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Abstract The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in

the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics, while

enormous successful in physics, have been in an awkward situation of wanting a consistent dynamical understanding.

Here we present from a formal point of view an exploration of the connection between thermodynamics and Darwinian

dynamics and a few related topics. We first show that the stochasticity in Darwinian dynamics implies the existence

temperature, hence the canonical distribution of Boltzmann–Gibbs type. In term of relative entropy the Second Law of

thermodynamics is dynamically demonstrated without detailed balance condition, and is valid regardless of size of the

system. In particular, the dynamical component responsible for breaking detailed balance condition does not contribute

to the change of the relative entropy. Two types of stochastic dynamical equalities of current interest are explicitly

discussed in the present approach: One is based on Feynman–Kac formula and another is a generalization of Einstein

relation. Both are directly accessible to experimental tests. Our demonstration indicates that Darwinian dynamics

represents logically a simple and straightforward starting point for statistical mechanics and thermodynamics and is

complementary to and consistent with conservative dynamics that dominates the physical sciences. Present exploration

suggests the existence of a unified stochastic dynamical framework both near and far from equilibrium.
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One of the principle objects of theoretical research in any department of knowledge is to find the point of view from

which the subject appears in its greatest simplicity.

Josiah Willard Gibbs (1839–1903)

1 Introduction

1.1 What Is Darwinian Dynamics?

The dynamical theory proposed by Darwinian and
Wallace[1,2] on evolution in biology has formed the funda-
mental theoretical structure for understanding biological
phenomena for one and half centuries. We refer to it in
the present paper as “Darwinian dynamics”. It has been
confirmed by thousands and thousands of field observa-
tions and laboratory experiments, and extended to virtu-
ally all levels of biology. There is no known valid evidence
against it in biology, as in the same status of relativity
and quantum mechanics in physics. There exists a concise
and accessible discourse of this dynamics by a renowned
researcher in physical sciences that we recommend to the
reader.[3] Its essence may be summarized by a single word
equation most familiar to biological scientists:[4]

Evolution by V ariation and Selection .

In its initial formulation the theory was completely
narrative. Not a single mathematical equation was used.
There have been constant efforts by biologists and by oth-
ers to clarify its meaning and to make it more quantita-
tive and hence more predictive.[5−20] Tremendous progress
has been made during the past 100 years. Two of the
most important concepts emerged in Darwinian dynamics
are Fisher’s fundamental theorem of natural selection,[5]

which connects the variation to the speed to reach an opti-
mal value in evolution, and Wright’s adaptive landscape,[6]

which describes the ultimate selection as a potential func-
tion of a landscape in a gigantic genetic space. Nowadays
the use of mathematics in this area is comparable to that
of any mathematically sophisticated field of natural sci-
ence. Darwinian dynamics is a bona fide nonequilibrium
stochastic dynamical theory, which governs the processes
leading to complex creatures such as Methenobacterium

and Homo sapiens on Earth.
What would be a possible mathematical structure for

Darwinian dynamics? Though the scope of Darwinian
dynamics is very broad and its quantification appears
formidable, we will present here a precise and nevertheless
general enough formulation. Intuitively evolution is about
successive processes: Quantities at a later stage are related
to their values at its earlier stage under both predictable
(deterministic) and unpredictable (stochastic) constraints.
For example, the world population of humans in next 20
years will be surely related to its current one. Hence,
the genetic frequency, the probability in the population,
of a given form of gene (allele) in the next generation is
related to its present value. Here sexual conducts and
other reproduction behaviors are treated as means to re-
alize the variation and selection for evolution. We may
denote those genetic frequencies as q with n components
denoting all possible alleles. Thus qT = (q1, q2, . . . , qn) is
a vector (Here T denotes the transpose). There are huge
amount of human traits related to genetics (or genes):
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height, skin color, size of eye ball, faster runner, gene for
liver cancer, gene for smartness, etc. The number n is then
large: it could be as large, and likely larger, as the number
of genes in human genome, which is about 20 000, if one
simply assigns one allele or a trait to one gene without
any combinatory consideration. (This is certainly very
crude. In addition, we do not know the exact way to
specify such relationship yet). This number is far larger
than the number of chemical elements, which is about
100, and than the number of elementary particles, about
30. With a suitable choice of time scale equivalent to
an averaging over many generations, the incremental rate
in such an evolutionary process may be represented by a
time derivative, q̇ = dq/dt. The deterministic constraint
at a given time may be represented by a deterministic
force f(q, t). For example, there is a high confidence to
predict the eye color of a child based on the information
from his/her parents, but the smartness of an offspring
is not so strongly correlated to that of the parents. The
random constraint, the unknown and/or irrelevant force,
is approximated by a Gaussian-white noise term ζ(q, t),
with zero mean, 〈ζ〉 = 0 and the n × n variance matrix
D: 〈ζ(q, t′)ζτ (q, t)〉 = 2D(q, t)θδ(t − t′). Here the factor
2 is a convention and θ is a positive numerical constant
reserved for the role of temperature in physical sciences.
δ(t) is the Dirac delta function. With these notations we
are ready to transform the word equation into a precise
mathematical equation, which now reads

q̇ = f(q, t) + ζ(q, t) .

To physicists and chemists, this equation looks similar
to an equation already known for 100 years,[21,22] proposed
by Langevin 50 years after Darwin and Wallace. There are
some difficult issues in connection to the Langevin equa-
tion, such as the absence of detailed balance condition, to
be discussed below. To mathematicians as well as biolo-
gists, it is in the form of standard formulation of stochastic
differential equations.[23,24] We will return to above equa-
tion as Eq. (1) in next section. However, an immediate
question arises: while we may represent the variation in
evolution by the variance matrix D, where is Wright’s
adaptive landscape and the corresponding potential func-
tion?

It is known that the deterministic force f(q, t) in gen-
eral cannot be related to a potential function in a straight-
forward way, that is, f(q, t) 6= −D(q, t)∇φ(q, t). Here
∇ = (∂/∂q1, ∂/∂q2, . . . , ∂/∂qn)T is the gradient operation
in the phase space formed by q, and φ(q, t) is a scalar func-
tion. In fact, the existence of such an inequality is ubiqui-
tous in nonequilibrium processes. It is the breakdown of
detailed balance. A nonequilibrium process typically has
the following five qualitative characteristics:

i) dissipative, ∇ · f(q, t) 6= 0;
ii) asymmetric, ∂fj(q, t)/∂qi 6= ∂fi(q, t)/∂qj for at

least one pair of indices of i, j;
iii) nonlinear, f(θq, t) 6= θf(q, t);
iv) stochastic with multiplicative noise, D(q, t) de-

pending on the state variable q; and
v) possibly singular, that is, det(D(q, t)) = 0.

The asymmetry is the reason that f(q, t) cannot be
equal to −D(q, t)∇φ(q, t), which will become explicit be-
low. These are the main reasons that a consistent formula-
tion of nonequilibrium processes has been difficult.[25−29]

Progress in recent biological studies has shown that a
quantitative Wright adaptive landscape is indeed em-
bedded in the above stochastic differential equation. It
emerges in a manner completely consistent with its use
in the physical sciences,[19,30−33] which will be explored
further in the present paper.

1.2 Outstanding Questions on Statistical

Mechanics and Thermodynamics

In the physical sciences there has been a sustained in-
terest during past several decades in nonequilibrium pro-
cesses, see, for example, references [21], [25] ∼ [29], and
[34] ∼ [36]. Important goals are to bridge its connec-
tion to equilibrium processes and to clarify the roles of
entropy and the Second Law of thermodynamics within
deterministic and conserved dynamics and to balance the
descriptions between the single particle trajectory and the
ensemble distribution. In this content we should also men-
tion the enormous effort since Boltzmann to understand
the associated direction of time from reversible dynamics,
e.g. in Ref. [37].

There is also an active interest from the philosophical
point of view on the foundations of statistical mechanics
and thermodynamics.[38,39] Relevant to the present paper,
the following three fundamental questions have been ex-
plicitly formulated:[40]

In what sense can thermodynamics said to be reduced
to statistical mechanics?

How can one derive equations that are not time-
reversal invariant from a time-reversal invariant dynam-
ics?

How to provide a theoretical basis for the “approach
to equilibrium” or irreversible processes?

In the view of the absence of logical consistent answers
to above questions from conservative dynamics, Newto-
nian dynamics or quantum mechanics,[41,42] it should be
desirable to look into these problems from a completely
different perspective.

1.3 What Can We Learn from Darwinian

Dynamics?

