(ﬁ/] HEWLETT

PACKARD

An Introduction to Idempotency

Jeremy Gunawardena

Basic Research Institute in the
Mathematical Sciences

HP Laboratories Bristol
HPL-BRIMS-96-24
September, 1996

The word 'idemlg_oten% signifies the study of
semirings in which the addition operation 1s
idempotent; a + a = a. The best-known example is
the max-plus semiring, consisting of the real
numbers with negative mﬁmt% adjoined, in which
addition is defined as max(a,b) and multiplication
as a+b, the latter being distributive over the former.
Interest in such structures arose in the late 1950s
through the observation that certain problems of
discrete optimisation could be linearised over
suitable 1dempotent semurings. More recently the
subject has established intriguing connections with
automata  theory, discrete event systems
nonexpansive  mappings,  nonlinear artial
differential e%uatlons, optimisation theory and large
deviations. The present paper was commissioned as
an introduction to the volume of %roceedmgs for the
workshop on Idempotenc eld at Hewlett
Packard's Basic Research Institute in the
Mathematical Sciences (BRIMS) in October 1994.
It aims to give an introductory survey, from a
coherent mathematical viewpoint, of the recent

Internal Accession Date Only developments in the subject. The major open
ggoblems are pointed out and an extensive
ibliography is provided.

© Copyright Hewlett-Packard Company 1996



An Introduction to Idempotency

Jeremy Gunawardena

1 Introduction

The word idempotency signifies the study of semirings in which the addition
operation is idempotent: a+a = a. The best-known example is the maz-plus
semiring, R U {—o0}, in which addition is defined as max{a, b} and multipli-
cation as a + b, the latter being distributive over the former. Interest in such
structures arose in the 1950s through the observation that certain problems
of discrete optimisation could be linearised over suitable idempotent semir-
ings. Cuninghame-Green'’s pioneering book, [CG79], should be consulted for
some of the early references. More recently, intriguing new connections have
emerged with automata theory, discrete event systems, nonexpansive map-
pings, nonlinear partial differential equations, optimisation theory and large
deviations and these topics are discussed further in the subsequent sections

of this paper. The phrase idempotent analysis first appears in the work of
Kolokoltsov and Maslov, [KM89].

Idempotency has arisen from a variety of sources and the different strands
have not always paid much attention to each other’s existence. This has led
to a rather parochial view of the subject and its place within mathematics;
it is not as well-known nor as widely utilised as perhaps it should be. The
workshop on which this volume is based, was organised, in part, to address
this issue. With this in mind, we have tried to present here a coherent ac-
count of the subject from a mathematical perspective while at the same time .
providing some background to the other papers in this volume. We have said
rather little about what are now standard topics treated in the main books
in the field, [CG79, Zim81, CKR84, BCOQ92, MK94, KMa| and [Mas87a,
Chapter VIII]. We have tried instead to direct the reader towards the open
problems and the newer developments, while pointing out the links with other
areas of mathematics. However, we make no pretence at completeness. A dif-
ferent view of the subject is put forward by Litvinov and Maslov in their
survey paper in this volume, [LM)].

Stéphane Gaubert and Jean Mairesse provided the author with extensive
and detailed suggestions on the first draft of this paper. It is a pleasure to
thank them, as well as Francois Baccelli, Grigori Litvinov, Pierre del Moral
and Jacques Sakarovitch, for their comments, which resulted in many correc-
tions and improvements. Any errors or omissions that remain are entirely the
responsibility of the author.
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2 Dioids

2.1 Introduction

In this section we introduce idempotent semirings, or dioids, and study some
of the main examples. As we shall see, dioids occur more widely than one
might suspect and certain classes of dioids have been extensively studied
under other names. The intention is to give the reader a sense of the scope
of the subject before looking at more specialised topics in later sections.

2.2 Semirings and dioids

We recall that a semigroup is a set with an associative binary operation while
~.a monoid is a semigroup with a distinguished identity element, [KS86].

Definition 2.1 A semiring is a set, S, with two binary operations—denoted
with the usual conventions for addition (“+”) and multiplication (“x” or
“”)—and two distinguished elements, 0,1 € S, such that 0 # 1 and

e (S,+,0) is a commutative monoid with identity element 0,
e (S, x,1) is a monoid with identity element 1,
e 0.0=0.a=0 foralla €S,

e a(b+c)=ab+ac (b+c)a=ba+ca, forallabc€S.
A dioid, or idempotent semiring, is a semiring, D, such that:

eata=a forallae€ D.

A commutative dioid is one in which a.b = b.a for all a,b € D. A dioid is an
idempotent semi-skewfield (respectively, idempotent semifield) if its nonzero
elements form a group (respectively, commutative group) under multiplica-
tion.

The word dioid (or dioid) is used by Kuntzmann, [Kun72], to mean simply
a semiring or double monoid, a usage followed by others, [GM84]. There
seems little point in wasting a new word on something well-known and we
follow the modern custom, [BCOQ92, §4.2], of using dioid as a synonym for
idempotent semiring.

It is less customary to use + and x to denote the operations in a dioid
and many authors use @ and ® We shall not do so here because, in our
view, formulae involing the latter operations are difficult to read and fail to
exploit the analogy with classical algebra. However, our choice does lead to
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difficulties because some of the best known examples of dioids are based on the
classical number systems and it can be unclear whether, for instance, 4 refers
to the dioid addition or to classical addition. To resolve confusion arising
from this, we shall use the symbol := between formulae. This will imply
that the symbols on the left hand side refer to the dioid under consideration
while the symbols on the right hand side have their classical, or customary,
meanings. Hence, a X b := a + b, means that dioid mulitipliation is equal to
the customary addition, where customary should be clear from the context
in which the formula appears.

2.3 Examples of dioids

Before going any further, it is best to see some examples.

1. The Boolean dioid: B = {0,1}, with 0,1 thought of as integers and
addition and multiplication defined as maximum and minimum respec-
tively.

2. The max-plus dioid: Rmax = RU {—c0} with a + b := max{a, b} and
axXb:=a+b Here, 0 := —oo and 1 := 0. Rmax 1S an idempotent
semifield. (So too is B but for rather trivial reasons!) Rmna.x sometimes
appears in its isomorphic form as the min-plus dioid: Rypin = RU{+400},
with a + b := min{a, b} and a X b := a + b. Here, 0 := 400 and 1 := 0.

3. The tropical dioid: Nyin = NU {400}, with ¢ + b := min{a, b} and
axb:=a+b Here, 0:=+oc and 1:=0.

4. Let S be a set. The set of subsets of S, P(S), or the set of finite subsets
of S, Pfin(S), with addition and multiplication defined as union and
intersection respectively, are both dioids. Here, 0 := ® and 1 := S.
Similarly, let T be the set of open sets of any topology with addition
and multiplication defined as union and intersection, respectively. Then
T is a commutative dioid. We see that dioids are at least as common
as topological spaces!

5. Suppose that (M, ., 1) is a monoid. The monoid operation can be
used to give P(M) or PFn(M) a different dioid structure to that in
the previous example. Addition is still given by union of subsets but
multiplication is defined by: U x V = {uwv | u € U, v € V} where
UV C M. Here 0 := @ and 1 := {157}. There are several interesting
examples of such dioids. Take M = R® with the standard vector space
addition as the monoid operation. The dioid multiplication in P(R%)
then corresponds to Minkowski addition of subsets, [Hei95]. Another
example is the dioid of formal languages. If A is a set, let A* be the set
of finite strings (words) over A with the monoid operation defined by
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juxtaposition of strings and the empty string, €, as the identity element.
The subsets of A*, are called (formal) languages over the alphabet A.
The dioid P(A*) is noncommutative if A has more than one element.

6. Suppose that (G,-+,0) is an abelian group, not necessarily finite. For
instance, G = R*. Let (Rmin )s(G) denote the set of functions u : G —
Rmin Which are bounded below. If u,v € (Rmin )s(G), define addition
pointwise, (u + v)(z) = u(z) + v(z), and multiplication as convolution:
(u.v)(z) := infyec{u(y) + v(z — y)}. Here z — y is calculated in the
group G. The boundedness of u and v ensures that this is well-defined.
(Rmin )(G) is a convolution dioid, [ST]. The operation u.v is called inf
convolution in convex analysis, [Aub93, Exercise 1.4].

7. Let R be a commutative ring and let Spec(R) denote the set of ideals
of R. Spec(R) becomes a dioid when addition is defined by the sum of
ideals, I+J = {a+b | a € I, b € J}, and multiplication by the product,
I.J={ay.bi+ - -+anby|a; €I, bj € J}, [Vic89, Chapter 12].

8. If D is a dioid, then M, (D) will denote the dioid of n X n matrices with
entries in D with matrix addition and mulitiplication as the operations.

9. Let D be a dioid and A a set. The dioid of formal power series over D
with (non-commuting) variables in A, denoted D((A)), is the set of D-
valued functions on A* with addition defined pointwise and multiplica-
tion as convolution: if f,g € D(A*), then (f.9)(w) = Xyv=w f(u).g(v).
By restricting to the sub-dioid of functions which are non-zero at only
finitely many points, we recover the polynomials over D with (non-
commuting) variables in A, denoted D(A).

2.4 Homomorphisms and semimodules

Many of the basic concepts in the theory of rings can be defined in a similar
way for semirings and can hence be specialised to dioids. For the most part,
the idempotency plays no special role. We run through some of the most
important definitions here; for more details see [Gol92]. The reader who is
familiar with these elementary concepts might still want to absorb some of
the notation.

Let R, S be semirings. A homomorphism of semirings from R to S, is a
function f : R — S which is a homomorphism of monoids for both addition
and multiplication:

fla+b)=f(a)+ f(b) f(Or)=0s
flab) =f(a).f(b)  f(lr) =1s.

For example, we can define a function o : P(A*) — B{(A4)) by a(U)(w) =1
ifwe U, a(U)(w) = 0if w € U. The reader can check that this is an
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isomorphism of semirings. That is, there exists a homomorphism of semirings,
B : B((A)) — P(A*) which is inverse to a: af = 1pya)y and fa = lp4-). By
restriction, 3 also induces an isomorphism between B({A) and P (A*).

Let (M, +) be a commutative monoid and R a semiring. M is said to be a
left R-semimodule if there is an action of R on M, Rx M — M, called scalar
multiplication and denoted 7.a, such that, for all r,s € R and a,b € M,

r{a+b) = r.(a)+r.(d) r.(0m) = Oum
(r+s)a = ra+sa Or.a = Op
r.(s.a) = (r.s).a lga = a.

It is worth noting at this point that if R happens to be a dioid, then M must
necessarily have an idempotent addition:

a+a=1la+la=(1+1)a=la=a.

A useful source of R-semimodules is provided by the following construction.
Let A be any set and let R(A) denote the set of all functions u : A — R. This
has a natural structure as a left R-semimodule: addition is defined pointwise,
(u + v)(a) = u(a) + v(a), and scalar multiplication by (r.u)(a) = r.u(a).
When A is infinite, R(A) contains inside itself another useful R-semimodule.
Define the support of u by supp(u) = {a € A | u(a) # 0} and let RF"(A)
denote the set of functions u with finite support. It is clear that RF"(A) is
a sub-semimodule of R(A).

If M,N are R-semimodules, a homomorphism of R-semimodules from
M to N is a homomorphism of monoids f : M — N which respects the
scalar multiplication: f(r.a) = r.f(a). We can construct homomorphisms
between the R-semimodules RF*"(A) as follows. If f : A — B is any set
function, then f can be extended to a function, also denoted f for conve-
nience, f : RF"(A) — RF™(B) where f(u)(b) = T j(o)=s u(a). The finiteness
of supp(u) ensures that this is well-defined. The reader can check that this is
a homomorphism of R-semimodules.

