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Abstract. The following electromagnetism (EM) inverse problem is addressed. It

consists in estimating local radioelectric properties of materials recovering an object

from global EM scattering measurements, at various incidences and wave frequencies.

This large scale ill-posed inverse problem is explored by an intensive exploitation of

an efficient 2D Maxwell solver, distributed on high performance computing machines.

Applied to a large training data set, a statistical analysis reduces the problem to a

simpler probabilistic metamodel, from which Bayesian inference can be performed.

Considering the radioelectric properties as a hidden dynamic stochastic process that

evolves according to the frequency, it is shown how advanced Markov Chain Monte

Carlo methods – called Sequential Monte Carlo (SMC) or interacting particles – can

take benefit of the structure and provide local EM property estimates.

1. Introduction

Inverse scattering is a topic of major importance; it encompasses various applications

[1, 2, 3] in acoustics, optics and electromagnetism, e.g. medical imaging, tomography,

ionospheric sounding or SAR (Synthetic Aperture Radar). In electromagnetism (EM),

the direct scattering problem is the determination of the scattered field, due to the

scattering of an incident wave in the presence of inhomogeneities, when the geometrical

and physical properties of the scatterer are known. Conversely, inverse scattering is

defined as ”inferring information on the inhomogeneity from knowledge of the far-field

pattern...” [2]; it is an inverse problem. In this paper, we focus on a specific, though

worthwhile, EM inverse scattering issue. The aim is to estimate the electromagnetic

properties of materials from global microwave scattering measurements. Related

applications can be located at the crossroads of non-destructive testing, quality control

and material measurement. Many EM material characterization techniques have been

developed in the domain of agricultural and food materials, radar absorbers [4], etc.

Most of these techniques, from the transmission lines to the admittance tunnel method,

require small-scale material test samples. For instance, transmission lines enclosed
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samples inside the conductors of a transmission-line sample holder. Although the

EM properties (i.e. permeability and permittivity) can be measured, they can differ

significantly from the final product’s ones, when the materials are assembled and placed

on the full-scaled object or system [4]. The so-called free-space RCS (Radar Cross

Section: scalar that quantifies reflectivity) methods [4] can overcome this pitfall by

measuring the monostatic reflectivity of a large planar sample. The sample is then

located inside an anechoic chamber, in the far field of the transmitting and receiving

antennas. The reflectivity is measured at various arrival angles of the incident wave.

Besides, let mention the classic bistatic alternative in near field, known as the NRL

arch method [4]. In this paper, we focus on the following challenging inverse scattering

problem: the control and evaluation of EM properties of a full-scaled objet or mock-

up from the global reflectivity measurements in a free-space RCS device. Deviations

of microwave properties, such as permeability and permittivity, are to be determined

along the object.

Nearly 50 years ago, a closely related issue was formerly outlined in [5]. Least-

square optimization was applied to determine the dielectric constants that made the

analytically computed RCS fit with measurements. This issue reemerged in a slightly

different way in [6]: both complex permittivity and permeability of a lossless plane

stratified medium were evaluated. More recently, [7] considers the reconstruction in

microwave tomography of the dielectric properties of a strongly inhomogeneous object

by a stochastic global optimization algorithm, based on simulated annealing. Similarly,

[8] develops a pseudoinversion algorithm for 2D imaging, with the aim of locating and

estimating the dielectric permittivities of unknown inhomogeneous dielectric cylindrical

objects. It corresponds to an important class of inverse scattering problems, which

differs markedly from our topic and consists in determining the constitutive parameters

of bounded objects embedded in a known medium. Measurements are performed at

different points of the scattered field, that results from a known single-frequency wave

illumination. On the whole, it is known to be an ill-posed inverse problem. Like image

reconstruction and many other imaging inverse problems [9, 10], it necessitates, at

some step, a regularization procedure: it tends to eliminate the artificial oscillations

resulting from the ill-posedness of the problem. According to [2], the procedures can

be partitioned into the next two families: the non-linear optimization schemes and

the weak scattering linearization approximation methods, such as physical optics and

Born approximation. When it is possible, linearization considerably simplifies and

accelerates the inversion. Yet, Born approximation, that assumes that the electric

field inside the integral equation can be approximated by the incident field, is only

appropriate when the material contrast is small and the object size is not too large

compared to the wavelength. Consequently, to overcome the limitations imposed by

first-order methods, many deterministic nonlinear methods have been developed to solve

different types of inverse scattering problems efficiently. First of all, let us mention

the Contrast Source Inversion (CSI) method [11, 12]: it minimizes a cost functional
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by iteratively updating unknown contrast sources. Many improvements have been

proposed: the introduction of a total variation regularization term to preserve edges

[12] (with the difficulty to determine the regularization parameters), the extended Born

approximation which seems to be more accurate for a larger range of material contrasts

and object sizes [11], the distorted Born approach [13] where the Green’s function is

updated at every iteration step, the diagonalized contrast source approach [14], etc.

Another approach is the modified gradient method [15], based on gradient scheme and a

successive over-relaxation approach to solve the direct problem. Finally, let us emphasize

the efficient linear sampling method in 3D shape reconstruction of obstacles due to local

inhomogeneities [16, 2].

In this paper, a global statistical approach is developed to examine the ”free space

RCS” inverse scattering and solve the large scale ill-posed inverse problem. In some

way, the approach can be considered to be part of the two aforementioned procedure

families. It involves an approximation method. Intensive Maxwell solver computations,

distributed on high performance computing (HPC) machines, results in a surrogate

likelihood model. It is the starting point of a complete statistical dynamic model

framework that leads to an efficient inference scheme, close to optimization. It

stems from statistical signal processing and advanced Monte Carlo sampling (e.g.

Markov Chain Monte Carlo). Bayesian inference is performed by a sequential Monte

Carlo (SMC) stochastic algorithm (see for instance [17] or [18], respectively applied

to tomographic imaging and magnetoencephalography). These algorithms are called

”interacting particles” [19] or particle filtering in adaptive filtering and sequential

estimation. They are used to provide, in addition to microwave properties estimates

of materials, the very significant information of the associated uncertainties. From

the seminal work of Geman and Geman [20], stochastic methods have been commonly

used in inverse scattering and, more generally, in image inverse problems: simulated

annealing for image reconstruction [21], expectation-maximization algorithm for radar

imaging [22], etc. In microwave imaging, [23] points out genetic algorithms and

stochastic heuristics, such as differential evolution methods, memetic algorithms,

particle swarm optimizations, ant colonies, etc. In short, many attempts have been

made in electromagnetism to apply stochastic methods to tricky inverse problems

or non-convex optimization (such as multilayered radar absorbing coatings [24, 25]).

Though powerful, stochastic inverse methods often come up against high-dimensional

curse. In the approach, advantage is taken of the problem structure to achieve a Rao-

Blackwellisation strategy [26, 19] of Monte Carlo variance reduction and to design a

powerful stochastic inversion method that overcomes the high-dimensional obstacle.

Compared to the above-mentioned deterministic methods, such as the contrast

source inversion method, our statistical inverse approach has several advantages in

in dealing with the ”free space RCS” inverse scattering problem. As it is stressed

by [3], it offers a powerful and convenient framework to solve ill-posed inverse problem
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via a Bayesian regularization resulting from the probabilistic modeling of the prior

knowledge and measurement uncertainties, i.e. the information. It provides a frequency

band reconstruction algorithm that jointly considers the measurements at different

frequencies. And above all, the approach provides confidence intervals or uncertainties

on the estimated microwave properties, with a set of possible properties in coherence

with the measurements. It can be especially useful in the context of quality control or

material measurement. Besides, unlike Born or Rytov approximations, notice that the

approach approximations rely on an exact Maxwell solver that is able to catch all the

complex object-wave interactions.

This paper is organized as follows. In section 2, free-space RCS material measurements

is introduced and the inverse scattering problem is developed. Next, section 3 describes

the probabilistic modeling , from the surrogate likelihood model to the overall statistical

dynamic modeling framework and, at its core, a hidden Markov model (HMM).

The inversion Rao-Blackwellised stochastic algorithm is developed in section 4. It is

evaluated in section 5 where its statistical performance is assessed.