Thanks to recent progress in experimental technolo-
gies, particularly in nanotechnology, many previously in-
accessible regimes in time and space have now been
actively exploring. There have renewed interests in
stochastic phenomena, ranging from physics,[41,43−51]

chemistry,[52−55] material science,[56−58] biology,[19,59−61]

and to other fields.[24] These works demonstrate the strong
on-going exchange of ideas between physical and biologi-
cal sciences. In particular, quantitative experimental and
theoretical physical methodologies have been finding their
way into the study of cellular and molecular processes of
life, which has been very useful. On the other hand, we
think it is of at least equal value to consider the opposite
direction of the flow of ideas. Darwinian dynamics may
generate new insights in the physical sciences.
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For example, Darwinian dynamics can address all
three fundamental questions in previous subsection in its
own way. For the first question, as long as statistical me-
chanics is formulated according to the Boltzmann–Gibbs
distribution, it will be shown below that Darwinian dy-
namics indeed implies this distribution, and that the main
structures of statistical mechanics and thermodynamics
are equivalent. For the second question, it is found that
thermodynamics is based on the energy conservation (the
First Law) and on the Carnot cycle. It deals with quan-
tities at equilibrium or steady state. There is no role for
dynamics. Thus, there is no requirement for the direction
of time: Both conservative and nonconservative dynamics
can be consistent with it. The explicit independence of the
Carnot cycle and the First Law on dynamical properties
in Darwinian dynamics will become clear below. Hence,
there is no conflict between thermodynamics and the time-
reversal dynamics dominated in physics. For the third and
last question, Darwinian dynamics comes with an adap-
tive behavior[1,2,5−7,9,11,14,16−20] and with an intrinsically
built-in direction of time. This is due to the explicitly
stochastic or probabilistic nature of Darwinian dynamics.
Such a behavior was summarized as the fundamental the-
orem of natural selection[5] and extended further as the
F-theorem.[19] Thus, Darwinian dynamics provides a gen-
eral framework to address the question of “approaching to
equilibrium”.

1.4 Organization of the Paper

The rest of the paper is organized as follows. In Sec. 2
Darwinian dynamics will be summarized. In Sec. 3 it
will be shown that statistical mechanics and the canon-
ical ensemble follow naturally from Darwinian dynamics.
In Sec. 4 the connection to thermodynamics is explored.
There it will be shown that the Zeroth Law, the First
Law, and the Second Law follow directly and naturally
from Darwinian dynamics, but not the Third Law. In
Sec. 5 two types of simple, but seemly profound, dynam-
ical equalities discovered recently are discussed. One is
based on the Feynman–Kac formula and one is a general-
ization of Einstein relation. In Sec. 6 the range of present
ideas is put into perspective.

Two disclaimers should be made at the beginning of
our discussion. First, we will mainly be concerned with
the theoretical structures, not with specific details. Specif-
ically, we will focus on which structural elements should
be presented in various equations, where consensus can be
reached, not so much as what would be details forms of
each elements. In fact, many of detailed forms are still
unknown and are active research topics. Second, rigorous
mathematical proofs will not be provided, though care has
been taken to make presentations as clear and consistent
as possible.

2 Darwinian Dynamics, Adaptive Landscape,
and F-Theorem

This section summarizes recent results on Darwinian
dynamics, in more detail than provided in the Introduc-
tion.

2.1 Stochastic Differential Equation:

the Particle and Trajectory View

In the context of modern genetics Darwin’s theory of
evolution may be summarized verbally as “the evolution is
a result of genetic variation and its ordering through elim-
ination and selection”. Both randomness and selection are
equally important in this dynamical process, as encoded
into Fisher’s fundamental theorem of natural selection[5]

and Wright’s adaptive landscape.[6] With an appropriate
time scale, Darwinian dynamics may be represented by
the following stochastic differential equation[8,12,19]

q̇ = f(q) + NI(q)ξ(t) , (1)

where f and q are n-dimensional vectors and f a nonlin-
ear function of q. The genetic frequency of i-th allele is
represented by qi. Nevertheless, in the present paper it
will be treated as a real function of time t. Depending on
the situation under consideration, the quantity q could,
alternatively, be the populations of n species in ecology,
or, the n coordinates in physical sciences. All quantities
in this paper are dimensionless unless explicitly specified.
They are assumed to be measured in their own proper
units. The collection of all q forms a real n-dimensional
phase space. The noise ξ is explicitly separated from the
state variable to emphasize its independence, with l com-
ponents. It is a standard Gaussian white noise function
with 〈ξi〉ξ = 0, and

〈ξi(t)ξj(t
′)〉ξ = 2θδijδ(t − t′) , (2)

and i, j = 1, 2, . . . , l. Here 〈· · ·〉ξ denotes the average over
the noise variable {ξ(t)}, to be distinguished from the av-
erage over the distribution in phase space below. The pos-
itive numerical constant θ describes the strength of noise.
The variation is described by the noise term in Eq. (1)
and the elimination and selection effect is represented by
the force f .

A further description of the noise term in Eq. (1) is
through the n×n diffusion matrix D(q), which is defined
by the following matrix equation,

NI(q)Nτ
I (q) = D(q) , (3)

where NI is an n × l matrix, Nτ
I is its transpose, which

describes how the system is coupled to the noisy source.
This is the first type of the F-theorem,[19] a generalization
of Fisher’s fundamental theorem of natural selection[5] in
population genetics. According to Eq. (2) the n × n dif-
fusion matrix D is both symmetric and nonnegative. For
the dynamics of the state vector q, all that is needed from
the noise term in Eq. (1) are the diffusion matrix D and
the positive numerical parameter θ. Hence, it is not even
necessary to require the dimension of the stochastic vector
ξ be the same as that of the state vector q. This implies
that in general l 6= n.

We emphasize here that an extensive class of
nonequilibrium processes can indeed be described by
such a stochastic differential equation.[21,22,25−27,34,35]

The current research efforts on such stochastic and
probability description are ranging from physics,[43,47]

chemistry,[53,54] material science,[57,58] biology,[19,59−61]

and other fields.[24]
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Darwinian dynamics was conceived graphically by

Wright[6] as the motion of the system in an adaptive

landscape in genetic space. Since then such a landscape

has been known as the fitness landscape in some part

of literature.[14,18,62] However, there exists a considerable

amount of confusion about the definition of fitness.[11,14,19]

In the present paper a more neutral term, the (Wright evo-

lutionary) potential function, will be used to denote this

landscape. The adaptive landscape connecting both the

individual dynamics and its final destination is intuitively

appealing. Nevertheless, it has been difficult to prove its

existence in a general setting. The major difficulty lies in

the fact that typically the detailed balance condition does

not hold in Darwinian dynamics, that is, D−1(q)f(q) can-

not be written as a gradient of scalar function,[21,25,28,34,35]

already mentioned in the Introduction.

During our study of the robustness of the genetic

switch in a living organism[63,64] a constructive method

was discovered to overcome those difficulties: equation (1)

can be transformed into the following stochastic differen-

tial equation,

[R(q) + T (q)]q̇ = −∇φ(q; λ) + NII(q)ξ(t) , (4)

where the noise ξ is from the same source as that in

Eq. (1). The parameter λ denotes the influence of non-

dynamical and external quantities. It should be pointed

out that the potential function φ may also implicitly de-

pend on θ. The friction matrix R(q) is defined through

the following matrix equation

NII(q)Nτ
II(q) = R(q) , (5)

which guarantees that R is both symmetric and nonnega-

tive. This is the second type of the F-theorem.[19] The F-

theorem emphasizes the connection between adaption and

variation and is essentially a reformulation of fluctuation-

dissipation theorem in physics[65−67] and of Fisher’s fun-

damental theorem of natural selection. The connection

between Fisher’s fundamental theorem of natural selec-

tion and the fluctuation-dissipation theorem was also no-

ticed recently by others.[68] It should be emphasized here

that the F-theorem is not confined to the neighborhood

of an equilibrium or steady state. It is valid in nonlinear

cases without detailed balance: There is no reference to

potential function in the definition of friction matrix R

and the anti-symmetric matrix T is in general nonzero.

For simplicity we will assume det(R) 6= 0 in the rest of

the paper. Hence det(R + T ) 6= 0.[30] The breakdown

of detailed balance condition or the time reversal sym-

metry is now represented by the finiteness of the trans-

verse matrix, T 6= 0. The usefulness of the formulation of

Eq. (4) has already been demonstrated in the successful

solution of an outstanding stability puzzle in gene regu-

latory dynamics[63,64] and in a consistent formulation of

Darwinian dynamics.[19] Evidently, the Wright adaptive

landscape and the F-theorem are the realization of chance

and necessity in evolution.[69]

Fig. 1 Adaptive landscape with in potential contour rep-
resentation. + : local basin; − : local peak; × : pass (sad-
dle point). Darwinian dynamics was conceived graph-
ically by Wright[6] as the motion of the system in an
adaptive landscape in genetic space (for an illustration,
see Fig. 1).

The n × n symmetric, non-negative “friction matrix”

R and the “transverse matrix” T are directly related to

the diffusion matrix D:

R(q) + T (q) =
1

D(q) + Q(q)
.

Here Q is an antisymmetric matrix determined by both

the diffusion matrix D(q) and the deterministic force

f(q).[30,70] One of more suggestive forms of above equa-

tion is

[R(q) + T (q)]D(q)[R(q) − T (q)] = R(q) . (6)

This symmetric matrix equation implies n(n + 1)/2 sin-

gle equations from each of its elements. We need another

n(n−1)/2 equations in order to completely determine the

matrices R and T , which will come from the conditions

for the potential function.

The Wright evolutionary potential function φ(q) is

connected to the deterministic force f(q) by

−∇φ(q; λ) = [R(q) + T (q)]f(q) .