At this point, it will be convenient to make use of the language of category
theory, essentially to clarify the nature of RF™*(A). The reader who is unfa-
miliar with this language but who nevertheless has an intuitive understanding
of what it means for an object to be freely generated, will not lose much by
ignoring the details below. The canonical reference for those wishing to know
more is MacLane’s book, [Mac71].

The constructions given above define a functor from the category of sets,
Set, to the category of R-semimodules, SModg, which is left adjoint to the
forgetful functor which forgets the R-semimodule structure. That is, if A is a
set and M is an R-semimodule, then there is a natural one-to-one correspon-
dence between the respective sets of homomorphisms:

Hom(A, M)ser +— Hom(RF™(A), M)smod,, - (2.1)
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This expresses the fact that RF*"(A) is the free R-semimodule generated by
A: any set function f : A —» M can be extended to a unique homomorphism
of R-semimodules f : RF"(A) — M. If u € RF""(A), the extension is given
by f(u) = Yecau(a).f(a), the finiteness of supp(u) again ensuring that this
is well-defined.

If M is an R-semimodule then the set Hom(M, M)smod, has both an ad-
dition, (f + g)(a) = f(a) + g(a), and a multiplication given by composition
of functions (f.g)(a) = f(g(a)). This defines a semiring, over which M is
a left semimodule under f.a = f(a). For finitely generated free modules,
Hom(M, M) is well known. Let A be a finite set, so that RF™"(A) = R(A4).
By (2.1), an element of Hom(R(A), R(A)) is uniquely determined by a func-
tion A — R(A). This, in turn, may be uniquely specified by a function
A x A — R. In other words, by an element of R(A x A), or, after choosing
an ordering A = {a1,- -, an}, by an n X n matrix over R. It is easy to show,
that this gives an isomorphism of semirings, Hom(R(A), R(A)) — M,(R).

2.5 The partial order in a dioid

Our constructions have, so far, been valid for arbitrary semirings. The reader
might be forgiven for thinking that the theory of dioids has no special charac-
ter of its own. This is not the case. The idempotency gives rise to a natural
partial order in a dioid which differentiaties the theory from that of more
general semirings.

Proposition 2.1 ([Joh82, §1.1.3]) Let A be a commutative semigroup with
an idempotent addition. Define a < b whenever a +b = b. Then (A, <) is
a sup-semilattice (a partially ordered set in which any two elements have a
least upper bound). Furthermore,

max{a,b} =a+b (2.2)

Conversely, if (A, =X) is a sup-semilattice and + is defined to satisfy (2.2),
then (A, +) is an idempotent semigroup. These two constructions are inverse
to each other.

It follows that any dioid, D, has a natural ordering, denoted < or =<p.
Addition is a monotonic operation and 0 is the least element. Distributivity
implies that left and right multiplication are semilattice homomorphisms; in
particular, they are monotonic.

We see from Proposition 2.1 that a dioid may be thought of as a semilattice-
ordered semigroup, [Fuc63]. There is a continuing tradition of work on idem-
potency from this perspective, [CG79, Zim81, But94].

The reader might note that the dioids introduced in §2.3 fall into two main
classes: those whose partial order is derived from the order on R and those
derived from inclusion of subsets.
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2.6 Free dioids

We turn now to an examination of the dioids arising as sets of subsets (ex-
amples 4 and 5 in §2.3). Once again, it is convenient to use the language of
category theory.

The constructions P(M) and PF"(M) extend to functors from the cat-
egory of monoids, Monoid, to the category of dioids, Dioid: if f : M — N
is a homomorphism of monoids, then define f : P(M) — P(N) by f(U) =
{f(w) | u € U} and similarly for P¥"(—).

Proposition 2.2 The functor PF" : Monoid — Dioid is left adjoint to the
forgetful functor from Dioid to Monoid which forgets the dioid addition.

Proof: Let M be a monoid and D a dioid. It is required to show that
there is a natural one-to-one correspondence between the respective sets of
homomorphisms:

HOIT\(M, D)Monoid «— Hom('PFi”(M), D)Dioid .

Let ¢ : M — D be a homomorphism of monoids. Define §(q) : PF"(M) — D
by 6(¢)(U) = Y.cv q(u). It is an exercise to check that € establishes the
required correspondence.

QED

In other words, P (M) is the free dioid generated by the monoid M. The
construction A* can also be extended to a functor from Set to Monoid which is
left adjoint to the forgetful functor which forgets the monoid multiplication.
A* is hence the free monoid generated by A. These constructions can also be
specialised to the commutative case. The free commutative monoid generated
by A is simply N***(A). By putting these remarks together, we obtain the
following characterisations.

Proposition 2.3 ([Gau92, Proposition 1.0.7]) If A is a set, then PF"(A*)
is the free dioid, and PF"(NF"(A)) the free commutative dioid ([Shu, Theo-
rem 4.1]), generated by A.

2.7 Quantales

As we saw in §2.4, the difference between P(M) and P (M) is similar to the
difference between power series and polynomials. In the former, an infinite
number of additions can be meaningfully performed. Dioids of this type have
been extensively studied under another name.

Definition 2.2 A gquantale, or complete dioid ([BCOQ92, Definition 4.32]),
Q, is a dioid in which the underlying sup-semilattice has arbitrary suprema
over which the multiplication distributes: VS C Q and Va € Q,
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o there ezists a least upper bound sup,cg z;

® 0.(SUP,e5 T) = SUP,e5(a.7), (SUP,esT)-0 = Sup,es(z-a) -

The word quantale was coined by Mulvey in his study of the constructive
foundations of quantum theory, [Mul86]. His definition does not require an
identity element for multiplication.

If (V,<) is any partial order and S C V any subset of V, then it is easy
to see that

irelga:-—-sup{yEV|y§:c, Vz € S}, (2.3)

in the sense that, if either side exists, so does the other, and both are equal.
Hence, every quantale has a greatest element, T = inf () and any subset has an
infimum. However, multiplication does not necessarily distribute over infima,
even though it does over suprema.

We regard a quantale () as endowed with an infinitary addition given by
Yzes T = Sup,csZ, following the identification in (2.2). Homomorphisms
of quantales are required to preserve the multiplication and the infinitary
addition. The category of quantales, Quant, forms a subcategory of Dioid.
P(—) defines a functor -from Monoid to Quant which is left adjoint to the
forgetful functor which forgets the quantale multiplication. Hence, we obtain
the following characterisations.

Proposition 2.4 If A is a set, then P(A*) is the free quantale generated by
A ([AV93, Theorem 2.1]) and P(N""(A)) is the free commutative quantale
generated by A.

Topological spaces form another source of quantales, as pointed out in
example 4 in §2.3. These quantales are special because multiplication cor-
responds to minimum. Quantales of this type are called frames, [Joh82,
Chapter 2] and are characterised by having 1 as the greatest element and an
idempotent multiplication, a® = a, [JT84, Proposition II1.1]. Because they
provide an extended concept of topological space, frames have proved impor-
tant in formulating an appropriate abstract setting—Grothendieck’s notion
of topos—for modern algebraic geometry. In the course of proving structure
theorems for topoi, Joyal and Tierney have developed the theory of complete
semimodules over frames, [JT84].

Quantales have been studied for a number of reasons. On the one hand
the infinitary addition allows the definition of the binary operation a — b,
characterised by ¢ < a — b if, and only if, c.a < b. (This is best under-
stood as an application of the Adjoint Functor Theorem, [Joh82, §1.4.2].)
This operation is referred to variously as a residuation, implication or pseu-
docomplement, [DJLC53, BJ72, Joh82, BCOQ92]. When @ is a frame, the
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operation -~z = z — 0 has many of the features of a negation, except that the
law of the excluded middle, z+—-z = T may fail. Logicians have consequently
. studied frames as models for intuitionistic logic, [Vic89]. More recently, quan-
tales have served the same purpose for Girard’s linear logic. They are also
used as semantic models in computer science. For details and references, see
the paper by Mascari and Pedicini in this volume, [MP], or [AV93].

On the other hand, despite the infinitary operation, quantales and frames
are still algebraic theories, in the sense that they can be defined in terms of
generators and relations, [Joh82, §11.1.2]. For frames, this leads to the study
of topological spaces from an algebraic viewpoint, sometimes called pointless
topology, [Joh83].

For the purposes of the present paper, quantales are important for the
following reason. The discrete dynamical system z;,, = a.z; + b appears in
.numerous applications. In general, a may be an element of a dioid D and
z; and b elements of some left D-semimodule. The problem is to understand
the asymptotic behaviour of the sequence zy,z;,---. A useful first step is to
determine the equilibrium points of the system, where

r=az+b. (2.4)

In a quantale, appropriate equilibrium solutions can always be constructed.
(In this volume, Walkup and Borriello consider the more general problem of
solving a.z + b = c.z + d when a,¢ € My, (Rnax ), [WBJ.)

Definition 2.3 If Q is a quantale and a € @), the Kleene star of a, denoted
a*, is defined by

a*=1+a+a’*+a*+- - =supa’. (2.5)
0<i
It is sometimes helpful to use also a* = a + a? + ---. By the infinitary

distributive law, a.a* = a™.

Proposition 2.5 ([Con71, Theorem I11.2]) Let Q be a quantale and a,b € Q.
Then a*.b is the least solution of (2.4).

Proof: a.(a*.b) + b = a*.b+ b = a*.b. Hence a*.b is a solution. Since
multiplication and addition are both monotonic, if z < y, then a.z + b <
a.y +b. Now let s be any other solution. Since 0 < s, it follows that b < s.
By induction, (1 +a+a?+ ---+a").b < s. It is now not difficult to show
that a*.b < s, as required.

QED

We see from this that a* has a “rational” flavour: it is analogous to (1—a)~*
in customary algebra. The star operation satisfies many identities, [Con71,
Chapter 3|, of which we mention only one:

(a+b)" =(a".b)".a". (2.6)
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The left hand side is a sup of terms of the form a4t - . . a*m b’ . On the right
hand side, (a*.b)* is a sup of similar terms except for those ending in powers
of a. The product with a* supplies the missing terms. The problem of finding
a complete set of identities for +, X and * is very subtle, [Con71, Chapter 12].

The uniqueness of the solution given in Proposition 2.5 appears to be an
open problem. It is a classical result in automata theory, Arden’s Lemma,
[HU79, Exercise 2.22], that, in the free quantale, P(A*), if 1 £ a, then a*.b
is the unique solution of (2.4). This is not true in general. In any frame,
a’ = a and 1 is the greatest element. Hence the function f(z) = a.z + b is
itself idempotent, f2 = f, implying that any element of the form a.z + b is
a solution of (2.4). On the other hand, in any quantale, if 1 < q, it is easy
to see that a*.(u + b) is a solution of (2.4) for any u € Q. Another relevant
result is [BCOQ92, Theorem 4.76].

It is convenient to mention here a technical trick which is well known in
certain quarters. It is used by Walkup and Borriello in their paper in this
volume, [WBJ, and it will be the key ingredient in the proof of Theorem 3.1.
The proof is left as an exercise for the reader, who will need to make use of

(2.6) and Proposition 2.5. There are several equivalent formulations: [Kui87,
Theorem 2.5],[CMQV89, Lemma 2].

Lemma 2.1 ([Con71, Theorem II1.4]) Let Q be a quantale. The following
tdentity holds for any block representation of a matriz over Q.

A B\ _ (A+BD*C)* A*B(D+CA*B)*
C D) \ D'C(A+BD*C)* (D+CA*B)*

2.8 Matrix dioids and graphs

If the dioid R is not a quantale, it may still be the case that a* exists and
that Proposition 2.5 continues to hold. Indeed, in any dioid, if a < 1 then
o* = 1. In a matrix dioid, the existence of A* is related to the eigenvalues
of A, in analogy with classical results. For dioids such as Mp(Rmax ), this has
been completely worked out, [BCOQ92, Theorem 3.17].

The case of matrix dioids is of particular interest for problems of discrete
optimisation. This arises through the intimate relationship between matrices
and graphs, which becomes particularly attractive in the idempotent context.
Let R be a semiring and T € M, (R) a matrix.

