫
F
(
mp(x

′) +mN1(x)
)

Ψ(1−d)(η)⊗p
(
dx′
) N1∏

i=1

Qγc
(
Y i

1 , dx
i
)

with the Markov Qγc transition, from E2 into E1 ∪ {c}, defined in (12.33).

The conditional expectation measures of the random point processes Yc and Yo resp. Xc and X ,
given the point process X , resp. Yo, are now easily computed.

Corollary 12.3.12 For any function f ∈ B(E2∪{c}), we have the almost sure integral representation
formula

E (Yc(f) | X ) = E (Yo(f) | X ) = X (dL(f)) + ν(f)

and for any function f ∈ B(E1 ∪ {c}) we have the almost sure integral representation formula

E (Xc(f) | Yo) = E (X (f) | Yo)

= γ((1− d)f) +

∫
Yo(dy) (1− βγ(y)) Ψdg(y,.)(η)(f)

with the [0, 1]-valued function βγ defined in (12.32).

In particular, the conditional mean value of the number of states N given the spatial point obser-
vation is given below:

E (N |Yo) = E(N) η((1− d)) + Yo (1− βγ) (12.34)

Notice that the first term in the r.h.s. of (12.34) represents the mean value of N times the nonde-
tection probability. Roughly speaking, the second term represents the Yo-probability that observations
do not cause the clutter. In this connection, models with no clutter and fully detectable states are
described below.

Corollary 12.3.13 In the situation where d = 1 and ν = 0 we have

Xc = X and Yo = Y =
∑

1≤i≤N
δY i

In addition, for any function F ∈ B (M(E1)), we have the following almost sure integral representation
formula

E (F (X ) |Y ) =

∫
F (mN (x))

∏
1≤i≤N

Ψg(Y i,.)(η)(dxi)

For any function f ∈ B(E1 ∪ {c}) we also have the almost sure integral representation formula

E (Xc(f) | Y) = E (X (f) | Y) =

∫
Y(dy) Ψg(y,.)(η)(f)
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12.4 Association tree based measures

This section is concerned with association tree based measures and their mean field approximations.
The central idea behind these filtering association models is to solve the data association problem;
that is, to find the right sequences of observations delivered by every target track.

In the first section, Section 12.4.1, we design a new class of evolution equations in the set of
measures on finite association trees. This class of models has the same form as the ones discussed in
Section 12.2.1.

Then, we examine two situations:

Firstly, for a given data association trajectory, we assume that the optimal single target tracking
problem can be solved using Kalman filters, or by some auxiliary particle filter. In this context, the
central problem is to find a judicious way of reducing the set of all possible associations to a reasonable
finite number, with high likelihood value. In Section 12.4.2, we design a mean field solution to this
problem.

In more general situations, even given the exact sequence of observations of a given target tra-
jectory, the optimal filtering problem associated with this data cannot be computed explicitly. In
Section 12.4.3, we couple the data association mean field model discussed in Section 12.4.2 with mean
field type particle filters.

To the best of our knowledge, these mean field particle approximations of association tree based
measures are one of the most performant algorithms, for solving multiple target tracking problems. We
refer to the series of articles [145, 476, 477, 478] for numerical experiments and comparisons between
these mean field models.

12.4.1 Nonlinear evolution equations

We let (An)n≥0 be a sequence of finite sets equipped with some finite positive measures (νn)n≥0. We
let η(a), Q(a), and f (a) be some collection of measures, integral operators, and measurable functions,
on some state spaces, indexed by the parameter a in some finite set A.

To clarify the presentation, for any measure ν on A, we set

η(ν) :=

∫
ν(da) η(a) (12.35)

Q(ν) :=

∫
ν(da) Q(a) and f (ν) :=

∫
ν(da) f (a) (12.36)

We return to the general measure valued model (γn, ηn) defined in Section 12.2.1. We further
assume that the initial distribution γ0 and the integral operators Qn+1,γn in (12.11) have the following
form

γ0 = η
(ν0)
0 and Qn+1,γn = Q

(νn+1)
n+1,γn

for some collection of probability measures η
(a)
0 , and positive and bounded integral operators Q