2. The inverse scattering problem

2.1. Electromagnetic scattering measurement

EM scattering measurements have been achieved ever since radar invention [4]. Briefly

speaking, EM scattering is the standard phenomenon that occurs when an object is

exposed to an EM wave and disperses incident energy in all directions (scattering is this

spatial distribution of energy). Some energy is scattered back to the source of the wave.

It constitutes the radar echo of the object, the intensity of which results from the radar

cross section (RCS) of the object. More precisely, RCS is defined by:

σs = lim
R→+∞

4πR2 |Escat|2

|Einc|2
(1)

It quantifies the scattering power of an object, i.e. the ratio between the scattered power

density Escat at the receiver and the power density of the incident wave at the target

(with R the radar-object range). It depends on the wave polarization and frequency.

The 4πR2 term takes into account the radiated spherical wave. Implicitly, (1) requires

that the incident wave is planar (R → +∞). Practically, it is possible to measure the

RCS at limited ranges with a sufficient accuracy. It is usually achieved in indoor RCS

test chambers, also called anechoic chambers. There, interferences can be limited by

microwave absorbing materials (see figure 1).

In the article, we consider that an object or mock-up is illuminated by a radar, i.e.

a single antenna or a more complex device (such as the antenna array of figure 1) that

fulfills to a certain extent directivity and far-field conditions [27]. Herein the radar

system is monostatic, which means that the transmitter and receiver are collocated.
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Figure 1. RCS measurement inside an anechoic chamber

Its common principle is described in figure 2. Considering that the radar illuminates

the object at a given incidence with a quasi-planar monochromatic continuous wave

(CW) of frequency f (incident electric field Einc), the object backscatters a CW to

the radar (scattered electric field Escat) at the same frequency. With an appropriate

instrumentation system (radar, network analyzers, etc.) and a calibration process, it is

possible to measure the complex scattering coefficient, which can be roughly defined by:

S = Escat

Einc
. It sums up the EM scattering, indicating the wave change in amplitude and

phase. S is closely linked to the RCS, with: σs = |S|2. It is important to notice that

the scattering coefficient quantifies a global characteristic of the whole object-EM wave

interaction in specific conditions (incidence, frequency, etc.). It is possible to measure

the scattering coefficient for different transmitted and received polarizations.

Einc

Escat

RADAR

rotate

Figure 2. Monostatic scattering measurement principle

Let us assume the following conventional RCS acquisition mode, widely used in Inverse

Synthetic Aperture Radar (ISAR) imaging. It consists in measuring various complex

scattering coefficients S:

- at different wave frequencies: f ∈ {f1, f2, · · · , fKf}, for Kf successive discrete

frequencies. Basically, it consists in a series of transmitted narrow-band pulses,

commonly known as SFCW (Stepped Frequency Continuous Wave) burst [28].

- at different incidence angles: θ ∈ {θ1, θ2, · · · , θKθ}, for Kθ different incidence angles

(object rotation with a motorized rotating support).
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- at different (transmitted and received) linear polarizations: pol ∈ {HH, V V },
meaning respectively, horizontally and vertically polarized both at microwave

emission and reception.

Let’s call M the complete measurement, set of 2 · Kf · Kθ elementary complex

scattering coefficients: M = {Sf,θ,pol}, for f ∈ {f1, · · · , fKf}, θ ∈ {θ1, · · · , θKθ} and

pol ∈ {HH, V V }.

2.2. Nondestructive testing

In this article, we are interested in an industrial control issue, that can be assimilated

to nondestructive testing (NDT). Unlike usual EM material characterization techniques

[4], the point is to determine or check radioelectric properties (i.e. relative dielectric

permittivity and magnetic permeability) of materials that are assembled and placed on

the full-scaled object or system. Is it possible from the above complete measurement

M? Is it possible to extract some local information on the material properties along

the object from the global scattering measurement information?

area 1

area 2

area M
…

Figure 3. The object coated by Na material areas

In order to circumscribe the investigation, the article is restricted to a metallic

axisymmetric object, which is coated by Na material areas, each area corresponding

to a rather homogeneous material, with its associated isotropic radioelectric properties

weakly varying within the area. It is illustrated in figure 3, with an ogival shape

taken from the RCS benchmark [29]. Consequently, the aim is to determine, from

the global scattering measurement M, the unknown isotropic local EM properties

(ε1, µ1), (ε2, µ2), · · · , (εN , µN) along the object, where N is the number of different

elementary zones (cf. Figure 4).

2.3. An inverse problem for Maxwell’s equations

Naturally, there is no direct model that is able to compute the radioelectric properties

from global scattering information. On the contrary, the forward scattering model based

on the resolution of Maxwell’s equations can determine the scattering coefficients, given

the EM properties, the object geometry and acquisition conditions (i.e. wave frequency,

incidence, etc.). It lies in the resolution of Maxwell’s equations, partial derivative

equations that represent the electromagnetic scattering problem of an inhomogeneous
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Figure 4. Elementary mesh zones

obstacle. It is performed by an efficient parallelized harmonic Maxwell solver, an exact

method that combines a volume finite element method and integral equation technique,

taking benefit from the axisymmetrical geometry of the shape [30]. Discretization is

known to lead to problems of very large sizes, especially when the frequency is high.

Furthermore, as it is shown further on, the solver is to be run many times for the

inversion purpose. Hence, it necessitates high performance computing (HPC): a massive

supercomputing system, with nearly 20,000 processors and a performance higher than

1 petaflops (million billion operations per second).

piloting 
/ 

acquisition 

Signal  
processing 

RCS measurement Inversion 

2D Maxwell 
solver X 
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properties 

~ 

+ associated 
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Let assume the following conventional RCS acquisition mode, which consists in

measuring various complex scattering coe�cients S:

- at di↵erent wave frequencies (also called SFCW mode, for Stepped Frequency

Continuous Wave): f 2 {f1, f2, · · · , fK}, for Kf successive discrete frequencies.

- at di↵erent incidence angles: ✓ 2 {✓1, ✓2, · · · , ✓N}, for K✓ di↵erent incidence angles

(object rotation with a motorized rotating support).

- at di↵erent (transmitted and received) linear polarizations: pol 2 {HH, V V },

meaning respectively, horizontally and vertically polarized both at microwave

emission and reception.

Let call the complete measurement M, set of 2 · Kf · K✓ elementary complex

scattering coe�cients:

M = {Sf,✓,pol} (2)

for f 2 {f1, · · · , fK} ⇥ ✓ 2 {✓1, · · · , ✓N} ⇥ pol 2 {HH, V V }.

2.2. Nondestructive testing

In this article, we are interested in an industrial control issue, that can be assimilated

to nondestructive testing (NDT). Unlike usual EM material characterization techniques

[4], the point is to determine or check radioelectric properties (i.e. permeability and

permittivity) of materials that are assembled and placed on the full-scaled object or

system. Is it possible from the above complete measurement M? Is it possible to extract

some local information on the material properties of areas from the global scattering

measurement information?

area 1 

area 2 

area N 
… 

(ε1,µ1) 
(ε2,µ2) 

(εN,µN) 

Figure 3. The object recovered with N areas of unknown radioelectric properties

In order to circumscribe the investigation, the article is restricted to a metallic

axisymmetric object, which is is recovered with N areas, each area corresponding

to a material with its associated isotropic radioelectric properties, i.e. the complex

Figure 5. The inverse scattering problem

Figure 5 sums up the entire inverse scattering problem. On the one hand, the RCS

measurement process, that includes acquisition, signal processing, calibration, etc.,

provides the complex scattering measurement M, with uncertainties. On the other

hand, it would be useful to ”row upstream” the Maxwell solver, in order to determine

the unknown radioelectric properties, denoted by x. Yet, even with recourse to HPC,

there is no direct way to solve what turns out to be a high dimensional ill-posed inverse

problem, like imaging inverse problems [10]. Next, we propose a global statistical

inference approach, which is able to take prior information into account and achieve

the required inversion. Like Tikhonov regularization, it tends to eliminate artificial

oscillations due to the ill-posedness of the problem.