Definition 2.4 The graph of T, G(T), is a directed graph on the vertices
{1,---,n} with edges labelled by elements of R. There is an edge from i to j
if, and only if, T;; # 0. If there is such an edge then its label is Tj;.
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This gives a one-to-one correspondence between n X n matrices over R and
directed graphs on {1,---,n} with edge labels in R.

Taking powers of A corresponds to building longer paths. A path, p of
length m from ¢ to j is a sequence of vertices ¢ = v, -+, v, = J such that

Avvip # 0. We can write
AZ: = Z |p|W )
2

where p runs over all paths of length m from ¢ to j and |p|w is the weight
of the path: the product of the labels on the edges in the path, |p|ln =
Aygv, -+ -Ay,_ v, For a general semiring, it is hard to deduce much from
this. If R is a dioid, however, the sum corresponds to taking a maximum with
respect to =g and A} is the maximum weight among paths of length m from
i to j. By choosing the dioid appropriately, a variety of discrete optimisation
problems can be formulated in terms of matrices.

For instance, we can answer questions about the existence of paths in a
directed (unlabelled) graph, G. Assume the vertices are labelled {1,---,n}.
Take R = B and label each edge of the graph with 1 € B. Let A be the matrix
in M, (B) corresponding to G. Then A* (which exists since B and M, (B) are
both quantales) gives the transitive closure of the edge relation in G: A}; =1
if, and only if, there is some path in G from i to 7. Problems of enumeration,
shortest paths, critical paths, reliability, etc, in graphs or networks can be
formulated using other dioids, often as solutions to (2.4), [GM84, Chapter 2].

To calculate A* efficiently, classical algorithms for computing the inverse
matrix—Jacobi, Gauss-Seidel, Jordan—can be adapted to the idempotent
setting, [Car71], [GM84, Chapter2]. For finding longest paths (for which the
appropriate dioid is Rmax ) these correspond to well-known algorithms such as
those of Bellman, Ford-Fulkerson and Floyd-Warshall, [Car71].

It is interesting to ask if properties of periodic graphs, which are infinite
graphs with Z"-symmetry, can be studied by similar methods. Backes, in his
thesis, has given a formula for longest paths in a periodic graph, [Bac94]. It
seems likely that, at least when n = 1, this can be interpreted in idempotent
terms using the matrix methods described above. Can a similiar interpreta-
tion be found when n > 17

2.9 The max-plus dioid and lattice ordered groups

The max-plus dioid, Ryax , has been of great importance for idempotency and
deserves special mention. For a general reference see [BCOQ92, Chapter 3].
Cuninghame-Green’s survey paper, [CG95], discuses several topics that we
omit.

Asremarked in §2.3, Rmax is an idempotent semifield. The group operation
endows such structures with natural symmetry. The reader should have no
difficulty proving the following result by using the remarks in §2.5.
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Lemma 2.2 If D is an idempotent semi-skewfield then (D, =<p) is a lattice
and, for a,b € D\{—o0}, min{a,b} = (a7 + b71)"1.

In the language of ordered algebraic structures, idempotent semi-skewfields
are therefore lattice ordered groups and these sometimes form a convenient
generalisation of Rnax . They correspond to the blogs of [CG79], a name which
has, understandably, not survived.

The most extensively studied aspect of max-plus is linear algebra: finitely
generated free semimodules and their endomorphisms, [Bap95, BSvdD95,
But94, GMb, OR88]. The spectral theory of max-plus matrices has been of
particular interest because of the role of eigenvalues as a performance measure
for discrete event systems; see §4.4. The basic observation is that eigenvalues
correspond to maximum mean circuit weights in the associated graph.

Let us consider elements of (Rmax )({1,--,n}) as column vectors. Recall
that u is an eigenvector of a matrix A € M, (Rmax ), With eigenvalue A € Rpax ,
if Au = Au. If g is a circuit in G(A)—a path that returns to its starting
vertex—let |g|¢ be its length: the number of edges in the circuit. Note that in
Remax » the polynomial equation z¥ = @ has a unique solution: z = a'/* := a/k.
(Dioids with this property are radicable in [CG79] or algebraically complete
in [MS92].) Hence, the mean weight of a circuit, u(g) := |g|w/|gle, is a bona
fide element of Rpay -

Proposition 2.6 Suppose that A € M,(Rmax) and Au = Mu. Then, in
Rmax ; A = 24 14(g), where g ranges over circuits of G(A) whose vertices lie in
supp(u). In particular, any two eigenvectors with the same support have the
same eigenvalue.

Results of this type are part of the folklore of idempotency and go back to
[CG62], [Rom67] and [Vor67]; the formulation above is taken from [Gun94c,
Lemma 4.5]. A great deal more is known, particularly over Rmax , about the
existence of eigenvectors, the structure of the set of eigenvectors, spectral
projectors, etc, [BCOQ92, Chapter 3]. When A is an irreducible matrix (or,
more generally, when supp(u) = {1,---,n}), a description of the eigenvec-
tors, valid for radicable idempotent semi-skewfields, appears in [CG79]. The
general case for Rnax is discussed in [WXS90], and later in [Gau92], and for
dioids more general than idempotent semi-skewfields in [DSb).

The behaviour of A* as k — oo is beautifully described by the following
Cyclicity Theorem, which asserts that A* is asymptotically cyclic.

Theorem 2.1 ([BCOQ92, Theorem 3.112]) For any matriz A € Mp(Rmax ),
there exists d € N, such that, A¥*? — A¥ — 0 as k — oo, where subtraction
should be taken in the customary sense.
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The convergence is with respect to the topology which arises by identifying
Rmax With the positive reals, {z € R | z > 0} under the exponential map:
z — exp(z), [BCOQ92, 3.7.4]. (We shall use this identification again in §4.2
and will discuss the topology further in §5.4.3.) The asymptotic cyclicity of
A (ie: the least d) can be calculated in terms of the lengths of circuits in
G(A), [BCOQ92, §3.7.1]. The Cyclicity Theorem is one of the main results
in the linear algebra of Rnyay -

The reader may notice here some analogy between the theory of max-plus
matrices and that of nonnegative matrices, as described by Perron-Frobenius
theory, [Min88]. This is one of the most intruiging puzzles in the whole sub-
ject. The analogy seems too close to be simply an accident but a satisfactory
explanation of the relationship has not yet been found. We will return to this
point in §4.2 and §6.5.

Over a field, every finitely generated module is free but this is not the
case for semimodules over an idempotent semifield. Non-free semimodules
have been much less well-studied than their free counterparts. Moller, in his
thesis, and Wagneur have independently found results which shed light on
the structure of non-free semimodules over dioids like Rpay , [M0l88, Wag91].
(See also [JT84].) Further discussion of this appears in Wagneur’s paper in
this volume, [Wag].

2.10 Finite dioids

As we have seen, dioids are very plentiful. However, as remarked in §2.5,
the examples considered in 2.3 fall into two broad families. It is interesting
to speculate on whether this reflects some fundamental underlying classifi-
cation or is merely an accident resulting from our ignorance. Shubin, who
seems to have been one of the few to take a systematic approach, has con-
structed all finite commutative dioids having at most 4 elements, [Shu, §2],
and has found 14 pairwise non-isomorphic commutative dioids with exactly
4 elements. (Conway enumerates certain specialised dioids in [Con71, Chap-
ter 12].) This suggests that dioids are too numerous to expect a simple
classification. It would, nevertheless, be useful to have a structure theory for
dioids to bring some order to this profusion.

In some respects the profusion can be misleading. The following obser-
vation, well-known in the theory of lattice ordered groups, [Fuc63, Page 89],
shows that there are no idempotent analogoues of the Galois fields.

Proposition 2.7 The only dioid which is both a quantale and an idempotent
semi-skewfield is the Boolean dioid, B. In particular, ([Shu, Theorem 3.1])
there are no finite idempotent semi-skewfields other than B.

Proof: Let D be a dioid satisfying the hypotheses and let g be the greatest
element of D. Since 1 < g, it follows that g < g2. Hence g = g% and so g = 1.
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Now suppose that s # 0. Since s™! < 1, it follows that 1 < s and so s = 1.
Hence D = B.

QED

This negative result is an appropriate place to bring this section to a close.
We hope to have given some idea of the scope of the dioid concept. It would be
fair to say that most of the interesting questions about general dioids remain
unanswered, if not unasked. In the subsequent sections we shall be concerned
with specific dioids and will not touch on such general matters again.

3 Automata and idempotency

Automata may be thought of as language recognisers. That is, as rules for
recognising strings of symbols from some (finite) alphabet. By defining appro-
priate rule schemes, computer scientists have defined classes of automata—
finite automata, push-down automata, stack automata, Turing machines, etc,
[HU79)—and corresponding classes of languages, [Sal73]. Because languages
are elements of the free quantale, P(A*), it should not come as a surprise
that automata theory has something to tell us about idempotent semirings.
In this paper, we shall only consider finite automata, where the connections
have been most studied. For a good overview see [Per90].

Our main objective in this section is to prove a generalisation of Kleene’s
Theorem, [Kle]. This is the starting point of finite automata theory and it
appears in several papers in this volume, [Kro, Pin]. We then discuss briefly
the way in which the tropical dioid has been used to solve certain decisions
problems of finite automata.

3.1 Quantales and Kleene’s theorem

It will be convenient to identify an element u € B({1,---,n}) with a col-
umn vector, as in §2.9, and to make use of the customary operations on
vectors and matrices. For instance, u' will denote the transpose of u:
ut = (u(1),---,u(n)). Since the Boolean dioid, B, can be regarded as a
subdioid of any dioid, D, vectors and matrices over B can always be regarded
as vectors and matrices over D.

Definition 3.1 Let Q) be a quantale and S C Q. An element q € Q 1is recog-
nisable over S if, for some n, there exzists a matriz T € M,(S), and vectors
t,¢ € B({1,---,n}) such that ¢ = !'T*¢. The set of elements recognisable
over S will be denoted Rec(S).

Let A be a finite set and let QQ = P(A*), the free quantale generated by
A. The elements of Q are the languages over A. Let S = {g € Q | ¢ X A},
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where A is treated as an element of () by identifying each a € A with the
corresponding string of length 1. The elements of S can then be identified with
the subsets of A. The data (¢, T, ¢) over S correspond to a nondeterministic
finite automaton, [Pin, §5.1]. The states of the automaton are {1,---,n} and
the subsets ¢ and ¢ are the initial states and final states, respectively. T
encodes the transitions of the automaton: if T;; = ¢, where ¢ C A, then if
the automaton is in state ¢ and encounters any symbol from the subset g,
it may make a transition to state j. The possibility that the same symbol
could occur in both Tj; and Tj, where j # k, or that T;; = @, allows for
nondeterminism.

In the usual definition of a finite automaton, the effect of individual sym-
bols is separated out. Let p: A — M,(B) be given by: u(a);; = 1 if, and
only if, a € T;;. The matrix u(a) identifies those transitions which recognise
the symbol a. It follows that, in M, (P(A*)),

T =73 (al)p(a),

acA

where I is the identity matrix. Since M, (B) is a multiplicative monoid, the
function p can be extended to a homomorphism of monoids p : A* — M, (B).
Hence, ignoring initial and final states, we can think of an automaton in
different ways: as a representation of the free monoid over finitely generated
free B modules, or as a finitely generated semigroup (or monoid) of matrices
generated by the subset {u(a) | a € A} C M,(B). The slogan automata are
semigroups of matrices is helpful to keep in mind, particulary when it comes
to defining more general types of automata, as in §3.2 and §4.1.4.

What does the element ¢ = 1*T*¢ correspond to in terms of automata?
Recalling the discussion in §2.8 the reader can check that T[T is the set of
strings of length m which lead from state ¢ to state j. It follows that ¢ is the
set of strings of any length which lead from some initial state to some final
state. Hence, ¢ is the language recognised by the automaton, [Pin, §5.1].