Or its equivalent form,

∇× [[R(q) + T (q)]f(q)] = 0 . (7)

Here the operation ∇× on an arbitrary n-dimensional vec-

tor v is a matrix generalization of the curl operation for

lower dimensions (n = 2, 3): (∇ × v)i,j = ∂vj/∂qi −

∂vi/∂qj . Above matrix equation is hence antisymmetric

and gives the needed n(n−1)/2 single equations from each

of its elements. From Eqs. (6) and (7) the friction matrix,

R, the transverse matrix, T , and the potential function,

φ, can be constructed from the diffusion matrix D and the

deterministic force f . The boundary condition in solving

Eq. (7) is implied by the requirement that the fixed points

of f should coincide with the extremals of the potential

function φ. The local construction, the construction near

any fixed point, was demonstrated in detail in Ref. [30],

where the connection to the fluctuation-dissipation theo-

rem in physical sciences was explicitly demonstrated. For
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the global construction valid in the whole phase space an

iterative method was outlined in Ref. [70]. Some of its

mathematical and properties, such as the speed of conver-

gence, are not generally known at this moment.

For the case where the stochastic drive may be ignored,

that is, θ = 0, the relationship between Eqs. (1) and (4)

remains unchanged, but equation (4) becomes determin-

istic,

[R(q) + T (q)]q̇ = −∇φ(q; λ) . (8)

The nonlinear dynamics typical in evolutionary processes

is usual explored in the framework of game theory.[9,71]

The typical mathematical equation is of the form in

Eq. (1) without noise: q̇ = f(q; λ). The universal con-

struction of Lyapunov function in the game theory had

been an unsolved problem before the present formulation.

On the other hand, above equation indicates, with the

non-negativeness of the friction matrix,

d

dt
φ(q; λ) = q̇ · ∇φ(q; λ)

= −q̇τ [R(q) + T (q)]q̇

= −q̇τR(q)q̇

≤ 0 . (9)

It is clear then that the Wright evolutionary potential

function φ(q; λ) is a Lyapunov function. The determin-

istic dynamics makes it non-increasing, and it approaches

the nearby potential minimum to achieve the maximum

probability. This is precisely what was conceived by

Wright. Adaptive dynamics has been actively exploring

in biology.[18,20]

The idea of potential function landscape has a long

history in biological sciences. Such an idea was first pro-

posed in population genetics.[6] It was proposed again in

developmental biology as a developmental landscape,[72]

and again in the description of a genetic switch in molec-

ular biology.[73] Similar landscape idea was proposed

in the ecological evolution embedded in the concept of

ascendency.[74] The landscape has been used not only to

model neural computation,[75,76] but also to understand

the protein folding dynamics.[77] The problem of absence

of detailed balance, however, had been previously re-

garded as an obstacle. For example, it was noted that

genuine nonequilibrium and asymmetric dynamics such

as limit cycle might make the construction of the Hopfield

potential function in neural computation impossible. Re-

cently, it was shown this can be overcome by the present

formulation.[32]

Conservative Newtonian dynamics may be regarded as

another limit of the above formulation: zero friction limit,

where R = 0 in addition to θ = 0. Hence, from Eq. (8),

Newtonian dynamics may be expressed as,

T (q)q̇ = −∇φ(q; λ) . (10)

Here the value of potential function is evidently conserved

during the dynamics since q̇ · ∇φ(q; λ) = 0. The system

moves along equal potential contours in the adaptive land-

scape. This conservative behavior suggests that the rate of

approaching to equilibrium is associated with the friction

matrix R, not with the diffusion matrix D. There are sit-

uations where the diffusion matrix is finite but the friction

matrix is zero, and thus the dynamics is conservative.[32]

2.2 Fokker–Planck Equation: the Ensemble and

Distribution View

It was reasoned heuristically[70] that the steady state

distribution ρ(q) in the state space, if exists, is

ρ(q, t = ∞) ∝ e−βφ(q;λ) . (11)

Here β = 1/θ. It takes the form of Boltzmann–Gibbs

distribution function. Therefore, the potential function φ

acquires both the dynamical meaning through Eq. (4) and

the steady state meaning through Eq. (11).

It was further demonstrated that such a heuristic ar-

gument can be translated into an explicit algebraic proce-

dure such that there is an explicit Fokker–Planck equation

whose steady state solution is indeed given by Eq. (11).[31]

Starting with the generalized Klein–Kramers equation,

taking the limiting procedure of the zero mass limit, the

desired Fokker–Planck equation corresponding to Eq. (4)

is
∂ρ(q, t)

∂t
= ∇τ [D(q) + Q(q)][θ∇+∇φ(q; λ)]ρ(q, t) . (12)

This equation is equivalent to a statement of conserva-

tion of probability. It can be rewritten as the probability

continuity equation:
∂ρ(q, t)

∂t
+ ∇ · j(q, t) = 0 , (13)

with the probability current density j defined as

j(q, t) ≡ −[D(q) + Q(q)][θ∇ + ∇φ(q; λ)]ρ(q, t) . (14)

The reduction of dynamical variables has often been done

in the well-known Smoluchowski limit. In the above

derivation we take the mass to be zero, keeping other

parameters, including the friction and transverse matri-

ces, to be finite. In the Smoluchowski limit, however, the

friction matrix is taken to be infinite, keeping all other

parameters finite. Those two limits are in general not ex-

changeable.

The steady state configuration solution of Eq. (12) is

indeed given by Eq. (11). It is interesting to point out that

the steady state distribution function, equation (11), is in-

dependent of both the friction matrix R and the transverse

matrix T . Furthermore, we emphasize that no detailed

balance condition is assumed in reaching this result. In

addition, both the additive and multiplicative noises are

treated here on an equal footing.

Finally, it can be verified that above construction lead-

ing to Eq. (12) is valid, and remains unchanged, when

there is an explicit time dependence in R, T , and/or φ.

There may not exist a steady state distribution, for ex-

ample, if the Wright evolutionary potential function φ de-

pends on time.
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3 Nonequilibrium Statistical Mechanics

3.1 Central Relation in Statistical Mechanics

If we treat the parameter θ(= 1/β) as temperature, the
steady state distribution function in phase space is indeed
the familiar Boltzmann–Gibbs distribution, Eq. (11). The
partition function, or the normalization constant, is then

Zθ(λ) ≡

∫

dnq e−βφ(q;λ) . (15)

The integral
∫

dnq denotes the summation over whole
phase space. The normalized steady state distribution is

ρθ(q) ≡
e−βφ(q;λ)

Zθ

. (16)

For a given observable quantity O(q), its average or ex-
pectation value is

〈O〉q ≡

∫

dnqO(q)ρθ(q)

=
1

Zθ

∫

dnqO(q) e−βφ(q;λ) . (17)

The subscript q denoted that the average is over phase
space, not over the noise in Eq. (1) or (4). Equation (17)
is the main fortress of statistical mechanics. Working in
statistical mechanics then may be classified into two types:
conquering the fortress from outside, that is, formulating
as instance of Eq. (17); and conquering more territory
from the fortress, that is, applying Eq. (17).

There has been tremendous amount of efforts to de-
rive the canonical distribution of Eq. (16) from conserva-
tive dynamics. One of the best results is the typicality of
such distribution for large systems already attempted by
Boltzmann.[78] On the other hand, all experiments have
shown a universal validity of Eq. (16) for both large and
small systems, hence more than typicality. We note that
Darwinian dynamics is consistent with such empirical ob-
servations.

There is a difference in the use of potential function φ
in Eq. (12) and Eq. (15): One is in the form of “force”
— gradient with respect to the coordinate q, and another
is its integration which may carry an arbitrary function
of the parameter λ: φ(q; λ) = φ0(q; λ) + φ1(λ). For a
static parameter, this would not be of any problem: It
simply reflects the fact that only the difference of the po-
tential function with respect to a given reference is mean-
ingful. Nevertheless, if we are going to compare the po-
tential function at two different parameter values, φ(q; λ1)
and φ(q, λ2), connected by a dynamical processes con-
trolled by λ(t), such an arbitrary function φ1(λ) has to
be fixed up to a constant. Otherwise, the free energy to
be discussed in Secs. 4 and 5 would be arbitrary. For a
conservative dynamics described by Eq. (10), this func-
tion may be determined by a procedure named the min-
imum gauge condition: Assume an adiabatic (slow) pro-
cess connecting two states specified by λ1 and λ2, and let
δf(q; λ(t)) = −∇[φ(q; λ(t)) − φ(q; λ = 0)], the force di-
rectly controlled by the parameter λ, the minimum gauge
condition to determine φ1(λ) may be expressed as

φ1(λ2) − φ1(λ1) = W |t2−t1→∞ ,

and W =
∫

λ(t=t1)=λ1,λ(t=t2)=λ2

dq·δf(q; λ(t)), that is, the

work done in the adiabatic process by the external force

related to the parameter is equal to the change in potential

function, a known relation in classical mechanics.

3.2 Stochastic Processes and the Canonical

Ensemble

A fundamental question raised by our formulation is:

for a given Fokker–Planck equation, can the correspond-

ing stochastic differential equation in the form of Eq. (4)

be recovered (the inverse problem)? That is, is there a

one-one correspondence between the local and global dy-

namics connected by a potential function? The answer

is yes, and the procedure for carrying it out is implicitly

contained in Eq. (12), which will be demonstrated below.