3. The statistical problem formulation

The global statistical approach is introduced gradually, from its formulation at a given

frequency fk to the whole stochastic model at the various frequencies f1, f2, · · · , fKf .
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3.1. The problem statement at a single frequency fk

Consider a given frequency fk of the SFCW burst. Let us define the two main modeling

components at fk: the system state xk, the observation yk and the probabilistic link

between them, i.e. the likelihood model p(yk|xk). To lighten the notations, they are

denoted respectively x, y and p(y|x) in this section.

3.1.1. System state x =
[
ε′ ε′′ µ′ µ′′

]T
includes the relative permittivity and

permeability components of the N elementary zones, where ′ and ′′ denote respectively

the real and imaginary parts ‡ (at frequency fk). The four components can be developed

as: ε′ = [ε′1 · · · ε′N ]T , ε′′ = [ε′′1 · · · ε′′N ]T , µ′ = [µ′1 · · ·µ′N ]T and µ′′ = [µ′′1 · · ·µ′′N ]T . x is in a

system space of dimension 4N ; it includes all the unknown parameters that are to be

estimated.

3.1.2. Observation y = [<(SHH) =(SHH) <(SVV) =(SVV)]T contains the real

(<(·)) and imaginary (=(·)) parts of the complex scattering coefficients SHH and SVV

measured at the Kθ angles θ1, · · · , θKθ (at frequency fk). The two complex terms

SHH and SVV can be detailed: SHH =
[
Sfk,θ1,HH Sfk,θ2,HH · · · Sfk,θKθ ,HH

]T
and

SVV =
[
Sfk,θ1,VV Sfk,θ2,VV · · · Sfk,θKθ ,VV

]T
. The observation space dimension is

4 ·Kθ.

3.1.3. Likelihood model p(y|x) describes the probabilistic relation between the system

state x and the observation y (at frequency fk). In other words, it provides the

probability distribution of the observation y, given a known system state x. It is a

key element of the knowledge that needs to be taken into account. Our inference goal

is going to inverse this statistical relation. The likelihood model can be expressed as a

multidimensional Gaussian of mean FMaxwell(x) and covariance matrix Rm:

y|x ∼ N (FMaxwell(x),Rm) (2)

where FMaxwell is the direct model, from the state space to the observation space,

that relies on the aforementioned Maxwell solver. Taking into account measurement

uncertainties, the likelihood model results from the following considerations.

- The Maxwell solver, based on a direct method, is exact, i.e. extremely precise.

FMaxwell is assumed to compute the ”perfect observations”, meaning without

measurement noise, bias, etc. Implicitly, it is assumed that the shape object is

perfectly known and that, conditionally to radioelectric properties, uncertainty only

comes from measurement.

- From previous measurement uncertainty analysis (see metrology guideline [31]),

it has been shown that the measurement uncertainty can be reasonably modeled

by an additive Gaussian noise (y = FMaxwell(x) + vm, vm ∼ N (0,Rm)) with the

quantified covariance matrix Rm.

‡ In other words, ε = ε′ + jε′′ and µ = µ′ + jµ′′ (for time dependence convention ejωt).
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Consequently, the likelihood model can be expressed as (with ν = 4 ·Kθ):

p(y|x) =
1

(2π)
ν
2

√
det R

e−
1
2
(y−FMaxwell(x))

TR−1(y−FMaxwell(x)) (3)

At first sight, just considering a single frequency fk, numerous evaluations of p(y|x),

i.e. of the Maxwell solver FMaxwell(x), are required in order to solve the inverse problem;

they can be far too time-consuming, even with high performance computing. To avoid

heavy FMaxwell computations, a statistical learning approach has been achieved. Its

basic principle is to build a surrogate model, i.e. an approximation of FMaxwell that is

acceptable in the limited domain of interest. In a way, it is related to weak scattering

linearization approximation methods of [2] in inverse scattering, and among them, the

former mentioned and widely used Born approximation [1, 2]. Here, the statistical

linearization is not performed from truncation of physical interactions, but from full

Maxwell solution computations that take multiple interactions, creeping waves, etc. into

account. The system, i.e. the high dimension state space of x and the associated system

response FMaxwell(x), is explored by random sampling, according to a prior knowledge

about the expected radioelectric properties (prior distribution p(x)). The computations

are massively distributed on HPC machines, each computation involving the parallelized

Maxwell solver. The computation number depends mainly on the state space dimension.

The Monte Carlo simulation process leads to the following training set:

B = {(x(1),y(1)), (x(2),y(2)), · · · , (x(NS),y(NS))} (4)

where x(k) ∼ p(x) (∼ for realization of) and y(k) = FMaxwell(x
(k)) (for k = 1 · · ·NS),

NS being the number of samples. Multidimensional linear regression provides a

straightforward and efficient way to build a linear model y = f(x) + vl (vl is an

linearization error term) with:

f(x) = A · x + y0 or f(x) = A? · [1 x] , A? = [y0 A] (5)

A? is the least square (LS) estimates of the matrix of parameters that minimizes the

errors to linearity (δl), is given by the solution to the normal equations:

A? = (X T
B · XB)−1X T

B YB with XB =


1 x(1)

1 x(2)

· · · · · ·
1 x(NS)

 , YB =


y(1)

y(2)

· · ·
y(NS)

 (6)

where XB is the (4N ×NS) input matrix and YB the ( 4Kθ×NS) response matrix, from

the training set B. For numerical stability, a QR decomposition of XB is introduced.

By residual analysis, it is then possible to assess the linear model fitness, i.e. to

determine the discrepancy between the data and the model in the domain of interest. In

principle, the covariance matrix (Rl) evaluation of the linearization error vl may require

a supplementary data set or cross-validation methods. Remark that additional statistical

analysis can be achieved to extract reduced models, removing useless explanatory

variables, i. e. permittivity or permeability components of zone subsets. That depends

on the wave interaction, especially on the frequency band.
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Back to the likelihood model (2), it leads to an overall error term v = vl + vm of

covariance matrix R (in our context, the linearization error turns out to be negligible

compared to the RCS measurement uncertainties: R + Rl ' R) and to the following

linear Gaussian (LG) likelihood model (reintroducing the subscript k for frequency fk):

yk|xk ∼ N (Ak · xk + y0
k,Rk) or yk =

[
Ak · xk + y0

k

]
+ vk (7)

with Ak and y0
k learned from the training set Bk. It is illustrated in figure 6 for the

ogival shape of figure 3 (N = 137, f = 1.5 GHz, θ = 0◦ : 1◦ : 180◦ - exploration:

1000 HPC FMaxwell simulations). Inside each bloc, the pattern can be explained by the

coherent contribution of each elementary zone.

Figure 6. Matrix Ak illustration

3.1.4. Bayesian approach If such an inversion at a single frequency fk could be solved

by classical regularization methods [10], Bayesian estimation could offer a convenient

and powerful framework. Let us probabilize the unknown state vector xk and consider

a prior probability distribution p(xk). It is possible to model the priori knowledge with

a Gaussian distribution: xk ∼ N (mk,Pk).

The mean mk (dimension N) defines the reference radioelectric properties for the Na

areas that divide the object (cf. figure 3).

mk =
[
mε′

k mε′′

k mµ′

k mµ′′

k

]T
(8)

where mε′

k = [ε′k(1) · · · ε′k(1)︸ ︷︷ ︸
area 1

ε′k(2) · · · ε′k(2)︸ ︷︷ ︸
area 2

· · · ε′k(Na) · · · ε′k(Na)︸ ︷︷ ︸
area Na

]T , ε′k(i) being

the reference real permittivity of area i (i = 1 · · ·Na). Similar construction for mε′′

k ,

mµ′

k and mµ′′

k .

The covariance Pk (dimension N × N) quantifies the prior uncertainty around mk.

Pk is block-diagonal: Pk = diag(Pε′

k ,P
ε′′

k ,P
µ′

k ,P
µ′′

k ). It means that the properties

(ε′, ε′′, µ′, µ′′) are assumed to be uncorrelated. Each property block is block-

structured itself. For instance, Pε′

k = diag(Pε′

k (1), (Pε′

k (2), · · · , (Pε′

k (Na)), expressing
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the assumed property independence between areas. Focusing on one block Pε′

k (i),

a squared exponential covariance expresses the spatial homogeneity (of the given

property) between components, i.e. elementary zones of the object that belong to

the same ith material area :

Pε′

k (i) =
[
σε
′

k (i)
]2
×



1 ρS ρ2S · · · ρn−1S

ρS 1 ρS
...