Kleene’s original result, [Kle], which is the starting point of formal language
theory, characterised the languages of finite automata; it was stated, in effect,
for the free quantale, P(A*). Following Conway, [Con71], we state and prove
it for an arbitrary quantale.

Definition 3.2 Let Q be a quantale and S C Q. The rational closure of S,
S*, is the smallest subset of Q which contains S and is closed under +, X
and *.

Theorem 3.1 Let Q be a quantale and {0,1} C S C Q. Then Rec(S) = S*.
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Proof: We first show that S* C Rec(S). Choose s € S and form the data
below, which we may do since 0 € S.

~(3)7-(23) ()

Evidently, ¢*T*¢ = s and so S C Rec(S). Now suppose that ¢; = ¢;77¢; and
g2 = t2T5¢, and form the three sets of block matrix data below, which we
may do since {0,1} C S.

! T:<T1 0) 6= (3} ’
u
0 0 T ¢ )’
0
1

0 T @2
_ [Ty ¢ _ {0
=(5) 7= %) e=(1)

T - Tl ¢1 Lt2 ¢ _ 0
(It is instructive to picture these constructions for finite automata.) The
reader can now check, using Lemma 2.1, that !T*¢ for each set of data is,
respectively, g +¢o, ¢1.¢2 and ¢;. It follows by induction that Rec(S) is closed
under +, x and *. Hence, $* C Rec(S), since S* is the smallest set containing
S with that property.

For the other way round, if ¢ = (T*¢, where T € M,(S), then, by .

Lemma 2.1, T* € M,(S*). Hence ¢ € S*. It follows that Rec(S) = S*,
as required.

QED

There is a mild embarassment with this result: in the case of finite au-
tomata, where @ = P(A*) and S = {q X A}, 1 ¢ S! However, in this case, S
has additional properties that allow the same result to go through.

Corollary 3.1 Let Q) be a quantale and S C Q. If0 € S and S is closed
under +, then Rec(S) = S*.

Proof: By the Theorem, Rec(SU{1}) = (SU{1})*. Choose ¢ € SU{1} and
suppose that ¢ = *T*¢ where T € M,(S U {1}). We can write T = C + P
where C € M,(B) and P € M,(S). By (2.6),

g = (C+P)'¢=."(C"P)"(C"¢).

Since S is closed under +, C*P € M,(S) and, evidently, C*¢ € B({1,---,n}).
Hence, ¢ € Rec(S) and so Rec(SU{1}) = Rec(S). Furthermore, since 0 € S,
it is easy to see that (S U {1})* = S*. Hence, Rec(S) = S°*.

QED

The treatment we have given follows Conway, [Con71], and was also influ-
enced by Kuich, [Kui87], who states the result in even greater generality. The
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essential ideas, but not the theorem itself, can be found in [CMQV89], which
inexplicably fails to make any reference to the automata theory literature.

As we saw in §2.4, the free quantale, P(A*), can also be thought of as
the power series ring B((A)). Schutzenberger has extended Kleene’s result
to power series rings, R((A)), where R is a semiring which is not necessarily
idempotent. The * operation cannot now be defined on all of R((A)) but
does exist on those series whose constant term is 0. This result, known as the

Kleene-Schutzenberger Theorem, is discussed further in Krob’s paper in this
volume, [Kro, §2.2].

It is rather peculiar that there are two generalisations of Kleene’s original
result, in one of which idempotency plays a crucial role while in the other
it is the free monoid structure of A*. It would be very interesting to have a
single formulation which includes both contexts and yet retains the clarity of
Kleene’s original result.

3.2 The tropical dioid

The star operation is not a simple one because of its infinitary nature. It is
interesting to ask when it can be defined in a finite way. That is, whether

a*=1+a+---+a™, for some m. (3.1)

In a dioid which is not a quantale, this gives a way of constructing a*; Gondran
and Minoux introduced the notion of m-regularity, a™*! = a™, for just this
reason, [GMb, Definition 1]. In automata theory, (3.1) is known as the finite
power property. In 1966, Brzozowski raised the question of whether it was
decidable if a given rational set (ie: the language of a finite automaton) had
this property.

This celebrated problem was solved in the affirmative independently by Si-
mon, [Sim78], and Hashiguchi, [Has79]. Simon’s proof introduced the tropical
dioid, Npin , into automata theory and initiatied a deep exploration of deci-
sion problems related to the * operation. For an early survey, see [Sim88].
The basic idea is to use automata with multiplicities in Ny, or, equivalently,
semigroups of matrices in M, (Nmin ), to reformulate the finite power property
as a Burnside problem. Recall that the original Burnside problem asks if a
finitely generated group must necessarily be finite if each element has finite
order. This is true for groups of matrices over a commutative ring but is false
in general. An essential step in Simon’s proof is to show that it is also true
for semigroups of matrices over Nyin , [Sim78, Theorem C].

For further details, the reader cannot do better than turn to the papers
in this volume devoted to this subject. The tutorial by Pin, [Pin], explains
in more depth how the tropical dioid enters the picture, while that of Krob,
[Kro], surveys a number of decision problems related to (3.1). D’Alessandro
and Sakarovitch show that the finite power property also holds for rational
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subsets of the free group, [dSa]. Leung, in his thesis, introduced topological
ideas into the study of * problems over the tropical dioid. His paper in this
volume gives a new and simplified treatment of this approach, [Leu].

Gaubert has initiated the study of automata with multiplicitiesin Ry.x and
has shown that the Burnside problem has a positive answer for semigroups of
matrices in My (Rmax ), {Gau]. The rationale for introducing such automata
is that, just as the tropical dioid can be used to estimate frequencies (how
often?), max-plus can be used to estimate durations (how long?). This leads
naturally to the next section which studies problems of performance analysis.
We move, correspondingly, from P(A*) and Npin 10 Rpax -

4 Discrete Event Systems

4.1 Introduction
4.1.1 Examples and general questions

A discrete event system is one whose behaviour consists of the repeated oc-
currence of events, [Ho89, Scanning the Issue]. For example: a distributed
computing system, in which an event might be the receipt of a message; a
digital circuit, in which an event might be a voltage change on a wire; or a
manufacturing process, in which an event might be the delivery of a part to
a machine.

Our main interest will be in the long-term behaviour of the system. If
a denotes an event and t;(a) denotes the time at which the ¢-th occurrence
of this event takes place then we shall study the asymptotic behaviour of
the sequence t;(a),2(a),---. Depending on the nature of the system, this
question may have to be formulated stochastically: the ¢;(a) would then be
random variables over some suitable measure space. This form of randomness
is that of a random environment, as distinct from the additive noise that is
customary in signal processing or linear systems theory.

It may not be immediately obvious that idempotency has anything to
contribute to this. In fact, discrete event systems which can be modelled
by max-plus matrices have been studied repeatedly, [CG62, Rei68, RH80,
CDQV85, Bur90, RS94, ER95], although not all these authors have explicitly
used the idempotency. In this volume, Giirel, Pastravanu and Lewis use max-
plus matrices to study manufacturing systems, [GPL]; Cofer and Garg exploit
the partial order structure of Rn.x to study supervisory control, [CGa]; and
Cuninghame-Green uses polynomials over max-plus to study the realisability
problem, [CGb].

There are many questions that can be asked about the long-term behaviour
of discrete event systems. We shall consider only a few. Do there exist steady
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or periodic regimes? What form do they take? On average, how quickly does
the next occurrence of a take place?

4.1.2 Mathematical models for DES

To answer questions such as those above, it is necessary to have a mathemat-
ical description of the system, which specifies a mechanism for determining
when events occur. A variety of models have been proposed, [Ho89]. The
automata of the previous section are convenient for modelling systems with
state. They allow easy specification of how different choices of event can
occur, depending on the current state of the system. To specify temporal be-
haviour, they can be augmented with information on the duration of events,
as in the model proposed by Glasserman and Yao, [GY94]. A different ap-
proach is to specify how events are causally related to each other. An example
of this is the classical Gantt chart, or PERT diagram. A somewhat related
model is the task-resource model, studied by Gaubert and Mairesse in this
volume, [GMa], in which tasks are specified by their durations and the re-
sources they require. This is sometimes called a tetris model by analogy with
the computer game of that name.

In the tetris model, resources are renewable and can be used repeatedly,
like a machine in a factory. For consumable resources, a more complex model
is required, which combines both state and causal aspects. Petri nets have
proved popular in this respect, [Rei85]. A Petri net can be defined in terms
of a finite set of tasks, @), and a finite set of resource types, P. Each task, g,
consumes and produces a basket of resources, which are specified as elements
*q,q", respectively, of N(P). The state of the system is given by an element,
¢ € N(P), which specifies the current availability of resources of each type.
The only tasks, ¢, which can proceed in state ¢ are those for which there
are sufficient resources, ie: *q < c; if ¢ does proceed, the state of the system
changes to ¢ — *¢ + ¢*. (Inequality and addition being defined, as usual,
pointwise in the semimodule N(P).) Temporal behaviour can be incorporated
by, for instance, giving each resource a holding time for which it must be kept,
before becoming available for consumption by a task. Timed Petri nets are
the subject of the paper by Cohen, Gaubert and Quadrat in this volume,
[CCGQ)-

Suppose that in a timed Petri net, for each resource, there is exactly one
task which produces it and exactly one task which consumes it. Such a net
can be described by a directed graph in which the vertices correspond to
the tasks and the edges correspond to the resources. For obvious reasons,
this is known as a timed event graph. Its importance lies in the fact that its
temporal behaviour can be completely described as a linear system over Rpyax ,
[BCOQ92, §2.5]. That is, if £(k) denotes the vector of k-th occurrence times
of the different tasks in the net, then, under reasonable conditions, there exist
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matrices Ay, - -+, Ay € Mp(Rmax ), such that, for sufficiently large k,
Z(k) = AeZ(k) + A1Z(k — 1) +-- -+ A, Z(k —p) .

This result, that timed event graphs are linear systems has been the key to
an algebraic approach, based on idempotency, to the study of discete event
systems, [CDQV85, CMQV89]. The spectral theory of max-plus matrices, as
discussed in §2.9, and such results as the Cyclicity Theorem, Theorem 2.1,
enable one to draw important and useful conclusions about the long-term
behaviour of the timed event graph.

The linear theory also has implications for efficient simulation of discrete
event systems. The discrete event simulators currently used for performance
modelling in industry take no account of the underlying algebraic structure.
However, as shown in [BC93], this can be used to develop more efficient
simulation algorithms.

The main limitation of event graphs is their inability to capture conflict,
or competition for resources. Each resource in the event graph is consumed
by only one task. Tasks may proceed in parallel but they cannot pre-empt
each other. (A finite automaton, in contrast, allows a choice among different
outcomes.) Free choice nets are a class of Petri nets which include event
graphs but allow some conflict, [DE95]. If there is a hierarchy of Petri net
models then free choice nets are the obvious candidate for the next level of
complexity beyond event graphs. In the untimed case they are known to
have many interesting properties, [DE95]. In the timed case, the results of
[BFG94] confirm that, at least from a mathematical standpoint, free choice
nets are a good class to study.

It is clear from this discussion that there are a variety of different models
for studying discrete event systems. There is not much consensus on a single
fundamental model, [Ho89, Scanning the Issue]. Our approach in the rest of
this section will be to extract certain features which appear both conceptually
reasonable and common to many systems, and to study a basic model with
just these features. This basic model, of topical functions, will include as a
special case the linear theory based on max-plus. It can also be extended in
several ways and used as a building block to model a wide class of discrete
event systems. As we shall see, there are many unanswered questions about
the basic model itself.

4.1.3 The basic model

Let R* denote the space of functions R(1, - - -, n), which we think of as column
vectors. We use z, y, z for vectors and z; instead of (%) for the i-th component
of z. R® acquires the usual pointwise ordering from the orderingon R z < y
if, and only if, z; < y; for 1 < i< n. If € R* and h € R then z + h will
denote the vector y for which y; = z; + h: the operation is performed on each
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component of the vector. This vector-scalar convention extends to equations
and inequalities: x = h will mean that z; = hfor 1 <7 < n.