A generic form for the Fokker–Planck equation is ex-

pressed as follows:

∂ρ(q, t)

∂t
= ∇T[θD̄(q)∇− f̄(q)]ρ(q, t) . (18)

Here D̄(q) is the diffusion matrix and f̄(q) the drift force.

The main motivation for such a form is simple: In the

case detailed balance condition is satisfied, i.e., Q(q) = 0

(and T (q) = 0), the potential function φ̄ can be directly

inferred from above equation: ∇φ̄ = D̄−1 f̄ . This makes

the diffusion effect very prominent. Any other form of the

Fokker–Planck equations can be easily transformed into

the above form. This generic form of the Fokker–Planck

equation is less amenable to additional complications such

as the noise induced phase transitions caused by the q-

dependent diffusion constant.

A potential function φ̄(q) can always be defined from

the steady state distribution. There is an extensive math-

ematical literature addressing this problem.[23] After this

is done, though it can be a difficult problem, the proce-

dure to relate the Fokker–Planck equation to Eq. (12) is

straightforward. Equation (12) can be rewritten as

∂ρ(q, t)

∂t
= ∇T[θD(q)∇ + θ(∇TQ(q))

− [D(q) + Q(q)]∇φ(q)]ρ(q, t) . (19)

The antisymmetric property of the matrix Q(q) has been

used in reaching Eq. (19). Thus, comparing Eqs. (18) and

(19), we have

D(q) = D̄(q) , (20)

φ(q) = φ̄(q) , (21)

f(q) = f̄(q) + θ∇TQ(q) , (22)

where we have used the relation

−[D(q) + Q(q)]∇φ(q) = f(q) .

The explicit equation for the anti-symmetric matrix Q is

θ∇TQ(q) + [D(q) + Q(q)]∇φ(q; λ) = f̄(q) , (23)

which is a first order, linear, inhomogeneous, partial dif-

ferential equation. The solution for Q can be formally

written as
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Q(q) =
1

θ

∫

q

dq′[f̄(q′) − D(q′)∇′φ(q′; λ)] eβ(φ(q;λ)−φ(q′;λ)) + Q0(q) eβφ(q;λ) . (24)

Here Q0(q) is a solution of the homogenous equation
θ∇TQ(q) = 0, and the two parallel vectors in the inte-
grand, dq′f̄(q), defines a matrix. This completes our an-
swer to the inversion problem.

It is interesting to note that the shift between the
zero’s of the potential gradient and the drift is given from
Eq. (22) as,

∆f̄ = θ∇TQ(q) . (25)

The extremals of the steady state distribution are not nec-
essarily determined by the zero’s of drift. This shift can
occur even when D = constant. The indication for such
a shift appeared extensive in numerical studies.[79] It was
also noted analytically.[80]

Thus, the zero-mass limit approach to the stochastic
differential equation is consistent in itself. The meaning
of the potential, φ, is explicitly manifested in both the
local trajectory, according to Eq. (4), and the ensemble
distribution, according to Eq. (12). In particular, no de-
tailed balance condition is assumed. There is no need
to differentiate between the additive and multiplicative
noises. This zero mass limit procedure which leads to
Eq. (4) from Eq. (12) may be regarded as another pre-
scription for stochastic integration, in addition to those
of Ito,[34,35] of Stratonovich–Fisk,[21,81] and of Hanggi–
Klimontovich,[82,83] and of others.[84] They have been dis-
cussed from a unified mathematical perspective in terms
of an initial-point, middle-point, and end-point discretiza-
tion rules.[84] All those previous methods of treating the
stochastic differential equation are mathematically con-
sistent in themselves and are related to each other. The
connection of the present method to those previous meth-
ods is suggested by Eqs. (18) and (12) (or Eq. (19)). For
example, equation (18) is just what can be obtained from
the Hanggi–Klimontovich type treatment, which has been
noticed by others as well.[85,86] It is interesting to note that
Ito’s method puts an emphasis on the martingale property
of stochastic processes, which may be viewed as a prescrip-
tion from mathematics. The Stratonovich–Fisk method
stresses the differentiability such that the usual differ-
ential chain-rule can be formally applied, which may be
viewed as the prescription from engineering. The Hanggi–
Klimontovich type stresses the generalized detailed bal-
ance, important in physics. The present approach em-
phasizes the role played by the potential function in both
trajectory and ensemble descriptions, as well as the exis-
tence of a generalized Einstein relation (see below) when
the detailed balance is absent. It may be regarded as the
prescription from natural sciences. All those stochastic
integration methods point to the need for an explicit par-
tition between the stochastic and deterministic forces, the
hallmark of hierarchical structure in dynamics. This fea-
ture corresponds precisely to the hierarchical law in the
evolutionary dynamics of biology.[19]

Two more remarks are in order here. First, by con-
struction the present method preserves the fixed points:

The fixed points of f are also those of ∇φ. The introduc-
ing of the stochastic force would not shift the fixed points.
This is very useful in that, the results of powerful bifurca-
tion analysis of deterministic dynamics can be carried over
to the stochastic situation. Second, there is a one to one
correspondence between Eq. (4) and the dynamical equa-
tion in dissipative quantum phenomena.[87] Because the
latter has been discussed in context beyond white noise,
this connection suggests an immediate generalization of
Eq. (4) to colored noise situations.

We may conclude that a stochastic process leads to the
canonical ensemble with a temperature and a Boltzmann–
Gibbs type distribution function, independent of how it is
treated. Other related stochastic ensembles, such as the
grand canonical ensemble, may be introduced in the same
way by including additional constraints.

3.3 Discrete Stochastic Dynamics

There is another kind of modelling predominant in
population genetics and other fields which is discrete in
phase space and/or time. The existence of potential func-
tion in such stochastic dynamical systems has been con-
vincingly argued.[88−90] Here we will not discuss it in any
detail, and simply quote a few relevant results. The rea-
sons to do so are:

(i) It is known mathematically that any discrete model
can be represented by a continuous one exactly according
to the embedding theorem,[91−93] though sometimes such
a process may turn a finite dimension problem into an
infinite dimension one;

(ii) By a coarse graining, averaging process, the dis-
crete dynamics in population genetics can often be sim-
plified to continuous ones such as diffusion equations or
Fokker–Planck equations.[8,21,35,94,95] It is generally ac-
knowledged in population genetics and in other fields that
the diffusion approximation is often a good approxima-
tion.

For the steady state distribution, all one needs to know
is the potential function φ. The temperature can be set to
be unity: θ = 1. Hence, despite possible additional math-
ematical issues, the discrete or continuous representation
does not seem to be a physically or biologically important
factor.

4 Steady State Thermodynamics

Given the Boltzmann–Gibbs distribution, the parti-
tion function can be evaluated according to Eq. (15).
Hence, in steady state, all observable quantities are known
in principle according to Eq. (17). One may wonder then
what can we learn about a system from thermodynamics.
First, there is a practical value. In many cases the calcula-
tion of the partition function is hard, if possible. It would
be desirable if there are alternatives. Thermodynamics
gives us a set of useful relations between observable quan-
tities based on general properties of the system, such as
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symmetries. Precise information on one observable can be
inferred from the information on other observables. Sec-
ond, there is a theoretical value. Thermodynamics has a
scope far more general than many other fields in physics.
It is the only field in classical physics whose foundation
and structure not only have survived quantum mechan-
ics and relativity, but also become stronger. Furthermore,
thermodynamics exhibits a sense of formal beauty, ele-
gance, and simplicity, which is exceedingly satisfying aes-
thetically. Its influence is far beyond physical sciences,
because it is also based on probability and statistics.

There are numerous excellent books deriving thermo-
dynamics from statistical mechanics. A thorough treat-
ment can be found, for example, in Ref. [96]. A more
reader-friendly treatment can be found in Ref. [97] or
[98]. Concise and elementary treatments from thermo-
dynamics point of view have been presented in Refs. [99]
and [100]. A modern discussion of the approaching to
the steady state was presented in Ref. [101]. Reference
[102] gave a comprehensive review from the point of view
steady state thermodynamics, but “temperature” was de-
emphasized. The present demonstration overlaps with it
at various places. Nevertheless, there is one main dif-
ference: The role of “temperature” is explicitly discussed
here. Reference [103] gave a detailed discussion of the con-
nection between thermodynamics and Langevin dynamics
with an emphasis on detail balance and on the stochas-
tic integration of Stratonovich. The above demonstra-
tion already indicates that there is no need to confine to
Stratonovich approach.

The principal objective in this section is to show that
Darwinian dynamics indeed implies the main structures
of thermodynamics, even though at a first glance it seems
to have no connection, because Darwinian dynamics is at
the extreme end of nonequilibrium processes. In the light
of those superb expositions mentioned above, the present
discussion may appear incomplete as well as arbitrary. For
a systematic discussion on thermodynamics the reader is
sincerely encouraged to consult those books and/or any
of her/his favorites. Nevertheless, we wish to show that
a logically consistent dynamical understanding of thermo-
dynamics can be obtained. Specifically, it is explicitly
demonstrated that absence of detailed balance condition
does not prevent us to obtain thermodynamics.