(a)
n+1,γn

,
indexed by a ∈ An+1. In this situation, we have

γ0(1) = ν0(1) and η0 = η
(A0)
0 with A0(da) := ν0(da)/ν0(1)

We also assume that the following property is met

G(a)
n,γ := Q

(a)
n+1,γ(1) ∝ G(a)

n and Q
(a)
n+1,γ(f)/Q

(a)
n+1,γ(1) := M

(a)
n+1(f) (12.37)

for some function G
(a)
n on En, and some Markov transitions M

(a)
n+1 from En into En+1 whose values

do not depend on the measures γ.
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Example 12.4.1 We illustrate these rather abstract conditions in the context of the multiple target
tracking equation presented in (12.23).

In this situation, it is convenient to add a pair of virtual observation states c, c′ to EYn . Using this
notation, the above conditions are satisfied with the finite sets An+1 and their counting measures νn+1

defined below
An+1 =

{
Y i
n, 1 ≤ i ≤ NY

n } ∪ {c, c′
}

and
νn+1 = Yo

n + δc + δc′ ∈M(An+1)

Using (12.23) and (12.24), we check that (12.37) is met with a couple of potential functions and
Markov transitions defined by

(G(a)
n ,M

(a)
n+1) =


(rndngn(., a) , Mn+1) for a 6∈ {c, c′}
(rn(1− dn) , Mn+1) for a = c(
1 , µn+1

)
for a = c′

In this case, we observe that

Q
(a)
n+1,γn

(xn, .) = G(a)
n,γn(xn) M

(a)
n+1(xn, .)

with the potential function G
(a)
n,γn defined below

G(a)
n,γn/G

(a)
n =

 [hn(a) + γn(dngn(., a))]−1 for a 6∈ {c, c′}
1 for a = c

µn+1(1)/γn(1) for a = c′
(12.38)

Definition 12.4.2 We consider the collection of probability measures η
(an)
n ∈ P(En), indexed by

sequences of parameters
an = (a0, . . . , an) ∈ An := (A0 × . . .×An)

and defined by the following equations

η(an)
n =

(
Φ(an)
n ◦ . . . ◦ Φ

(a1)
1

)(
η

(a0)
0

)
(12.39)

with the mappings Φ
(a)
n : P(En−1)→ P(En), indexed by a ∈ An, and defined by the updating-prediction

Feynman-Kac transformation
Φ(a)
n (η) = Ψ

G
(a)
n−1

(η)M (a)
n

Given some a = (a0, . . . , an) ∈ An, we set |a| = n. In this situation, we simplify the notation, and
write

η(a) := η
(a|a|)

|a| = η(an)
n (12.40)

the measure defined in (12.39).

Definition 12.4.3 We let Ωn+1 be the mapping

Ωn+1 : (m,A) ∈ (]0,∞[×P(An)) 7→ Ωn+1(m,A) ∈ P(An+1)

defined by the following formula

Ωn+1 (m,A) = ΨGm,A (A⊗ νn+1) (12.41)

with the Boltzmann-Gibbs transformations ΨGm,A from P (An × R+), into itself defined in (7), asso-
ciated with the potential function

Gm,A(a, b) = η(a)
n

(
G

(b)

n,mη(A)

)
with η(A) given by (12.36) and (12.40).
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Definition 12.4.4 We consider the collection of integral operators Qn+1,B from An into An+1,
indexed by B ∈M+(An), and defined, for any a ∈ An by

Qn+1,B(a, d(a′, b)) := [δa ⊗ νn+1] (d(a′, b)) GB(1),B(a′, b) (12.42)

with the normalized distribution
B = B/B(1) ∈ P(An)

In the above display formulae, d(a′, b) = da′× db stands for an infinitesimal neighborhood of the point
(a′, b) ∈ An+1 := (An ×An+1).

Proposition 12.4.5 The solution of (12.2.1) has the form

ηn = η(An)
n = η(An)

with the sequence of association measures An ∈ P(An) defined, for any F ∈ Bb(An+1), by the
evolution equations

An+1(F ) = Ωn+1 (γn(1), An) (F ) :=
AnQn+1,γn(1)An(F )

AnQn+1,γn(1)An(1)

In addition, the flow of unnormalized measures (Bn)n≥0 ∈M+(An) defined by Bn := γn(1)×An
satisfies the same type of equation as in (12.11); that is, we have that

Bn+1 = BnQn+1,Bn (12.43)

Proof:
We check the first assertion using an inductive proof on the time parameter.