Definition 4.1 ([GK95]) A topical function is a function, F : R* — R™, such
that, if T,y € R* and h € R, then the following properties hold:

e monotonicity z <y = F(z) < F(y) M

e (homogeneity) F(z + h) = F(z) + h. H

A topical function can be thought of as modelling a system with n events
in which z € R* specifies the time of occurrence of each event and F(z)
specifies the times of next occurrences. The sequence z, F(z), F?(z), - is
then the sequence of occurrence times of events, whose asymptotic behaviour
is the object of study. Definition 4.1 can be understood as follows: if the
times of occurrences of some events are increased, then the times of next
occurrences of all events cannot decrease; if the times of occurrences are all
increased, or decreased, by exactly the same amount for each event, then so
too, respectively, are the times of next occurrences. These properties appear
very reasonable and can be seen to hold in some form for most discrete event
systems.

Functions satisfying the conditions of Definition 4.1 have been introduced
and studied independently by other authors, [Kola, Vin|, but the material
discussed below, as well as the name topical, is based on joint work of this
author with Keane and Sparrow, [GK95, GKS97].

4.1.4 Extensions of the basic model

There are practical systems which can be modelled directly as topical func-
tions, [Gun93, SS92], but such systems are rather restricted. They must
usually be closed, or autonomous, in that they require only an initial condi-
tion to generate a sequence of occurrence times. Open systems, in contrast,
require input to be regularly provided. To model this, it is more convenient to
work, not with vectors in R*, but with appropriate functions R — R", which
represent input, or output, histories. This requires an extension of the the-
ory of topical functions to infinite dimensional spaces, a problem studied in
[Kola]. Another extension is to study semigroups of topical functions, which
allows one to model the choice or conflict described in §4.1.2. As remarked
at the end of §3.2, Gaubert has made initial investigations in this direction,
[Gau]. Finally, stochastic systems can be modelled by random variables tak-
ing values in the space of topical functions. In this volume, Baccelli and
Mairesse give an extensive discussion of ergodic theorems for random topical
functions and for more general systems, [BM], while Gauajal and Jean-Marie
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study the problem of computing asymptotic quantities in stochastic systems,
[GIM].

These three extensions bring a much wider class of discrete event systems
within our scope. It remains an open problem to understand exactly how
much wider. For instance, how can Petri nets be incorporated in this frame-
work? What about the model of Glasserman and Yao?

Before going further, we need to see some concrete examples. We shall then
discuss the properties of topical functions, with reference to the questions
raised in §4.1.1.

4.2 Examples of topical functions

Let Top(n,n) denote the set of topical functions, ' : R* — R*. This set
has a rich structure, which we need some notation to explain. If a,b are
elements of some partially ordered set, let ¢ V b and a A b denote the least
upper bound and greatest lower bound, respectively, when these exist. The
set of functions, R* — R™ has a natural partial order defined pointwise from
that on R*. Finally, let F'~ denotes the function —F(—z).

Lemma 4.1 ([GK95, Lemma 1.1]) Let F, G € Top(n,n). Let A\, u € R satisfy
Mp>0andA+p=1. Letce R*. Then FG,FVG,FAG,F +c¢,F~ and
AF + uG € Top(n,n).

This result is an immediate consequence of Definition 4.1. Top(n,n) is a
distributive lattice under V and A. It is almost a Boolean algebra with F'~
as complement but lacks top and bottom elements.

Definition 4.2 A function F : R* — R* is said to be simple if each compo-
nent, F; : R* — R, can be written as Fi(z) = z; + a, for some j and some
a € R

Simple functions are clearly topical. Lemma 4.1 now provides a mechanism
for building topical functions which are not simple.

Definition 4.3 ([Gun94c]) A function F : R* — K" is said to be min-maz if
it can be constructed from simple functions by using only V and A. Such a
function is maz-only if it can be bwilt using only V and min-only if it can be
built using only A.

Max-only functions provide the link to idempotency. Any max-only func-
tion can be placed in normal form:

Fi(z) =(r1+An) V-V (zp + Ain)
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where A € M,(Rmax ). We may then write F'(z) = Az. Hence, max-only
functions correspond to matrices over Rmax which satisfy the non-degeneracy
condition:

Vi, 37, such that A;; # —oo . (4.1)

A min-only function, dually, corresponds to a matrix over Rmin . Min-max
functions are nonlinear in the idempotent sense.

Lemma 4.2 ([GKS97]) Choose F € Top(n,n) and a € R*. There ezists a
maz-only function F, such that F(a) = F,(a) and F < F,. A dual statement
holds for min-only functions.

Corollary 4.1 ([GKS97]) Let F' € Top(n,n). Then F can be written in the
two forms:
/\Gi=F=\/Hj (42)
iel jeJ
where G; are maz-only, H; are min-only and I and J may be uncountably
infinite.

Min-max functions are, in a strict sense, finite topical functions. If either of
the index sets, I or J, is finite, then F' is a min-max function. In this case, the
representations in (4.2) can be reduced to essentially unique normal forms,
[Gun94c, Theorem 2.1]. Min-max functions capture some of the dynamical
features of topical functions; see Corollary 4.2.

The infinite topical functions include some well-known functions in dis-
guise. Let R* denote the positive reals and R*° the nonnegative reals. Let
exp : R* — (R*)" and log : (R*)® — R" be defined componenentwise:
exp(z); = exp(z;) and log(z); = log(z;). These are mutually inverse bi-
jections between R* and (R¥)". Let A : (R*)® — (R*)" be any function on
the positive cone and let £(A) : R* — R" denote the function log(A(exp)).
The functional £ allows us to transport functions on the positive cone to func-
tions on R*. Moreover, £(AB) = £(A)E(B), so A and £(A) have equivalent

dynamic behaviour.

Now suppose that A is a nonnegative matrix, A € M, (R*?), which satisifes
a similiar non-degeneracy condition to (4.1): Vi, 3j, such that A; # 0.
Then A preserves the positive cone, when elements of (R*)™ are interpreted
as column vectors in the usual way. The reader can easily check that £(A)
is a topical function. It follows that the theory of topical functions is a
generalisation of Perron-Frobenius theory, [Min88]. It can further be shown,
using Lemma 4.1, that a number of problems considered in the optimisation
theory literature also fall within the theory of topical functions, [GKS97].
These include problems of deterministic optimal control, Markov decision
processes and Leontief substitution systems.
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4.3 Nonexpansiveness and perioidicity

If x € R, let | z | denote the £*° norm of z: | z | = Vi<i<a|zi|- A function
F :R* — R" is nonexpansive in the £* norm if

o |Flz)-F(y) | <lz—y]. N

The following observation was first made by Crandall and Tartar, [CT80]; see
also [GK95, Proposition 1.1} for a proof adapted to the present context.

Proposition 4.1 If F : R* — R" satisfies H, then M is equivalent to N.

In particular, topical functions are nonexpansive. This constrains their dy-
namics in ways that are still not understood. We draw the reader’s attention
here to one result which has significance for discrete event systems.

One of the general questions raised in §4.1.1 concerned the existence of a
periodic regime. In the light of the suggested interpretion of topical functions
in §4.1.3, a periodic regime can be reasonably formulated as a generalised
periodic point: a vector z such that FP(z) = z + h for some p > 0 and
some h € R. (Recall that we are using the vector-scalar convention of §4.1.3.)
The system returns after p occurrences with a shift of h in each occurrence
time. Because of property H, this behaviour persists. We can, without loss
of generality, consider only ordinary periodic points, because FP(z) =z + h
if, and only if, (F — h/p)?(z) = z and, by Lemma 4.1, F — h/p is topical.

The least p for which F?(z) = z is the period of F' at z. What periods are
possible for discrete events systems modelled by topical functions? It turns
out, surprisingly, that there is a universal bound on the size of periods which
depends only on the dimension of the ambient space.

Theorem 4.1 ([BW92]) If F : R* — R" is nonezpansive in the {* norm and
if p is the period of a periodic point of F, then p < (2n)".

Results of this form originate in the work of Sine, [Sin90]. An up to date
discussion, as well as complete references, can be found in the survey paper
by Nussbaum in this volume, [Nus]. The bound in Theorem 4.1 is not tight:
Nussbaum has conjectured that p < 2", and this can be shown to be best
possible. The Nussbaum Conjecture has been proved only for n < 3 and
remains the outstanding open problem in this area.

For topical functions, more can be said. The following is an immediate
consequence of Lemma, 4.2.

Corollary 4.2 ([GKS97]) Let F be a topical function and S C R* any finite
set of vectors. There ezists a min-maz function G such that F(s) = G(s) for
all s € S. In particular, any period of a topical function must be the period
of a min-max function.
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It follows that it is sufficient to consider only min-max functions in de-
termining the best upper bound for the periods of topical functions. By
augmenting min-max functions with F(—z), where F is min-max, it is possi-
ble to give a similar reduction for general nonexpansive functions, [GKS97].
Gunawardena and Sparrow, in unpublished work, have shown that there are
min-max functions in dimension n with period "Ci,/3; and conjecture that
this is the best upper bound for topical functions.

Fixed points, where F(z) = z, are of particular importance for discrete
event systems. They represent equilibria, as in (2.4). The existence of fixed
points for nonexpansive functions is a classical problem, [GK90]. For topical
functions, Kolokoltsov has given a sufficient condition in terms of a game
theoretic representation of topical functions, [Kola, Theorem 9]. For min-
max functions, much stronger results are thought to hold, as in Theorem 4.3.
This turns out to be related to the other question raised in §4.1.1, which
forms the subject of the next section.

4.4 Cycle times

The rate at which events occur in a discrete event system is an important
measure of its performance. The average elapsed time between occurrences,
starting from the initial condition z € R, is given by (F*(z) — FF 1z .- +
F(z) — z)/k. The asymptotic average, as k — oo, is then

lim F* : .

kl'r{.loF (z)/k (4.3)
It is not at all clear that this limit exists in general. Suppose, however, that
it does exist for a given F' at some initial condition z and that y is some
other initial condition. Since F is nonexpansive, | F¥(z) — F*(y) | < |z —y].

Hence, if the limit (4.3) exists anywhere, it must exist everywhere, and must
have the same value.

Definition 4.4 Let F' € Top(n,n). The cycle time vector of F, X(F) € R,

is defined as the value of (4.8) if that limit ezists for some z € R*, and is
undefined otherwise.

If F has a generalised fixed point, F(z) = x + h then, by property H,
F¥(z) = z + kh. Hence, X(F) = h. If F is a max-only function, and
A € M, (Rnax ) is the corresponding max-plus matrix, then a generalised fixed
point of F' is simply an eigenvector of A and 4 is the corresponding eigenvalue.
By Proposition 2.6, h is the largest mean circuit weight in G(A). Similarly,
if F = £(A), where A € M,(R*?), then exp(z) € (R*)™ is an eigenvector of
A with eigenvalue exp(h). In this case exp(h) is the classical spectral radius
of A. We see from this that X(F) is a vector generalisation of the notion of
eigenvalue, suitable for an arbitrary topical function.
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However, if A € Mp(Rmax ) is the max-plus matrix corresponding to the
max-only function F, then not all eigenvectors of A can be generalised fixed
points of F. They must lie in R* and hence have no component equal to
—o00. To bring the other eigenvectors into the picture, requires some form
of compactification of R*, analogous to putting the boundary on the positive
cone (R™)™. It also suggests the existence of other cycle time vectors which
give information on fixed points lying in different parts of this boundary. To
make sense of this for topical functions remains an open problem.

When does X(F) exist? The first indication that this is a difficult question
came from the following result of Gunawardena and Keane.