4.1 Zeroth Law: Existence of Absolute

“Temperature”

From Darwinian dynamics, the steady state distribu-
tion is given by a Boltzmann–Gibbs type distribution,
Eq. (11), determined by the Wright evolutionary poten-
tial function φ of the system and a positive parameter θ
of the noise strength. Hence, the analogy of the Zeroth
Law of thermodynamics is implied by Darwinian dynam-
ics: There exists a temperature-like quantity, represented
by the positive parameter θ. This “temperature” θ is “ab-
solute” in that it does not depend on the system’s material
details. It is evident that the existence of the “tempera-
ture” is a direct consequence of stochasticity in Darwinian
dynamics, as exemplified in Eqs. (1) ∼ (6).

4.2 First Law: Conservation of “Energy”

(i) Fundamental relation and the differential forms

From the partition function Zθ, we may define a quan-
tity

Fθ ≡ −θ lnZθ . (26)

We may also define the average Wright evolutionary po-
tential function,

Uθ ≡

∫

dnqφ(q; λ)ρθ(q) . (27)

From the distribution function we may further define a
positive quantity

Sθ ≡ −

∫

dnqρθ(q) ln ρθ(q) . (28)

It is then straightforward to verify that

Fθ = Uθ − θSθ , (29)

precisely the fundamental relation in thermodynamics sat-
isfied by free energy, Fθ, internal energy, Uθ, and entropy,
Sθ. The subscript θ denotes the steady state nature of
those quantities. Due to the finite strength of stochastic-
ity, that is, θ > 0, not all the Uθ is readily usable: Fθ

is always smaller than Uθ. A part of θSθ called “heat”
cannot be utilized.

It can also be verified from these definitions that if the
system consists of several non-interacting parts, Fθ, Uθ,
and Sθ are sum of those corresponding parts. Hence, they
are extensive quantities. The “temperature” θ is an in-
tensive quantity: it must be the same for all those parts
because they are contacting the same noise source. There-
fore, we conclude that the First Law of thermodynamics
is implied by Darwinian dynamics.

The fundamental relation for the free energy, Eq. (29),
as well as the internal energy, Eq. (27), may be expressed
in their differential forms as well. Considering an infinites-
imal process which causes changes in both the Wright evo-
lutionary potential function via parameter λ and in the
steady state distribution function, the change in the in-
ternal energy according to Eq. (29) is

dUθ =

∫

dnq
φ(q; λ)

∂λ
dλρθ(q) +

∫

dnqφ(q; λ)dρθ(q)

= µdλ + θdSθ . (30)

This is the differential form for the internal energy. Here
the steady state entropy definition of Eq. (28) has been
used, along with

∫

dnqdρθ(q) = 0, and

µ ≡
∂Uθ

∂λ

∣

∣

∣

θ
. (31)

Equation (30) can be written in the usual form in ther-
modynamics:

dUθ = d̄W + d̄Q .

The part corresponding to the change in entropy is the
“heat” exchange: d̄Q = θdS and the part corresponding
to the change in the Wright evolutionary potential func-
tion is the “work” d̄W = µdλ. The conservation of “en-
ergy” is most clearly represented by Eq. (30). For the free
energy, following Eqs. (30) and (29) the differential form
is

dFθ = dUθ − dθSθ − θdSθ
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= µdλ − Sθ dθ . (32)
(ii) Steady state thermodynamic definition of tempera-

ture
Equations (30) and (32) may be useful in some appli-

cations. For example, the “temperature” can be found
from Eq. (30):

θ =
∂Uθ

∂Sθ

∣

∣

∣

λ
. (33)

There are situations in which an effective temperature
may be needed.[104] Equation (33) may be then used to
find the “temperature” in a nonequilibrium process if it
cannot be identified a priori .[105]

The convexity of a thermodynamic quantity is natu-
rally incorporated by the Boltzmann–Gibbs distribution.
There is no restriction on the size of the system. Even
for a finite system, however, phase transitions can occur,
because singular behaviors can be built into the potential
function, and controlled by external quantities.

4.3 Second Law: Maximum Entropy

(i) Second law and Carnot cycle
First, we remind the reader of a few important defini-

tions.
A reversible process is such a process that all the

relations between quantities and parameters are defined
through the Boltzmann–Gibbs distribution, Eq. (11).
From Darwinian dynamics point of view, a reversible pro-
cess in reality is necessarily a slow or quasi-static process

in order to ensure the relevancy of steady state distribu-
tion for its realization.

An isothermal process is a reversible process in which
“temperature” θ remains unchanged, θ = constant. Do
not confuse this with thermostated processes, which are,
in general, nonequilibrium dynamical processes.

A reversible adiabatic process is a reversible process
in which the coupling between the system and the noise
source is switched off and the system varies in such a way
that the distribution function remains unchanged along
the dynamic trajectory at each point in phase space. The
corresponding “temperature” can be restored at any posi-
tion during such a process. This implies that the entropy
remains unchanged, Sθ = constant. Then an irreversible
adiabatic process is one that there is no coupling between
the system and the noise environment and the system dy-
namics is deterministic and conserved.

The Carnot cycle, on which the Carnot heat engine is
based, is a fundamental construction in classical thermo-
dynamics. The Carnot cycle consists of four reversible
processes: two isothermal processes and two reversible
adiabatic processes [Figs. 2(a) and 2(b)]. The efficiency
ν of the Carnot heat engine is defined as the ratio of the
total net work performed over the heat absorbed at high
temperature:

ν ≡
∆Wtotal

∆Q12
. (34)

Fig. 2 Carnot cycle. (a) The µ-λ representation. (b) The θ-S representation. In this temperature-entropy representation,
the Carnot cycle is a rectangular.

The total net work done by the system is represented
by the shaded area enclosed by the cycle. For the heat
absorbed at the high isothermal process 1 → 2,

∆Q12 = θhigh∆Sθ,12 . (35)

For the adiabatic process 2 → 3, an external constraint
represented by λ is released (or applied),

∆Sθ,23 = 0 , ∆Q23 = 0 . (36)

For the heat absorbed (rather, released) at the low isother-
mal process 3 → 4,

∆Q34 = θlow∆Sθ,34 = −∆Q43 . (37)

For the adiabatic process 4 → 1, an external constraint is
applied (released),

∆Sθ,41 = 0 , ∆Q41 = 0 . (38)

Using the First Law, equation (29) and the fact that the
free energy is a state function,

∆Ftotal = ∆Qtotal − ∆Wtotal = 0 . (39)

The minus sign in front of the total work represents that
it is the work done by the system, not to the system. The
total heat absorbed by the system is

∆Qtotal = ∆Q12 + ∆Q34 = ∆Q12 − ∆Q43 = ∆Wtotal .

We further have

∆Sθ,12 = ∆Sθ,43 . (40)

From Eqs. (34), (39), and (40) the Carnot heat engine
efficiency is then

ν = 1 −
∆Q43

∆Q12
= 1 −

θlow

θhigh
, (41)
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precisely the form in thermodynamics. The Second Law of
thermodynamics may be stated as that for all heat engines
operating between two temperatures, Carnot heat engine
is the most efficient. The Second Law is thus implied by
Darwinian dynamics.

The beauty of Carnot heat engine is that its efficiency
is completely independent of any material details. It
brings out the most fundamental property of thermody-
namics and is a direct consequence of the Boltzmann–
Gibbs distribution function and the First Law. It reveals
a property of Nature which may not be contained in a
conservative dynamics, at least it is still not obviously to
many people from Newtonian dynamics point of view after
more than 150 years of intensive studies.[41] On the other
hand, it appears naturally implied in Darwinian dynam-
ics.

Having discussed various thermodynamics processes,
let us return to the issue of fixing the arbitrary function in
potential function discussed in Subsec. 3.1, which is now
directly connected to free energy. The minimum gauge
condition to determine φ1(λ) may be extended as

Fθ(λ2) − Fθ(λ1) = 〈W 〉|reversible ,

with W =
∫ λ2

λ1

dq · δf(q; λ(t)), that is, the work done in
the reversible process by the external force related to the
parameter is equal to the change in free energy. Again, it
is an accepted relation in statistical thermodynamics. It
is possible that that φ1(λ) determined thermodynamically
may depend on temperature.

(ii) Maximum entropy principle

There are many versions of the Second Law. Here we
refer to two equivalent versions from the stability point of
view, which frame the discussion in this subsection.

Minimum free energy statement Given the po-
tential function and the temperature, the free energy
achieves its lowest possible value if the distribution is the
Boltzmann–Gibbs distribution.

Maximum entropy statement Given the potential
function and its average, the entropy attains its maximum
value when the distribution is the Boltzmann–Gibbs dis-
tribution.

The latter version of the Second Law is the most in-
fluential. Its inverse statement, the so-called maximum

entropy principle, has been extensively employed in prob-
ability inference[106] both within and beyond the physical
and biological sciences.[107,108]

We generalize here the definitions of the entropy to
include the arbitrary time-dependent distribution in anal-
ogy to Eq. (28):

S(t) ≡ −

∫

dnqρ(q, t) ln ρ(q, t) . (42)

There are two apparent drawbacks to such a definition,
however. First, even if the evolution of the distribution
function ρ(q, t) is governed by the Fokker–Planck equa-
tion, Eq. (12), in general the sign of the time derivative,

dS(t)/dt = Ṡ(t), cannot be determined, whether or not

it is close to the steady state distribution. Though Ṡ(t)
might indeed be divided into an always positive part and
the rest, such a partition usually appears arbitrary. Even
more problematically, in general S(t) can be either larger
or smaller than Sθ, which makes such a definition lose its
appeal in view of the maximum entropy statement of the
Second Law. We will return to S(t) later.