For n = 0, we have set η0 = η(A0), so that the assertion is met at the time n = 0. We further

assume that ηn = η
(An)
n , for some An ∈ P(An).

Using (12.11), we find that it is simply based on the fact that

ηn+1 ∝ η(An)Q
(νn+1)

n+1,γn(1)η(An)

=

∫
[An ⊗ νn+1](d(a, b)) η(a)

n Q
(b)

n+1,γn(1)η(An)

Using (12.37), we have that

Q
(b)

n+1,γn(1)η(An)(1) = G
(b)

n,γn(1)η(An) ∝ G(b)
n

and
Q

(b)

n+1,γn(1)η(An)(f)/Q
(b)

n+1,γn(1)η(An)(1) = M
(b)
n+1(f)

for any f ∈ Bb(En+1). This implies that

η
(a,b)
n+1 (f) = Φ

(b)
n+1

(
η(a)
n

)
(f) =

η
(a)
n

(
G

(b)
n M

(b)
n+1(f)

)
η

(a)
n

(
G

(b)
n

) =
η

(a)
n Q

(b)

n+1,γn(1)η(An)(f)

η
(a)
n Q

(b)

n+1,γn(1)η(An)(1)

from which we conclude that

ηn+1 ∝
∫

[An ⊗ νn+1](d(a, b)) η(a)
n

(
G

(b)

n,γn(1)η(An)

)
︸ ︷︷ ︸

=Ωn+1(γn(1),An)(d(a,b))

η
(a,b)
n+1
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In terms of the second coordinate mapping Λ2
n+1 defined in (12.14), we have proved that

ηn+1 = Λ2
n+1

(
γn(1), η(An)

n )
)

= η
(Ωn+1(γn(1),An))
n+1 = η

(An+1)
n+1

This ends the proof of the first assertion.

On the other hand, we have that

AnQn+1,γn(1)An(F )(a) =

∫
An(da) νn+1(db) Gγn(1),An(a, b) F (a, b)

∝
∫
An+1(d(a, b)) F (a, b)

This ends the proof of the proposition.

Using Proposition 12.4.5, we readily prove the following theorem.

Theorem 12.4.6 The solution of (12.2.1) has the form

γn = γn(1)× η(An)

with the process (γn(1), An) ∈ (R+ × P(An)) defined by
An+1 = ΨGγn(1),An

(An ⊗ νn+1)

γn+1(1) = γn(1)× [An ⊗ νn+1] (Gγn(1),An)

(12.44)

In the above display, Gγn(1),An stands for the potential function presented in Definition 12.4.3.

We end this section with some comments on the evolution Equation (12.44). The first equation
is only defined in terms of the Boltzmann-Gibbs transformations ΨGγn(1),An

. As a result, we cannot
expect the measure valued equation to have some nice stability properties.

Loosely speaking, we can stabilize these equations adding some MCMC steps between the updating
Boltzmann-Gibbs transformations. More formally, we can add, at every time step, an MCMC transition
Mn+1 on the set An+1 with invariant measure ΨGγn(1),An

. The resulting equation, is now given by

An+1 = ΨGγn(1),An
(An ⊗ νn+1)Mn+1

12.4.2 Mean field particle model

We further assume that η
(a)
n

(
G

(b)

n,γn(1)η(An)

)
are explicitly known for any sequence of parameters

((a,An), b) ∈
(
A2
n ×An+1

)
.

This rather strong condition is satisfied for the multiple target tracking model discussed above as
long as the quantities

η(a0,y0,...,yn−1)
n (rndngn(., yn)) η(a0,y0,...,yn−1)

n (rn(1− dn))

and

η(a0,y0,...,yn−1)
n (dngn(., yn))

are explicitly known. This condition is clearly met for linear Gaussian target evolution and observation
sensors, as long as the survival and detection probabilities, sn and dn, are state independent, and the
spontaneous birth µn as well as the spawned targets branching rates bn are Gaussian mixtures.
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In this situation, the collections of measures η
(a0,y0,...,yn−1)
n are Gaussian distributions and the Equa-

tion (12.39) coincides with the traditional updating-prediction transitions of the discrete generation
Kalman-Bucy filter.