ρ2S ρS
. . . . . .

...
...

. . . . . . ρS
ρn−1S · · · · · · ρS 1


(9)

where
[
σε
′

k (i)
]2

is the spatial variance of ith area and ρS ∈ [0, 1] the normalized

spatial correlation parameter (e.g. ρS = 0.95). With this Markovian property,

commonly used in Gaussian field modeling, correlation decreases geometrically with

the distance between components. Pε′′

k , Pµ′

k and Pµ′′

k are similarly constructed.

With linear Gaussian structure, i.e. Gaussian prior and linear Gaussian likelihood,

Bayesian inversion can be performed straightforwardly, with closed-form solutions [3].

In our problem, it is a part of the more complex global problem that encompasses the

frequency variation.

3.2. The global problem statement

Radioelectric properties are known to vary according to the wave frequency [4]. They

can be quite different from the lower band frequency f1 to the higher band one fK .

The basic idea is to maintain the former statistical modeling at each frequency fk while

introducing additional a priori information about the dynamic in frequency, i.e. how

quickly a property can vary with frequency, what the correlation is between two different

frequencies, etc. This regularity information can be quite different from one EM property

(ε′, ε′′, µ′, µ′′) to another, as well as from one material to another,

3.3. Generalized Auto-Regressive random process

The statistical modeling extension consists in modeling the whole sequence (xk, k ∈
{1, . . . , Kf}) by a generalized autoregressive (AR) random process:

x1 ∼ N (m1,P1)

xk+1 = mk+1 + Dρ ·Hk+1 ·H−1k · (xk −mk) +
√

Id −D2
ρ ·Hk+1 ·Vk (10)

where Hk is the square root of the covariance matrix Pk §. (Vk, k ∈ {1, . . . , K})
are i.i.d. (independent, identically distributed) N (0, Id) and Dρ is a positive diagonal

matrix commuting with Hk. The dynamic model expresses the linear Gaussian

correlation structure. It can be checked that the marginal distribution of xk is still

§ unique symmetric definite positive matrix such as: Hk ·HT
k = Pk.
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N (mk,Pk). More generally, it can be shown that the distribution of concatenated

vector x = (x1, . . . ,xKf ) is Gaussian with mean m = (m1, . . . ,mKf ) and covariance

matrix:

P = H ·



Id Dρ D2
ρ · · · D

Kf−1
ρ

Dρ Id Dρ
...

D2
ρ Dρ

. . . . . .
...

...
. . . . . . Dρ

D
Kf−1
ρ · · · · · · Dρ Id


· HT (11)

where H is the block diagonal matrix H = diag(H1, . . . ,HKf ). Basically, every

joint distribution (xi,xj) is expressed .

The matrix Dρ takes the frequential correlations of the EM properties x1 · · ·xKf into

account; it refers to a hyper-parameter ρ. According to the frequency correlation prior

knowledge, the following alternatives can be considered:

(i) The frequency correlation doesn’t depend on the material and the EM property (ε′,

ε′′, µ′ or µ′′): ρ is scalar (∈ [0, 1]) and Dρ = ρ.Id.

(ii) It depends on the material: ρ is Na-dimensional (∈ [0, 1]Na), and Dρ is the block-

diagonal matrix made up of Na terms ρi.Id.

(iii) It depends on both: ρ is 4.Na-dimensional and Dρ is the block-diagonal matrix

made up of 4.Na terms ρi.Id.

AR models are frequently used to express dynamically Gaussian field modeling.

Starting from a multidimensional Gaussian distribution, we design an autoregressive

model that complies with the marginal distributions at each frequency, with the spatial

Markovian structure, and integrates the frequential correlations. Let’s emphasize how

the complete stochastic prior AR modeling is really adapted to our problem. Indeed,

it does not need too much information, roughly speaking it is not too constrained.

Concerning a material area, it requires only to give information about the microwave

properties, about the supposed evolution of properties according to the frequency

and about the spatial homogeneity. Basically, it is a probabilistic way to fix the

regularization. It is made by means of very understandable and common terms, such

as mean, variance and correlations. Notice that alternative approaches from spatial

statistics could surely be chosen to deal with the Gaussian field. The chosen dynamic

modelling provides an efficient sequential way to take it into account. Furthermore, as

it is done for spatiotemporal modelling [32], it could integrate decompositions on basis

functions, in order to reduce the problem dimension.

3.4. A conditionally hidden dynamic Markov process

The generalized AR random processes include the linear Gaussian models at the various

frequencies fk (k = 1 · · ·Kf ). It provides a spatial and frequential correlation structure.
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Assuming that the material areas are known to be quite homogeneous, the spatial

correlation parameter can be fixed (typically ρS = 0.95). Quite the reverse, frequency

correlations can not be really known; they are to be determined by the inversion process.

Back to Bayesian statistics, it is chosen to probabilize the unknown hyper-parameter ρ.

Finally, the combination of the AR dynamic model (11) with the likelihood model (7)

end in the following state-space model, observed at ”times” fk (k = 1, · · · , K):

xk+1 = Mρ
k · xk + wk yk =

[
Ak · xk + y0

k

]
+ vk (12)

assuming the initial state x1 ∼ N (m1,P1). Mρ
k is a transition matrix and wk a Gaussian

model noise (E(wk) 6= 0). Both directly arise from (11); they are not detailed here for

clearness.

y
k-1

y
k

y
k+1

x
k-1

x
k

x
k+1

ρρρρ

v
k-1

v
k

v
k+1

w
k-1

w
k

Figure 7. A graphical representation

Again, let us emphasize that the dynamic model involves that each marginal

complies with xk ∼ N (mk,Pk). On the other hand, it is important to remark that,

conditionally to the frequential correlation parameter ρ, the model is a classic linear

Gaussian hidden dynamic Markov process. A graphical representation of the entire

model is given in figure 7. Given a value of ρ, the lower part describes a linear Gaussian

system. The idea is to make the most of this specific structure.

4. Advanced Sequential Monte Carlo inversion

4.1. The Rao-Blackwellized Approach

As already mentioned, the unknown hyper-parameter ρ is probabilized, and so it is given

a prior distribution p(ρ), assumed calculable (up to a normalizing constant) and easy

to sample. The posterior distribution p(x, ρ|y) can be decomposed as:

p(x, ρ|y) = p(x|ρ,y) · p(ρ|y) (13)

Since the system is linear Gaussian conditionally to ρ, the conditional distributions

p(xk|ρ,y) can be straightforwardly computed by classic Kalman filtering. This forward

algorithm can be completed by backward smoothing, in this off-line context; the overall
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is often called ”Kalman smoother”. On the other hand, the term p(ρ|y) can be

decomposed as:

p(ρ|y) ∝ p(ρ) · p(y|ρ)

∝ p(ρ) ·
Kf∏
k=1

p (yk|ρ,y1, . . . ,yk−1)︸ ︷︷ ︸
:=Jk(ρ)

. (14)

Again, for any hyper-parameter ρ, the quantities Jk(ρ) can be evaluated from the

likelihood terms provided by the Kalman filter [3, 33]. Eventually, it is possible to exploit

this conditional system structure, with Kalman smoothers [3, 33] that can be applied

and integrated in the following interacting particle approach. In a first step, a stochastic

algorithm (described in section 4.2) gives an approximation of p(ρ|y). It estimates the

frequential correlations (i.e. regularity) of the EM properties ε′(f), ε′′(f), µ′(f), µ′′(f).

In a second step, the first moments of xk can be evaluated (for each frequency fk) by

the theoretical conditioning relations:

E(xk|y) = E [E(xk|ρ,y)|y] (15)

Var(xk|y) = E [Var(xk|ρ,y)|y] + Var [E(xk|ρ,y)|y] (16)

Note that Kalman recursions [33] are used both in the first step for calculating the like-

lihood of the hyper-parameter ρ (up to a normalizing constant) and in the second step

for determining the quantities E(xk|ρ,y) and Var(xk|ρ,y). This idea of mixing analytic

integration (here Kalman evaluation of p(x|ρ,y)) with stochastic sampling (here to ap-

proximate p(ρ|y)) is a variance reduction approach, known as Rao-Blackwellisation [26].