Nevertheless, if we take the lesson from the potential
function that only the relative value is important, we may
introduce a reference point in functional space into a gen-
eral entropy definition. One previous definition for the
referenced entropy is[65]

Sr(t) ≡ −

∫

dnqρ(q, t) ln
ρ(q, t)

ρθ(q)
+ Sθ . (43)

With the aid of the inequality ln(1 + x) ≤ x and the nor-
malization condition

∫

dnqρ(q, t) =
∫

dnqρθ(q) = 1, it
can be verified that

Sr(t) =

∫

dnqρ(q, t) ln
(

1 +
ρθ(q) − ρ(q, t)

ρ(q, t)

)

+ Sθ

≤

∫

dnq(ρθ(q) − ρ(q), t) + Sθ

= Sθ . (44)

The equality holds when ρ(q, t) = ρθ(q). This inequality
is independent of the details of the dynamics and is evi-
dently a maximum entropy statement. Furthermore, with
the aid of the Fokker–Planck equation, Eq. (12), the time

derivative of this referenced entropy, dSr(t)/dt = Ṡr(t) is
always non-negative:

Ṡr(t) = −

∫

dnq
∂ρ(q, t)

∂t
ln

ρ(q, t)

ρθ(q)

= −

∫

dnq (∇T[D(q) + Q(q)][θ∇ + ∇φ(q; λ)]ρ(q, t)) ln
ρ(q, t)

ρθ(q)

=

∫

dnq

(

∇ ln
ρ(q, t)

ρθ(q)

)

T

[D(q) + Q(q)][θ∇ + ∇φ(q; λ)]ρ(q, t)

=

∫

dnq
1

θρ(q, t)
([θ∇ + ∇φ(q; λ)]ρ(q, t))T [D(q) + Q(q)][θ∇ + ∇φ(q; λ)]ρ(q, t)

=

∫

dnq
1

θρ(q, t)
([θ∇ + ∇φ(q; λ)]ρ(q, t))

T

D(q)[θ∇ + ∇φ(q; λ)]ρ(q, t)

=

∫

dnq
1

θρ(q, t)
jT(q, t)R(q)j(q, t) ≥ 0 . (45)
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Hence, this referenced entropy Sr(t) has all the desired
properties for the maximum entropy statement of the Sec-
ond Law.

Two important remarks are in order. First, in the
derivation reaching Eq. (45), the dynamics responsible
for breaking the detailed balance condition, the anti-
symmetric matrix Q, does not contribute to the change
of relative entropy. Only the dissipative part of dynamics
represented by D leads to the monotonic change of rela-
tive entropy. Given the present interpretation from both
trajectory and ensemble points of view, it is clear that
Q is what needed for the Poisson bracket in conservative
dynamics explored elsewhere.[109] The present demonstra-
tion suggests a unified treatment for both near and far
from equilibrium dynamical processes.

Second, by the probability current density definition
of Eq. (14) j is zero at the steady state. This is in
accordance with the understanding that at equilibrium
there is no change in (relative) entropy, that is, the en-
tropy production should be zero at equilibrium. Now,
we have generalized this conclusion to steady state. We
note that the present probability current density may
differ from the usual probability current density defini-
tion which may be based on Eq. (18) and takes the form
j̄(q, t) ≡ −[θD∇ − f̄(q)]ρ(q, t), which is not zero at the
steady state. Instead, ∇ · j̄ = 0 at the steady state. Even
with the usual definition, the zero relative entropy pro-
duction at steady state always remains valid.

Though the definition of entropy of Eq. (42) may not
be appealing, a related definition of free energy is consis-
tent with the Second Law. We demonstrate it here. First,
a general definition for the internal energy may be:

U(t) ≡

∫

dnqφ(q; λ)ρ(q, t) . (46)

Given the distribution and the potential function, quanti-
ties defined in Eqs. (42) and (46) can be evaluated. Fol-
lowing the form of Eq. (26) a general definition of free
energy would be, with the “temperature” θ,

F (t) ≡ U(t) − θS(t) . (47)

It can be verified that F (t) ≥ Fθ and its time derivative is

always non-positive, Ḟ (t) ≤ 0. So defined time-dependent
free energy indeed satisfies the minimum free energy state-
ment of the Second Law. It differs from the referenced
entropy Sr(t) by a minus sign and by a constant:

F (t) = −θSr(t) + Uθ .

The generalized entropy S(t) has one desired property re-
garding to the adiabatic processes (either reversible or ir-
reversible) in that D = 0 during the adiabatic process.
Hence,

Ṡ(t) = −

∫

dnq
∂ρ

∂t
(q, t) ln ρ(q, t)

= −

∫

dnq
[

∇TQ(q)∇φ(q; λ)ρ(q, t)
]

ln ρ(q, t)

= −

∫

dnq
[

(Q(q)∇φ(q; λ)) · ∇
]

∫ ρ(q,t)

dρ′ ln ρ′

= 0 . (adiabatic) (48)

This is the known result in conservative Newtonian dy-
namics that the entropy remains unchanged. In deriving
the above equation we have used two properties:

(a) The no-coupling to the noise environment has been
translated into the fact that the terms associated with the
diffusion matrix D and “temperature” θ are set to be zero
in Eq. (12), because they are related to the noise source
which is decoupled during an adiabatic process;

(b) The incompressible condition of ∇ · [Q(q)
∇φ(q; λ)] = 0, the Liouville theorem, which is typically
satisfied in Newtonian dynamics.

In this conservative case, it can be verified that Ṡr(t) =
0, too, for any adiabatic process. Nevertheless, it is pos-
sible that while the dynamics is conservative, R = 0, and
even satisfying the Jacob identity in classical mechanics,
the Liouville theorem can be violated. Hence, in this case
the general entropy S(t) is not a constant during the dy-
namical process, and the general free energy F (t) and the
referenced entropy Sr(t) are not well defined either, be-
cause there is no “temperature” to define a steady state
distribution. But the “energy” can be conserved during
such a process.[109]

(iii) Connection to information theories

It may be worthwhile to define another referenced en-
tropy Sr2(t) which approaches the steady state entropy Sθ

from above. Its form is simple:

Sr2(t) ≡ −

∫

dnqρθ(q) ln ρ(q, t) . (49)

It can be verified that Sr2(t) ≥ Sθ and Ṡr2(t) ≤ 0.
The relation defined by Eq. (43) is in the same form

as the relative information in information theories. The
reference [110] contains discussions of many other useful
inequalities. A rather complete coverage of information
theory can be found in Ref. [108], and some current dis-
cussions of its connection to thermodynamics can be found
in Refs. [111] and [112].

4.4 Third Law: Unattainability of Zero

“Temperature”

Now we consider the behavior near zero “tempera-
ture”, θ → 0. To be specific, we assume the system is
dominated by a stable fixed point, taking as q = 0. As
suggested by the Boltzmann–Gibbs distribution, Eq. (11),
only the regime of phase space near this stable fixed point
will be important. Hence the Wright evolutionary poten-
tial function can be expanded around this point:

φ(q; λ) = φ(0; λ) +
1

2

n
∑

j=1

kj(λ)q2
j . (50)

Here we have also assumed that the number of indepen-
dent modes is the same as the dimension of the phase
space, though it may not necessary be so. This assumption
will not affect our conclusion below. Those independent
modes are represented by qj without loss of generality.
The “spring coefficients” {kj} are functions of external
parameters represented by λ.

The partition function according to Eq. (15) can be
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readily evaluated in this situation:

Zθ = e−βφ(0;λ)
n

∏

j=1

√

2πθ

kj

. (51)

So, the entropy according to Eq. (28), is:

Sθ = n
(

θ −
1

2
ln θ

)

+
1

2

n
∑

j

kj

2π
. (52)

The first term does not depend on external parameters,
but the second term does. This suggests that the entropy
depends on the specific control process to achieve low tem-
perature: different processes would lead to different sets
of {kj}, hence a difference between entropies at low tem-
peratures. The Third Law states that in the limit of zero
temperature the difference in entropy between different
processes is zero. Thus, Darwinian dynamics as formu-
lated in the present paper does not imply the Third Law.

One should not be surprised by the above conclusion,
because Darwinian dynamics here is essentially “classi-
cal”. The same conclusion could also be reached from
classical Newtonian dynamics. This means that within
Darwinian dynamics one could easily conceive the zero
“temperature” limit without any logic inconsistency.