Theorem 4.2 ([GK95)) Let {a;}, ¢ > 1, be any sequence of real numbers
drawn from the unit interval [0,1]. There exists a function F € Top(3,3),
such that F*(0,0,0)s = a; + - - + a;.

In particular, X(F") does not always exist and the result indicates the extent
of the departure from convergence.

On the other hand, there is strong evidence that X(F') does exist for min-
max functions. We can formulate this by asking how X(F') should behave with
respect to the operations which preserve min-max functions. Let MM(n,n) C
Top(n,n) denote the set of min-max functions R* — R*. It is easy to see
that MM(n,n) is closed under all the operations of Lemma 4.1, with the
exception of convex combination: AF + pG. In particular, MM(n,n) is a
distributive lattice. MM(n, n) also has a Cartesian product structure in which
each F' € MM(n,n) is decomposed into its separate components (Fi, - - -, F},).
If S C Ay x--- x A, is a subset of some such product, let 7(S) denote its
rectangularisation:

r(S)={ue€ A; x---x A, | m(u) € S},

where 7 : A} X --- X A, — Ay is the projection on the k-th factor. It is
always the case that S C 7(S) and if S = r(S) we say that S is a rectangular
subset. For example, if F,G € MM(2, 2) then

r{F,G} = {(F\, F2), (F1,Gy), (G, F»), (G1, G2)}.

The lattice operations on MM(n, n) behave well with respect to the Cartesian
product structure: if S C MM(n,n), then

VF=\ G ad AF= A G (4.4)

FesS Ger(S) FeS Ger(S)

Conjecture 4.1 (The duality conjecture) X : MM(n,n) — R* always ezists
and is a homomorphism of lattices on rectangular subsets: if S C MM(n,n)
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s a finite, rectangular subset, then

X(\ F)

I

V X(F)

Fes Fes
X(NF) = AXF).
Fes Fes

Theorem 4.3 ([Gun9%4a]) Let F € MM(n,n). If the duality conjecture is
true in dimension n then F(z) = z+ h for some z, if, and only if, X(F) = h.

Conjecture 4.1 was first stated in a different but equivalent form in
[Gun94a]. By virtue of (4.4), it gives an algorithm for computing X(F') for
any min-max function in terms of simple functions, for which X can be trivally
calculated. However, because of the rectangularisation required in (4.4), this
algorithm is very infeasible. This raises issues of complexity about which
little is known.

The conjecture is known to be true when S consists only of simple func-
tions. That is, when Vg F' is a max-only function, and Ageg F is a min-only
function. The conjecture has also been proved in dimension 2, where the ar-
gument is already non-trivial, [Gun94b]. Sparrow has shown that X exists for
min-max functions in dimension 3 but his methods do not establish the full
conjecture, [Spa96]. The duality conjecture remains the fundamental open
problem in this area and a major roadblock to further progress in under-
standing topical functions.

The existence of X does not depend on the finiteness of min-max functions:
it also exists for functions £(A) where A € M,(R"?), [GKS97]. At present,
we lack even a conjecture as to which topical functions have a cycle time.

We have sketched some of the main results and open problems for topical
functions, which we believe are fundamental building blocks for discrete event
systems. Topical functions also provide a setting in which max-plus linearity,
A € M;(Rmax ), and classical linearity, A € M,(R*?), coexist. As we men-
tioned in §2.9, the relationship between these is a very interesting problem.
We shall to return to it in §6.5. Before that, we must venture into infinite
dimensions.

o Nonlinear partial differential equations

5.1 Introduction

In this section we shall be concerned with scalar nonlinear first order partial
differential equations of the form

F(z,u(z), Du(z)) =0 (5.1)
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where F' : R* X R x R® — R. Here, u is a real-valued function on some open
subset X C R*, u : X — R, and Du(z) € R* can be thought of as the
derivative of u at z, Du = (Ou/0zy,- - -, 0u/0z,).

It may seem implausible that idempotency has anything to say about dif-
ferential equations: operations like max(u,v) do not preserve differentiable
functions. However, remarkable advances have taken place in our understand-
ing of nonlinear partial differential equations which enable us to give meaning
to solutions of (5.1) which may not be differentiable anywhere. From one per-
spective, this can be viewed as borrowing ideas from convex analysis. Indeed,
the origins of the differential calculus itself go back to Fermat’s observation
that the maximum of a function f : R — R occurs at points where df /dz = 0.
Efforts to generalise this to non-differentiable functions have led to new no-
tions of differentiability, [Aub93, Chapter 4], which are closely related to the
ideas discussed below, [CEL84, Definition 1]. For ease of exposition, we take
a different approach, but convex analysis forms a backdrop to much of what
we say and its relationship to idempotency is badly in need of further inves-
tigation. Aubin’s book provides an excellent foundation, [Aub93].

5.2 Viscosity solutions

The advances mentioned above centre around the concept of viscosity solu-
tions, introduced by Crandall and Lions in a seminal paper in 1983 following
related work of Kruzkov in the late 1960s. For references, see the more recent
user’s guide of Crandall, Ishii and Lions, [CIL92], which discusses extensions
of the theory to second order equations. The earlier survey by Crandall,
Evans and Lions, [CEL84], is a model of lucid exposition and can be read,
even by non-users, with pleasure and insight.

The word wviscosity refers to a method of obtaining solutions to (5.1) as
limits of solutions of a second order equation with a small parameter—the
viscosity—as that parameter goes to zero. We discuss asymptotics further
in §6.1. Solutions obtained by this method of vanishing viscosity can be
shown to be viscosity solutions in the sense of Crandall and Lions, [CEL84,
Theorem 3.1J.

Non-differentiable solutions to (5.1) arise in a number of applications. For
instance, the initial value problem

Uy -+ H(Du) = 0

u(z,0) = uo(x) (52)

where u : R*™! x [0,00) — R, arises in the context of optimisation. In me-
chanics it is known as the Hamilton-Jacobi equation, in optimal control as
the Bellman equation and in the theory of differential games as the Isaacs
equation. The function u represents the optimal value under the appropriate
optimisation requirement. In mechanics, the Hamiltonian H and the initial
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conditions ug are often sufficiently smooth to give uniqueness and existence
of smooth solutions, at least for small values of ¢t. However, in the other con-
texts, neither the Hamiltonian nor the initial conditions need be differentiable
and are sometimes not even continuous. See, for instance, the Hamiltonian
found by Kolokoltsov and Maslov in their paper in this volume, [KMb], for
multicriterial optimisation problems. It becomes important, therefore, to give
a convincing account of what it means for u to be a solution of (5.2) or (5.1),
when u is not differentiable.

An obvious approach is to restrict solutions to be non-differentiable only
on a set of measure zero. Unfortunately, there are usually lots of these.
Consider the very simple example of (5.1) with n = 1 and F(z,u,p) = p* — 1.
In other words, the equation (du/dzr)? = 1. Suppose that we seek solutions on
the interval [—1,1] which are zero on the boundary. Then u;(z) =1 — |z| is
differentiable except at z = 0 and satisfies the boundary conditions. However,
so too does up(z) = —uy(z) and the reader will see that there are infinitely
many piecewise differentiable solutions of this form.

The viscosity method cuts through this problem by specifying conditions
on the local behaviour of u which isolate one solution out of the many pos-
sibilities. The idea is beautifully simple. Let X be an open subset of R"
and suppose that ¢ : X — R is a C' function such that u — ¢ has a local
maximum at z¢. If u is differentiable at zo, then Du(zo) = D¢(zo). If u is
not differentiable, why not use D¢(zo) as a surrogate for Du(zq)?

Definition 5.1 An upper semi-continuous (respectively, lower semi-
continuous) function u : X — R is said to be a viscosity subsolution (respec-
tively, supersolution) of (5.1) if, for all € C*(X), whenever u— ¢ has a local
mazimum (respectively, minimum) at x9 € X, then F(zo, u(zo), Dd(z0)) <0
(respectively, > 0). A wviscosity solution is both a subsolution and a superso-
lution.

We recall that v : X — R is upper semi-continuous at z € X if
infysz supyey f(y) < f(z) and lower semi-continuous if supy, infyey f(y) >
f(z), where U runs through neighbourhoods of z, [Aub93, Chapter 1]. Defi-
nition 5.1 interleaves Definition 2 of [CEL84], for first order equations, with
Definition 2.2 of [CIL92], for semi-continuous solutions.

Note that if « is not upper semi-continuous at zy then there is no ¢ €
C'(X) such that u — ¢ has a local maximum at 5. Without the restriction
to upper or lower semi-continuous functions, the characteristic function of the
rationals, for instance, would be a viscosity solution of any equation!

Definition 5.1 conceals many subtleties, [CIL92, §2]. For instance, in the
example above, u; is both a subsolution and a supersolution. There are, in
fact, no C* functions, ¢, such that u; — ¢ has a local minimum at 0 and so the
supersolution condition is vacuously satisfied at 0. However, u,, while it is a
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subsolution for the same reason, is not a supersolution: the function u; +1
has a minimum at 0 but p?> — 1 2 0 when p = —1.

Definition 5.1 leads to elegant and powerful existence, uniqueness and com-
parison theorems which form the heart of the theory of viscosity solutions,
[CIL92]. We mention only the following point, which is relevant to the discus-
sion in §5.5. It is easy to see that fora € Rand b € R*, u(z,t) = a+b.x—H(b)t
is a smooth solution of (5.2). Here b.x denotes the standard inner product
in R*. Hopf showed how these linear solutions could be combined to give a
generalised global solution of (5.2).

Theorem 5.1 ([Hop65, Theorem 5a)) Suppose that H is strictly convezr and
that H(p)/|p| = oo as |p| — oo. Suppose further that ug is Lipschitz. Then,

u(z,t) = inf (uo(y) + sup {z.(z —y) — tH(z)}) (5.3)

yER"“ zeRn—l

satisfies (5.2) almost everywere in R*~! x [0,00). ([Eva84, Theorem 6.1]) If
ug is also bounded then (5.8) is a viscosity solution of (5.2).

The reader familiar with convex analysis will note that the innermost term
in (5.3) can be rewritten as tL((z — y)/t), where L : R*™! — Ruy, is the
Legendre-Fenchel transform of H, [Aub93, Definition 3.1]. L is called the
Lagrangian in mechanics. Hence,

u(z,t) = inf {us(y)+tL((z~-y)/t)}. (5.4)

yER™™

Kolokoltsov and Maslov have shown that this formula gives a C! solution of
(5.2) throughout R*™! x [0, 00) under weaker hypothses on H but stronger
hypotheses on ug, [KM89, §4].

5.3 The role of idempotency

What, then, are the contributions of idempotency to this area? A key intution
has been that equations of the form (5.2) should be considered as linear
equations over Rmax OI Rmin . This idea was first put forward by Maslov in
the Russian literature in 1984 and later in English translation in [Mas87b].
There is a hint of it already in Hopf’s basic lemma, [Hop65, §2], and in the
following idempotent superposition principle.

Proposition 5.1 ([CEL84, Proposition 1.3(a)]) Let u,v be viscosity subso-
lutions (respectively, supersolutions) of (5.1). Then max(u,v) (respectively,
min(u,v)) is also a viscosity subsolution (respectively, supersolution).
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It follows that for equations in which F' is independent of the second vari-
able u—such as (5.2)—the space of viscosity subsolutions is almost a semi-
module over Rmax; it lacks only a zero element, u(z) = —oo. Notice that
supersolutions are linear over Rnin and to get access to viscosity solutions
one must work with both dioids.

This linearity is very appealing. It suggests that the Hopf formula (5.4),
from an idempotent viewpoint over Ruy;, , is a Green’s function representation
with kernel tL((z—y)/t). The kernel should arise when the initial condition is
a Dirac function at 0 and the solution for general ug should then be obtained
as a convolution with the kernel, in the usual way. Of course, the notions of
Dirac function and convolution must be understood in the idempotent sense.
As we shall see, formula (5.4) has exactly the right form for this to make
sense. While this intuition is very suggestive, it has yet to be fully realised in
a convincing manner. We try to unravel what has been done in this direction
in §5.5. In the next sub-section we develop some of the language needed to
discuss these ideas.