Let us denote by η(dρ) the probability measure associated with the marginal

distribution p(ρ|y), for a fixed observation vector y. Similarly to [26], we choose to

implement, for the first step, an efficient interacting particle approach, called Sequential

Monte Carlo (SMC), in order to estimate η. We now give a brief but general description

of these methods.

4.2. The SMC algorithm

Sequential Monte Carlo is a stochastic algorithm to sample from complex high-

dimensional probability distributions. The principle (see, e.g., [19]) is to approximate

a sequence of target probability distributions (ηn) by a large cloud of random samples

termed particles (ζkn)1≤k≤Np ∈ ENp , E being called the state space. Between “times”

n− 1 and n, the particles evolve in the state space E according to two steps (see figure

8):

(i) A selection step: every particle ζ in−1 is given a weight ωi defined by a selection

function Gn : E → (0,+∞) (i.e. ωi = Gn(ζ in−1)). By resampling (stochastic or

deterministic), low-weighted particles vanish and are replaced by replicas of high-

weighted ones.
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(ii) A mutation step: each selected particle ζ̂ in−1 moves, independently from the

others, according to a Markov kernel Mn : E → E.

Figure 8. The SMC 2-step evolution

Evolving this way, the cloud of particles, and more precisely the occupation distribution

η
Np
n := 1

Np

∑Np
k=1 δζnk (sum of Dirac distributions), approximates for each n the theoretical

distribution ηn defined recursively by the Feynman-Kac formulae. It is associated with

the potentials Gn and kernels Mn (see [34] for further details). More precisely, this

sequence ηn is defined by an initial probability measure η0 and the recursion:

ηn = ΨGn(ηn−1).Mn (17)

where ΨGn(ηn−1) is the probability measure defined by ΨGn(ηn−1)(dx) ∝ Gn(x).ηn−1(dx)

and, for any probability measure µ, µ.Mn is the measure so that µ.Mn(A) =∫
E
Mn(x,A)µ(dx).

The SMC approach is often used for solving sequential problems, such as filtering

(e.g., [35, 36, 37]). In other problems, like ours, this algorithm also turns out to be

efficient to sample from a single target measure η. In this context, the central idea is

to find a judicious interpolating sequence of probability measures (ηn)0≤k≤nf with in-

creasing sampling complexity, starting from some initial distribution η0, up to the final

target one ηnf = η. Consecutive measures ηn and ηn+1 are to be sufficiently similar

to allow for efficient importance sampling and/or acceptance-rejection sampling. The

sequential aspect of the approach is then an ”artificial way” to solve the sampling dif-

ficulty gradually. More generally, a crucial point is that large population sizes allow

to cover several modes simultaneously. This is an advantage compared to standard

MCMC (Monte Carlo Markov Chain) methods that are more likely to be trapped in

local modes. These sequential samplers have been used with success in several applica-

tion domains, including rare events simulation [38], stochastic optimization and, more

generally, Boltzmann-Gibbs measures sampling [39].

From a theoretical viewpoint, the stochastic convergence performance of SMC

algorithms has been mostly analyzed using asymptotic (i.e. when number of particles Np

tends to infinity) techniques, notably through fluctuation theorems and large deviation
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principles (see for instance [40, 41], and [42] for an overview). Some non-asymptotic

theorems have been recently developed [38, 43, 44, 45]. They lead to some biais

and variance estimations, Lp-error bounds and exponential concentration inequalities.

Roughly speaking, one can show that under some stability properties, the accuracy of

the method is of order
∣∣ηNpn − ηn∣∣ = O(

1√
Np

) (see for instance [43], Theorem 12).

4.3. Interpolating sequences of measures

Back to our objective of sampling from η(dρ), let us denote by E the state space of

the variable ρ (i.e. E = [0, 1], [0, 1]Na or [0, 1]4Na). We have to define a sequence of

distributions (ηn)0≤k≤nf from the initial distribution η0(dρ) = p(ρ)dρ (easy to sample)

to the target one ηnf (dρ) = η(dρ) = p(ρ|y)dρ.

4.3.1. The guiding principle With this in mind, we first define an interesting class of

Markov kernels on E: let h be a positive, bounded function on E, and let Q(x, dy)

be a Markov kernel on E, assumed reversible w.r.t. the Lebesgue measure on E. The

Metropolis-Hastings kernel Kh,Q(x, dy) associated with h and Q is given by the following

formula:
Kh,Q(x, dy) = Q(x, dy).min

(
1, h(y)

h(x)

)
∀y 6= x

Kh,Q(x, {x}) = 1−
∫
y 6=x

Q(x, dy).min
(

1, h(y)
h(x)

)
Using an acceptance/rejection method, this kernel is easy to sample as soon as one can

sample Q(x, dy) and calculate the ratios h(y)/h(x). Here is a crucial property: if µh
denotes the probability measure defined by µh(dρ) ∝ h(ρ)dρ, then it is well known (see,

e.g., [46]) that Kh,Q admits µh as an invariant measure:

µh.Kh,Q = µh

⇐⇒ ∫
E

Kh,Q(ρ,A)µh(dρ) = µh(A) , ∀A ⊂ E


More generally, this property is satisfied for the iterated kernel Km

h,Q, i.e. µh.K
m
h,Q = µh

(for any integer m).

Let ηn be a sequence of probability measures defined with some positive, bounded

functions hn so that: ηn(dρ) ∝ hn(ρ).dρ. Then, for any sequence of reversible Markov

kernels Qn and any sequence of integers mn, ηn satisfies the Feynman-Kac formula (17)

with potentials Gn := hn/hn−1 and Markov kernels Mn := Kmn
hn,Qn

(Khn,Qn iterated mn

times). Practically, the consequence is that such a sequence ηn can be approximated

using a SMC algorithm as soon as one can calculate the functions hn up to a normal-

izing constant. Similarly to traditional MCMC or simulated annealing methods, this

algorithm is all the more robust when the iteration numbers mn are large, since the

kernels Khn,Qn are just defined and used to stabilize the system.
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4.3.2. Design of bridging measure sequences From these considerations, we propose

three scheme variants of interpolating sequences of measures.

(i) The annealed scheme: the sequence ηn is defined by the positive, bounded functions

hn(ρ) = p(y|ρ)αn · p(ρ)

where (αn)1≤n≤nf is a sequence of numbers increasing from 0 to 1 (arbitrarily

chosen). In this situation, the potentials Gn(ρ) used in the selection are equal to

p(y|ρ)αn−αn−1 . Thus, αn is to be chosen to control the selectivity of these functions,

which is important in practice. Annealing or tempering is frequently used in SMC

(see [47, 19] and [48] in video tracking); it is related to simulated annealing (with

inhomogeneous sequence of MCMC kernels).

(ii) The data tempered scheme: for all n ∈ {0, 1, . . . , Kf}, ηn is the probability measure

associated with: hn(ρ) = p(ρ) ·
n∏
k=1

p (yk|ρ,y1, . . . ,yk−1)︸ ︷︷ ︸
=Jk(ρ)

. In other words, at each

generation n, the selection potential Gn(ρ) that is applied to the particles is the

term p (yn|ρ,y1, . . . ,yn−1), i.e. the likelihood of the n-th observation vector given

the previous ones. This allows the algorithm to work ”online”, since it treats the

observations sequentially. According to [47], it is efficient for problems that exhibit

a natural order (e.g. hidden Markov models). Yet, when these potentials turn out

to be too selective, the SMC algorithm turns out to perform poorly since the cloud

of particles loses its diversity at each selection step. It is substituted for the next

scheme that overcomes this drawback.

(iii) The hybrid scheme: similarly to the previous one, this scheme incorporates the

observations one after the other, but each likelihood function Jk(ρ) is handled as a

product:

Jk(ρ) =

nk∏
i=1

Jk(ρ)(α
(k)
i −α

(k)
i−1)

where for all k ∈ {1, . . . , Kf}, (α
(k)
i )1≤i≤nk is a sequence 0 ↗ 1. Then, if

n = (n1 + · · ·+ nr−1) + s, the function hn is given by:

hn(ρ) = p(ρ) ·
(
r−1∏
k=1

Jk(ρ)

)
· Jr(ρ)α

(r)
s

Note that the selection potential Gn = J
(α

(r)
s −α

(r)
s−1)

r can be arbitrarily controlled.