We let AN0 = 1
N

∑N
i=1 δai0

be the empirical measure associated with N independent and identically

distributed random variables (ai0)1≤i≤N with common distribution A0. By construction, we have

ηN0 :=

∫
AN0 (da) η

(a)
0 'N↑∞ η0

We further assume that γ0(1) is known and we set γN0 = γ0(1) ηN0 ,

γN1 (1) = γN0 (1) ηN0 (G0,γN0
) , and ηN1 :=

∫
AN1 (da) η

(a)
1

with the occupation measure AN1 = 1
N

∑N
i=1 δai1

associated with N conditionally independent and

identically distributed random variables ai1 := (ai0,1, a
i
1,1) with common law Ω1

(
γN0 (1), AN0

)
. By con-

struction, we also have

ηN1 'N↑∞
∫

Ω1

(
γN0 (1), AN0

)
(da) η

(a)
1 = Λ2

1

(
γN0 (1), ηN0

)
Iterating this procedure, we define by induction a sequence of N -particle approximation measures

γNn (1) = γNn−1(1) ηNn−1(Gn−1,γNn−1
) and ηNn :=

∫
ANn (da) η(a)

n

with the occupation measure ANn = 1
N

∑N
i=1 δain

associated with N conditionally independent and
identically distributed random variables

ain := (ai0,n, a
i
1,n, . . . , a

i
n,n)

with common law Ωn

(
γNn−1(1), ANn−1

)
. Arguing as above, we find that

ηNn 'N↑∞
∫

Ωn

(
γNn−1(1), ANn−1

)
(da) η(a)

n = Λ2
n

(
γNn−1(1), ηNn−1

)
12.4.3 Mixed particle association models

We consider the association mapping

Ωn+1 : (m,A, η) ∈
(
]0,∞[×An × P(En)An

)
7→ Ωn+1(m,A, η) ∈ P(An+1)

defined for any (m,A) ∈ (]0,∞[×An), and any mapping

η : a ∈ Supp(A) 7→ η(a) ∈ Pa(En)

by the following equation

Ωn+1 (m,A, η) (d(a, b)) ∝ A(da) νn+1(db) η(a)
(
G

(b)

n,m
∫
A(da) η(a)

)
By construction, for any discrete measure A ∈ P(An−1), and any mapping a ∈ Supp(A) 7→ η(a) ∈
P(En−1), we have the formula

Λ2
n

(
m,

∫
A(da) η(a))

)
=

∫
Ωn

(
m,A, η(.)) (d(a, b)) Φ(b)

n

(
η(a)

)
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We also mention that the updating-prediction transformation defined in (12.39) can be rewritten in
terms of nonlinear transport equations

Φ(a)
n (η) = Ψ

(a)
Gn−1

(η)M (a)
n = ηK(a)

n,η with K(a)
n,η = S(a)

n−1,ηM
(a)
n (12.45)

In the above displayed formula, S(a)
n−1,η stands for some updating Markov transition, from En−1 into

itself, satisfying the compatibility condition

ηS(a)
n−1,η = Ψ

(a)
Gn−1

(η)

We let AN0 = 1
N

∑N
i=1 δai0

be the empirical measure associated with N independent and identically

distributed random variables (ai0)1≤i≤N with common distribution A0. We set

ηN0 :=

∫
AN0 (da) η

(a,N ′)
0

with the empirical measure η
(a,N ′)
0 = 1

N ′
∑N ′

i=1 δ
ξ
[a,j]
0

associated with N ′ random variables ξ
[a]
0 =(

ξ
[a,j]
0

)
1≤j≤N ′

, with common law η
(a)
0 . We further assume that γ0(1) is known, and we set

γN0 := γ0(1) ηN0 and γN1 (1) := γN0 (1) ηN0 (G0,γN0
)