5.4 Functional analysis over dioids
5.4.1 Introduction

Let D be a dioid. The aim of this section is to study spaces of functions, X —
D, and their linear transformations, when X is an arbitrary set. In infinite
dimensions, limiting conditions must be imposed, as in classical functional
analysis.

5.4.2 Boundedly complete dioids

To begin with, let us use the partial order of the dioid to control the infinite
behaviour. We have already had a taste of this with quantales in §2.7 and
it is in keeping with the order theoretic nature of idempotency. We compare
this with more conventional topological methods in §5.4.3.

'Definition 5.2 A boundedly complete (BC) dioid, D, is a dioid in which
every subset which is bounded above has a least upper bound, over which the
multiplication distributes: VS C @ such that 3d € Q, for which x < d for all
Tz €S,

e there exists a least upper bound sup g T,

¢ a-(SUPxes 21) = suprS(a"x)a (suszS x).a = SuprS(z'a’) .

As with quantales, we write } ;5T = sup,csz. Let D be a BC dioid and
X an arbitrary set. Let D,(X) denote the set of functions to D which are
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bounded above: Dy(X) ={f: X - D |3d € D, f(z) 2 d, Vz € X}.
D,(X) is a sub-semimodule of D(X). If D is a BC dioid, then D,(X) inherits
bounded completeness from D, which allows us to write any element u €
Dy(X) as a linear combination of characteristic functions. Let §4 € Dy(X)
denote the characteristic function of A C X:

5a(z) = 1 ifze A

A7) 0 otherwise .

For a € X, d(s) can be thought of as the idempotent Dirac function at a.
When D = Rmin , it corresponds to the indicator function of a point as used
in convex analysis, [Aub93, Definition 1.2].

Choose u € Dy(X). Since u(z) < d for some d € D, the functions
u(a).0(q)(z) all lie in Dp(X) and the set of such functions is bounded above
by the constant function d. Hence we can write, in D,(X),

u=Y_ u(a).0y - (5.5)

a€X

We are interested in the linear transformations on D,(X) which preserve
infinite sums of this form.

Definition 5.3 Let D be a BC dioid and M a semimodule over D. M is a
boundedly complete (BC) semimodule if every subset of M which is bounded
above has a least upper bound over which the scalar multiplication distributes.
A homomorphism of BC semimodules, f : M — N, is a homomorphism of
semimodules which preserves the least upper bound of any bounded subset.

As remarked above, D,(X) is a BC semimodule over D. It would seem
from (5.5) that D,(X) is the free BC semimodule generated by X but this is
not quite right. To clarify its properties, consider the following more general
construction. Let M be any BC semimodule and let Dy(X, M) = {f : X —
M | f(z) X m, for some m € M}. D,(X, M) is also a BC semimodule over
D and Dy(X) = Dy(X,D). For fixed X, this defines a functor from the
category BC-SModp to itself.

Let A : Dy(X) — M be a homomorphism of BC semimodules. For each a €
X, the value of A on d(,) defines a function 85;(A) : X — M. Since (5} = dx,
it follows that A(d(a)) = A(dx), since A is a homomorphism of semimodules.

By definition, 8a(X)(a) = A(d(a}) and so O (X) is bounded above. Hence we
have a function 9M : Hom(Db(X), M)BC—SModD - Db(X, M)

Proposition 5.2 0, is an isomorphism of BC semimodules.

This follows by what category theorists call general nonsense and can safely
be left to the reader, as can the proofs of the corollaries below.
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Corollary 5.1 Choose f,g € Dy(X). The pairing (f,g) = 05" (9)(f) defines
a nonsingular, boundedly complete inner product Dy(X) x Dy(X) — D whose

value is given by (f, 9) = Y.ex f(a).g(a).

The implication is that Dy(X) is self-dual as a BC semimodule. We can
also describe the structure of homomorphisms between function spaces. Let
A : Dy(X) — Dup(Y) be a homomorphism of BC semimodules and choose
(z,y) € X xY. Let n : Hom(Dy(X), Dp(Y)) = Dp(X x Y) be defined by

n(A)(z,y) = Op,(v)(A)(z)(y)-

Corollary 5.2 7 is an isomorphism of BC semimodules. Furthermore, for
fe€DyX) andy €Y, A(f)(y) = Lzex f(z)-n(A)(2,9).

If D = Rmin and X =Y = R", then the Hopf formula (5.4) has exactly
this structure, emphasising once again the linearity of the solutions of (5.2).

Corollary 5.2 is essentially Shubin’s kernel representation theorem, [Shu,
Theorem 7.1]. We have reformulated his treatment to bring out its algebraic
nature and to highlight BC dioids and BC semimodules. Shubin refers to BC
dioids as regular and homomorphisms of BC semimodules as normal. Akian
refers to locally complete dioids but does not imply by this that multiplication
distributes over infinite sums, [Aki95].

5.4.3 Topologies on dioids

Consider any BC dioid or semimodule. If follows from (2.3) that any
nonempty subset has an infimum. Hence, the upper and lower limits of a
bounded sequence can be defined in the usual way and we can say what it
means for a sequence to converge. This defines a topology, which we call
the BC topology. (For technical reasons, one must work with generalised se-

quences indexed over a directed set and not just with sequences indexed over
N, [KMa).)

Lemma 5.1 ([KMa]) Let p : Rpin X Rmin — [0,00) be defined by p(z,y) =
| exp(—z) — exp(—y)| with exp(—o0) := 0. Then p is a metric whose under-
lying topology coincides with the BC topology on Ry, -

The metric can extended to function spaces over Rmi» in the usual WaLy. Let
f,9 € (Rmin )o(X) and define px(f,g) := sup,ex p(f(z), 9(z)). The bound-
edness of f and g ensures that px(f,g) € [0,00) and gives a valid metric.
We now have two topologies on (Rmi, )5(X): the BC topology, corresponding
to pointwise convergence, and the metric topology of px, corresponding to
uniform convergence. These are undoubtedly different but the author knows
of no results or examples comparing them in the literature.
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It appears that homomorphisms of BC semimodules are not continuous in
the BC topology. (Nor presumably in the metric topology.) Once again, this
issue has not been studied in the literature. However, kernel representations
as in Corollary 5.2 have been found for semimodule homomorphisms which
are continuous in the metric topology, [KM89, §2]. The marked discrepancy
in hypothesis between results like this and Corollary 5.2 indicates that we are
still some way from a full understanding of function spaces and their linear
transformation. We can formulate the kernel problem as follows. Let VW
be sub-semimodules of (Ryin )s(X) and A : V — W a homomorphism of Ruyin
semimodules. Under what conditions on V,W and X does A have a kernel
representation as in Corollary 5.27

5.5 Idempotency and viscosity solutions

From now on we shall work entirely with Rni, , equipped with the BC topol-
ogy. For the remainder of this section, we shall only use the customary
notations in Rny, -

The pairing introduced in Corollary 5.1, which we may write as (f,g) =
infzex(f(z) + g(z)), provides an elegant way of comparing functions X —
Rein - Let @ C (Rmin )o(X) be a set of test functions. If f, g € (Rmin )o(X), we
say that f and g are equivalent, f = g, if (f,#) = (g, ¢) for all ¢ € . The
equivalence class of f will be denoted [f] and the set of equivalence classes
.

Each equivalence class contains a unique smallest element, which can be
identified as follows. Let Ps : (Rmin )s(X) = (Rmin )s(X) be given by

Ps(f)(z) = Z‘;EW’ ¢) — ¢(z)} (5.6)

which is well-defined provided that, for any z € X, there is some ¢ € ®, such
that ¢(z) # +oo.

Lemma 5.2 ([Gonb, Theorem 1]) Suppose that ® # 0. Then Ps(f) = f
and, if f =~ g, then Po(f) < g in (Rmin )o(X).

Proof: Suppose that g = f. Choose ¢ € ® and z € X. Then, by definition
of the pairing, (g,4) < g(z) + ¢(z). Hence, (g,0) — é(z) < g(z) and so
(f,¢) — ¢(z) < g(z), since ¢ = f. This holds for any ¢ and any z € X
and so Pe(f) < g. Now choose ¢ € ® and z € X as before. Then, by
definition of P, (f,¢) — ¢(z) < Ps(f)(z). Hence, (f,¢) < Po(f)(z) + ¢(z).
Since this holds for all z € X, it follws that (f, #) < (Ps(f), ¢). But, by the
second assertion proved above, Ps(f) < f, and so by linearity of the pairing,
(Po(f),¢) < (f,¢). Hence, (Ps(f),9) = (f,#). Since this holds for any
¢ € @ it follws that Pe(f) = f, as required.
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QED

Let A : ® — ® be any function. The pairing (f, g) enables us to dualise A to
a function \* : ®* — ®* as follows. For any ¢ € @ and any f € (Rmin )s(X), let
(X*[f), &) = (f, M(#))-. This defines \* unambiguously. Note that if \(®) Z @,
then A\* is not well defined on ®*, and may be multiple-valued. A* is analogous
to the adjoint or transpose in classical linear analysis. If & = (R )o(X) and
A has a kernel representation with kernel &k(z,y), then A\* has kernel k(y, ).

Kolokoltsov and Maslov have introduced a notion of generalised weak so-
lution of (5.2). To describe this, we first need to explain the test func-
tions used by them. Let X be a locally compact topological space and let
¢®(X) C (Rmin )s(X) denote the set of functions f : X — Rmin which are
bounded below, continuous with respect to the BC topology on Rni, and
which tend to +oo at infinity. This last condition means simply that, for
any 0 < d, no matter how large, there exists a compact subset K C X,
such that d < f(z) whenever £ ¢ K. This is equivalent to f being lower
semi-compact (or inf compact as in [Gonb)) in the sense of convex analysis,
[Aub93, Definition 1.6].

Lemma 5.3 ([KM89, §2]) P.o(x)(f) is the lower semi-continuous closure of
f: Peogxy(f) = sup{g € (Rmin )o(X) | g continuous and g < f}. Further-
more, if f, g are both lower semi-continuous and f ~ g then f = g.

Consider now the initial value problem (5.2). For 0 < ¢, let A :

(Remin )s(R*™) — (Rmin )o(R*!) be the time evolution defined by the Hopf
formula (5.4):

N(u)(z) = inf {u(y) +tL((z - y)/H)}. (5.7)

yGR"_l

According to Kolokoltsov and Maslov, a generalised weak solution of (5.2),
with initial condition ug € (Rmin )s(R*1), is A([uo]) € c*(X)*, [KM89, §4].
For this to make sense, it is necessary that A;(c®(X)) C ¢*(X) where A} is

the transposed operator with kernel tL((y — z)/t). Curiously, this is neither
explicitly stated nor proved in [KM89].

Leaving this issue aside—it is a property of H and not of equation (5.2)—
the implication here is that initial conditions with the same lower semi-
continuous closure should have the same evolution under (5.2). This does
appear to capture an essential feature of (5.2) but the definition itself is
unconvincing. The rationale behind it appears to be an analogy with gen-
eralised solutions in the classical linear theory. The difficulty is that the
operator 0;(—) + H(D(-)) is not itself defined on ®*; it is only the evolution
operator (5.7) which is defined there. This differs from the classical theory
where differential operators are themselves dualised to act on spaces of distri-
butions, [ES92, §2.1.6], and one is left in no doubt as to what it means for a
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distribution to be a solution. It is also not clear why the set of test functions
¢®(X) should play such a fundamental role with respect to solutions of (5.2).

Maslov and Samborskii have made important progress towards resolving
these difficulties for equations of the form H(Du) = 0, [MS]. They define a
notion of derivative on elements of ¢®(X)* and prove existence and unique-
ness results for an appropriate boundary value problem, [MS, Theorems 1
and 2]. In this volume, Samborskil clarifies the structure of the space on
which H(D(-)) can be considered to act and states further uniqueness re-
sults, [Sam]|, while Kolokoltsov uses the idea of generalised weak solutions to
study a stochastic version of (5.2), [Kolb).