For each of these interpolating schemes, the functions hn are calculable up to a

normalizing constant (Kalman equations), so that the Metropolis-Hastings kernels

(possibly iterated) can be used to perform the mutation steps.
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4.4. The global estimation

To sum up, the joint distribution p(x, ρ|y) can be decomposed and evaluated as follows:

p(x, ρ|y) = p(x|ρ,y)︸ ︷︷ ︸
KF (+ smoothing)

·
∝

KF output︷ ︸︸ ︷
p(y|ρ) ·

prior︷︸︸︷
p(ρ)︷ ︸︸ ︷

p(ρ|y)︸ ︷︷ ︸
SMC

As previously mentioned, the SMC algorithm of section 4.2 provides in the first stage

an evaluation of the frequency correlations p(ρ|y) (i.e. an approximation η̂ = η
Np
nf of η).

It is computed from the last generation of particles (ρ(1), . . . , ρ(Np)) := (ζ1nf , . . . , ζ
Np
nf ).

In the second stage, estimators of EM properties are straightforwardly computed from

conditioning relations (15) and (16) (see details in annex 6); it consists in approximations

of the mean and covariance matrix of the system state xk. Focusing on a given frequency

or on a fixed zone, the SMC method provides useful information:

- For any frequency fk, it computes an approximation of the mean and covariance

matrix of the system state xk. Roughly speaking, one can sample from the posterior

distribution p(xk|y) by picking a ρ(i) from the final cloud of particles and computing

associated samples of xk by a Kalman smoother conditionally to ρ(i) (see further

illustration figure 12 page 22).

- For any fixed zone, the method provides estimators of the mean and marginal

variance for every frequency, so that the results can be presented as frequential

profiles, with marginal uncertainties (using the diagonal values of Σ̂k) (see further

illustration figure 13 page 22).

5. Applications

In this section, the inverse scattering approach is applied to EM scattering measurements

of a metallic ogival-shaped object. The validation is achieved with simulated data in a

wide frequency band from f = 200 MHz to 8 GHz. Section 5.1 describes the reference

nondestructive testing scenario. Next, section 5.2 describes the inversion process and

illustrates some results. A detailed performance analysis is developed in Section 5.3.

Then, in Section 5.4, we briefly analyze some variants of the approach.

5.1. Nondestructive testing scenario

The metallic object We consider the metallic axisymmetric object, previously shown

in figure 3; its ogival shape, derived from the RCS benchmark [29], is perfectly known.

The 2 m long object is coated by Na = 5 material areas, the isotropic radioelectric

properties weakly varying within each area. For each material area, the true EM

properties xtrue(f) undergo the following model: xtrue(f) = xref(f) + c · Λ(f).

At each frequency f , the true (unknown) vector xtrue(f) is 4N = 76-dimensional,

where:
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Figure 9. The functions Λ

- xref(f) is a reference frequency profile, depending on the area and on the

radioelectric component (ε′, ε′′, µ′, µ′′). Note that these 4Na = 20 reference profiles

are chosen regular and with typical orders of magnitude (i.e. non-negative and

≤ 20).

- Λ(f) is a perturbation function depending on the radioelectric component. Thus,

the 4 functions Λε′ ,Λε′′ ,Λµ′ ,Λµ′′ define the perturbation shapes . As shown in figure

9, they are chosen more or less regular (in order to test the inversion capabilities).

- c is a simple scaling factor, depending on the area. To examine the perturbation

amplitude influence, increasing values of c are chosen: {0.5, 1, 2, 4, 8}, related to the

5 successive areas.

(Simulated) scattering measurements According to the conventional RCS acquisition

mode described in section 2.1, complex scattering coefficients are measured for

both polarizations HH and VV, at Kf = 20 regularly spaced frequencies (f1 =

0.2 GHz, · · · , fKf = 8 GHz) and at Kθ = 23 regularly spaced incidence angles

(θ1 = 0◦, · · · , θKθ = 180◦).

The observation data y = (y1, . . . ,yKf ) is simulated from the likelihood model

(2). That involves to run the parallelized harmonic Maxwell solver (FMaxwell) and to

draw an additive white Gaussian noise of marginal standard deviation σn = 10−3. Note

that each of the 20 observation vectors yk is 4 × Kθ = 92-dimensional. The data is

represented in figure 10. On the amplitude representations, note the high specular

reflections when the ogival object is turned perpendicularly to the wave propagation

direction. Concerning the signal-to-noise ratio (SNR), it is high, around 40 dB (∼ 1%),

for the specular reflexion angles (high RCS). At the opposite, the SNR is very low, much

less than 0 dB, when the ogival-shaped object is illuminated at small incidences (low

RCS). There, the signal is hidden by the noise and less informative.

5.2. Inversion process

The goal is to estimate the radioelectric properties, the xtrue term function of the

frequency f , from the scattering measurements. In this section, we give a few
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Figure 10. Observation hologram, amplitude and phase (polar HH and VV)

implementation details regarding the application context.

State space The state space dimension stems from the wave frequency number and

from the discretization of the object in elementary mesh zones. In order to limit it, the

cutting up of the object is here restricted to N = 19 elementary zones.

Prior information The prior information (see section 3) needs to be detailed in this

context. Concerning the prior spatial information p(xk), its means mk are given, for each

k, by the former reference frequency profiles xref(fk). Around them, the uncertainties

are given by the block-structured covariance matrices Pk of (9) with: ρS = 0.95 and

σk(i) = 1+0.15×mk(i) for any elementary zone i. In other words, we assume a minimum

standard deviation of 1 that increases proportionally to the reference amplitude value.

Regarding the prior frequential information, we assume that ρ depends on both area

and EM property (ε′, ε′′, µ′, µ′′), so that it is 20-dimensional. As for its prior distribution

p(ρ), we set:

p(ρ) =
20∏
i=1

p(ρi)

where all the marginal prior distributions p(ρi) are identical and presented on figure

11. Note that this distribution p(ρ) can be sampled straightforwardly by sampling

independently each component ρi using, e.g., an acceptance/rejection method.

Likelihood model The surrogate likelihood model (7) has been formerly learned: Ak

and y0
k are known (see figure 6), as well as the marginal standard deviation σn which is

in conformity with the measurement noise of the above observation simulation.
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Figure 11. Marginal prior distribution p(ρi)

SMC tuning The sequence of probability measures ηn is standardly defined by the

annealed scheme (see section 4.3). To ensure a stable behavior of the SMC algorithm

(i.e. keep a good approximation η
Np
n ' ηn until the end), we chose the following efficient

adaptive strategies (that make it possible to limit the number of particles to Np = 100):

- selection step: as mentioned, the increment ∆αn = αn−αn−1 controls the selectivity

degree. If ∆αn is too small, every particle is given approximately the same weight,

and there is no selection among them. If ∆αn is too large, the majority of the

particles are killed, the cloud loses all its diversity, and the SMC algorithm performs

poorly. Therefore, instead of choosing beforehand ∆αn, it is defined adaptively so

that the selection step kills around 25% of the particle population. This is a way

to ensure a reasonable selection.

- mutation step: the mutation step is crucial since it allows the particles to explore

the state space E. We use Markov kernels Mn defined as being the composition of

several Metropolis-Hastings kernels K
(i)
n whose proposition kernels Q

(i)
n (x, dy) are

uniform, centered in x, and associated with a window size σ
(i)
prop,n. To be sure that

the particles move in a well-sized neighborhood, (i.e. large enough to explore E and

small enough to converge), the sequence (σ
(i)
prop,n)i always starts with large values

and decreases geometrically. Once more, we use an adaptive criteria to stop the

process.

Results In the context of this reference study, the inversion process takes about 30

minutes with a current standard processor. Note that the higher the dimension space

is, the longer the inversion. In figure 12, we show the estimations of µ′ for all the zones

of the object, with their associated uncertainties, compared with the true values, at a

fixed frequency f14 = 5.6 GHz. Note that the EM property deviation is important in

our example (see figure 9). As already mentioned, it is possible to provide some samples

of the posterior distribution p(x14|y) to determine the uncertainty on the estimators.