With quantum mechanics, the agreement to the Third
Law is found and a stronger conclusion is reached: Not
only the difference in entropy should be zero, the en-
tropy itself is zero at zero temperature. We may conclude
that, in general, completely neglecting the noise is not a
viable choice: The temperature cannot be zero. When
the noise is small enough, new phenomena may occur.[113]

Phrasing differently, there appears to exist a bottom near
which there is something. It should be pointed out that
in the present formulation of Darwinian dynamics, partic-
ularly the Eq. (4), the existence of an anti-symmetric ma-
trix suggests a natural route to define a Poisson bracket.
Therefore, it is possible to extend Darwinian dynamics
into the quantum regime by following the usual canoni-
cal quantization procedure, possibly following the sugges-
tions from dissipative quantum dynamics.[87,114,115] Stud-
ies show that the Third Law can be regained in this
way.[116,117]

4.5 Two Inferences

To summarize, in this section we have shown that ex-
cept for the Third Law, all other Laws of thermodynamics
follow from Darwinian dynamics. The concern[103] as to
which stochastic integration method, Ito, Stratonovitch–
Fisk, Hanggi–Klimontovich, or others, is consistent with
the Second Law is resolved: Any of them can be decom-
posed into three parts: the conservative dynamics repre-
sented by the antisymmetric matrix Q, and nonconserva-
tive dynamics represented by nonnegative symmetric ma-
trix D, and the potential function φ. Thus, any of them is
consistent with the Second Law. We also note that based
on thermodynamic relations, the fundamental relation of
Eq. (29), the conservation of energy of Eq. (30), the uni-
versal heat engine efficiency of Eq. (41), supplemented by
the additive nature of extensive quantities and the tem-
perature of Eq. (33), the Boltzmann–Gibbs distribution is

implied. In this way statistical mechanics and thermody-
namics are equivalent.

Thermodynamics deals with steady state properties.
The key property is determined by the Boltzmann–Gibbs
distribution of Eq. (11) which only depends on the Wright
evolutionary potential function φ and the “temperature” θ
of Darwinian dynamics. The rest relations are determined
by the various symmetries of the system. No dynamical
information can be inferred from them. This feature has
been noticed in the literature.[37] In particular, there is no
way to recover the information on two quantities deter-
mining the local time scales, the friction matrix R and the
transverse matrix T , from thermodynamics. In this sense
“time” is lost in thermodynamics. Thus, thermodynamics
contains no direction of time and hence is consistent with
the time-reversal conservative Newtonian dynamics.

5 Stochastic Dynamical Equalities

We have explored the steady state consequences of
Darwinian dynamics in statistical mechanics and in ther-
modynamics. In this section we explore its general dy-
namical consequences. Two types of recently discov-
ered dynamical equalities will be discussed: one based
on the Feynman–Kac formula and other a generaliza-
tion of Einstein relation. For a background on path in-
tegral formulation, Feynman’s lucid exposition is highly
recommended.[118]

5.1 Feynman–Kac Formula

Previous discussions demonstrate that the Boltzmann–
Gibbs distribution plays a dominant role. It is natural to
work in a representation in which Boltzmann–Gibbs dis-
tribution appears in a most straightforward manner, or,
as close as possible. The standard approach in this spirit
is as follows. First, choose the dominant part of the evo-
lution operator L. The remaining part is denoted as δL.
In this subsection a general methodology to carry out this
procedure is summarized.

The Fokker–Planck equation, Eq. (12), can be rewrit-
ten as

∂

∂t
ρ(q, t) = L(∇, q; λ)ρ(q, t) , (53)

with L = ∇T[D(q) + Q(q)][θ∇+∇φ(q)]. Its solution can
be expressed in various ways. The most suggestive form
in the present context is that given by Feynman’s path
integral.[118] If at time t′ the system is at q′, the probabil-
ity for system at time t and at q is given by summation
of all trajectories allowed by Eq. (4) connection those two
points:

π(q, t; q′, t′) =
∑

trajectories

{

q(t) = q; q(t′) = q′
}

. (54)

In terms of the summation over the trajectories, the solu-
tion to Eq. (53) (and Eq. (12)) may be expressed as

ρ(q, t) =

∫

dnq′π(q, t; q′, t′)ρ(q, t = 0)

≡ 〈δ(q(t) − q)〉|trajectory . (55)

The delta function δ(q(t) − q) is used to specify the
end point explicitly. There is a summation over initial
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points, q′, weighted by the initial distribution function,
ρ(q′, t = 0).

Now, considering that the system is perturbed by
δL(q; λ), represented, for example, by a change in con-
trol parameter λ. The new evolution equation is

∂

∂t
ρnew(q, t) = [L(∇, q; λ) + δL(q; λ)]ρnew(q, t) . (56)

The perturbation may act as a source or sink for the prob-
ability distribution. The probability is no longer con-
served: in general

∫

dqρnew(q, t) 6=
∫

dqρnew(q, t = 0).

According to the Feynman–Kac formula,[24] the solution
to this new equation can be expressed as

ρnew(q, t)

=
〈

δ(q(t) − q) exp
[

∫ t

0

dt′δL(q(t′))
]〉

∣

∣

∣

trajectory
, (57)

with ρnew(q′, t = 0) = ρ(q′, t = 0) and the trajectories
following the dynamics of Eq. (4), the same as that in
Eq. (55). Thus, the evolution of the distribution func-
tion under new dynamics can be expressed by the evo-
lution in the original dynamics. The corresponding pro-
cedure in quantum mechanics is that in the “interaction
picture”.[119] Equation (57) is a powerful equality. Var-
ious dynamical equalities can be obtained starting from
Eq. (57). Indeed, its direct and indirect consequences have
been extensively explored.[120,121]

5.2 Free Energy Difference in Dynamical

Processes

(i) Jarzynski equality

We have noticed the special role played by the
Botlzmann–Gibbs distribution, Eq. (11). In particular,
it is independent of the friction and transverse matrices
R, T . Evidently the instantaneous Botlzmann–Gibbs dis-
tribution with λ = λ(t) is

ρθ(q; λ(t)) =
e−βφ(q;λ(t))

Zθ(λ(0))
. (58)

Here we have explicitly indicated that the parameter λ is
time-dependent. This distribution function is no longer

the solution of the Fokker–Planck equation of Eq. (12),
however. There will be transitions out of this instan-
taneous Boltzmann–Gibbs distribution function due to
the time-dependence of the parameter λ. While such
transitions may be hard to conceive of in classical me-
chanics, they can be easily rationalized in quantum me-
chanics, because of the discreteness of states. One
such well-studied model is the dissipative Landau–Zener
transition.[114,122,123]

An interesting question is that whether the transitions
can be “reversed” such that the instantaneous distribu-
tion is indeed an explicit solution for another but closely
related evolution equation. This means that the original
Fokker–Planck equation has to be modified in a special
way to become a new equation. Indeed, this modified
evolution equation can be found for any function ρ̄(q, t),
which reads,

∂

∂t
ρnew(q, t) =

[

L(∇, q, t) −
1

ρ̄(q, t)
(L(∇, q, t)ρ̄(q, t))

+
(∂ ln |ρ̄(q, t)|

∂t

)]

ρnew(q, t) . (59)

It can be verified ρnew(q, t) = ρ̄(q, t) is a solution of above
equation. Treating

δL = −
1

ρ̄(q, t)
L(∇, q, t)ρ̄(q, t) +

∂ ln |ρ̄(q, t)|

∂t
,

and the Feynman–Kac formula Eq. (57) may be ap-
plied. The analogous procedure has been well studied for
transitions during adiabatic processes in interaction pic-
ture of quantum mechanics[114,119,123] and of statistical
mechanics.[118]

Now, let ρ̄ be the instantaneous Boltzmann–Gibbs dis-
tribution of Eq. (58): ρ̄ = ρθ(q; λ(t)). We have δL =

−βλ̇∂φ(q; λ)/∂λ. Equation (59) can be solved by sum-
ming over all trajectories using the Feynman–Kac formula,
Eq. (57). At the same time, we know the instantaneous
Boltzmann–Gibbs distribution of Eq. (58) is its solution.
Since these two are solutions to the same equation, we
have the following equality

e−βφ(q;λ(t))

∫

dq e−βφ(q;λ(0))
=

〈

δ(q − q(t)) exp
[

−β

∫ t

0

dt′λ̇(t′)
∂φ(q(t′); λ(t′))

∂λ

]〉
∣

∣

∣

trajectory
. (60)

Following Ref. [124] we define the dynamical work as

Wt =

∫ t

0

dt′λ̇(t′)
∂φ(q(t′); λ(t′))

∂λ
. (61)

The equality between the free energy difference ∆Fθ =
Fθ(t) − Fθ(0)) and the dynamical work Wt is, then, af-
ter summation over all final points of the trajectories in
Eq. (60),

e−β∆Fθ = 〈 e−βWt〉|trajactory . (62)

This elegant equality connects the steady state quanti-
ties ∆Fθ to the work done in a dynamical process. Such
parametrized form was first discovered by Jarzynski.[124]

It should be emphasized that there is no assumption of
steady state at time t for the system governed by Eq. (12).
In fact, it is known, for example, in the case of the
Landau–Zener transition that it is not steady state.[114,123]

This equality has been discussed and extended by various
authors from various perspectives.[125−132] The connection
of this equality to the Feynman–Kac formula was first ex-
plicitly pointed out in Ref. [126]. There have also been
experimental verifications of this equality.[133] This type
of equalities was reviewed recently.[134]

Three points may be made here. First, the derivation
of Jarzynski equality presented here is valid both with
and without detailed balance condition, with both ad-
ditive and multiplicative noises. It has only one result.
Second, for Jarzinskii equality, neither D nor Q enter into
the equality, while the dynamics are obviously determined
by those matrices. Third, Feynman–Kac formula may be
used to generate more dynamical equalities, as already
noted.