By construction, we have∫
AN0 (da) η

(a,N ′)
0 'N ′↑∞

∫
AN0 (da) η

(a)
0 ⇒ ηN0 'N,N ′↑∞ η0

Using (12.45), for any a1 = (a0, a1) ∈ A1 we find that

Φ
(a1)
1

(
η

(a0,N ′)
0

)
= η

(a0,N ′)
0 K(a1)

n,η
(a0,N

′)
0

We let AN1 = 1
N

∑N
i=1 δai1

be the occupation measure associated with N conditionally i.i.d. r.v. ai1 :=

(ai0,1, a
i
1,1) with common law

Ω1

(
γN0 (1), AN0 , η

(.,N ′)
0

)
In the above displayed formula η

(.,N ′)
0 stands for the mapping

a0 ∈ A0 7→ η
(a0,N ′)
0 ∈ P(E0)

We consider a sequence of conditionally independent random variables ξ
[a0,a1,j]
1 with distribution

K(a1)

n,η
(a0,N

′)
0

(
ξ

[a0,j]
0 , .

)
, with 1 ≤ j ≤ N ′, and we set

η
((a0,a1),N ′)
1 =

1

N ′

N ′∑
i=1

δ
ξ
[(a0,a1),j]
1

and ηN1 :=

∫
AN1 (da) η

(a,N ′)
1

Arguing as before, we find that

ηN1 'N↑∞
∫

Ω1

(
γN0 (1), AN0 , η

(.,N ′)
0

)
(d(a0, a1)) Φ

(a1)
1

(
η

(a0,N ′)
0

)
= Λ2

1

(
γN0 (1), ηN0

)
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Iterating this procedure, we define by induction a sequence of N -particle approximation measures

γNn (1) = γNn−1(1) ηNn−1(Gn−1,γNn−1
) and ηNn :=

∫
ANn (da) η(a,N ′)

n

with the occupation measure ANn = 1
N

∑N
i=1 δain

associated with N conditionally independent and
identically distributed random variables

ain := (ai0,n, a
i
1,n, . . . , a

i
n,n)

with common law
Ωn

(
γNn−1(1), ANn−1, η

(.,N ′)
n−1

)
Arguing as above, we find that

ηNn 'N↑∞
∫

Ωn

(
γNn−1(1), ANn−1, η

(.,N ′)
n−1

)
(d(a, b)) Φ(b)

n

(
η

(a,N ′)
n−1

)
= Λ2

n

(
γNn−1(1), ηNn−1

)
As before, the N -particle occupation measures ANn converge as N tends to ∞ to the association
probability measures An.





Part IV

Solution of the exercises
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Solution to exercise 4.7.1:
Choosing R = Rε := 2/(1− ε), we find that(

1−
(
ε+

1

R

))
=

(
1−

(
ε+

1− ε
2

))
= 1− 1 + ε

2
=

1− ε
2

and

1− 1

1 + 2ρR
= 1− (1− ε)

(1− ε) + 4ρ
=

4ρ

(1− ε) + 4ρ

This implies that
W (x) ∧W (y) ≥ Rε

⇓

∀ρ ∈]0, 1]
‖M(x, .)−M(y, .)‖Vρ

1 + Vρ(x) + Vρ(y)
≤ 1− 1

2

4ρ(1− ε)
(1− ε) + 4ρ

< 1

In much the same way, when W (x) ∨W (y) ≤ 2/(1− ε) we have

‖M(x, .)−M(y, .)‖Vρ
1 + Vρ(x) + Vρ(y)

≤ 1−
(
αε −

8ρ

1− ε

)
< 1

with αε := 1− β(Rε)(M), as soon as

ρ < αεδ/8 with δ := (1− ε)

If we set u := 4ρ/δ, then we have

1

2

4ρ(1− ε)
(1− ε) + 4ρ

=
δ

2

(
1− 1

1 + u

)
:= g(u)

and (
αε −

8ρ

1− ε

)
= (αε − 2u) := h(u)

On the interval u ∈ [0, αε/2] (so that ρ < αεδ/8) the function g is increasing from g(0) = 0 to
g(αε/2) = δαε