The EM radioelectric properties are correctly inferred all along the ogival object and its

5 material areas. The uncertainty recovers more or less the real profiles.

Figure 13 presents frequential profiles for a fixed elementary zone (the 18th). All the

components (ε′, ε′′, µ′, µ′′) are represented. Each of them is quite accurately estimated.
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Figure 12. EM estimated properties at frequence f = 5.6 GHz

The results are good, even when the perturbations (i.e. the difference between the

prior and real profiles) are large and irregular. This robustness is due to the adaptive

estimation of ρ’s components. Next it is confirmed by several thorough analysis.

Figure 13. Estimated EM properties of the 18th elementary zone

5.3. Performance analysis

To extend the results, we propose a statistical performance analysis of the inversion

process. It is lead in the same context of section 5.1. As the developed interacting

particle approach is partly stochastic, two different aspects must be studied. Firstly, for

a single given data y, the variance of our estimators x̂k and Σ̂k, only due to the random

feature of the method. Secondly, the average variance of our method for several data

y(i).
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5.3.1. Stochastic variation For a given data y, our method mainly provides 2 sequences

of estimators. The posterior mean estimators (x̂1, . . . , x̂Kf ), and the posterior covariance

matrices estimators (Σ̂1, . . . , Σ̂Kf ). As with all stochastic algorithms, one has to check

that despite random, it always gives the same result, or at least that its own variance

is negligible.

Let x̂ denote the concatenation of the vectors x̂1, . . . , x̂Kf . Let σ̂ denote the

concatenation of the estimated marginal uncertainties (square root of the Σ̂k’s diagonal

values). Defined in this way, x̂ and σ̂ can be considered as 2 matrices of size 76 × 20,

and the 2 main estimators of our method. To quantify the stochastic variance, we

simulate an observation data y, and we perform the inversion method 30 times. At the

end, we get 30 pairs of estimators
{

(x̂(1), σ̂(1)), . . . , (x̂(30), σ̂(30))
}

. For any pair of index

(i, k) ∈ {1, . . . , 76} × {1, . . . , 20}, we consider the mean values of the estimators and

their RMS (root mean square) values:

¯̂x(i, k) :=
1

30

30∑
r=1

x̂(r)(i, k) and ¯̂σ(i, k) :=
1

30

30∑
r=1

σ̂(r)(i, k)

RMS (x̂) (i, k) :=

(
1

30

30∑
r=1

(
x̂(r)(i, k)− ¯̂x(i, k)

)2)1/2

RMS (σ̂) (i, k) :=

(
1

30

30∑
r=1

(
σ̂(r)(i, k)− ¯̂σ(i, k)

)2)1/2

The numerical results, taken over all the pairs of index (i, k), are summed up in table

1. Two points can be clearly emphasized. First, the standard deviation of the x̂(r) is very

small in an absolute way (' 10−2). Moreover, it is negligible compared to the estimated

variance of our estimators (at least 1 decimal). Secondly, the standard deviation of

the σ̂(r) is even smaller (' 10−3) and negligible compared to the values of the σ̂(r)

themselves (at least 2 decades). Consequently, there exists a stochastic variance, but it

is far negligible compared to the uncertainty inherent to the inverse problem, including

measurements.

mean RMS (x̂) max RMS (x̂) mean RMS(x̂)
¯̂σ

max RMS(x̂)
¯̂σ

4.16 10−3 4.11 10−2 1.08 10−2 9.87 10−2

mean RMS(σ̂) max RMS(σ̂) mean RMS(σ̂)
¯̂σ

max RMS(σ̂)
¯̂σ

1.10 10−3 7.56 10−3 2.99 10−3 1.84 10−2

Table 1. RMS results of x̂ and σ̂

5.3.2. Average precision The average precision is analyzed on several cases. For this

purpose, 30 independent observation data
{
y(1), . . . ,y(30)

}
are simulated. For each of
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these observation vectors y(r), the inversion algorithm computes the pair of estimators

(x̂(r), σ̂(r)). The comparison with the true values of x is quantified by the following root

mean square error (RMSE) :

RMSE(i, k) :=

(
1

30

30∑
r=1

(
x̂(r)(i, k)− xtrue(i, k)

)2)1/2

Figure 14. RMSE (left) and estimated marginal uncertainties (right)

These errors are shown on figure 14, where they can be compared to the estimated

errors ¯̂σ. From these results, the following conclusions can be drawn. Despite the large

amplitude and irregularity of the perturbations, far from the assumed prior model,

the estimators x̂(r) give a good approximation of xtrue (note that the mean RMSE =

3.68 10−1). Moreover, the RMSE values are comparable to the marginal uncertainties

given by ¯̂σ, which proves that the estimated posterior variances make sense.

In this inversion process, the role of ρ’s estimation is very interesting. Roughly

speaking, it is as if it could give in advance the shape type of each of the unknown

true frequencial profile, by estimating its regularity. On figure 15, we show the results

given by (x̂(1), σ̂(1)) for the zones number 2, 9 and 17 and the permeability µ′. On the

right part, the histograms represent the posterior distribution of ρ. As predictable, the

difficulty increases from zone 2 to zone 17, due to the perturbation which is larger and

larger, as well as irregular. On the right side of the figure, we show the histograms

of all the particles (ρ(1), . . . , ρ(100)) (each particle being represented by its associated

component). We clearly see that the more irregular the true signal is, the smaller the

ρ(i) are, which is quite coherent since ρ quantifies frequential correlation. Meanwhile,

we check in the center of the figure that, in spite of the increasing difficulty, the mean

RMSE remains stable. Again, let us stress that the adaptive behavior of ρ estimation

is essential to the algorithm robustness.
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Figure 15. µ′ estimators for zones 2, 9 and 17

5.4. Additional analyses

We propose now to briefly analyze the influence of other parameters, that can come

from the context or from the inversion process itself.

5.4.1. Influence of the Processing Parameters The inversion process we have described

in section 4 admits several qualitative and quantitative degrees of freedom, particularly

in the SMC step. We propose here our empirical remarks about some of them.

The number of particles Np Like a classic i.i.d. (independent and identically

distributed) sampling method, the SMC algorithm precision is proportional to N
−1/2
p .

However, in our problem, the main objective is not to have a precise estimation of η, but

of x. As the impact of a local variance of ρ on x is rather small, the crucial point is that

the global cloud of particles reaches the correct area in E. From this point of view, the

important condition is the stability of the Feynman-Kac flow (see [34]), which ensures

that the particles don’t get lost in E. This is precisely the purpose of the adaptive

strategies inside the selection and mutation steps). That’s why it seems useless (and

time consuming) to use a high number of particles. Note that below Np ' 40, the SMC

approach may be trapped by some local modes.

The interpolating scheme ηn In addition to the annealed probability measure scheme,

the hybrid one has been tested. It can assimilate the observations one by one, and

update the estimators progressively. Moreover, it manages the computational problems

of selectivity that affects the data tempered scheme. The results are good, nearly

identical to those obtained with the annealed scheme. And yet, the SMC algorithm
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lasts around 4 times longer than before.

Figure 16. Annealing parameter α
(k)
i

This behavior can be easily interpreted by figure 16. It appears that many

observations do not bring any new information, so that the associated annealing

sequence α
(k)
i takes value 1 at once. On the contrary, when a new observation provides

information in contradiction with the previous ones, the particles have to migrate from

an area of E to another, which takes a longer time (i.e. more steps).

The parameter ρ The prior distribution p(ρ) of figure 11 has a limited impact on the

final estimation of η. Corresponding to a prior knowledge of frequency regularity, it is

arbitrarily chosen in order to penalize the small values and favor regular profiles. But in

practice, this penalization term p(ρ) is less determining than the likelihood one p(y|ρ).

Besides, ρ can be defined 5-dimensional. In this case, the SMC algorithm performs

quicker. However, the underlying hypothesis – i.e. the frequential correlation is the

same for ε′, ε′′, µ′, µ′′ – is not necessarily fulfilled in practice.

5.4.2. Context influence As we have mentioned, the method is very robust concerning

the amplitude and the irregularity of the perturbation (i.e. the deviation from the

reference profiles).