Maslov and Samborskiil remark that “viscosity solutions coincide” with
those given by their results, [MS, Remark 4], but fail to state the condi-
tions under which such a comparison can be proved. Very recently, Gondran
has announced a characterisation of viscosity solutions, [Gonb, Theorem 6],
based on the ideas in [KM89] and [MS]. (See also the more recent [Gonal.)
This is an important development which finally suggests a precise connection
between viscosity solutions and idempotent methods. Unfortunately, the an-
nouncement contains no proofs! We limit ourselves to a brief statement of
Gondran’s result, as our final comment on this fascinating subject.

Definition 5.4 Let X be a set and suppose that ® C (Rmin )o(X) is non
empty. The sequence ur € (Rmin )o(X) s said to converge weakly from be-
low to u € (Rmin }s(X) with respect to ®, denoted liminfy , ux = u, if
lim infx_y 00 (U, @) = (u, @), for all ¢ € .

Weak convergence from above, limsupy . ux, and weak convergence,

limy_, o uk, can be defined in a similar way. Weak convergence was intro-
duced by Maslov, [Mas87b].

Theorem 5.2 ([Gonb, Theorem 6]) Let X = R* and & = ¢®(R*). Suppose
that, ug € (Rmin )s(R") is a sequence of C' functions such that lim}_ _u; =
u, for some u € (Rmin )s(R*). Suppose further that the image sequence
F(z,ux, Dug) has the property that liminfy ,  F(x,uk, Dux) = 0. Then u is
a viscosity supersolution of (5.1). A dual statement over Rmax characterises
subsolutions.

6 Optimisation and large deviations

6.1 Asymptotics

In the previous section we studied nonlinear equations in their own right. We
touched on asymptotics in explaining the origins of the word viscosity in §5.2.
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In fact, asymptotics was a fundamental motivation behind Maslov’s work and
throws up some intruiguing questions about the nature of idempotency.

The following example, which is taken from [Mas87b], gives a good illus-
tration of how asymptotics enters the picture. Consider the heat equation in
one dimension, with a small parameter, 0 < h: 8, = hd2u. This is a linear
equation and if u, uy are solutions, then so is ayu; + asus for a;,a, € R. We
can, however, apply a nonlinear transformation, such as u = exp(—w/h), and
thereby arrive at a nonlinear equation

Ow + (O;w)? — h&2w =0,

which still satisfies a superposition principle. If w,,w, are solutions of this
then so is —hlog(exp(—(ai + w1)/h) + exp(—(az + wz)/h)). Now let h — 0.
We obtain the nonlinear first order equation

3tw + (3110)2 =0 ,

which the reader will recognise as a Hamilton-Jacobi equation of the form
(5.2) with H(p) = p?. We see further that

hl_ig1+ —hlog(exp(—a/h) + exp(—b/h)) = min(a, d) , (6.1)

- so that the superposition principle reduces to min(a; + wi,as + wa). Once
again we have stumbled across the intuition that solutions of (5.2) are linear
over Rmin -

Limits of the form lim,_,0 hlog(exp(F(h))) are studied in a number of
areas: large deviations, exponential asymptotics, etc. Calculations like that
above have given rise to another intuition, arising out of asymptotics, that
idempotency appears in the large deviation limit, at least over Rmax and Rupin -
How do we make sense of this?

Maslov, in an influential book published in 1987 in French translation,
[Mas87a}, put forward the idea of constructing an idempotent measure theory
with measures taking values in Ry,;, . This provides a foundation for a theory
of optimisation which runs parallel to the theory of probability, based on
classical measures. Recent work suggests that this idempotent optimisation
theory is, in fact, the large deviation limit of classical probability theory. In
the remaining sections we briefly discuss this circle of ideas.

6.2 Idempotent measures and integration

Let X be a set and choose ¢ € (Rmin )o(X). If A C X, let c(A) = (4,¢) :=
infoeq c(a). This is the canonical example of an idempotent measure. If
{A; € X | i € I} is any family of subsets, then it follows easily that

c (U A,-) => c(A) . (6.2)

iel i€l
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Unlike conventional measures, which are based on geometric concepts of area,
idempotent measures are based on economic concepts of cost and the subsets
A; need not be pairwise disjoint. It is also not necessary, in order for (6.2) to
hold, that the index set I be countable, although countable additivity always
seems to be assumed. Idempotent measures are closely related to Choquet
capacities and to so-called non-additive set functions, [O’B96, Pap91].

More generally, one can seek an idempotent measure, k, on a restricted
family, F, of subsets, corresponding to a o-algebra in measure theory. There
is no obvious need for F to be closed under either complementation or in-
tersection, although these properties are often assumed. It is now no longer
necessary that a function ¢ € (Rmin )5(X) exists such that, for each A € F,
k(A) = (64, ¢). If c does exist, it is called a density for k. By Lemma 5.2, pro-
vided UaerA = X, there is a unique least such density, given by k. = Ps(c)
where ® = {04 | A € F}. Formula (5.6) shows that k.(z) = sup,s, k(A),
which gives us a candidate for a density, should one exist. For measures de-
fined on the open sets of a topology, densities always exist if the topological
space is reasonable: for instance, a separable metric space, [MK94, Aki95].

Another way to think about measure is through integration. If (X, F, k) is
a reasonable idempotent measure space and f € (Rmin )s(X), then the idempo-
tent integral is given by [ f(z)dk = (f, k.). When k is the uniform measure,
whose density is the characteristic function of X, this is written [ f(z)dz.
This integral notation is widely used. It suggests analogoues of various clas-
sical theorems on integration, such as those of Riesz, Fubini, etc. For the
most part, these are not deep. Fubini’s Theorem, for instance, is equiva-
lent to the triviality that inf,c4infyep f(a,b) = infyepinfiea f(a,b), where
f € (Rmin )o(X x Y). Akian’s result, mentioned in the previous paragraph,
tells us that idempotent measures on sufficiently nice topological spaces are
always absolutely continuous with respect to the uniform measure. This is
different from the classical Radon-Nikodym theorem.

6.3 Optimisation theory

The idea of an optimisation theory built on idempotent measures has been
developed in the PhD theses of Bellalouna and del Moral and by the Max-
Plus Working Group. We will not discuss it in detail here; the reader should
refer to the papers in this volume of Akian, Quadrat and Viot, [AQV], del
Moral, [dMa], and del Moral and Salut, [dMSb]. Quadrat’s presentation
to the International Congress in Ziirich in 1994, [Gro95], includes a useful
summary. The theory is in a state of vigorous development; there is not always
agreement on terminology and many of the foundational definitions have not
stabilised. To what extent it provides a true foundation for optimisation, as
probability theory does for the study of random phenomena, is a question
that must be addressed elsewhere.
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Optimisation theory provides a conceptual framework which runs parallel
to probability theory: cost variable, as opposed to random variable; value, as
opposed to mean; independence of cost variables; conditional cost; Bellman
chains, as opposed to Markov chains; etc. The analogoue of the Gaussian dis-
tribution turns out to be (z —a)?/2b, which is stable under inf convolution, as
the customary Gaussian is under ordinary convolution, [Gro95]. Analogoues
of the laws of large numbers can be formulated, based on various notions of
convergence of cost variables, [AQV, dMa).

Weak convergence of cost measures, as in [AQV, Definition 5.1] or {dMa,
Definition 3|, is defined to be weak convergence of their densities in the
sense of Definition 5.4 but with respect to the set of continuous functions
[ € (Rmin )s(X). This is larger than the set of test functions used for vis-
cosity solutions in Theorem 5.2, which had prescribed behaviour at infinity.
The differences between various sets of test functions is another foundational
question which has not been adequately studied. Weak convergence of cost
measures is exactly analogous to weak convergence of probability measures,
[Wil91, Chapter 17].

6.4 Large deviations

Let r; be a sequence of independent and identically distributed random vari-
ables. One of the basic questions in probability theory concerns the behaviour
of the average sy = (r; + --- + rx)/k. Under reasonable conditions, s, con-
centrates at the mean of r), as k = oo. Large deviation theory deals with
the asymptotics of this process. If 0 < a, how fast does P(sy > a) go to
zero as k — oco? Cramér showed in 1938 that, roughly speaking, it goes as
exp(—kI(a)), where I : R — R is a certain rate function, [DZ93, §2.2]. I
can be constructed from r; by the Cramér transform: the Legendre-Fenchel
transform of the logarithm of the moment generating function:

I(z) = sup{wt — log(E(exp(tr1)))} -

teR

More generally, we have the large deviation principle.

Definition 6.1 ([DZ93, §1.2]) Let {u | 0 < €} be a family of probability
measures on the Borel o-algebra of a topological space X. Let I € (Rin )o(X)
be lower semi-continuous and satisfy 0 < I(z) for all z € X. Then {puc}
satisfies the large deviation principle with rate function I, if, for any closed
set F' and open set G of X,

lim sup,_,q € log pic(F)
lim inf,_,o € log p(G)

- inszF I(.’IJ)

—inf,eq I(z) .

<
E (6.3)
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The papers of Akian et al, [AQV], and del Moral, [dMa, dMSa, dMb)], shed
light on the connection between large deviations and idempotency. Theo-
rem 5.2 of [AQV] (see also [dMa]) gives a necessary and sufficient condition
for weak convergence of measures on a metric space, which is strikingly simil-
iar to (6.3). This suggests that the large deviation principle is a form of weak
convergence to the rate function. Proposition 6.8 of [AQV] is asserted to be
equivalent to the Gartner-Ellis theorem, one of the main results of large devi-
ation theory, [DZ93, Theorem 2.3.6]. Proposition 6.8 is analogous to the Lévy
convergence theorem: weak convergence of distribution functions corresponds
to pointwise convergence of characteristic functions, [Wil91, §18.1]. (Charac-
teristic function is used here in the sense of probability theory, [Wil91, §16.1].)
As in probability theory, the central limit theorem for cost variables, [AQV,
Theorem 4.6] (see also [dMa]), falls out as a corollary of Proposition 6.8.

As this account suggests, the results of optimisation theory appear to en-
capsulate and reformulate the large deviation asymptotics of probability the-
ory.

6.5 Topical functions and asymptotics

There is another way to approach the emergence of idempotency in the large
deviation limit. It uses the topical functions of §4.2 and formula (6.1). We
noted in §2.9 the close analogy between the spectral theory of max-plus matri-
ces and nonnegative matrices. This seems very similar to the analogy between
probability theory and optimisation theory discussed in the previous section
but without the large deviation mechanism for moving from the former to the
latter.

Let A € M;(Rmax ). For each 0 < h < 1, define the functional " :
My (Rmax ) = Top(n,n) by

(Eh(A)(xl, e ,:rn))i = hlog(zn: exp((Ai; + z;)/h)) .

j=1

It is easy to check, using Lemma 4.1, that £*(A) is a topical function for all
h € (0,1]. Furthermore, £'(A4) = £(exp(A)), where exp(4) € M,(R'°) is
given by exp(A);; = exp(A;;), and £ is the functional introduced in §4.2. At
the other end, for any fixed z € R*, lim;,_,¢+ £*(4)(z) = Az, by (6.1).

We see that we have a deformation, within the space of topical functions,
between £(exp(A)), representing the nonnegative matrix exp(A), and the
max-plus matrix A. The class of topical functions provides us with a context
within which both extremes, and the intervening space, can be explored.

How do the dynamics and spectral theory of £"(A) vary with A? In par-
ticular, how do the dynamics and spectral theory of A emerge in the limit as
h — 07 Perhaps this can be viewed as a non-commutative version, appropri-



An Introduction to Idempotency 41

ate for matrices, of the problems discussed in §6.4. On this enigmatic note,
we bring our survey of idempotency to a close.
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