In the light of those observations, we may infer two im-
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mediate but somewhat surprising physical results. First,
the “temperature” can be time-dependent, too. Thus, a
work equality for “temperature” can be established by
explicitly going through the procedure, hence extends
the work relation to a different dynamical domain. Sec-
ond, the validity of the demonstration of Jarzynski equal-
ity does not depend on the details of the operator L in
Eq. (53), as long as the steady state exists. This would

suggest that colored noises can be entered into Eq. (53).

In fact, we already know such examples.[87,114,123] The

dynamical equation as expressed by Eq. (4) also allows a

straightforward extension to colored noises. Third, given

the potential function determined by a reversible pro-

cess discussed in case (i) in Subsec. 4.3 and that using

Feynman-Kac formulae we have[120,135,136]

〈exp{−(W − Wλ)}〉|trajectory =
〈

exp
{

−

∫

dq · δf(q(t′); λ(t′)) −

∫ t

0

dt′λ̇(t′)∂λφ(q(t′); λ(t′))
}〉

∣

∣

∣

trajectory
= 1 ,

Jarzynski equality may be used to check consistency in
our understanding of related dynamical quantities. For
example, a discrepancy may indicate possibly a missing
term in the potential function φ.

(ii) Microcanonical and canonical ensembles

The Jarzynski equality places the Boltzmann–Gibbs
distribution hence the canonical ensemble in the central
position. They are simply natural consequences from Dar-
winian dynamics. However, if we start from conservative,
Newtonian dynamics, the appropriate ensemble is the mi-
crocanonical ensemble. Any distribution function which is
a function of the potential function or Hamiltonian would
be the solution of the Liouville equation. From this point
of view the Boltzmann–Gibbs distribution and the associ-
ated temperature appear arbitrary: It is just one among
infinite possibilities. This concern has been raised in the
literature[137] regarding to the generality of the equality of
Eq. (62). No satisfactory treatment of this concern within
Newtonian dynamics has been given. Rather, it has been
an “experimental attitude”: If one does this and makes
sure the procedure is correct one gets that, and it works.
Darwinian dynamics, however, provides an a priori reason
to fully justify the use of the Boltzmann–Gibbs distribu-
tion in the derivation of the Jarzynski equality.

5.3 Generalized Einstein Relation

In deriving the Boltzmann–Gibbs distribution from
Darwinian dynamics, Eq. (6):

[R(q) + T (q)]D(q)[R(q) − T (q)] = R(q) ,

has been used. This general and simple dynamical equal-
ity was termed as the generalized Einstein relation.[70] If
the detailed balance condition is satisfied, that is, if T = 0
or Q = 0, the above relation reduces to RD = 1, which
was discovered a century ago by Einstein,[138] and since
then has been known as Einstein relation. Variants of
Einstein relation in different settings were obtained ear-
lier and independently by Nernst,[139] by Planck,[140] by
Townsend,[141] and by Sutherland.[142] Similar to the dy-
namical equality exemplified by Jarzynski equality, the
generalized Einstein relation is a consequence of the
Boltzmann–Gibbs distribution and the canonical ensem-
ble embedded in Darwinian dynamics.

Experimentally, all those quantities in Eq. (6) can be
measured independently. Hence, this generalized Einstein
relation should be subject to experimental tests in the ab-
sence of detailed balance, that is, when the antisymmetric
matrix T does not vanish. While in evolutionary processes

in biology the data can be organized by the present dy-
namical structure,[8] the parameters are typically fixed by
Nature. We need situations where all these elements, R,
T , φ, and θ, are accessible to experimental control.

For simplicity, we consider a nonequilibrium situation
realizable with current technology as an illustration: a
charged nanoparticle or macromolecule, an electron or a
proton, with charge denoted by e, in the presence a strong,
uniform magnetic field B and immersed in a viscous liquid
with friction coefficient η. Indeed, similar situation has al-
ready been considered experimentally.[143] Here we restrict
our attention to the two-dimensional case (n = 2). The
corresponding Darwinian dynamical equation of Eq. (4) in
this case is the Langevin equation with the Lorentz force
for a “massless” charged particle:[144]

ηq̇ +
e

c
Bẑ × q̇ = −∇φ(q) + NIIξ(t) . (63)

The friction matrix is

R = η

(

1 0

0 1

)

. (64)

The transverse matrix is

T =
e

c
B

(

0 1

−1 0

)

, (65)

and the “temperature” is θ = kBTBG, with the Boltz-
mann constant kB and the thermal equilibrium temper-
ature TBG. If the system is out of thermal equilibrium,
the effective temperature, such as defined by Eq. (33),
should be used. This is a physically realizable situa-
tion in two-dimensional electrons extensively discussed
recently.[145] The corresponding Fokker–Planck equation,
following Eq. (12), is

∂ρ(q, t)

∂t
= ∇[Dθ ∇ + [D + Q]∇φ(q)]ρ(q, t) . (66)

This is precisely a diffusion equation with diffusion matrix
D. Both D and Q can be obtained from the generalized
Einstein relation, Eq. (6):

D =
η

η2 + (eB/c)2

(

1 0

0 1

)

, (67)

Q =
(e/c)B

η2 + (eB/c)2

(

0 −1

1 0

)

. (68)

In a typical situation, though all quantities can be mea-
sured experimentally, the friction coefficient is likely to be
less sensitive to the magnetic field. Then one may need
to focus experimentally on the diffusion in the presence
of the magnetic field without any potential field. In this
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case the evolution of the distribution is governed by the
standard diffusion equation:

∂ρ(q, t)

∂t
= θdB∇

2ρ(q, t) , (69)

with
dB =

η

[η2 + (eB/c)2]
.

The solution to Eq. (69) with ρ(q, t = 0 = δq(t = 0) − q

is standard (two dimensions, n = 2):

ρ(q, t) =
1

2πt
exp

{

−
q2

2dBθt

}

.

Averaging over trajectories governed by Eq. (69), 〈q(t) −
q(t = 0)〉|trajectory = 0 and

〈(q(t) − q(t = 0))2〉|trajectory = 4dBθt .

An experimental system, for example, may be that of
injection of electrons into a semiconductor, wherein one
measures their diffusion in the presence of a magnetic
field. Every quantity in the generalized Einstein rela-
tion of Eq. (6) can be measured and controlled experi-
mentally. Another experimental system may be on ion-
ized hydrogen or deuterium. For charged macromolecules
and nano-particles, the friction coefficient may be too
large to allow a measurable magnetic field effect accessi-
ble by current magnets. As a numerical example, for the
zero magnetic field diffusion constant of dB=0kBTBG ∼
104 cm2/sec., which implies diffusing of about 100 cm
in 1 second, the friction coefficient is η = 1/dB=0 ∼
4 × 10−16 dyne/(cm/sec.) at temperature TBG = 300 K.
Assuming one net electron charge, for magnetic field B =
1 Telsa, we have eB/c ∼ 1.6×10−16 dyne/(cm/sec.), com-
parable to the friction coefficient.

6 Outlook

In the present paper we have presented statistical me-
chanics and steady state thermodynamics as natural con-
sequences of Darwinian dynamics. Two types of general
stochastic dynamical equalities have been explored. Both
can be directly tested experimentally. Everything ap-
pears fully consistent except for one issue. The point of
view in physics has been that we should start from con-
servative dynamics, not Darwinian dynamics. This view
has indeed strong experimental and historical supports
during past 150 years. It is still the subject of current

research.[41,42,49,78] The troubling issue may be expressed
by an attempt to answer the following question. The nat-
ural consequence of conservative dynamics is the micro-
canonical ensemble, from which the canonical ensemble
just appears to be one of its infinite possibilities. How
and why does Nature choose the canonical ensemble and
the Second Law? There does not seem to be a consensus
yet on the answer.

The difficulty in reaching the Second Law from conser-
vative dynamics in nonequilibrium setting may encourage
us to consider Darwinian dynamics. There is, however, a
more compelling reason: Darwinian dynamics is the most
fundamental and successful dynamical theory in biological
sciences. Furthermore, as we have demonstrated above,
the Second Law and other nonequilibrium properties fol-
low naturally from it. Logically it provides a simple start-
ing point. It must contain a large element of physical
truth.

Conservative dynamics and Darwinian dynamics ap-
pear to occupy the two opposite ends of the theoretical
description of Nature. Both have been extremely success-
ful. In many respects they appear to be complementary
to each other. For example, it was noticed that Darwinian
dynamics and Newtonian dynamics can be derived from
each other under appropriate conditions.[19] What would
be the implication of this mutual reduction? Are there
hidden reasons for such complementarity? Hints to an-
swers for such questions are perhaps already contained in
the discussions of “more is different”,[146,147] of the im-
mensity of functional space,[148] of the macroscopic quan-
tum effect,[87] and of universe vs multiverse.[149] The for-
mulation and analysis in this paper may provide insights
into those fundamental relationships and a stimulus for
further studies.
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