2+αε
< 1, while the function h is decreasing from h(0) = αε to h(αε/2) = 0. These two

functions intersects at some point u such that

(1 + u) (2u− αε) + uδ/2 = 0

In other words, if we set

a :=
1

2

(
1− b+

δ

4

)
≤ 1

2
with b :=

αε
2

we need to solve the equation

u2 + 2ua− b = (u− a)2 −
[
a2 + b

]
= 0

with u ∈ [0, b]. This implies that

0 < u =
√
a2 + b− a ≤ b

The r.h.s. inequality is checked using the fact that√
a2 + b− a ≤ b ⇔ a2 + b ≤ a2 + b2 + 2ab

⇔ b ≤ b (b+ 2a) = b

(
1 +

δ

4

)
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Using a Taylor expansion, for any v ≥ 0 we have

√
1 + v = 1 +

v

2
√

1 + vτv
≥ 1 +

v

2
√

1 + v

for some τv ∈ [0, 1]. If we set v = b/a2 we find that

u =
√
a2 + b− a ≥ b

2
√
a2+b

⇒ g(u) = h(u) ≥ g
(

b
2
√
a2+b

)
= δ

2
b

2
√
a2+b

1
1+ b

2
√
a2+b

= δb
2

1
b+2
√
a2+b

≥ δb
1+2
√

3

The r.h.s. estimate comes from the fact that

a ∨ b ≤ 1/2 ⇒ b+
√

4a2 + 4b ≤ 1/2 +
√

1 + 2 = (1 + 2
√

3)/2

Choosing ρ = uδ/4, we conclude that

βVρ(M) = sup
x,y

‖M(x, .)−M(y, .)‖Vρ
1 + Vρ(x) + Vρ(y)

≤ 1− g(u) ≤ 1− (1− ε)(1− β(Rε)(M))

2(1 + 2
√

3)

This ends the proof of the exercise.

Solution to exercise 4.7.2:
Since M has positive entries, by theorem ?? all the entries of γ are positive. We let γ =

[γ(1), γ(2), γ(3)]. We want to solve the equation

[γ(1), γ(2), γ(3)]

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 = [γ(1), γ(2), γ(3)]

In other words, we have
γ(1) [1− (p12 + p13)] + γ(2) p21 + γ(3)p31 = γ(1)
γ(1) p12 + γ(2) [1− (p21 + p23)] + γ(3)p32 = γ(2)
γ(1) p13 + γ(2) p23 + γ(3) [1− (p31 + p32)] = γ(3)

which is equivalent to 
γ(2) p21 + γ(3) p31 = γ(1) [p12 + p13]
γ(1) p12 + γ(3) p32 = γ(2) [p21 + p23]
γ(1) p13 + γ(2) p23 = γ(3) [p31 + p32]

This yields the system {
γ(2)
γ(1) p21 + γ(3)

γ(1) p31 = [p12 + p13]

p12 + γ(3)
γ(1) p32 = γ(2)

γ(1) [p21 + p23]

This shows that {
γ(2)
γ(1) p21 + γ(3)

γ(1) p31 = [p12 + p13]
γ(2)
γ(1) [p21 + p23]− γ(3)

γ(1) p32 = p12
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Multiplying the first line by [p21 + p23] and the second one by p21, we find that{
γ(2)
γ(1) p21 [p21 + p23] +γ(3)

γ(1) p31 [p21 + p23] = [p21 + p23] [p12 + p13]
γ(2)
γ(1) p21 [p21 + p23] −γ(3)

γ(1) p21p32 = p12p21

Then we subtract the two lines to check that

γ(3)

γ(1)
(p31 [p21 + p23] + p21p32) = [p21 + p23] [p12 + p13]− p12p21

= p21p13 + p23 [p12 + p13]

This implies that
γ(3)

γ(1)
=
p21p13 + p23 [p12 + p13]

p31 [p21 + p23] + p21p32

In much the same way, multiplying the first line by p32 and the second one by p31, we find that{
γ(2)
γ(1) p21p32 +γ(3)

γ(1) p31p32 = p32 [p12 + p13]
γ(2)
γ(1) p31 [p21 + p23] −γ(3)

γ(1) p31p32 = p12p31

Adding the two lines we find that

γ(2)

γ(1)
(p31 [p21 + p23] + p21p32) = p32 [p12 + p13] + p12p31

from which we conclude that
γ(2)