Measurement noise However, it is naturally sensitive to the observation noise

magnitude. Its performance degrades when the observation noise is too high (low SNR).

That is clearly a matter of information. Numerically, it can be explained by considering

the accurate approximation given by the surrogate model. Indeed, the Ak matrices are

ill-conditioned. In particular, µ′ and ε′′ components are highly correlated; it is the same

for µ′′ and ε′. Notice that only more regularization, i.e. the introduction of more prior

knowledge (precision, correlation, etc.), could counterbalance a low SNR; it is possible

in our Bayesian framework.

In figure 17, we give the estimations of these 2 quantities in case the amplitude

noise σn = 10−2 (instead of 10−3), corresponding to a lower SNR (20 dB instead of

40dB at high RCS incidence). One can then see that the unknown perturbations of

µ′true and ε′′true are correctly detected by the process, but improperly distributed between

µ′ and ε′′. Notice that the initial SNR requirements are not really demanding, according

to what is usually performed in RCS measurement inside an indoor anechoic chamber
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Figure 17. Estimation of µ′ and ε′′, σn = 10−2

(with the use of absorbers, range gates, time/frequency domain cancellation, etc.) [49].

Again, let us repeat that when the SNR is very low, no information can emerge.

Computational time Concerning the computation time, it depends on the problem,

i.e. both on the dimension and the SMC algorithm convergence rate. To look further

into this matter, a set of numerical experiments have been designed, from the former

described application of section 5.1. The 14 cases are summed up in the table of figure 18.

The problem dimension, i.e. the state space dimension N and the measurement

dimension ν = 4 · Kθ, is chosen in ascending order. Notice that the number Kf of

regularly spaced frequency acquisitions Kf is here unchanged (and equal to 20). The

associated results are performed by averaging tens of runs. The results are given in the

right part of the table. For each case, according to the chosen N and ν dimensions,

the averaged following values are given in the 3 last columns: the CPU time (the

mean processing duration of the Rao-Blackwellised SMC approach), the mean number

of likelihood evaluations (computations of p(y|ρ)αn in the annealing scheme of section

4.2) and the number of adaptive steps (on ∆αn).

As both N and ν increases, its computational requirements turn out to be slightly

higher than quadratic. The Kalman filter complexity is known to be approximately cubic

[33], considering both the state and measurement dimensions. Actually, it is around

N2.5 in our specific application. All in all, since it is involved in the numerous likelihood

evaluations, it dominates the other contributions. Indeed, the numbers of likelihood

evaluations and adaptive steps are relatively stable. Their slight increase comes from

the adaptive behavior that requires more steps when there is more information and

the posterior distribution lives in a smaller part of the space. Furthermore, the overall

computation time is roughly linear according to the frequency number Kf . Besides,
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Figure 18. Computation time and problem dimension

Case N ν CPU time (s) Mean likelihood # Mean adaptive step #

1 20 20 146.3 21680 37.2

2 24 24 272.0 30710 53.0

3 32 28 291.6 25720 43.6

4 40 40 654.6 36510 63.0

5 44 44 768.2 35760 62.1

6 52 52 1042.7 38490 66.4

7 56 64 1364.7 40380 69.6

8 76 84 2092.7 42060 72.2

9 88 104 2683.6 41950 71.5

10 100 124 3546.7 43200 73.0

11 112 148 4644.0 43950 74.5

12 144 184 7523.9 39700 66.0

13 188 244 15199.0 47200 79.0

14 276 364 36364.7 45900 76.0

notice that for a given frequency correlation length, more frequencies mean smaller

frequency intervals. It leads to a matrix Dρ, that expresses higher correlations and

takes part in Kalman filter steps (see the AR dynamic model of section 3.2).

6. Conclusion

An efficient statistical inference approach has been applied. From global EM

scattering measurements, it enables to estimate local radioelectric properties of materials

assembled and placed on the full-scaled object, assuming that its shape is perfectly

known in the context of a quality control application. The inverse problem is solved by

combining intensive computations with high performance computing (HPC), surrogate

modeling and advanced sequential Monte Carlo techniques dedicated to frequency

dynamic estimation. It takes advantage of the problem structure to achieve a Rao-

Blackwellisation strategy of Monte Carlo variance reduction. On top of that, the

Bayesian approach quantifies the uncertainties around the estimates, with limited

computation time.

Future research could take into account bistatic scattering measurement to enlarge

acquisition information, similarly to the classic NRL arch method [49]. On the other

hand, it could be rather straightforward to complexify the prior knowledge on the

material microwave properties. It would consist in introducing a hyperparametric model

that would be part of the inference process. Another promising perspective is to deal

with the computation time issue which arises for large dimension problems, especially
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where the number of elementary areas is around a few hundreds and more. To tackle this

problem and achieve the estimation goal for larger dimensions, different strategies can

be applied. The Rao-Blackwellised SMC approach can be parallelized at the fine-grained

level of each Kalman filter and its required linear algebra manipulations. It can be also

parallelized at a coarse-grained level: the particles and the likelihood evaluations can be

distributed massively. From this highly parallelization/distribution potential on HPC, it

would be possible to tackle high-dimensional problems as well as 3D geometries. Another

less computer resource demanding approach could be to substitute the workhorse, i.e.

the Kalman filter, by a fast approximate algorithm, such as the Ensemble Kalman

(EnKF) [50]. Related to particle filtering, EnKF has been developed for large data

assimilation problems in geophysical and weather forecasting. Finally, close stochastic

techniques, such as ”interacting Kalman filters”, could be applied on condition that a

loosen formulation is chosen.

Acknowledgments

We greatfully acknowledge help from P. Bonnemason and F. Caron, about various

electromagnetism and computational statistics points.

Appendix: estimation of xk and conditioning

For a given y, it is possible to define judicious estimators of xk (for each k). Indeed, the

first moments x̂k and Σ̂k) can be determined from the theoretical conditional expecta-

tion x̄k := E[xk|y] and covariance matrix Σk := Var[xk|y].

For all ρ ∈ E, let set: x̂k(ρ) := E [xk|ρ,y] and Σ̂k(ρ) := Var [xk|ρ,y], i.e. the

main quantities provided by the Kalman smoother. Under this notation, we combine

η̂ ' η together with the equation (15), and derive a natural choice for the estimator x̂k:

x̄k = E[xk|y] = E[E(xk|ρ,y)︸ ︷︷ ︸
x̂k(ρ)

|y]

=

∫
ρ∈E

x̂k(ρ)η(dρ) '
∫
ρ∈E

x̂k(ρ)η̂(dρ)

=
1

Np

Np∑
i=1

x̂k(ρ
(i))︸ ︷︷ ︸

=:x̂k

Regarding the covariance estimator Σ̂k, under the same notation and according to (16),

we have:

Σk = E
(
Σ̂k(ρ)|y

)
︸ ︷︷ ︸

Σ
(1)
k

+Var (x̂k(ρ)|y)︸ ︷︷ ︸
Σ

(2)
k

.

We estimate Σ
(1)
k and Σ

(2)
k separately:
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(i) Evaluation of Σ
(1)
k = E

(
Σ̂k(ρ)|y

)
Σ

(1)
k =

∫
ρ∈E

Σ̂k(ρ)η(dρ) '
∫
ρ∈E

Σ̂k(ρ)η̂(dρ)

=
1

Np

Np∑
i=1

Σ̂k(ρ
(i))︸ ︷︷ ︸

=:Σ̂
(1)
k

(ii) Evaluation of Σ
(2)
k = E

[
(x̂k(ρ)− x̄k) (x̂k(ρ)− x̄k)

T |y
]

Σ
(2)
k =

∫
ρ∈E

(x̂k(ρ)− x̄k) (x̂k(ρ)− x̄k)
T η(dρ) '

∫
ρ∈E

(x̂k(ρ)− x̂k) (x̂k(ρ)− x̂k)
T η̂(dρ)

=
1

Np

Np∑
i=1

(
x̂k(ρ

(i))− x̂k
) (

x̂k(ρ
(i))− x̂k

)T
︸ ︷︷ ︸

=:Σ̂
(2)
k

Finally, the estimator of Σk is given by: Σ̂k := Σ̂
(1)
k + Σ̂

(2)
k .
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