γ(1)
=
p32 [p12 + p13] + p12p31

p31 [p21 + p23] + p21p32

and
γ(3)

γ(2)
=
γ(3)

γ(1)
× γ(1)

γ(2)
=
p21p13 + p23 [p12 + p13]

p32 [p12 + p13] + p12p31

We conclude that

γ(1) ∝ p31 [p21 + p23] + p21p32

= p31p21 + p23p31 + p32p21 =
∏

(i,j)∈g1

pi,j +
∏

(i,j)∈g3

pi,j +
∏

(i,j)∈g3

pi,j

with the 1-graphs {g1, g2, g3} defined on page 85. and

γ(2) ∝ p32 [p12 + p13] + p12p31

γ(3) ∝ p21p13 + p23 [p12 + p13]

This ends the proof of the exercise.

Solution to exercise 4.7.3:
For any g ∈ G(x) and x′ 6 x, the set h = g ∪ {(x, x′)} is a directed graph on S with a single loop at

the state x′. We let L(x′) the set of these graphs. We clearly have that

L(x′) = ∪x 6=x′
(
G(x) ∪ {(x, x′)}

)
= ∪x 6=x′

(
G(x′) ∪ {(x′, x′)}

)
We set

M(g) :=
∏

(u,v)∈g

M(u, v)
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In this notation, we have that

∑
x : x 6=x′

γ(x)M(x, x′) =
∑

x : x 6=x′

 ∑
g∈G(x)

M(g)

M(x, x′)

=
∑

x : x 6=x′

∑
g∈G(x)

M(g ∪ {(x, x′)})

=
∑

h∈L(x′)

M(h)

=
∑

x : x6=x′

∑
g∈G(x′)

M(g ∪ {(x′, x)})

=
∑

x : x 6=x′
γ(x′)M(x′, x) = γ(x′)

(
1−M(x′, x′)

)
The end of the proof of the exercise is now clear.

Solution to exercise 4.7.4:

P (λ) = Det

 p11 − λ p12 p13

p21 p22 − λ p23

p31 p32 p33 − λ


= (p11 − λ) Det

(
p22 − λ p23

p32 p33 − λ

)
−p12 Det

(
p21 p23

p31 p33 − λ

)
+ p1,3 Det

(
p21 p22 − λ
p31 p32

)

P (λ) = (p11 − λ) [(p22 − λ)(p33 − λ)− p23p32]

−p12 [p21(p33 − λ)− p23p31]

+p1,3 [p21p32 − p31(p22 − λ)]

= −λ3 + λ2A+ λB + C

with

A = p11 + p22 + p33

B = p23p32 + p12p21 + p13p31 − (p11p22 + p11p33 + p22p33)

C = 1− (A+B)

The last assertion comes from the fact that P (1) = 0 so that A+B + C = 1. We also have that

P (λ) = (1− λ)
(
λ2 + (1−A)λ+ C

)
and

λ2 + (1−A)λ+ C =

(
λ+

(
1−A

2

))2

−

((
1−A

2

)2

− C

)
We also notice that

1−A = 1− ((1− p12 − p13) + (1− p21 − p23) + (1− p31 − p32))

= p12 + p21 + p13 + p31 + p32 + p23 − 2
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This yields that

−1−A
2

= 1− (q12 + q13 + q23)

with
qi,j = (pij + pji)/2

from which we prove that(
1−A

2

)2

= 1 + (q12 + q13 + q23)2 − 2(q12 + q13 + q23)

= 1 + (q2
12 + q2

13 + q2
23) + 2 (q12q13 + q12q23 + q13q23)

−2(q12 + q13 + q23)

On the other hand, we have

p11p22 = (1− p12 − p13)(1− p21 − p23)

= 1− (p12 + p13 + p21 + p23) + (p12p21 + p12p23 + p13p21 + p13p23)

p11p33 = (1− p12 − p13)(1− p31 − p32)

= 1− (p12 + p13 + p31 + p32) + (p12p31 + p12p32 + p13p31 + p13p32)

p22p33 = (1− p21 − p23)(1− p31 − p32)

= 1− (p21 + p23 + p31 + p32) + (p21p31 + p21p32 + p23p31 + p23p32)

from which we conclude that

B = p23p32 + p12p21 + p13p31 − [p11p22 + p11p33 + p22p33]

= −3 + 4 (q12 + q13 + q23)−D
with

D = (p12p23 + p21p32 + p12p32) + (p13p21 + p21p31 + p12p31)

+ (p13p23 + p23p31 + p13p32)

We also have that

4q12q23 = (p12p23 + p21p32 + p12p32) + p21p23

4q12q13 = (p21p13 + p21p31 + p12p31) + p12p13

4q13q23 = (p13p23 + p23p31 + p13p32) + p31p32

from which we prove that

D = 4 (q12q13 + q12q23 + q13q23)− (p21p23 + p12p13 + p31p32)(
1−A

2

)2 − C
=
(

1−A
2

)2 − 1 + (A+B)

= (q2
12 + q2

13 + q2
23) + 2 (q12q13 + q12q23 + q13q23)− 2(q12 + q13 + q23)

+ (3− (p12 + p21 + p13 + p31 + p32 + p23))

−3 + 4 (q12 + q13 + q23)−D

= (q2
12 + q2

13 + q2
23)− 2 (q12q13 + q12q23 + q13q23)

+ [p21p23 + p12p13 + p31p32]
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This implies that (
1−A

2

)2

− C = ∆(q) + δ(p)

with the parameters

∆(q) =
1

2

[
(q12 − q13)2 + (q12 − q23)2 + (q13 − q23)2

]
δ(p) = [p12p13 − q12q13] + [p21p23 − q21q23] + [p31p32 − q31q32]

This implies that

λ2 = (1− (q12 + q13 + q23)) +
√

∆(q) + δ(p)

λ3 = (1− (q12 + q13 + q23))−
√

∆(q) + δ(p)

with the convention
√
−a = i

√
a, for any a ≥ 0. In the reversible case, we have δ(p) = 0 and

λ2 = (1− (p12 + p13 + p23)) +
√

∆(p)

λ3 = (1− (p12 + p13+23))−
√

∆(p)

We also check that

λ2 ≤ 1⇔ 1

2

[
(p12 − p13)2 + (p12 − p23)2 + (p13 − p23)2

]
≤ (p12 + p13 + p23)

Since
1
2

[
(p12 − p13)2 + (p12 − p23)2 + (p13 − p23)2

]
− (p12 + p13 + p23)

= − (p12p13 + p12p23 + p13p23)

we conclude that λ3 ≤ λ2 ≤ λ1.
This ends the proof of the exercise.
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[38] S. Barthelmé and N. Chopin. ABC-EP: Expectation Propagation for Likelihood-free Bayesian
Computation, ICML 2011 (Proceedings of the 28th International Conference on Machine Learn-
ing), L. Getoor and T. Scheffer (Eds.), 289–296 (2011).

[39] N. Bartoli and P. Del Moral. Simulation et aux Algorithmes Stochastiques. Cépaduès Édition
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Henri Poincaré, vol. 32 no.4, pp. 455–508 (1996).

[128] R. Cerf. An asymptotic theory for genetic algorithms, Artificial Evolution, Lecture Notes in
Computer Science vol. 1063, pp. 37–53, Springer-Verlag (1996).

[129] F. Cerou, A. Guyader, R. Rubinstein, and R. Vaismana. Smoothed splitting method for counting.
Stochastic models (2011), vol. 10, no. 27, pp. 626–650.

[130] F. Cérou, P. Del Moral, and A. Guyader. A nonasymptotic variance theorem for unnormalized
Feynman-Kac particle models. Annales Institute Henri Poincoré, Proba. and Stat., vol. 47, no. 3,
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[409] T. Lelièvre, M. Rousset, and G. Stoltz. Computation of free energy differences through nonequi-
librium stochastic dynamics: the reaction coordinate case. J. Comp. Phys., vol. 222, no. 2, pp.
624–643 (2007).
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[448] S. Méléard and S. Roelly-Coppoletta. A propagation of chaos result for a system of particles
with moderate interaction. Stochastic Process. Appl., vol. 26, pp. 317–332, (1987).
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